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First-order theories of light scattering previously re-
vealed the existence of anti-scattering effects in optical
multilayers. Here we present an exact electromagnetic
theory able to complete the scattering analysis when
first-order scattering is cancelled. The theory is valid
for arbitrary rough multilayers. © 2019 Optical Society of

America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Light scattering from slightly rough multilayers [1–5] has been
extensively studied in the field of optical interference coatings
[6, 7]. Such planar multilayers most often consist of dielectric
materials produced with vacuum deposition technologies (Elec-
tron Beam Deposition, Ion Assisted Deposition, Dual Ion Beam
Sputtering, Magnetron Sputtering) which allow materials to
grow in amorphous thin film form on fused silica substrates and
others. It is well known [2, 3, 5] that in the optical band-pass of
spatial frequencies [8], substrate roughness is replicated from
one interface to another within these multilayers, and that this
replication effect creates a roughness threshold which is most
often responsible for the major scattering contribution. Since
polishing techniques have allowed to reduce substrate rough-
ness to values down to a fraction of nanometer, all interfaces of
optical coatings are slightly rough and this is the reason why
first-order electromagnetic theories have shown great success
when analyzing angular and wavelength scattering patterns
from these components. Numerous results can be found [2, 3, 5]
which emphasize an excellent agreement between theory and
experiment, even for complex coatings involving hundreds of
layers.

However there are a few situations where first-order theory
must be completed even though the surfaces are slightly rough.
One iconic situation is that of the anti-scattering effect that was
shown [9, 10] to occur at specific angles or wavelengths, due to
destructive interferences between waves scattered from different
fully correlated surfaces. In this case the first-order scattering is
perfectly cancelled while low-level signals can still be measured
and must be taken into account; indeed for an increasing number
of applications (complex micro-filters for space multiplexing,
mirrors for gravitational-wave detection), the energy balance
(including reflection, transmission, absorption and scattering)

must be known with an absolute accuracy of one ppm (1ppm =
10−6). Hence facing this difficulty requires to have at disposal a
higher-order theory [11–13], or rather an exact electromagnetic
theory [14, 15], able to predict light scattering from arbitrary
rough multilayers.

Though different formalisms [16–18] were developed to take
account of arbitrary roughness at one single (uncoated) surface,
until now only a few of them have addressed the case of mul-
tilayers [19]. This is the goal of this paper to present an exact
electromagnetic theory based on an extension of the boundary
integral equation (BIE) method [18, 20–22]. Numerical calcula-
tion is given in two-dimensional scattering configuration [23]
for single layers involving a set of roughness parameters [24]
allowing the anti-scattering effect to occur, and the results are
focused on a comparison with first-order theory.

2. THE ROUGH LAYER BOUNDARY INTEGRAL FOR-
MALISM

We consider a three homogeneous media problem where the
layer Ω2 is bounded by two non-intersecting rough surfaces
Σn with equations z = zn + hn(r) for n = 1, 2 in the Cartesian
coordinates (x, y, z), and denoting (x, y) = r. It is assumed
that the two boundaries don’t overlap, that is z1 + h1(r) > z2 +
h2(r) for all r. The layer is enlightened from superstrate Ω1 :
z > z1 + h1(r) through interface Σ1. Wavelength in vacuum is
denoted λ0, so that angular frequency is ω = 2πc/λ0. Surface
Σ2 interfaces the layer from substrate Ω3. Electromagnetical
parameters at wavelength λ0 are denoted (εm, µm) with m = 1
in the superstrate, m = 2 in the layer and m = 3 in the substrate.

Assuming an e−iωt implicit time-dependency, the electro-
magnetic field (E, H) satisfies in domain Ωm the time-harmonic
Maxwell’s equations curl E = +iωµmH and curl H = −iωεmE.
The tangential components of the field n̂p × E and n̂p ×H on
both interfaces p = 1, 2 are continuous. n̂p denotes the unit
normal vector, oriented from Ωp+1 toward Ωp. This field also
satisfies an outgoing wave condition in the substrate Ω3. The
incident field (Einc, Hinc) satisfies the Maxwell’s equations for
m = 1, but in the whole space. It writes as a sum of downward-
directed plane waves

Einc(r, z) =
∫

IR2
E0−

1 (k)ei(k·r−q1z)dk (1)

with k2 + q2
1 = ω2ε1µ1 and 0 ≤ arg q1 ≤ π/2. The scattered
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Fig. 1. Geometry of the problem

field (E− Einc, H−Hinc) satisfies an outgoing wave condition
in the superstrate.

The reference field (E0, H0) corresponds to the field (E, H) in
the case where the layer surfaces are two parallel planes z = z1
and z = z2. The plane waves decompositions of the reference
field in the three media write∫

IR2

{
E0+

m (k)ei(k·r+qmz) + E0−
m (k)ei(k·r−qmz)

}
dk = E0

m(r, z)

(2)
with k2 + q2

m = ω2εmµm and 0 ≤ arg qm ≤ π/2. Outgoing wave
condition in the substrate leads to E0+

3 (k) = 0 for all k. In eq.
(2), those three plane wave decompositions are extended to the
whole space to define the three fields (E0

m, H0
m).

