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Introduction

The linear elastic properties of a given material are encoded into an Elasticity tensor E, a fourth-order tensor which relates linearly the stress tensor to the strain tensor. As it was clearly emphasized by Boehler and coworkers [START_REF] Boehler | Introduction to the invariant formulation of anisotropic constitutive equations[END_REF][START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF], any rotated Elasticity tensor encodes the same material properties (in a different orientation). One shall say that the rotated tensor and initial one are in the same orbit. It should be emphasized here that this has not to be confused with a change of (orthonormal) basis once a basis has been fixed and the tensors expressed by their components in this basis. Here, the action of the rotation group is defined intrinsically and independently of any basis (no components are required to define this action).

The elastic materials are classified by their eight symmetry classes [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] (isotropic, transverselyisotropic, cubic, trigonal, tetragonal, orthotropic, monoclinic, triclinic). Any non triclinic Elasticity tensor has a given symmetry class and a normal form. An orthonormal frame in which the matrix representation of this tensor belongs to such a normal form is called a proper or natural basis for E [START_REF] Fedorov | Theory of Elastic Waves in Crystals[END_REF]. For instance, consider a cubic Elasticity tensor which is given in an arbitrary frame by its Voigt's (matrix) representation [E] (not to be confused with the tensor E itself) as ( 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
The problem is that it is not always easy to compute explicitly such a rotation. For instance, given a cubic Elasticity tensor in its normal form (1.3) and applying a rotation of angle 𝜋 6 around axis < 111 >, it is not an easy matter, if not aware of this transformation, to find a way back. Moreover, measured tensors are in practice triclinic, due to numerical errors and experimental discrepancy [START_REF] Arts | A study of general anisotropic elasticity in rocks by wave propagation[END_REF][START_REF] Francois | Détermination des symétries matérielles de matériaux anisotropes[END_REF][START_REF] Dewangan | Inversion of multicomponent, multiazimuth, walkaway vsp data for the stiffness tensor[END_REF][START_REF] Guilleminot | A stochastic model for elasticity tensors with uncertain material symmetries[END_REF]. Hence, the problem may also be numerically difficult.

Partial answers concerning the explicit determination of a proper basis have already been investigated in [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Jaric | On the conditions for the existence of a plane of symmetry for anisotropic elastic material[END_REF][START_REF] Baerheim | Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry[END_REF][START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF] for the monoclinic and the orthotropic symmetry classes. To do so, the authors construct a basis of eigenvectors for the second-order symmetric tensors that inherit (part) of the symmetry of E, the dilatation and Voigt's tensors [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF], defined as (1.4) d := tr 12 E (𝑑 𝑖𝑗 = 𝐸 𝑘𝑘𝑖𝑗 ), v := tr 13 E (𝑣 𝑖𝑗 = 𝐸 𝑘𝑖𝑘𝑗 ).

The cornerstone of this approach is that d = d(E) and v = v(E) are covariants of E, meaning that one has the covariance (equivariance) property

d(𝑔 ⋆ E) = 𝑔 ⋆ d(E), v(𝑔 ⋆ E) = 𝑔 ⋆ v(E),
where (𝑔 ⋆ a) 𝑖𝑗 = 𝑔 𝑖𝑘 𝑔 𝑗𝑙 𝑎 𝑘𝑙 , for a second-order tensor a. In some non-degenerate cases, this leads to the answer. The weakness of this approach is that d and v have at least the symmetry of E but they may have more symmetry. For instance, in the cubic case, the pair (d, v) is isotropic. Such loss of information has to be handled, as they can be experimentally encountered, for example from the ultrasonic measurements made on a Ni base single crystal superalloy, close to be cubic [START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF] (studied in section 5.1). A natural way is to extend the idea of using covariants of E, which naturally inherit the symmetry of E, but different from d and v. Note, however, that second-order covariants cannot always encode all the geometric information carried by a fourth-order tensor [START_REF] Boehler | A simple derivation of representations for nonpolynomial constitutive equations in some case of anisotropy[END_REF][START_REF] Liu | On representations of anisotropic invariants[END_REF] (for example when E is cubic). Taking into account this observation, it has been tried by some authors to use the harmonic factorization, according to Sylvester's theorem [START_REF] Sylvester | Note on spherical harmonics[END_REF] and Maxwell's multipoles [START_REF] Zou | Identification of symmetry type of linear elastic stiffness tensor in an arbitrarily orientated coordinate system[END_REF]. However, this involves roots' computations of polynomials of degree 4 and 8 [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Baerheim | Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry[END_REF][START_REF] Bóna | Characterization of elasticity-tensor symmetries using 𝑆𝑈 (2)[END_REF], in order to build a set of 8 unit vectors (Maxwell's multipoles), without any clue of how to organize such data. Besides, Maxwell's multipoles are not, strictly speaking, first-order covariants of E and are moreover very sensitive to conditioning.

The main purpose of the present work is to obtain an explicit normal form of an Elasticity tensor E which belongs to a given symmetry class and a rotation which brings E to it. Note, by the way, that the problem of determining the symmetry class of a given Elasticity tensor E, using polynomial covariant equations, has already been solved explicitly in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]. Of course, our goal can be achieved numerically, as we can compute E = 𝑔 ⋆ E for all 𝑔 ∈ SO(3) and try to find rotation 𝑔 such that Voigt's representation [E] has the good shape [START_REF] Francois | Détermination des symétries matérielles de matériaux anisotropes[END_REF][START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF]. A more geometrical approach, initiated in [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Jaric | On the conditions for the existence of a plane of symmetry for anisotropic elastic material[END_REF][START_REF] Baerheim | Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry[END_REF], relying on covariants, is possible and will be described in this work. We shall first formulate new effective and fast procedures to calculate a natural basis for a given Elasticity tensor, once we know its symmetry class.

An important tool, introduced in [START_REF] Desmorat | Generic separating sets for three-dimensional elasticity tensors[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] and which will be used many times in this paper, is the generalized cross product between two totally symmetric tensors of any order A = A 𝑠 and B = B 𝑠 . It is defined as follows

(1.5) A × B = (B • 𝜀 𝜀 𝜀 • A) 𝑠 = -B × A,
where (•) 𝑠 means the total symmetrization (over all subscripts) and where 𝜀 𝜀 𝜀 is Levi-Civita third order tensor (𝜀 𝑖𝑗𝑘 = det(𝑒 𝑒 𝑒 𝑖 , 𝑒 𝑒 𝑒 𝑗 , 𝑒 𝑒 𝑒 𝑘 ) in any direct orthonormal basis (𝑒 𝑒 𝑒 𝑖 )). The expressions of the components of (1.5) are given in section 4 and Appendix B for A and B of order two. The outline of the paper is as follows. We first recall some mathematical materials on the normal form of an Elasticity tensor in section 2 and the harmonic decomposition and the notion of covariants in section 3. Then, in section 4, we formulate and prove theorems that are the cornerstones to build our algorithms. In section 5, we provide and analyze experimental data, issued from the literature and which are used to illustrate our methodology. In section 6, we use our procedures to produce, for any given Elasticity tensor E, a natural basis for it (and a rotation which brings it back to its normal form). Finally, an algorithm to detect the symmetry class and recover a normal form is detailed in section 7.

