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Filippo Agnelli · Andrei Constantinescu · Grigor Nika

Design and testing of 3D-printed micro-architectured
polymer materials exhibiting a negative Poisson’s ratio

Abstract This work proposes the complete design cycle for several auxetic materials where the cycle consists
of three steps (i) the design of the micro-architecture, (ii) the manufacturing of the material and (iii) the
testing of the material. We use topology optimization via a level-set method and asymptotic homogenization
to obtain periodic micro-architectured materials with a prescribed effective elasticity tensor and Poisson’s
ratio. The space of admissible micro-architectural shapes that carries orthotropic material symmetry allows to
attain shapes with an effective Poisson’s ratio below− 1. Moreover, the specimens were manufactured using
a commercial stereolithography Ember printer and are mechanically tested. The observed displacement and
strain fields during tensile testing obtained by digital image correlation match the predictions from the finite
element simulations and demonstrate the efficiency of the design cycle.

Keywords Auxetic material· Topology optimization· 3D printing· Polymer

1 Introduction

The Poisson’s ratio(ν) is a measure of the relative amount a given material contracts transversally under a
uniaxial stretch loading [17]. Unlike most conventional materials, auxetic materials tend to expand transversely
to an applied uniaxial stretch load and vice versa, leading to a so-called negative Poisson’s ratio. This effect
occurs due to the particular internal micro-structure and due to the mechanisms of deformation when loaded.
Because of their special mechanical properties, tailored auxetic materials can display enhanced stiffness and
energy absorption capabilities [21,27], indentation resistance [25], greater fracture toughness [11], crashwor-
thiness [20], phononic performance [38] as well as many other interesting properties, making them suitable in
targeted applications [13,36].

Since the seminal works performed in the 80s, the design of periodic auxetic structures has attracted
research interests and several types of auxetic materials have been introduced. In 1985, Almgren [6] introduced
a re-entrant honeycomb structure with Poisson’s ratio of− 1 using rods, hinges and springs. The re-entrant
honeycomb structure was also introduced as a “bi-mode” extremal material which supports a stress with a
negative determinant in Milton and Cherkaev [30]. Conceptual designs of composite materials with Poisson’s
ratio approaching− 1 were presented in [29]. Some important features of auxetic materials, such as the re-
entrant corners, were discussed in the key works of Lakes [23,24], Friis et al. [15], Evans [14]. A new class of
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auxetic materials that obtain their auxetic behaviour from therotating squares mechanism were introduced in
the works of Grima et al. [18]. Moreover, a separate class of 3D auxetics that exploits the buckling mechanism
in structures was proposed by [7].

Design techniques using modern numerical methods such as shape and topology optimization [1,9] arose
as a natural way to tailor mechanical properties through a design of complex geometries. In auxetic material
with a periodic micro-structure, the effective elastic properties can be derived by means of asymptotic homog-
enization, with periodic boundary conditions applied on a unit cell and the associated boundary value problem
resolved [8,28,35]. The works of Sigmund presented a topology optimization framework for designing 2D
and stacked 2D auxetic truss-based structures [37] and for designing 2D continuum-based micro-mechanism
with negative Poisson’s ratio [26]. Since these works, different techniques have been adopted for auxetic
structure design optimization, for example SIMP, phase-field, level-set methods, etc. In the works of Wang
et al. [12,41], the SIMP method was used to include geometrical nonlinearities and to tackle manufacturing
constraints. The resulting architectures attain the desired response through uniform features, like the thickness
of connecting rods. In other recent developments, Carraturo et al. [22], Choi and Lakes [33] and Clausen
et al. [10] extend this method to thermodynamic topology optimization or graded materials. Furthermore,
alternative optimization methods as found in the works of Wang et al. [42,43], Vogiatzis et al. [40] and Nika
and Constantinescu [31], among others, use asymptotic homogenization, the level-set method [32] and the
Hadamard shape derivative to identify material regions and track boundary changes to systematically design
auxetic shapes. Wang et al. [42], design linear elastic and thermoelastic materials with negative Poisson’s ratio,
while Nika and Constantinescu [31] design linear elastic multi-materials with negative Poisson’s ratio.

The classical theory of elasticity states that isotropic three-dimensional materials may exhibit Poisson’s
ratios bounded in[− 1, 0.5] ; Two-dimensional isotropic systems can exhibit Poisson’s ratios bounded in
[− 1, 1]. The effective elastic tensor that characterizes the auxetic material however has a priori orthotropic
symmetry. In two-dimensional systems, the effective elastic stiffness is characterized by two Poisson ratios
ν12, ν21, which are a priori not bounded, hence they can assume any positive or negative values in certain
directions [39]. For instance, Poisson’s ratios smaller than− 1 have been reported according to Lakes [24]. In
the topology optimization literature, the auxetic shapes obtained tend to exhibit cubic symmetry, i.e.ν12 = ν21.
However, as was already mentioned, this need not be the case.