Now, for rough interfaces, the tangential components of the
field n̂p × E and n̂p ×H, cast into the vector form

X =


n̂1 × E

n̂1 ×H

n̂2 × E

n̂2 ×H

 (3)

satisfy the linear system

A(X−Y) = C(Z−Y) (4)

of coupled boundary integral equations. The two vectors

Y =


n̂1 × E0

1

n̂1 ×H0
1

n̂2 × E0
2

n̂2 ×H0
2

 Z =


n̂1 × E0

2

n̂1 ×H0
2

n̂2 × E0
3

n̂2 ×H0
3

 (5)

are determined from the reference field on the rough boundaries.
Matrix A writes

A =


1
2 −K11

1 −µ1T 11
1 0 0

1
2 +K11

2 +µ2T 11
2 −K12

2 −µ2T 12
2

+K21
2 +µ2T 21

2
1
2 −K22

2 −µ2T 22
2

0 0 1
2 +K22

3 +µ3T 22
3

 (6)

introducing (notations are derived from [25] and generalized to
layered media) the EFIE operator

T np
m j(Rn) = n̂n ×

∫
Σp

iω Ḡm(Rn − Rp) · j(Rp)dSp (7)

and the MFIE operator

Knp
m j(Rn) = n̂n ×

∫
Σp

curl Ḡm(Rn − Rp) · j(Rp)dSp (8)

with j a tangential vector field and for two point Rn and
Rp on interfaces Σn and Σp, respectively. Those operators
involve the free space dyadic Green’s functions Ḡm(R) =
(Ī + K−2

m grad div )Gm(R). For passive media m = 1, 2, 3,
the wavenumbers Km satisfy K2

m = (2π/λ)2εmµm with 0 ≤
arg Km ≤ π/2. The scalar Green’s functions are driven by equa-
tions (div grad − K2

m)Gm(R) = −δ(R) and radiation condition.
Matrix C

C =


0 0 0 0

1
2 +K11

2 +µ2T 11
2 0 0

+K21
2 +µ2T 21

2 0 0

0 0 1
2 +K22

3 +µ3T 22
3

 (9)

is a sparsified version of matrix A. Such a theory can easily be
extended to structures with an arbitrary number of layers.

Then, the scattered electric field writes in the z > z1 +max h1
region of the superstrate as the sum of plane waves:

(E− Einc)(r, z) =
∫

IR2
E+(k)ei(k·r+q1z)dk (10)

Their amplitude is related to the tangential components of the
fields on Σ1 through expression:

E+(k) = +
K1

8π2q1
×
∫

Σ1

{
K1
ωε1
× (n̂1 ×H)

− n̂1 × E} e−iK1·R1 dS1 (11)

with K1 = k + q1ẑ the upward-directed wavevector.
Finally, this electric field formulation is turned into a mag-

netic field formulation by substituying E ↔ H and µ ↔ −ε in
eqs. (1)-(6) and (9)-(11).

3. NUMERICAL CALCULATION

Because numerical calculation is highly time consuming, the BIE
theory (4) was implemented for one-dimensional (1D) surfaces,
and discretized with the method of moments [23]. A first step
consisted in a direct comparison with first-order theory (SPM).
For that we considered a sample which is a non-absorbing high-
index quarter-wave layer (nHeH = λ0/4) at the illumination
wavelength λ0 = 632.8 nm, with nH = 2.3 the optical index and
eH the layer thickness. The superstrate is air (n1 = 1) and the
substrate is glass (n3 = 1.52). Incident field is a Gaussian beam,
centered on normal incidence (i = 0◦) and with 1.5◦ divergence
(tapering parameter [18] is g = 8 µm). Both surfaces have Gaus-
sian roughness with autocorrelation length L = 300 nm, and
their cross-correlation coefficient [13] is denoted α. In figure 2
their height root mean squares (δ1 = δ2 = 5 nm) are set identical,
but the surface profiles can be fully cross-correlated (α = 1) or
totally cross-uncorrelated (α = 0).

We observe in figure 2, where polarization is TM, a very high
agreement with first-order theory, due to the low roughness-to-
wavelength ratio. Such agreement holds in the whole angular
range, and for the two extreme cases of cross-correlation. As a
reminder, the cross-correlated (α = 1) scattering takes account of
interferences between the waves scattered by the two interfaces,
while no interference occurs in the uncorrelated case (α = 0).
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Fig. 2. Scattering diagram for a high-index quarter-wave layer
at 632.8 nm wavelength, normal incidence and polarization
TM. Roughness is 5 nm for both interfaces. Surface profiles are
either totally uncorrelated (α = 0, top plot) or fully correlated
(α = 1, bottom plot).

This is due to the fact that cross-correlation acts as a mutual
coherence factor [9, 10]. Hence these first results validate the
comparison with first-order theory.