Normal form of an Elasticity tensor

An Elasticity tensor E represents a material in a specific orientation, but the same material is represented in another orientation by a rotated tensor 𝑔 ⋆ E. In mathematical terms, this means that the rotation group SO(3) acts linearly on the space Ela of Elasticity tensors, which we write as

E ↦ → E = 𝑔 ⋆ E,
where

𝐸 𝑖𝑗𝑘𝑙 = 𝑔 𝑖𝑝 𝑔 𝑗𝑞 𝑔 𝑘𝑟 𝑔 𝑙𝑠 𝐸 𝑝𝑞𝑟𝑠 ,
in any orthonormal basis (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ). The subset

{𝑔 ⋆ E; 𝑔 ∈ SO(3)}
is called the orbit of E. A linear elastic material is thus represented by an orbit of an Elasticity tensor rather than by a specific Elasticity tensor in its orbit.

The symmetry group of a tensor E ∈ Ela is the subgroup of SO(3) defined as

𝐺 E := {𝑔 ∈ SO(3); 𝑔 ⋆ E = E} .
Note that the symmetry group of 𝑔 ⋆ E is (2.1)

𝐺 E = 𝑔𝐺 E 𝑔 -1 .
Therefore, the classification of symmetries of materials relies on the conjugacy classes

[𝐺 E ] := {︀ 𝑔𝐺 E 𝑔 -1 , 𝑔 ∈ SO(3) }︀ ,
rather than on the symmetry groups of their respective tensors in a specific orientation. These are known as symmetry classes.

It was shown in [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] that there are exactly eight Elasticity symmetry classes: triclinic

[1], monoclinic [Z 2 ], orthotropic [D 2 ], tetragonal [D 4 ], trigonal [D 3 ], transversely-isotropic [O(2)], cubic [O] and isotropic [SO(3)].
Each symmetry class is a conjugacy class of subgroups and for each of it, it is useful to fix a particular representative subgroup in it. Such representatives are provided, for each Elasticity class, in the list below.

• The trivial group is designed by 1 := {𝐼}, no specific representative is required for it;

• Z 2 is generated by the second-order rotation r(𝑒 𝑒 𝑒 3 , 𝜋) and is of order 2;

• D 2 is generated by the second-order rotations r(𝑒 𝑒 𝑒 3 , 𝜋) and r(𝑒 𝑒 𝑒 1 , 𝜋) and is of order 4;

• D 3 is generated by the third order rotation r(𝑒 𝑒 𝑒 3 , 2𝜋 3 ) and the second-order rotation r(𝑒 𝑒 𝑒 1 , 𝜋). It is of order 6; • D 4 is generated by the fourth-order rotation r(𝑒 𝑒 𝑒 3 , 𝜋

2 ) and the second-order rotation r(𝑒 𝑒 𝑒 1 , 𝜋). It is of order 8;

• O is the octahedral group, the orientation-preserving symmetry group of the cube with vertices (±1, ±1, ±1), which is of order 24; • O(2) is the group generated by all rotations r(𝑒 𝑒 𝑒 3 , 𝜃) (𝜃 ∈ [0; 2𝜋[) and the second-order rotation r(𝑒 𝑒 𝑒 1 , 𝜋). It is of infinite order.

In this list, the notation r(𝑛 𝑛 𝑛, 𝜃) denotes a rotation of angle 𝜃 around axis ⟨𝑛 𝑛 𝑛⟩, with the convention that r(𝑒 𝑒 𝑒 3 , 𝜃) has the following matrix representation in the canonical basis (𝑒

𝑒 𝑒 𝑖 ) of R 3 r(𝑒 𝑒 𝑒 3 , 𝜃) = ⎛ ⎝ cos 𝜃 -sin 𝜃 0 sin 𝜃 cos 𝜃 0 0 0 1 ⎞ ⎠ .
There exists a partial order on symmetry classes, induced by inclusion between subgroups, and defined as follows:

(2.2) [𝐺 1 ] ⪯ [𝐺 2 ] ⇐⇒ ∃𝑔 ∈ SO(3), 𝐺 1 ⊂ 𝑔 𝐺 2 𝑔 -1 .
We can thus say that a tensor has "at least" or "at most" such or such symmetry. For example, a tensor E is said to be at least orthotropic if it is either orthotropic, tetragonal, transverselyisotropic, cubic or isotropic. A tensor E is said to be at least trigonal if it is either trigonal, transversely-isotropic, cubic or isotropic. This order is however partial, which means that two classes cannot necessarily be compared (for example the trigonal and the tetragonal classes). The symmetry classes and their relations are summarized in Figure 1, where an arrow

[𝐺 1 ] → [𝐺 2 ] means that [𝐺 1 ] ⪯ [𝐺 2 ].
Figure 1. The eight symmetry classes of the Elasticity tensor [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF].

For any subgroup 𝐺 of SO(3) in the list above and inducing a symmetry class [𝐺], we define its fixed point set

Ela 𝐺 := {E ∈ Ela; 𝑔 ⋆ E = E, ∀𝑔 ∈ 𝐺} .
This linear subspace of Ela is called a linear slice. It meets all the orbits of tensors which have at least the symmetry class [𝐺]. In other words, given an Elasticity tensor E in the symmetry class [𝐺], there exists a rotation 𝑔 ∈ SO(3) such that the symmetry group of 𝑔 ⋆ E is exactly the subgroup 𝐺, which means that 𝑔 ⋆ E ∈ Ela 𝐺 . We say then that the Elasticity tensor 𝑔 ⋆ E is a normal form of E.

Remark 2.1. When 𝐺 is a finite group, the linear slice Ela 𝐺 is the subspace of solutions of the linear system 𝑔 𝑘 ⋆ E = E (𝑘 = 1, . . . , 𝑟), where 𝑔 𝑘 generate 𝐺.

We recall now, for each (non trivial) symmetry class [𝐺] of Ela, a normal form for each class in Voigt's representation. An orthonormal basis in which Voigt's representation [E] of an Elasticity tensor E is a normal form is called a proper basis or a natural basis for E.

• The cubic normal form is defined as the subspace of tensors fixed by O. It has 3 independent parameters and writes

(2.3) [E O ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐸 1111 𝐸 1112 𝐸 1112 0 0 0 𝐸 1112 𝐸 1111 𝐸 1112 0 0 0 𝐸 1112 𝐸 1112 𝐸 1111 0 0 0 0 0 0 𝐸 1212 0 0 0 0 0 0 𝐸 1212 0 0 0 0 0 0 𝐸 1212 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
.