The aim of this paper is to complete a design cycle for several auxetic materials. We combine topology opti-
mization to systematically obtain the micro-architecture with 3D printing to digitally fabricate the designs and
validate against the numerically predicted behaviour. Materials are manufactured using a desktop stereolithog-
raphy 3D printer and then tested on standard tensile machine. Insight into the local mechanical fields is obtained
using digital image correlation. The paper is organized as follows. Section2 presents the computational design
of the micro-architectured material. It provides some basic results needed from the theory of homogenization,
relates the effective coefficients to the effective Poisson’s ratio, and sets up the optimization problem to sys-
tematically identify optimal auxetic shapes. Section3 presents the optimal auxetic micro-structures obtained
and describes some of their properties as well as the additive manufacturing process. Section4 is dedicated
to the experimental testing of the structures and the interpretation of results using digital image correlation
(DIC). Additionally, an appendix reviews the approach used to measure the effective Poisson’s ratio by DIC
and the finite element method on periodic structures.

Notation Scalars are denoted by italic letters,α, vectors and second-order tensors are denoted by bold face
lettersu, their use being clear from the context of the equations. Fourth-order tensor are denoted by barred
letters,C. The dot product between two second-order tensorsA andB is denoted byA : B =

∑N
i, j=1 Ai j B j i

whereAi j and Bi j are the tensor components. The average of a quantity over a region e.g.D is denoted by
〈·〉D, while by〈· | ·〉, we denote the duality product.

2 Computational design

The considered micro-architectured materials are two-dimensional periodic assemblies of square unit cells.
The unit cells are a two-phase composite with a strong and weak phase, e.g. polymer material and void,
respectively. In the sequel, we will denote asshape the strong phase of the micro-architectured unit cell, e.g.
polymer phase of the composite.

In this section, we present the micro-architectured material modelling using a level-set representation [32]
in the unit cell, the computation of effective elastic tensors of the periodic micro-structure based on rigourous
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Fig. 1 Representation of the shape in the unit cell: a 3D representation of the level set sliced by the planeφ = 0 (left) projection
of the level set on the Cartesian plane (centre), characteristic sets defined by the level set, i.e. void and material phases and their
reciprocal boundary (right)

mathematical theory [1,8,28,35] and a shape optimization method [3,42] to reach a target homogenized
elasticity tensor.

2.1 Shape of a unit cell and homogenized elastic tensor

We denote byY the rescaled unit cell, of coordinatesy ∈ [−1/2, 1/2]2. The strong phase of the micro-
architectured unit cell, i.e. the shape, is denoted byω and is represented by a real-valued auxiliary level-set
functionφ. The principle of the level-set method is to implicitly define the interface of a shape via the zero
level set ofφ [see Eq. (2.1) and Fig.1]. Following the ideas of section 2 in [2], the level-set function serves
as a base to define the local stiffness tensorC(y) in Y as a smooth interpolation between the strong phase and
the weak phase, e.g. polymer and void material properties, respectively.

⎧

⎪

⎨

⎪

⎩

φ(y) = 0 if y ∈ ∂ω ∩ Y, (boundary)

φ(y) > 0 if y ∈ Y\ω, (void)

φ(y) < 0 if y ∈ ω, (material)

(2.1)

The material under consideration occupies a two-dimensional domainΩ, described by a set of coordinates
x ∈ R

2 and is modelled as a linear elastic composite with periodic structure. We introduce the small parameter
ǫ as the ratio of the period of the structure to the typical size of the domainΩ and letǫ → 0 to obtain the
homogenized problem. The displacementuǫ(x) satisfies the following problem:

− div(Cǫ(x)) uǫ(x) = f (x) in Ω,

uǫ(x) = 0 on∂Ω.
(2.2)

whereC
ǫ(x) ≡ C(x/ǫ) represent a fourth-order stiffness tensor which is positive definitive andf (x) is a known

body force.
Assume thatuǫ has a two-scale expansion of the form:

uǫ(x) =

+∞
∑

α=0

ǫα uα (x, y), y =
x
ǫ
. (2.3)

This leads to a series of problems for different orders ofǫ: at orderǫ−2, we obtain thatu0(x, y) ≡ u0(x). At
orderǫ−1, we obtain the displacement field solutions of the unit cell problems. At orderǫ0, we obtain the linear
elastic constitutive equation averaged over the unit cell, yielding the following explicit energy formulation of
the homogenized elastic tensorC

H , expressed in terms of its Cartesian components as:

C H
i jkℓ =

∫

Y
C(y)(Ei j + ε(χ i j )) : (Ekℓ + ε(χkℓ)) dy, (2.4)

where

– Ekℓ designates a constant strain over the unit cell, resulting from the zero-order displacementu0. In 2D,
there are three independent unit strain fields, namely the horizontal unit strainE11 = (1, 0, 0)T , the vertical
strainE22 = (0, 1, 0)T and the shear unit strainE12 = (0, 0, 1)T .

– χkℓ represent the displacement fields, solution of the following linear elastic problems with periodic
boundary conditions:
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Find admissible displacementχkl such that
∫

Y
C(y)(Ekℓ + ε(χkℓ)) : ε(v) dy = 0

(2.5)

wherev are admissible displacement vectors, i.e. with zero mean value and adequate smoothness.