Now we focus the analysis on the anti-scattering effect [9]
predicted with first-order theory. Actually in [9] it was shown
that single layers may reveal an analytical zero of light scatter-
ing under the assumption of fully cross-correlated surfaces and
specific roughness values. This effect is the result of destruc-
tive interferences between the waves scattered from surfaces
Σ1 and Σ2, for which reason full cross-correlation is required.
Furthermore, for these interferences to be destructive, the thin
film should be low-index quarter-wave or high-index half-wave
at the illumination wavelength λ0. Eventually the roughness
ratio δ1/δ2 of the two surfaces must satisfy a condition related
to the three index materials, that is [9]:

δ1
δ2

=
n2

2
n2

3

n2
3 − n2

2
n2

2 − n2
1

(12)

for the low-index quarter-wave layer, and

δ1
δ2

=
n2

2 − n2
3

n2
2 − n2

1
(13)

for the high-index half-wave layer. This last condition is given
for a scattering cancellation at scattering angle θ = 0◦.

In Figs. 3 and 4, we considered similar samples (single lay-
ers) and used our exact theory for Monte Carlo comparison to
first-order theory under normal illumination. The Monte Carlo
average is performed over 32 samples. The thin film materials
are non-absorbing and their real indices are given at the illumi-
nation wavelength λ0 = 632.8 nm by nH = 2.3 and nL = 1.3.
Such indices were given in [9] for ZnS and Na3AlF6 thin film
materials. Hence the optical thicknesses follow: nHeH = λ0/2
and nLeL = λ0/4 with e the thickness. As previously, the (glass)
substrate roughness is δ1 = 5 nm.

Figs. 3 and 4 are respectively given for the low-index quarter-
wave layer in TE polarization and the high-index half-wave
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Fig. 3. Scattering diagram for a low-index quarter-wave layer
at 632.8 nm wavelength, normal incidence and polarization TE.
The layer-glass interface roughness is 5 nm, while the air-layer
interface roughness satisfies the antiscattering condition (12).

layer in TM polarization, with the roughness ratios given by
Eq. (12) and Eq. (13). As in Fig. 2, for the scattering from cross-
uncorrelated rough profiles (α = 0 curves on Figs. 3 and 4),
we observe a high agreement between first-order theory and
the exact calculation in the whole angular range. As for the
cross-correlated (α = 1 curves on Figs. 3 and 4) scattering, the
agreement still remains high for most scattering angles, but it
fails in the close vicinity of the specular beam (θ = 0◦). Such
difference was expected since first-order scattering is zero in this
vicinity; hence the remaining signal is characteristic of higher
order scattering. This result emphasizes the interest of an exact
theory for further analysis of the anti-scattering effect.

However before conclusion it should be stressed that the
analytical zero of first-order light scattering is highly sensitive
to the cross-correlation coefficient around unity. Actually even a
slight departure from the value α = 1 will break the interferential
balance and increase the first-order signal. This is emphasized
in Figs. 3 and 4 where first-order and exact scattering are also
plotted for a cross-correlation value of α = 0.99. With these
supplementary curves, it is clear that the first-order scattering
is far from zero at θ = 0◦, even though the variation in cross-
correlation is only 1%. Furthermore, we observe that the two
theories (first-order and exact) again reveal a high agreement
for α = 0.99, due to the fact that first-order scattering is again
predominant. This result justifies why first-order calculation
in multilayers is most often considered with cross-correlation
values around 0.99 [5] (rather than 1), all the more than a quasi-
perfect (rather than perfect) replication of topography is more
realistic.

4. CONCLUSION

We have developed an exact electromagnetic theory of light
scattering from arbitrary rough surfaces. The theory is a dis-
cretized set of coupled boundary integral equations. However,
with a modified right-hand side, it differs from the classical for-
mulation [22]. Our approach was compared with great success
to first-order theory in the whole angular range. In order to



Letter Optics Letters 4

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

Scattering angle (deg)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

S
c
a
tt
e
ri
n
g
 c

o
e
ff
ic

ie
n
t 
(r

a
d-1

)

BIE =0
SPM =0

BIE =1
SPM =1

BIE =0.99
SPM =0.99

Fig. 4. Scattering diagram for a high-index half-wave layer at
632.8 nm wavelength, normal incidence and polarization TM.
The layer-glass interface roughness is 5 nm, while the air-layer
interface roughness satisfies the antiscattering condition (13).

emphasize higher-order scattering, we analyzed anti-scattering
effects predicted by first-order theory. The exact theory was
able to quantify the scattering level when first-order scattering
is zero. This is a key point, since new trends in optical coatings
are about to take profit of the anti-scattering effect to minimize
losses [26, 27]. The exact theory might also lead, through future
works, to the definition of improved anti-scattering conditions.
We also quantified the sensitivity of scattering to interfaces cross-
correlation. This allows to establish a more accurate energy
balance, as required in high-precision optical systems (pixel-
lized filters for space micro-multiplexing, mirrors for detection
of gravitational waves...) To conclude, this exact theory will
also meet other applications in the field of radar probing of soil
and moisture, cosmetics and living tissues, lighting, textiles and
stationery.
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