• The transversely-isotropic normal form is defined as the subspace of tensors fixed by O(2), for which the transverse isotropy axis is thus 𝑒 𝑒 𝑒 3 . It has 5 independent parameters and writes

(2.4) [E O(2) ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐸 1111 𝐸 1122 𝐸 1133 0 0 0 𝐸 1122 𝐸 1111 𝐸 1133 0 0 0 𝐸 1133 𝐸 1133 𝐸 3333 0 0 0 0 0 0 𝐸 1313 0 0 0 0 0 0 𝐸 1313 0 0 0 0 0 0 1 2 (𝐸 1111 -𝐸 1122 ) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
• The trigonal normal form is defined as the subspace of tensors fixed by D 3 . It has 6 independent parameters and writes (2.5) [ 

E D 3 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
𝑔 ⋆ C(E) = C(𝑔 ⋆ E), ∀𝑔 ∈ SO(3).
Examples of covariants are the dilatation and Voigt's second-order covariants d(E), v(E), defined by (1.4). A fourth-order covariant H appears in the harmonic decomposition

E = (tr d, tr v, d ′ , v ′ , H)
of an Elasticity tensor (see [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Onat | Effective properties of elastic materials that contain penny shaped voids[END_REF]), where d ′ and v ′ are the deviatoric parts of d and v, defined as

(•) ′ := (•) - 1 3 tr(•)1.
More precisely, we can write

(3.1) E = E 𝑖𝑠𝑜 + E dv + H,
where the isotropic part of E is defined as

E 𝑖𝑠𝑜 := 1 9 (tr d) 1 ⊗ 1 + 1 15 (3 tr v -tr d) J, J := 1 ⊗ 1 - 1 3 1 ⊗ 1,
and its dilatation-Voigt part as

E dv := 1 7 (︀ 1 ⊗ (5d ′ -4v ′ ) + (5d ′ -4v ′ ) ⊗ 1 )︀ + 2 7 (︀ 1 ⊗ (3v ′ -2d ′ ) + (3v ′ -2d ′ ) ⊗ 1 )︀ .
The remaining part

H := E -E dv -E 𝑖𝑠𝑜 ,
is a fourth-order harmonic tensor (i.e. totally symmetric and traceless). The detailed expression of its components 𝐻 𝑖𝑗𝑘𝑙 can be found in [START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Baerheim | Harmonic decomposition of the anisotropic elasticity tensor[END_REF].

Remark 3.1. In these formulas, we have used the tensor products ⊗ and ⊗ of two symmetric second-order tensors a and b, defined as

(a ⊗ b) 𝑖𝑗𝑘𝑙 = 𝑎 𝑖𝑗 𝑏 𝑘𝑙 , (a ⊗ b) 𝑖𝑗𝑘𝑙 = 1 2 (𝑎 𝑖𝑘 𝑏 𝑗𝑙 + 𝑎 𝑖𝑙 𝑏 𝑗𝑘 ).
The covariants d(E), v(E) and H(E) depend linearly on E but there are other non linear covariants which are extremely useful to study the geometry of E and which have been used in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF] to formulate simple characterizations of the Elasticity symmetry classes. One of them is the following second-order quadratic covariant, first introduced by Boehler and coworkers in [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF]:

d 2 := tr 13 (H : H) = H . . . H, (d 2 ) 𝑖𝑗 = 𝐻 𝑖𝑝𝑞𝑟 𝐻 𝑝𝑞𝑟𝑗 .
It depends on E through H and one has

(3.2) tr d 2 = ‖H‖ 2 .
A full set of 70 polynomial covariants of H which generates the polynomial covariant algebra of H has been produced in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF].

Recovering normal forms using covariants

Covariants are useful to characterize the symmetry class of a tensor [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]. For instance, we have introduced in ( 

a × 1 = 0, a ′ × b = a × b ′ = a ′ × b ′ .
Consider now a family of second-order symmetric tensors ℱ = {a 1 , a 2 , . . . , a 𝑛 }, with 𝑛 ≥ 2. Recall that the symmetry class [𝐺 ℱ ] of ℱ is the conjugacy class of the subgroup

𝐺 ℱ = ⋂︁ 𝑖 𝐺 a 𝑖 = {𝑔 ∈ SO(3); 𝑔 ⋆ a 𝑖 = a 𝑖 , ∀𝑖} ,
and that such a family is either isotropic, transversely-isotropic, orthotropic, monoclinic or triclinic. We have moreover the following result [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF].

Theorem 4.3. Let (a 1 , . . . , a 𝑛 ) be an 𝑛-tuple of second-order symmetric tensors. Then:

(1) (a 1 , . . . , a 𝑛 ) is isotropic if and only if a 𝑘 ′ = 0, 1 ≤ 𝑘 ≤ 𝑛,
where a 𝑘 ′ is the deviatoric part of a 𝑘 . (2) (a 1 , . . . , a 𝑛 ) is transversely-isotropic if and only if there exists a 𝑗 such that

a 𝑗 ′ ̸ = 0, a 𝑗 × a 2 𝑗 = 0, and a 𝑗 × a 𝑘 = 0, 1 ≤ 𝑘 ≤ 𝑛. (3) (a 1 , . . . , a 𝑛 ) is orthotropic if and only if tr(a 𝑘 × a 𝑙 ) = 0, 1 ≤ 𝑘, 𝑙 ≤ 𝑛,

and

• either there exists a 𝑗 such that

a 𝑗 × a 2 𝑗 ̸ = 0; • or there exists a pair (a 𝑖 , a 𝑗 ) such that a 𝑖 × a 𝑗 ̸ = 0. (4) (a 1 , . . . , a 𝑛 ) is monoclinic if and only if there exists a pair (a 𝑖 , a 𝑗 ) such that 𝜔 𝜔 𝜔 := tr(a 𝑖 × a 𝑗 ) ̸ = 0, and (a 𝑘 𝜔 𝜔 𝜔) × 𝜔 𝜔 𝜔 = 0, 1 ≤ 𝑘 ≤ 𝑛. Remark 4.4. If we define the commutator of a 𝑖 and a 𝑗 by [a 𝑖 , a 𝑗 ] = a 𝑖 a 𝑗 -a 𝑗 a 𝑖 , then we have tr(a 𝑖 × a 𝑗 ) = - 1 6 𝜀 : [a 𝑖 , a 𝑗 ].
Theorem 4.3 is the key point to recover the natural basis of a family ℱ = {a 1 , a 2 , . . . , a 𝑛 } of second-order symmetric tensors as follows. A natural basis for the family ℱ is one in which all the members of the family have the same matrix-shape with a maximum of zero (see Figure 2, where the joined circles mean "equal components" and the stars mean "distinct components").

The problem of finding a normal form for ℱ is meaningful only when it is transverselyisotropic, orthotropic or monoclinic. As an illustration of our purpose, we shall now detail how to find a rotation which brings ℱ into a normal form in each of these three cases. • ℱ is transversely-isotropic: Find a member a 𝑗 as in point (2) of theorem 4.3. Any basis in which a 𝑗 is diagonal, the last vector corresponding to its simple eigenvalue, will achieve the task. • ℱ is orthotropic: If there exists a 𝑗 orthotropic in ℱ (i.e a 𝑗 2 × a 𝑗 ̸ = 0), then just diagonalize a 𝑗 and this will answer the question. Otherwise, by point (3) of theorem 4.3, we can find an orthotropic pair (a 𝑖 , a 𝑗 ) in ℱ where both a 𝑖 and a 𝑗 are transverselyisotropic. In that case, the eigenspaces of a 𝑖 and a 𝑗 corresponding to single eigenvalues are one-dimensional and mutually orthogonal. A natural basis for ℱ is obtained by choosing a unit vector 𝑢 𝑢 𝑢 in the first space, 𝑣 𝑣 𝑣 in the second space and completing to a (direct) basis by adding 𝑢 𝑢 𝑢 × 𝑣 𝑣 𝑣.