2.2 Elastic stiffness with orthotropic symmetry

The effective stiffness tensorCH in (2.4) carries a natural orthotropic material symmetry, provided thatC

is isotropic [35]. The linear elastic constitutive equation averaged over the unit cell relating the mean stress
and strain tensors, denoted asσ H andεH , respectively, has therefore the following expression for the two-
dimensional problems under consideration:

σ H = C
H εH

where: σ H = 〈σ 〉Y , εH = 〈ε〉Y .
(2.6)

In 2D elasticity, the components ofC
H in matrix notation and in Cartesian coordinates read:

⎛

⎜

⎝

σ H
11

σ H
22

σ H
12

⎞

⎟

⎠
=

⎛

⎜

⎝

C H
1111 C H

1122 0

C H
1122 C H

2222 0

0 0 C H
1212

⎞

⎟

⎠

⎛

⎜

⎝

εH
11

εH
22

2εH
12

⎞

⎟

⎠
(2.7)

Alternatively, one could express the effective strain as a function of the effective stress with the following
effective material tensor:

⎛

⎜

⎝

εH
11

εH
22

2εH
12

⎞

⎟

⎠
=

⎛

⎜

⎝

1/E1 − ν12/E2 0

− ν21/E1 1/E2 0

0 0 1/G

⎞

⎟

⎠

⎛

⎜

⎝

σ H
11

σ H
22

σ H
12

⎞

⎟

⎠
(2.8)

whereEi denote the homogenized Young moduli,νi j denote the Poisson’s ratios andG denotes the homoge-
nized shear modulus. Let us further remark that by symmetry of the elastic compliance matrix, the following
ratios have to be equal:

ν12

E2
=

ν21

E1
(2.9)

The elastic moduli,C H
i jkl , can equally be expressed in terms of the compliance moduli, i.e. Young moduli

and Poisson’s ratios:C H
1111 = (1 − ν12ν21)

−1E1, C H
2222 = (1 − ν12ν21)

−1E2, C H
1122 = ν21(1 − ν12ν21)

−1E1,
C H

2211 = ν12(1 − ν12ν21)
−1E2 with C H

1122 = C H
2211 as can be easily obtained from the inversion of the

corresponding matrices. A simple calculation immediately yields:

ν12 =
C H

1122

C H
2222

and ν21 =
C H

1122

C H
1111

. (2.10)

Moreover, the homogenized Poisson’s ratioνi j are equally denotedeffective Poisson’s ratio to highlight their
reference to the homogenized unit cell. For example,ν12 characterizes the contraction of the structure in the
direction ofOy axis when the cell stretched in the direction ofOx axis and in generalν12 	= ν21. However,
if the micro-architecture of the unit cell obeys “cubic” symmetry, we haveC H

1111 = C H
2222, and we trivially

obtain thatE1 = E2 = E∗ andν12 = ν21 = ν∗.
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2.3 Shape optimization of the micro-structures

Next, we discuss the framework of the optimization problem without presenting the details of the algorithm
which is beyond the scope of the paper. A detailed discussion is given by the authors in [31].

Assume that the unit cellY is the working domain and considerω an open and bounded subset ofY
representing the shape of the architectured micro-structure. The optimization problem seeks to find the shape
ω such that the effective stiffness of the material reaches a given target valueC

t . The problem can be formulated
as constrained minimization problem. The distance between the effective elastic moduli over the unit cell and
target elastic moduli can be measured by the following cost functional:

J (ω) =
1

2

∥

∥

∥
C

H (ω) − C
t
∥

∥

∥

2

η
(2.11)

where‖·‖η is the weighted Euclidean norm,C
t is the target elastic tensor, andη are the weight coefficients.

We define a set of admissible shapes contained in the working domainY and have a prescribed volume
by Uad =

{

ω ⊂ Y such that|ω| = V t
}

. Hence, the optimal shape design of the micro-architecture can be
formulated as the following optimization problem:

inf
ω⊂Uad

J (ω),

χkl satisfies (2.5).
(2.12)

In practice, the volume constraint is enforced using a Lagrange multiplier (the technique for updating the
Lagrange was based upon the works of Allaire and Pantz [4]).

2.4 Numerical algorithm

The optimization ofJ (ω) is carried out by advecting an initial shapeω0 with velocity v obtained from the
shape derivative

〈

J ′(ω) | θ
〉

in the directionθ (see Allaire et al. [3] or Wang et al. [42]). The advection is
realized by solving the Hamilton–Jacobi equation,

φ,t + v · |∇φ| = 0 (2.13)

wherev is the velocity of the interface computed from the shape derivative
〈

J ′(ω) | θ
〉

.
The numerical algorithm can be summarized in the following steps:

(i) Initialize the level setφ0 corresponding to the initial shapeω0.
(ii) Update the level setφ0 using the signed distance functiondω0.

(iii) Iterate until convergence fork ≥ 0:
a. Calculate the local solutionsχmℓ

k for m, ℓ = 1, 2 by solving the linear elasticity problem inY .
b. Deform the domainωk by solving the above Hamilton–Jacobi equation. The new shapeωk+1 is charac-

terized by the level setφk+1 after a time stepΔtk . The time stepΔtk is chosen so thatJ (ωk+1) ≤ J (ωk).
(iv) If needed for stability reasons, re-initialize the level-set functionsφk .