• ℱ is monoclinic: In that case, construct 𝜔 as in point ( 4) of theorem 4.3. Normalize it to a unit vector and complete it into a basis by adding an orthonormal basis of the plane 𝜔 ⊥ . Permute, if necessary, the vectors to obtain a direct basis and we are done.

Remark 4.5. If t is a non-vanishing transversely-isotropic deviator, we do not need to solve a polynomial equation to compute its unique simple eigenvalue. It is given by

𝜆 = 2 tr(t 3 ) tr(t 2 ) ,
and the main axis of t (eigenspace of the simple eigenvalue) corresponds to the one-dimensional subspace (4.1) ker

(︂ t -2 tr(t 3 ) tr(t 2 ) 1
)︂ .

Remark 4.6. If (a 1 , a 2 ) is an orthotropic couple where both a 1 and a 2 are transversely-isotropic, then, their respective main axes are orthogonal and correspond respectively to ker

(︂ t -2 tr(a 3 1 ) tr(a 2 1 ) 1 
)︂ and ker

(︂ t -2 tr(a 3 2 ) tr(a 2 2 )

1

)︂ .

The methodology developed above for a family ℱ of second-order symmetric tensors will allow us to find a natural basis of all Elasticity tensors E, provided they are either transverselyisotropic, tetragonal, trigonal, orthotropic or monoclinic. The isotropic case is trivial and the triclinic case will not be considered in this paper (even if it also possible to define some kind of normal form for a triclinic tensor [START_REF] Fedorov | Theory of Elastic Waves in Crystals[END_REF][START_REF] Norris | On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes[END_REF]). The cubic case will be treated at the end of this section. To start with, we recall the following result which is a corollary of theorem [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]Theorem 10.2]. It allows us to solve the problem when E is either transversely-isotropic, tetragonal or trigonal (details will be provided in section 6). Lemma 4.7. Let E be a transversely-isotropic, tetragonal or trigonal Elasticity tensor. Then, the triplet

(d ′ , v ′ , d 2 ′ ) is transversely-isotropic.
To be able to reduce the case of an Elasticity tensor E to a family of second-order symmetric tensors, when E is either orthotropic or monoclinic, we need more second-order symmetric covariants which we shall introduce now. First, let us recall that the 2-contraction between H and a second-order tensor a is defined as

(H : a) 𝑖𝑗 := 𝐻 𝑖𝑗𝑝𝑞 𝑎 𝑝𝑞 .
Using this operation, we produce first the following two covariants c 3 := H : d 2 , and c 4 := H : c 3 , and introduce two families of symmetric second-order covariants of E, which will allow us to solve the problem when E is either orthotropic or monoclinic. The first family, (4.2)

ℱ 𝑜 := {︀ d ′ , v ′ , d 2 ′ , c 3 , c 4 , H : d, H : v, H : d 2 , H : v 2 }︀ ,
will be used in the orthotropic case and the second family,

(4.3) ℱ 𝑚 := {︀ d ′ , v ′ , d 2 ′ , c 3 , c 4 , H : d, H : v, H : d 2 , H : v 2 , H : (dv) 𝑠 , H : (dd 2 ) 𝑠 , H : (vd 2 ) 𝑠 }︀ ,
will be used in the monoclinic case. Here, (•) 𝑠 stands for the symmetric part of a second-order tensor. The key-point to conclude is the following result, which is a consequence of [26, Theorem 10.2] and [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]Remark 10.4].

Theorem 4.8. For any Elasticity tensor E:

(1) E is monoclinic if and only if the family ℱ 𝑚 of second-order tensors is monoclinic.

(2) E is orthotropic if and only if the family ℱ 𝑜 of second-order tensors is orthotropic.

(3) Moreover, if the family ℱ 𝑜 is transversely isotropic, then, the triplet

(d ′ , v ′ , d 2 ′
) is transversely isotropic and E is either tetragonal, trigonal or transversely isotropic.

It remains to solve the problem when E is cubic. In that case, each second-order covariant of E is isotropic [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]. Therefore its fourth-order covariant H is necessarily cubic (and thus nonvanishing). A natural basis for H is therefore also one for E. The key-point to calculate such a natural basis is then provided by the following theorem. Theorem 4.9. Let H be a fourth-order cubic harmonic tensor. Then, the solutions of the linear equation

(4.4) tr(H × a) = 0,
where a is a second-order symmetric tensor, is a three-dimensional vector space. Moreover, orthotropic tensors a which are solution of (4.4) form a dense open set and the natural basis of any such orthotropic tensor is a natural basis for H.

Remark 4.10. This means that solving the linear system (4.4) and picking-up randomly a solution among them provides us with an orthotropic second-order symmetric tensor a which eigenvectors define a proper basis for H. Proof. The binary operation tr(H × a) being covariant, solutions a of tr(H × a) = 0 write as 𝑔 ⋆ a 0 , where a 0 are the solutions of tr(H 0 × a 0 ) = 0, and where H 0 is the normal form of H. This normal form H 0 (see for instance [START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF]) writes, in Voigt's representation (1.1), as

[H 0 ] = 𝛿 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 8 -4 -4 0 0 0 -4 8 -4 0 0 0 -4 -4 8 0 0 0 0 0 0 -4 0 0 0 0 0 0 -4 0 0 0 0 0 0 -4 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, where 𝛿 ̸ = 0. It can be checked that the space of solutions of the equation tr(H 0 × a 0 ) = 0 corresponds exactly to the three-dimensional vector space of diagonal tensors, in which orthotropic tensors are a dense open set. Hence, any natural basis for H 0 (there are 24 such ones) is a natural basis for any solution a 0 of tr(H 0 × a 0 ) = 0. Conversely, any natural basis of an orthotropic solution a 0 corresponds to a natural basis of H 0 , since there are only 24 such bases. Therefore, any natural basis for H corresponds to a natural basis of a, an orthotropic solution of tr(H × a) = 0, and vice-versa, which ends the proof.

Experimental data

As pointed out in the introduction, natural bases have been obtained in the literature for some non-degenerate situations, using the dilatation or Voigt's tensors [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Jaric | On the conditions for the existence of a plane of symmetry for anisotropic elastic material[END_REF][START_REF] Baerheim | Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry[END_REF][START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF]. We present here some data which will be used in section 6 to illustrate our methodology. They consist in

• a Ni base single crystal superalloy (with its successive exactly cubic, tetragonal, orthotropic and monoclinic Elasticity approximations), • an 𝛼-quartz (which belongs to the trigonal crystal system, its exactly trigonal Elasticity approximation [START_REF] Sutcliffe | Spectral decomposition of the elasticity tensor[END_REF][START_REF] Zou | Identification of symmetry type of linear elastic stiffness tensor in an arbitrarily orientated coordinate system[END_REF] is therefore considered), • an exactly transversely-isotropic approximation issued from [START_REF] Kochetov | On obtaining effective orthotropic elasticity tensors[END_REF]. The Ni base single crystal superalloy has a nearly cubic microstructure [START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF]. Thus, for this material, we will consider first the best cubic approximation of its associated Elasticity tensor obtained by François and coworkers by a minimization procedure fully described in [START_REF] Francois | Détermination des symétries matérielles de matériaux anisotropes[END_REF][START_REF] Francois | Une nouvelle analyse des symétries d'un matériau élastique anisotrope. exemple d'utilisation à partir de mesures ultrasonores[END_REF][START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF] (and for which the covariants are at least cubic, thus as second order deviatoric tensors d ′ = v ′ = 0). We will consider then successive relevant approximations, still obtained by a minimization procedure, preserving the symmetry planes of initial exactly cubic symmetry, and keeping d ′ = v ′ = 0 (in order to illustrate the abilities of proposed methodology to handle the degenerate cases). These approximations will exactly belong to one of the tetragonal, orthotropic and monoclinic symmetry classes.

Note that in this section and section 6, all experimental tensors, as well as their linear covariants, are expressed in GPa and that their fourth-order harmonic components are provided in Appendix A. Moreover, all Voigt's (matrix) representations are given in the same fixed orthonormal basis (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ). 5.1. Ni base single crystal superalloy. Voigt's representation of the measured Elasticity tensor E 𝛾 of a Ni base single crystal superalloy, obtained by ultrasonic measurements in [START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF], writes as 

[E 𝛾 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
⎞ ⎠ , v ′ = ⎛ ⎝ -1 -11 -1 -11 9 -1 -1 -1 -8 ⎞ ⎠ .
The fourth-order harmonic part of E 𝛾 writes We get thus

[H] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
‖E 𝛾 ‖ 2 = ‖E 𝑖𝑠𝑜 ‖ 2 + ‖E dv ‖ 2 + ‖H‖ 2 ,
where ‖E 𝛾 ‖ 2 := 𝐸 𝛾 𝑖𝑗𝑘𝑙 𝐸 𝛾 𝑖𝑗𝑘𝑙 . Moreover:

• The squared norm of the isotropic part E 𝑖𝑠𝑜 of E 𝛾 writes ‖E 𝑖𝑠𝑜 ‖ 2 = 1 15 (2(tr d) 2 -2 tr d tr v + 3(tr v) 2 ),
and corresponds to the contribution of the isotropic parts of the dilatation and the Voigt tensors.

• The squared norm of the dilatation-Voigt parts E dv of E 𝛾 writes

‖E dv ‖ 2 = 2 21 ‖d ′ + 2v ′ ‖ 2 + 4 3 ‖d ′ -v ′ ‖ 2 ,
and corresponds to the contribution of the deviatoric parts of the dilatation and the Voigt tensors. • The squared norm of the harmonic part H of E 𝛾 writes (5.1)

‖H‖ 2 = tr d 2 .
For this single crystal superalloy, the isotropic contribution is the largest,

‖E 𝑖𝑠𝑜 ‖ 2 ‖E 𝛾 ‖ 2 = 0.880438 ,
while the anisotropic dilatational-Voigt contribution is negligible, as

‖E dv ‖ 2 ‖E 𝛾 ‖ 2 = 0.005826 ,
and the fourth-order harmonic contribution is of order two in magnitude,

‖H‖ 2 ‖E 𝛾 ‖ 2 = 0.113736 .
All the following approximations have identical isotropic parts.

Approximation of E 𝛾 by a cubic Elasticity tensor: 

(5.2) [E 𝛾 𝑐𝑢𝑏𝑖𝑐 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 240 
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
, which is exactly monoclinic with ‖E 𝛾 -E 𝛾 𝑚𝑜𝑛𝑜 ‖/‖E 𝛾 ‖ = 0.0883.

5.2.

Trigonal 𝛼-quartz. We consider now the trigonal Elasticity tensor of the 𝛼-quartz, provided in [START_REF] Zou | Identification of symmetry type of linear elastic stiffness tensor in an arbitrarily orientated coordinate system[END_REF] and obtained from experimental data issued from [START_REF] Sutcliffe | Spectral decomposition of the elasticity tensor[END_REF]. In Voigt's representation, it writes 

(5.7) [E 𝛼 𝑡𝑟𝑖𝑔 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 7 

Effective computations

For each symmetry class, we shall explain how to find a rotation which brings an Elasticity tensor E whose components are given in an arbitrary orthonormal direct basis ℬ 0 = (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ), into its normal form. More precisely, we will compute an orthonormal basis ℬ = (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 3 ), and hence a rotation (6.1) where a is a second-order symmetric tensor and (see Appendix B for the detailed components expressions for third order tensor tr(H × a)). Pick-up randomly a solution a among them. According to theorem 4.9, it will be orthotropic (i.e. a will have three distinct eigenvalues). This can be checked by verifying that a 2 × a ̸ = 0. (3) Diagonalize a and compute a direct orthonormal basis ℬ = (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 3 ) of eigenvectors for a. (4) The normal form (2.3) is given by E O = 𝑔 ⋆ E 𝑐𝑢𝑏𝑖𝑐 with 𝑔 defined by (6.1) and its action, by (1.2).

𝑔 = ⎛ ⎝ 𝑢 𝑢 𝑢 1 • 𝑒 𝑒 𝑒 1 𝑢 𝑢 𝑢 1 • 𝑒 𝑒 𝑒 2 𝑢 𝑢 𝑢 1 • 𝑒 𝑒 𝑒 3 𝑢 𝑢 𝑢 2 • 𝑒 𝑒 𝑒 1 𝑢 𝑢 𝑢 2 • 𝑒 𝑒 𝑒 2 𝑢 𝑢 𝑢 2 • 𝑒 𝑒 𝑒 3 𝑢 𝑢 𝑢 3 • 𝑒 𝑒 𝑒 1 𝑢 𝑢 𝑢 3 • 𝑒 𝑒 𝑒 2 𝑢 𝑢 𝑢 3 • 𝑒 𝑒 𝑒 3 ⎞ ⎠ ,
Remark 6.1. Since tr(H × 1) = 0 for every tensor H, it is enough to solve the equation tr(H × a ′ ) = 0, for deviatoric tensors a ′ , which leads to solve a linear system in a five-dimensional space. (4) The normal form (2.4) is given by E O(2) = 𝑔 ⋆ E 𝑇 𝐼 with rotation 𝑔 defined by (6.1) and its action on E 𝑇 𝐼 computed using (1.2).

Remark 6.2. If t = t ′ is a transversely-isotropic deviator, then t 2 ×t = 0 with t ̸ = 0, and t writes t = (-1 2 𝜆, -1 2 𝜆, 𝜆) in its proper basis, where its simple eigenvalue 𝜆 is derived as in remark 4.5. Example 6.2. Consider the transversely-isotropic Elasticity tensor (5.8).

(1) We find

d ′ = ⎛ ⎝ 0.221833 -0.0745 -0.2495 -0.0745 0.235733 -0.2272 -0.2495 -0.2272 -0.457567 ⎞ ⎠ , v ′ = 0.679222 d ′ , d 2 ′ = -0.0977232 d ′ ,
and we can check that the triplet (d ′ , v ′ , d 2 ′ ) is transversely-isotropic. We choose t = d ′ . Its simple eigenvalue is given by

𝜆 = 2 tr(d ′3 ) tr(d ′2 ) = -0.607173.
(2) Solving the linear system (4.1) returns:

𝑢 𝑢 𝑢 3 = ⎛ ⎝ 0.29966 0.272898 0.914183 ⎞ ⎠ .
(3) Build a direct orthonormal basis ℬ = (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 3 ) from (6.2) and compute 𝑔 using (6.1): 

𝑔 = ⎛ ⎝ -0.
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (GPa),
which is the normal form of the optimal transversely-isotropic tensor obtained in [START_REF] Kochetov | On obtaining effective orthotropic elasticity tensors[END_REF].