The complete algorithm as well as several examples are presented in Nika and Constantinescu [31].
Additional mathematical results and algorithmic issues can be found in the works of Allaire, Jouve and
Toader [3], Allaire et al. [2] and Wang et al. [42] for more details about the mathematical results and algorithmic
issues for the solution method. Let us remark that the algorithm does not allow for nucleations of voids. However,
the level-set method is well-known to handle easily topology changes, i.e. merging or cancellation of holes.
Therefore, algorithm is able to perform topology optimization if the number of holes of the initial design is
sufficiently large and converges smoothly to a (local) minimum which strongly depends on the initial topology.
Next, for each numerical example, we provide the initials guesses for the shapes which are typically a plate
filled with holes, as illustrated in Figs.2a,4a and5a.
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(a) (b) (c)

Fig. 2 Initial and final shape of the micro-structures:a initial shape consisting of a series of “circular” micro-perforations,b final,
optimal, shape of the unit cell after 100 iterations,c final, optimal, shape of the periodic material

2.5 Examples of obtained micro-structures

In all the examples that follow, the Young’s modulus was set toEm = 0.91 MPa for the strong phase
(material) andEv = 0.91× 10−3 MPa for the weak phase (void). The Poisson’s ratio was set toν = 0.3 for
both phases. Under the plane stress assumption, the components of the elastic tensor of the base material are
Cm

1111 = Cm
2222 = 1.0 MPa ;Cm

1122 = 0.3 MPa ;Cm
1212 = 0.35 MPa. The quadratic unit cellY was meshed with

a structured symmetric grid of 100× 100 quadrangular each formed of four equal triangular linear elements
(P1). All computations were carried out using an in house programming of the preceding algorithm [31]
operating onFreeFEM++ software [19]. The optimization is assumed to be terminated when 100 iterative
steps are reached.

The main intention of the present work was to design micro-architectured materials exhibiting an effective
negative Poisson’s ratio. However, in all examples, the target objective was defined only in terms of the
coefficientsC H

1111, C H
1122, C H

2222 using relation (2.10). The shear coefficientC H
1212 as well as theC H

1211 and
C H

1222 coefficients were left free. Therefore, only the elastic moduli of the unit cell corresponding to the
direction 11 and 22 directions of strain and stresses were controlled.

Example 1 The first micro-structure to be optimized is a structure whose target effective Poisson’s ratio is
equalνt = −1.0. The volume constraint was set toV t = 50%. We further note that for this structure, we
enforced a symmetry of the shape along the vertical axis, by symmetrizing the level-set function after each
iteration in the algorithm. The initial and final shapes of the micro-structure on the unit cell and as a periodic
material are represented in Fig.2.

The final shape can be characterized as an re-entrant honeycomb structure and looks similar to the designs
imagined by Almgren [6]. Its homogenized coefficients, given in Table1, show that the structure exhibits an
effective orthotropic behaviour and a simple calculation yieldsν12 = − 1.25 andν21 = − 0.42. Hence, the
expansion of the structure along theOy axis when stretched in theOx axis is larger than the expansion along
the Ox axis when stretched in theOy axis. This non-symmetric effect has been enabled as the symmetry
relation was only imposed along theOy axis in the algorithm.

The convergence history of the cost functional and of the volume constraint shown in Fig.3 shows that the
target coefficient got stabilized in slightly more than 20 iteration and that the later iteration contributed only to
small improvements without bringing the cost functional to less than 0.06 which corresponds to 92% decrease
in the initial value. The gap with respect to the target moduli is read from Table1. It is interesting to remark that
the final optimized micro-structure has a shear moduli close to 0. However, the final effective Poisson’s ratio is
close to the set target as will be discussed in the comparison with the printed samples. The volume constraint
has a different evolution than the cost functional with an initial increase given by the initial evolution of the
holes and then a fast and a slow evolution which lies within the proposed range of the constraint.

Example 2 For the second micro-structure to be optimized, the target effective Poisson’s ratio was alsoνt =
−1. The target tensor possesses a cubic symmetry, meaning the desired mechanical properties along theOx
and Oy axis should be equal. This time, the void volume fraction constraint was of an inequality type, and
was set to 16%≤ V t ≤ 60%. To counter the loss of symmetry observed in the previous example, a symmetry
of the shape was enforced along both theOx axis andOy axis, by symmetrizing the level-set function during
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Table 1 Fromleft column to right column: target elastic stiffness tensorC
t , final elastic tensorCH (ω), target Poisson’s ratioνt ,

final effective Poisson’s ratioν∗ unit cell shapeω for the discussed examples

Example C
t

C
H (ω) νt ν∗ Shapeω

1

(

0.1 − 0.1 0
− 0.1 0.1 0

0 0 G

) (

0.12 − 0.05 0
− 0.05 0.04 0

0 0 0.006

)

− 1. {− 1.25, − 0.42}

2

(

0.1 − 0.1 0
− 0.1 0.1 0

0 0 G

) (

0.12 − 0.05 0
− 0.05 0.12 0

0 0 0.003

)

− 1. − 0.42

3

(

0.2 −0.1 0
− 0.1 0.2 0

0 0 G

) (

0.19 −0.09 0
− 0.09 0.19 0

0 0 0.6

)

− 0.5 − 0.47

Let us remark that the bottom two structures on the right column carry cubic symmetry, while the top structure on the right column
carries orthotropic symmetry

Fig. 3 Evolution of the cost functional (in red) and volume constraint V (in blue) during 100 iterations (colour figure online)

the algorithmic iterations. The initial and final shapes of the micro-structure on the unit cell and as a periodic
material are shown in Fig.4, while the target and final elastic moduli are shown in Table1.