6.3. Trigonal class. The proposed methodology for a trigonal Elasticity tensor E 𝑡𝑟𝑖𝑔 is the following. The first three steps are the same as those for the transversely-isotropic case.

(1) Compute the transversely-isotropic triplet (d ′ , v ′ , d 2 ′ ) from E 𝑡𝑟𝑖𝑔 (see lemma 4.7 and section 3). Extract from this triplet a transversely-isotropic deviator t (remark 6.2).

(2) Let 𝑢 𝑢 𝑢 3 be a unit vector, solution of the linear system

(︂ t -2 tr(t 3 ) tr(t 2 ) 1
)︂ 𝑢 𝑢 𝑢 = 0.

(3) Complete 𝑢 𝑢 𝑢 3 into a direct orthonormal basis ℬ 1 = (𝑤 𝑤 𝑤 1 , 𝑤 𝑤 𝑤 2 , 𝑢 𝑢 𝑢 3 ) of R 3 , using (6.2), for instance, and define 𝑔 1 as the rotation given by (6.1). ( 4) Compute E := 𝑔 1 ⋆ E 𝑡𝑟𝑖𝑔 (using (1.2)) and define 𝜃 0 to be one solution of the equation (6.4)

𝐸 1123 sin 3𝜃 = 𝐸 1113 cos 3𝜃.

(5) The normal form (2.5) of E 𝑡𝑟𝑖𝑔 is given by E D 3 = r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) ⋆ E, where r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) is the rotation of angle 𝜃 0 around axis 𝑒 𝑒 𝑒 3 and its action on E is computed using (1.2).

Remark 6.3. Equation (6.4) derives from the observation that the matrix form of a trigonal Elasticity tensor with correct third axis 𝑢 𝑢 𝑢 3 writes (6.5) We check that v ′ is transversely-isotropic (v ′ 2 × v ′ = 0) and observe that

[E 𝑡𝑟𝑖𝑔 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
d ′ = 0.74434 v ′ , and d 2 ′ = -0.828279 v ′ .
The simple eigenvalue of v ′ is given by 2 tr(v ′3 ) tr(v ′2 ) = 2.37334 .

(2) Solving the linear system (4.1) with t = v ′ gives

𝑢 𝑢 𝑢 3 = ⎛ ⎝ 0.21137 0.553074 0.805873 ⎞ ⎠ , ‖𝑢 𝑢 𝑢 3 ‖ = 1.
(3) We build then a direct orthonormal basis ℬ 1 = (𝑤 𝑤 𝑤 1 , 𝑤 𝑤 𝑤 2 , 𝑢 𝑢 𝑢 3 ) using (6.2) and define 𝑔 1 using (6.1), 

𝑔 1 = ⎛ ⎝ -0.
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
We solve (6.4) and choose the solution

𝜃 0 = 1 3 arctan (︂ 𝐸 1113 𝐸 1123
)︂ = 0.0558614 . Finally, one can check that (E 𝛼 𝑡𝑟𝑖𝑔 ) ) from E 𝑡𝑒𝑡𝑟𝑎 (see lemma 4.7 and section 3). Extract from this triplet a transversely-isotropic deviator t (remark 6.2).

D 3 = r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) ⋆ E writes [(E 𝛼 𝑡𝑟𝑖𝑔 ) D 3 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 8 
(2) Let 𝑢 𝑢 𝑢 3 with ‖𝑢 𝑢 𝑢 3 ‖ = 1 be a solution of the linear system

(︂ t -2 tr(t 3 ) tr(t 2 ) 1
)︂ 𝑢 𝑢 𝑢 = 0 .

(3) Complete 𝑢 𝑢 𝑢 3 into a direct orthonormal basis ℬ 1 = (𝑤 𝑤 𝑤 1 , 𝑤 𝑤 𝑤 2 , 𝑢 𝑢 𝑢 3 ) of R 3 , using (6.2), for instance and define 𝑔 1 as the rotation given by (6.1). ( 4) Compute E := 𝑔 1 ⋆ E 𝑡𝑒𝑡𝑟𝑎 (using (1.2)) and define 𝜃 0 to be one solution of ( (3) We build then a direct orthonormal basis ℬ 1 = (𝑤 𝑤 𝑤 1 , 𝑤 𝑤 𝑤 2 , 𝑢 𝑢 𝑢 3 ) using (6.2) and define 𝑔 1 using (6.1), (4) We compute E := 𝑔 1 ⋆ E 𝑡𝑒𝑡𝑟𝑎 and solve (6.6) and choose the solution

𝑔
𝜃 0 = 1 4 arctan (︂ 4𝐸 1112 2𝐸 1212 + 𝐸 1122 -𝐸 1111 )︂ = 0.236501 .
(5) Finally, we can check that (E 𝛾 𝑡𝑒𝑡𝑟𝑎 ) This family is orthotropic by theorem 4.8 and we have to distinguish between two cases.

D 4 = r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) ⋆ E writes [(E 𝛾 𝑡𝑒𝑡𝑟𝑎 ) D 4 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 210 
(1) If there exists an orthotropic tensor a in the family ℱ 𝑜 , then, a direct orthonormal basis of eigenvectors for a is also a natural basis for ℱ 𝑜 .

(2) Otherwise, we can find an orthotropic couple (a 1 , a 2 ) in ℱ 𝑜 . In that case, both a 1 and a 2 are transversely-isotropic and their respective main axis are orthogonal. Let 𝑢 𝑢 𝑢 1 and 𝑢 𝑢 𝑢 2 be unit vectors spanning these axes (they can be obtained using remark 4.6). Then, a natural basis for E 𝑜𝑟𝑡ℎ𝑜 is ℬ := (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 1 × 𝑢 𝑢 𝑢 2 ). In both cases, the orthotropic normal form (2.7) is recovered by (E 𝑜𝑟𝑡ℎ𝑜 ) D 2 = 𝑔 ⋆ E 𝑜𝑟𝑡ℎ𝑜 , where 𝑔 is defined by (6.1) and its action on E 𝑜𝑟𝑡ℎ𝑜 is computed using (1.2).

In [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]Theorem 10.2], it was shown that if E 𝑜𝑟𝑡ℎ𝑜 is orthotropic, then the triplet (d ′ , v ′ , d 2 ′ ) is either orthotropic or transversely-isotropic. This observation leads to a possible optimization of the methodology proposed above.

• If this triplet is orthotropic, our methodology can be optimized, by looking for an orthotropic tensor or an orthotropic couple of transversely-isotropic tensors in this triplet, rather than in the whole family ℱ 𝑜 . • If the triplet is transversely-isotropic, an alternative methodology similar to the one used for a trigonal or a tetragonal tensor is still possible and is detailed below.

(1) Extract a transversely-isotropic deviator t from the triplet (d ′ , v ′ , d 2 ′ ). ( 2) Compute 𝑢 𝑢 𝑢 3 with ‖𝑢 𝑢 𝑢 3 ‖ = 1 as a solution of the linear system

(︂ t -2 tr(t 3 ) tr(t 2 ) 1
)︂ 𝑢 𝑢 𝑢 = 0, as explained in remark 4.5. (3) Complete 𝑢 𝑢 𝑢 3 into a direct orthonormal basis ℬ 1 = (𝑤 𝑤 𝑤 1 , 𝑤 𝑤 𝑤 2 , 𝑢 𝑢 𝑢 3 ) of R 3 , using (6.2) for instance, and define 𝑔 1 as the rotation given by (6.1). ( 4) Compute E := 𝑔 1 ⋆ E 𝑜𝑟𝑡ℎ𝑜 (using (1.2)) and let 𝜃 0 be a solution of (6.8) 2𝐸 3312 cos 2𝜃 = (𝐸 1133 -𝐸 2233 ) sin 2𝜃, which always exists as E is an orthotropic tensor. (5) The normal form (2.7) is given by (E 𝑜𝑟𝑡ℎ𝑜 ) D 2 = r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) ⋆ E, where r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) is the rotation of angle 𝜃 0 around 𝑒 𝑒 𝑒 3 and its action on E is computed using (1.2).

Remark 6.5. As in the trigonal and the tetragonal cases, equation (6.8) is derived from the observation that an orthotropic Elasticity tensor with one correct axis, say 𝑢 𝑢 𝑢 3 , writes

[E 𝑜𝑟𝑡ℎ𝑜 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐸 1111 𝐸 1122 𝐸 1133 0 0 𝐸 1112 𝐸 1122 𝐸 2222 𝐸 2233 0 0 𝐸 2212 𝐸 1133 𝐸 2233 𝐸 3333 0 0 𝐸 3312 0 0 0 𝐸 2323 0 0 0 0 0 0 𝐸 1313 0 𝐸 1112 𝐸 2212 𝐸 3312 0 0 𝐸 1212 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
Thus, a rotation of E 𝑜𝑟𝑡ℎ𝑜 around 𝑢 𝑢 𝑢 3 and of angle 𝜃 0 , solution of (6.8), leads to the normal form (2.7).

Example 6.5. Consider the orthotropic Elasticity tensor (5.4) for Ni base single crystal superalloy. This example is interesting because both the dilatation and the Voigt second-order covariants of this Elasticity tensor are isotropic, d ′ = v ′ = 0. Hence, simple methods to recover its normal form fail. However, one can check that its deviatoric second-order covariant 

d 2 ′ = ⎛ ⎝ 523 
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (GPa),
and corresponds to its orthotropic normal form (2.7).

Example 6.6. Consider now the second orthotropic Elasticity tensor approximation (5.5) for Ni base single crystal superalloy. This time d 2 ′ = 0 (since its fourth-order harmonic part is cubic) and both d ′ and v ′ are transversely-isotropic but not of the same axis. The pair (d ′ , v ′ ) is orthotropic. The unit eigenvectors 𝑢 𝑢 𝑢 1 and 𝑢 𝑢 𝑢 2 corresponding respectively to the simple eigenvalue of d ′ and v ′ are

𝑢 𝑢 𝑢 1 = ⎛ ⎝ -0.966261 -0.111623 0.232121 ⎞ ⎠ , 𝑢 𝑢 𝑢 2 = ⎛ ⎝ 0.0813519 -0.987342 -0.136151 ⎞ ⎠ .
The rotation 𝑔 build from (6.1), with

𝑢 𝑢 𝑢 3 = 𝑢 𝑢 𝑢 1 × 𝑢 𝑢 𝑢 2 , is such that the Elasticity tensor (E 𝛾 ′ 𝑜𝑟𝑡ℎ𝑜 ) D 2 = 𝑔 ⋆ E 𝛾 (1) 
𝑜𝑟𝑡ℎ has the orthotropic normal form 

[(E 𝛾 ′ 𝑜𝑟𝑡ℎ𝑜 ) D 2 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 217 
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (GPa). 
Remark 6.6. Compared to previous works [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Jaric | On the conditions for the existence of a plane of symmetry for anisotropic elastic material[END_REF][START_REF] Baerheim | Coordinate free representation of the hierarchically symmetric tensor of rank 4 in determination of symmetry[END_REF][START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF], our procedure, relying on theorem 4.8, is exhaustive and allows to handle all degenerate cases. It is based on the list ℱ 𝑜 of second-order covariants which carries all the information required to recover the normal form of an orthotropic Elasticity tensor.

6.6. Monoclinic class. The methodology for a monoclinic Elasticity tensor E 𝑚𝑜𝑛𝑜 is based on the investigation of the family ℱ 𝑚 of second-order symmetric covariants given by (4.3). This family is monoclinic by theorem 4.8. The algorithm is the following.

(1) Find a common eigenvector 𝜔 for all second-order covariants in the family ℱ 𝑚 , by computing the commutators (𝜔 = 𝜀 : [a 𝑖 , a 𝑗 ]), as in theorem 4.3. (2) Set 𝑢 𝑢 𝑢 3 = 𝜔 𝜔 𝜔/‖𝜔 𝜔 𝜔‖ and complete it into a direct orthonormal basis ℬ = (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 3 ), using (6.2) for instance. (3) The monoclinic normal form (2.8) is given by 𝑔 ⋆ E 𝑚𝑜𝑛𝑜 where 𝑔 is defined by (6.1) and its action on E 𝑚𝑜𝑛𝑜 is computed using (1.2).

Remark 6.7. In most (non degenerate) cases, the commutator 𝜀 : [d, v] = 2 𝜀 : (dv) of the dilatation and the Voigt tensors will allow to initiate the first step of the algorithm (as in [START_REF] Cowin | On the identification of material symmetry for anisotropic elastic materials[END_REF][START_REF] Cowin | Properties of the anisotropic elasticity tensor[END_REF][START_REF] Jaric | On the conditions for the existence of a plane of symmetry for anisotropic elastic material[END_REF]). But 𝜀 : [d, v] may vanish, as in the next example. In that case, another candidate is required (for instance 𝜔 = 𝜀 𝜀 𝜀 : (d 2 c 3 ) in the next example). Our methodology relies on Theorem 4.8 and is exhaustive. (2) Set

𝑢 𝑢 𝑢 3 = 1 ‖𝜔‖ 𝜔, 𝑢 𝑢 𝑢 1 = 1 √︀ 𝑛 2 1 + 𝑛 2 2 ⎛ ⎝ -𝑛 2 𝑛 1 0 ⎞ ⎠ , 𝑢 𝑢 𝑢 2 = 𝑢 𝑢 𝑢 3 × 𝑢 𝑢 𝑢 1 .
We get then 

𝑢 𝑢 𝑢 3 = ⎛ ⎝ 0.