As prescribed, the resulting structure exhibits a “cubic” symmetry. The computed effective Poisson’s ratio is
ν∗ = ν12 = ν21 = − 0.42. By comparing at the target and the obtained elastic tensor, one can remark that the
diagonal elastic moduliC H

1111 andC H
2222 are fairly close to the target but the shearC H

1122 fails at attaining the
desired properties ofνt = −1. This suggests that there is a trade-off between symmetrical tensor and extreme
negative Poisson’s ratio in the optimization algorithm. This will further be discussed in the following section.
Finally, let us remark that the final volume ratio is at approximately 36% and lies in the middle of the imposed
interval. As before, the final optimized micro-structure has a shear modulusC H

1212 close to 0.

Example 3 For the third micro-structure to be optimized, the target effective Poisson’s ratio wasνt = − 0.5.
The target tensor possesses a cubic symmetry, meaning the desired mechanical properties along theOx and
Oy axes should be equal. The void volume fraction constraint is set toV t = 40% and is updated the same way
as in the first example. As in Example2, a symmetry of the shape was enforced along theOx andOy axes.

The final shape is of the rotating unit type, discussed in Grima et al. [18]. As prescribed, the resulting structure
exhibits a “cubic” symmetry. The computed effective Poisson’s ratio isν∗ = ν12 = ν21 = − 0.47. By
comparing the target and the obtained elastic tensor, one can remark that the final elastic moduli are fairly
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Fig. 4 The design process of the material. Imagea depicts the initial guess of the micro-structure,b depicts the optimal micro-
structure after 100 iterations,c depicts the macroscopic material assembled periodically from the optimal unit cell of imageb

(a) (b) (c)

Fig. 5 The design process of the material. Imagea depicts the initial guess of the micro-structure,b depicts the optimal micro-
structure after 100 iterations,c depicts the macroscopic material assembled periodically from the optimal unit cell of imageb

close to the target and that this structure has a shear modulusC H
1212 which is of the same order of magnitude

as the other moduli. Finally, let us remark that the final volume ratio is at approximately 43% and lies in the
vicinity of the imposed value (Fig.5).

2.6 Representation of the examples in the space of elastic stiffness

The elastic tensor,CH , governs the overall effective material response to an applied load. Since we assumed
that the material tensor characterizing the micro-structure is positive definite thenC

H is also positive definite.
In terms of the physical parametersE1, E2, ν12, ν21, the positive definiteness of the effective material tensor
requires that the stiffness tensor is positioned with the followingstability bounds (see the works of Ting and
Chen [39] for a detailed discussion):

|ν12| ≤

√

E1

E2
, |ν21| ≤

√

E2

E1
. (2.14)

In Fig. 6, we plot the Poisson’s ratios against thestability bounds of certain optimal shapes from some recent
articles published and see how they compare with our own optimized micro-structures.

A material that would haveE1 = E2 andν21 = ν12 = ν∗ = − 1 would fall on the lowerstability bound.
From the graph of Fig.6, we understand that the structure has to loose its “cubic” symmetry and accept
an important stiffness unbalance between the directions 1 and 2, expressed by the ratioE2/E1 to reach one
extreme negative Poisson’s ratio.

The shapes from the literature that have been designed by the optimization of a level-set function, share
generic features: lattice architectures with re-entrant corners (like re-entrant honeycomb) or rotating semi-rigid
units connected by flexible hinges. Moreover, the orthotropic structures withE2/E1 < 0.8 are only lattice
architectures with re-entrant corners. Let us further mention the recent contributions of [44] who designed a
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Fig. 6 Optimal shapes obtained from this article as well as from the literature [16,40,43] plotted against the stability bounds.
Remark that extreme Poisson’s ratio (i.e. below− 1) are reachable for anisotropic structures

chiral bi-material micro-architecture withE2/E1 ≈ 0.65 and an effective Poisson’s ratioν12 = − 0.8 using
the SIMP-optimization method, which would also fill in the data cloud of Fig.6. Lastly, the examples from
literature, aimed to reach a maximal negative Poisson’s ratio, fall at a certain distance from the inferior stability
bound. We therefore understand the need for tighter bounds to be used as a guide to effectively explore the
ability of the algorithm to ascertain which elastic moduli are attainable in future designs.

3 Analysis of fabricated polymer structures

3.1 Manufacturing process: equipment and materials

The optimal shapes have been additively manufactured with digital light processing stereolithography technol-
ogy (DLP) using a commercial Ember 3D printer. A digital projector screen flashes a single image of each layer
across the entire surface of the vat filled of photosensitive liquid resin at once, causing chains of molecules to
link and thus forming solid polymer. The process is repeated until the 3D model is complete. Then, the vat is
drained of liquid, revealing the solidified model and the solid model is washed with a solvent.

The printer has a resolution of 50µm, corresponding to 1 pixel in the digital projector screen, and a range
of the processing layer thickness of 10–100µm. The largest processing build volume is 64mm× 40mm×
134mm (note that 64mm× 40mm correspond to a 1280× 800 pixels picture). For a thickness of 25µm
per layer, the speed range is of 18mm/h. The printable minimal feature size of the specimens is announced at
0.4mm corresponding roughly to 8 pixels.

We selected a rubber-like material, commercially denoted as GM08b,1 as the base material because of its
compliant nature. Figure7 displays a representative tensile stress–strain curve of this material. As expected
for a rubber-like material, it does not display an ideal linear elastic behaviour; it exhibits a gradual variation
of the stiffness with increasing strain.

The optimal shapes obtained in Example1–3(see Figs.2,4,5) are represented by the final level-set function.
The later presents a smooth variation between values corresponding to the two materials in a neighbourhood of
their interface, and therefore the level-set representation has been binarized and extruded in theOz direction
in order to create a 3D object. More precisely, the 3D-printed samples have been produced by the following
procedure:

(i) Binarize the level-set function representing by shape optimization.
(ii) Create a periodic array for each sample: 8×6 unit cells for example 1, 5× 4 unit cells for Examples2 and

3. The final result was a binarized 1280× 800 pixels image (see Fig.8 for details).
(iii) Extrude the preceding image to obtain the 3D sheet of the desired height. The final dimensions of the

printed samples are 64× 38× 6 mm for Example1 and 64× 40 × 6 mm for Examples2 and3.
(iv) Print the files with the following processing parameters: laser power was 5 W, the exposure time 1s per

layer and the layer thickness was 50µm.
(v) Wash the samples in an isopropanol bath for 5min.

(vi) Post-cure the samples for 30min in an UV oven at 2000 W.

1 Characteristics of this material can be found in the manufacturers data sheet (seehttps://dl.airtable.com).
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Fig. 7 Base material response to uniaxial tensile loading. Homogeneous stress–strain curves

Fig. 8 Fabricated specimen from the examples of Sect.2. Digital image fed into the 3D printer (left) and final printed specimen
(right). The red coloured unit cells were the cells observed during the digital image correlation measurements (colour figure
online)

3.2 Testing and full-field displacement measurement using digital image correlation (DIC)

A series of uniaxial static tensile tests were undertaken to assess the tensile properties of the auxetic lattice
structures by using a home-made testing machine with a symmetric displacement of the two cross-heads and
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(a) (b)

Fig. 9 Imagea contains plots of the effective stress–strain curves for all three examples overlaid in the same plot obtained
experimentally by performing a uniaxial tensile test. One can clearly observe all three structures exhibit linear behaviour for
strains up to 5%. Imageb shows a comparison of the evolution of the Poisson’s ratio plotted as a function of the effective strain
from measurements taken by digital image correlation versus computations made by finite element analysis. We can clearly
observe a trend on all three materials of the loss of their auxeticity as the uniaxial strain increases beyond the 5% mark

equipped with a 100N load cell. The tensile tests were performed at a rate of 0.05mm/s up to 3mm, which
correspond to a strain rate ofε̇ = 10−3 s−1 up to a maximal strain ofε = 5%.

The tensile tests were recorded and used for full-field measurements by digital image correlation (DIC).
The recordings were obtained using a high-resolution digital camera (Schneider Optics 8-bit camera with a
Makro-UNIFOC 100/77 lens) mounted on the tensile testing machine, and grey-scale pictures with resolution
of 4904× 3280 were recorded every second during the loading. The camera was mounted on a perpendicular
axes with respect to the plane of the specimen, which enables the direct use of a 2D DIC. To improve the
precision of the measurement, a white speckle pattern was placed on the sample by airbrushing.

The DIC was performed using the CorrelManuV 2D (CMV) software, developed by Bornert [5]. The
processed displacement field corresponds to a single unit cell in the middle of the structure at five different
loading time steps, using a 100× 100 grid, i.e. having 10,000 measurement points. For each node, the subset
size was set to 20×20 pixels, while the searching area was set to 100×100 pixels. The measurement included
a computation without transformation, i.e. rotation of the subset window and a re-optimization allowing
transformations with a reduced searching area of 30× 30 pixels.

3.3 Experimental results

The stress–strain response under a uniaxial tensile test alonge1 for the three materials is shown in Fig.9a.
One can easily observe a linear behaviour of the samples that up to a maximal strain of 5% strain despite the
nonlinearity of the rubber-like base material in the same strain range. This indicates that the samples have an
expected structural deformation where different parts of the “lattice” behave as rigid struts and deformable
hinges. This effect will be highlighted by the DIC measurements discussed later.

One can directly observe a lateral expansion during the tensile extension indicating a negative Poisson’s
ratio for all the samples. The precise measurements of the Poisson’s ratio corresponding to a single central unit
cell are presented in Fig.9b. The precise method for the computation of the Poisson’s ratio of a single unit cell
from DIC measurements was based on periodic homogenization assumptions and the details are presented in
A. The results show that the initial effective Poisson’s ratio was for all samples close to the announced values
in the optimization process and was not degraded during the manufacturing process. During tensile loading,
the effective Poisson’s ratio tends to increase, indicating a decrease in the “auxeticity” of the samples of up to
increases by 10% for a 5% strain.

Finite element computation was undertaken under the assumption of small strains, large displacements
and plane stress using the finite element solverCast3M 2018 (http://www-cast3m.cea.fr). The mesh was
obtained using image processing from the binarized images of the optimal level-set function and completed to
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Table 2 Meanstrain components of the base material measured by DIC and computed by FEA on the unit cells from Fig.10 for
the structures in Examples1–3, denoted by the superscript

εH
h DIC1% FEM1% DIC2% FEM2% DIC3% FEM3%

〈ε11〉h
〈ε11〉h
〈ε12〉h

1.25
− 1.01
0.039

0.543
− 0.284
0.004

0.526
− 0.450
0.053

0.404
− 0.204
0.002

0.937
− 0.643
0.010

0.828
− 0.407
0.001

The measurement corresponds to the maximal loading with an effective strain of 5%

the sample geometry. The elastic material behaviour was defined as the tangent behaviour at the origin of the
tensile curve of the material. The sample was loaded with a given resultant force at the clamps of the tensile
machine.

Let us first remark that the evolution is close to predictions of the deformation of the samples obtained
by the finite element method under the assumption of large displacements. Second, one can remark that
the evolution of the Poisson’s ratio with applied strain has already been observed and discussed in [12] on
polymeric filament structure. Moreover, they arrived to correct the phenomenon up to 20% strain using a
nonlinear material behaviour in the optimization process, see [12,43] for more details on the subject. In the
case of the optimization procedure presented here, the extension to nonlinear material behaviour is currently
under investigation and will appear in subsequent work of the authors.

The displacements fields obtained using DIC permit a further comparison with predictions and give an
insight of the deformation mechanism of the samples, i.e. how the structure moves and deforms. Figure10
displays the measured and the computed vertical displacement, i.e. theuy displacement component of the
central unit cell. A comparison of the values and the shapes of the colour maps exhibits a good match between
the measurements and finite element prediction. Moreover the displacement fields permit to better understand
the local movements of the micro-structure which conducts to the global auxeticity effect by combining almost
rigid regions submitted to translations and rotations with local concentrated deformation exhibiting local
hinges. A further comparison in terms of mean displacements over a unit cell between DIC measurements and
FEM computations at the maximal loading of 5% strain is given in Table2. The mean was computed only over
the base material of a unit cell and does represent the mean deformation of the later. Nevertheless, this mean
value represents the mean loading of the base material and one can notice that the micro-structure does not
leave the region of 1% strain of the uniaxial tensile response of the base material shown in Fig.7. In Fig. 10,
one can equally notice the excellent quality of the printing process as the edges of the printed shapes observed
on left column of Fig.10 is close to the edges of the shape represented by the level set and displayed here as
the border of the finite element meshes on the right column of Fig.10.

By looking at the strain field of a unit cell (see Fig.11), computed by finite elements from the displacement
field in both full-field measurement and simulation, we can notice that the strain field is mostly concentrated
on the hinges of the structure. This further emphasizes the predominance of structural deformation as a lattice
structure with rods and hinges at small strain. A subtle effect of this prevalence is the small effect of the out
of plane strain, which should otherwise be perceived as a difference between the 2D modelling during the
optimization process and the complete 3D character of the polymer sheets. Let us also recall that the polymer
is practically incompressible and exhibit therefore an important variation of thickness under tensile loading.

The next steps in the analysis of the micro-architectured material are the complete experimental measure-
ment of its elastic tensor. Let us recall that the effective constitutive law (2.6) or alternatively (2.7) is a linear
relation between the components of the effective stress and strain, from which the elastic moduli could be
identified by a least square fitting. The main difficulty is that only the effective strain,εH , can be directly mea-
sured from the experiment, see values in Table3. However, as suggested in [34], the effective stress,σ H , can
be numerically computed from the experimental applied forces if the geometry and the constitutive behaviour
of the base material. As a consequence,C

H , the effective elastic tensor of the design phase is obtained as a
linear fit fromεH andσ H . The computation can be performed on several unit cells of the specimen. In order
to compare the values of the elasticity tensorC

H computed in the design phase, we have non-dimensionalized
the resultant forces.

Specimens in Examples2and3have a cubic material symmetry, which leads to a system of three equations
with three unknowns for each unit cell. One has to identify three moduliC1111 = C2222, C1122, C1212using the
11, 22, 12 strain and stress components. The estimated elastic moduli on the central unit cell, i.e. with position
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Fig. 10 Plots of the dimensionless values of the transverse displacement field alonge2 for each unit cell of the optimized structure.
The samples are loaded alonge1 at 5% effective strain. The displacement field for the images on the left were measured using
digital image correlation, while for the images on the right using finite element analysis. Imagea is the optimized structure of
Example1, imageb the optimized structure of Example2, imagec is the optimized structure of Example3. Scale bar in all
images is 1mm

(3,3) and coloured red in Fig.8, are given in Table3. TheC1212moduli are missing as the signal-to-noise ratio
of the effective shear strains and stresses was to small to provide meaningful value.

4 Conclusion

In this work, we used topology optimization methods to design optimal shapes that achieve a negative Poisson’s
ratio. By removing certain material constraints, e.g. isotropy, from the algorithm, we expanded the space of
admissible shapes, and as a result, the algorithm was able to attain shapes with a Poisson’s ratio below− 1.
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Fig. 11 Plot of the dimensionless values of the horizontal tensile strain field in a single unit cell of the optimized structure. The
strain field for the image on the left was computed from the raw displacement field obtained by Digital Image Correlation, while
for the image on the right using finite element analysis. We remark that our DIC approach generated some outliers that shall not
be taken into account

Table 3 Comparison between the effectiveC
H (ω) (see also1) and measured elasticity tensorC

H,exp(ω) displayed in the left and
centre column, respectively

Example C
H (ω) C

H,exp(ω) ν∗ ν∗,exp Shapeω

2

(

0.12 − 0.05 0
− 0.05 0.12 0

0 0 G

) (

0.10 − 0.044 0
− 0.044 0.10 0

0 0 G

)

−0.42 −0.44

3

(

0.19 − 0.09 0
− 0.09 0.19 0

0 0 G

) (

0.204 − 0.09 0
− 0.09 0.204 0

0 0 G

)

−0.47 −0.44

The right column displays the optimal shape in each case. We recall that the measured elasticity tensorC
H,exp(ω) was determined

by combining DIC measurements and FEM computations

The effective elasticity tensor characterizing the material with Poisson’s ratio below− 1 is orthotropic, and
although the theoretical problem of reachable elasticity tensors has been solved in the seminal work of Milton
and Cherkaev [30], the algorithm suggests that the more we expand the space of admissible shapes by allowing
shapes to deviate from isotropic symmetry the closer to thestability bounds the effective material approaches
(see Fig.6).

The results showed that optimal shapes could be directly printed without additional enhancement of the
surface, which is a direct consequence of the smoothed interface technique used in the optimization. More-
over, the manufactured materials had the designed mechanical behaviour. The targeted elastic moduli and the
underlying Poisson’s ratios have been experimentally attained and the local material behaviour was close to
predictions.

The local displacement field computed and measured on the micro-structure showed that measurements
match numerical predictions. Moreover, one can observe from the strain field that the global deformation is
composed of rigid regions an localized hinges, indicating that the structures behaves as rotating rigid units.

Acknowledgements This work is financed by the french-swiss ANR-SNF project MechNanoTruss (ANR-15-CE29-0024-01).
The authors would like to express their gratitude to Chiara Daraio for fruitful discussion on the design of lattice structures and to
Gregoire Allaire and Georgios Michailidis for lending their expertise on the numerical and algorithmic issues of the optimization.
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Fig. 12 Representation of a unit cell

A computation of the effective Poisson’s ratio

This appendix reviews the mathematical approach that was used to measure/compute the effective Poisson’s
ratio of a unit cell in both measurements by digital image correlation and numerical estimation using a finite
element method. For the following computation, we place ourselves in the case of small strain assumption
(Fig. 12).
The effective material is supposed to carry a natural orthotropic material behaviour. The effective Poisson’s
ratio ν12, characterizing the transverse strain of the structure in the direction(O, e2) axis when stretched in
the direction(O, e1), is defined as:

ν∗
12 =

C H
1122

C H
2222

(A.1)

We remind thatC H
1122 andC H

2222 are coefficients of the effective elastic stiffness tensor. In generalν12 	= ν21.
During a uniaxial tensile test in the direction(O, e1), Eq. (A.1) yields to the negative of the ratio of macroscopic
transverse strain to macroscopic axial strain:

ν∗
12 = −

εH
22

εH
11

(A.2)

In the small strain assumption, the strain field can be linearized as:

εH = 〈ε〉Ω =
1

2

(

〈F〉T
Ω + 〈F〉Ω

)

− I (A.3)

whereF is the average transformation gradient. Considering the small strain assumption:

〈F〉Ω =
1

VΩ

∫

Ω

(I + ∇u)dΩ (A.4)

Using Ostrogradsky’s theorem, we can express the transformation gradient at the boundary∂Ω:

〈F〉Ω =
1

VΩ

(∫

Ω

IdΩ +

∮

Γ

u ⊗ ndΓ

)

(A.5)

Study of a unit cell

〈F〉Ω = I +
1

VΩ

(∫

∂ΩT

u ⊗ e2dΓ +

∫

∂ΩB

u ⊗ (−e2)dΓ +

∫

∂ΩR

u ⊗ e1dΓ +

∫

∂ΩL

u ⊗ (−e1)dΓ

)

(A.6)

〈F〉Ω = I +
1

VΩ

⎡

⎣

∫

∂ΩR
u1d Γ −

∫

∂ΩL
u1dΓ

∫

∂ΩT
u1dΓ −

∫

∂ΩB
u1dΓ

∫

∂ΩR
u2dΓ −

∫

∂ΩL
u2dΓ

∫

∂ΩT
u2dΓ −

∫

∂ΩB
u2dΓ

⎤

⎦ (A.7)
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Thus, from Eq. (A.3):
⎧

⎨

⎩

ε11 = 1
VΩ

(

∫

∂ΩR
u1dΓ −

∫

∂ΩL
u1dΓ

)

ε22 = 1
VΩ

(

∫

∂ΩT
u2dΓ −

∫

∂ΩB
u2dΓ

) (A.8)

For each edge of the square unit cell, the integral of the contour is computed by integrating the displacement
of the material in contact with the edge. In other words, the void phase is not considered in the computation.

ν∗
12 = −

∫

∂ΩT
u2dΓ −

∫

∂ΩB
u2dΓ

∫

∂ΩR
u1dΓ −

∫

∂ΩL
u1dΓ

(A.9)

In practice, using a finite element method, Eq. (A.9) becomes:

ν∗
12 = −

1
NT

∑NT
i=1 ui

2 − 1
NB

∑NB
b ui

2

1
NR

∑NR
i=1 ui

1 − 1
NL

∑NL
i=1 ui

1

(A.10)

whereNi , i ∈ {T, B, R, L} are, respectively, the number of nodes on top, bottom, right and left edges.
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