An algorithm to detect the symmetry class and recover a normal form

In this final section, we formulate an algorithm, based on the previous calculations, which allows to obtain the exact symmetry class of any Elasticity tensor and its normal form. To achieve this task, we will use the two families of deviatoric second order covariants of E already introduced in section 3,

ℱ 𝑜 := {︀ d ′ , v ′ , d 2 ′ , c 3 , c 4 , H : d, H : v, H : d 2 , H : v 2 }︀ ,
and ℱ 𝑚 := ℱ 𝑜 ∪ {H : (dv) 𝑠 , H : (dd 2 ) 𝑠 , H : (vd 2 ) 𝑠 } , where c 3 = H : d 2 and c 4 = H : c 3 . The families ℱ 𝑜 and ℱ 𝑚 are used in the orthotropic and monoclinic cases. For an Elasticity tensor which is either transversely isotropic, trigonal or tetragonal, all its second order covariants are transversely isotropic with the same axis, say 𝑢 𝑢 𝑢 3 . To determine this axis, and find a rotation which brings it to 𝑒 𝑒 𝑒 3 , a common procedure was described in subsection 6.2, subsection 6.3 and subsection 6.4. It is summarized below as Procedure 7.1. Procedure 7.1. Input : A transversely isotropic, trigonal or tetragonal Elasticity tensor E, with components 𝐸 𝑖𝑗𝑘𝑙 in a fixed orthonormal basis (𝑒 𝑒 𝑒 𝑖 ).

Output : A rotation 𝑔 1 ∈ SO(3) and an Elasticity tensor E = 𝑔 1 ⋆ E such that all its second order covariants are transversely isotropic and of axis ⟨𝑒 𝑒 𝑒 3 ⟩, with components 𝐸 𝑖𝑗𝑘𝑙 in the basis (𝑒 𝑒 𝑒 𝑖 ).

(1) Compute the triplet of covariant deviators (d ′ , v ′ , d 2 ′ ) of E. One of them is transversely isotropic, call it t.

(2) Let 𝑢 𝑢 𝑢 3 = 𝑛 𝑛 𝑛 be a unit eigenvector corresponding to the single eigenvalue of t, obtained by solving the linear system (︀ t -2 tr(t 3 ) tr(t 2 ) 1

)︀ 𝑢 𝑢 𝑢 = 0. (3) Complete 𝑢 𝑢 𝑢 3 into a direct orthonormal basis ℬ = (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 3 ) of R 3 by choosing an orthonormal pair (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 ) orthogonal to 𝑢 𝑢 𝑢 3 . (4) Define 𝑔 1 as Finally, the algorithm to detect the symmetry class of a given Elasticity tensor is summarized in Figure 3 and detailed below.

𝑔 1 = ⎛ ⎝ 𝑢 𝑢 𝑢 1 • 𝑒 𝑒 𝑒 1 𝑢 𝑢 𝑢 1 • 𝑒 𝑒 𝑒 2 𝑢 𝑢 𝑢 1 • 𝑒 𝑒 𝑒 3 𝑢 𝑢 𝑢 2 • 𝑒 𝑒 𝑒 1 𝑢 𝑢 𝑢 2 • 𝑒 𝑒 𝑒 2 𝑢 𝑢 𝑢 2 • 𝑒 𝑒 𝑒 3 𝑢 𝑢 𝑢 3 • 𝑒 𝑒 𝑒 1 𝑢 𝑢 𝑢 3 • 𝑒 𝑒 𝑒 2 𝑢 𝑢 𝑢
(1) If either the family ℱ 𝑜 or ℱ 𝑚 is triclinic, then E is triclinic (else its covariants would have inherited its symmetry group [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]). ( 2 

̸ = 0 or 𝐸 1113 ̸ = 0 then E is trigonal. (5) If ℱ 𝑜 is isotropic, then, d ′ 2 = d ′ = v ′ = 0, thus d 2 = 1 3 (tr d 2 )
1 and tr d 2 = ‖H‖ 2 by (3.2)). In that case, (a) either d 2 = 0, so that H = 0, and therefore E = E 𝑖𝑠𝑜 is isotropic by ( 

ℱ 𝑜 triclinic E triclinic d 2 = 0 d ′ 2 = 0 d 2 ̸ = 0 {︃ 𝐸 1112 = 𝐸 1123 = 𝐸 1113 = 0 𝐸 1212 = 1 2 (𝐸 1111 -𝐸 1122 ) Else 𝐸 1123 ̸ = 0 or 𝐸 1113 ̸ = 0 𝐸 1123 = 𝐸 1113 = 0 ℱ 𝑚 monoclinic ℱ 𝑚 triclinic

Conclusion

We have formulated effective methods to recover the normal form of an Elasticity tensor, measured in any basis, provided that we know to which symmetry class it belongs to (this other problem having been solved, by the way, in a previous work [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF]). For each symmetry class, a simple algorithm has been provided. In particular, thanks to the generalized cross product (1.5) between totally symmetric tensors, a very simple method has been proposed to recover the normal form of an Elasticity tensor with cubic symmetry. It requires only to solve a linear system in five variables and diagonalize a three-dimensional symmetric matrix.

These procedures are moreover exhaustive. All degenerate cases are handled, in particular, when second-order covariants, like d ′ and v ′ , or first-order covariants like 𝜀 : [d, v] vanish. To formulate and prove these results, we have used families of covariants derived in [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], which are crucial to establish necessary and sufficient conditions for an Elasticity tensor to belong to a given symmetry class. As a by-product, applying our procedures to a given Elasticity tensor E allows, not only to recognize a normal form for it, but is also a way to determine its symmetry class. An algorithm to achieve this task has been formulated in section 7.

Besides, to illustrate our methods, we have applied them on experimental Elasticity tensors found in the literature, and this for each symmetry class.

Noises and experimental errors have not been considered since this subject is a full work in itself and will be addressed in forthcoming papers.

Appendix A. Harmonic components of considered Elasticity tensors

In this section, all the linear covariants d, v, H are given in GPa and the fourth-order harmonic part H is expressed in Voigt's representation.

Cubic approximation E 𝛾 𝑐𝑢𝑏𝑖𝑐 (5.2) of E 𝛾 : d When S is a totally symmetric fourth order tensor and a is a symmetric second order tensor, the ten independent components of the totally symmetric third order tensor tr(S × a) are 

′ = v ′ = 0, d 2 ′ =

Figure 2 .

 2 Figure 2. Shapes of normal forms for families of second-order symmetric tensors.

Remark 4 . 11 .

 411 In an orthonormal basis, the 10 components of the totally symmetric three-order tensor tr(H × a) write (tr(H × a)) 𝑖𝑗𝑘 = 1 10 (𝜀 𝑖𝑝𝑞 𝐻 𝑗𝑘𝑝𝑟 + 𝜀 𝑗𝑝𝑞 𝐻 𝑖𝑘𝑝𝑟 + 𝜀 𝑘𝑝𝑞 𝐻 𝑖𝑗𝑝𝑟 ) 𝑎 𝑞𝑟 . The detailed expressions of each component of tr(H × a) are provided by (B.2) in Appendix B.

Example 6 . 1 .

 61 Consider the cubic Elasticity tensor (5.2) for Ni base single crystal superalloy. It is such that tr d = 1531, tr v = 1479, d ′ = 0, v ′ = 0.(1) Its fourth-order harmonic part H is given by (A.1) and we get d 2 ′ = (tr 13 H 2 ) ′ = 0. (2) Setting arbitrarily 𝑎 ′ 13 = 1 and 𝑎 ′ 12 = 1, the solution of tr(H × a ′ ) = 0 (see remark 6

( 5 )

 5 We define r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) =

( 2 )

 2 Solving the linear system (4.1) with t = d 2 ′ gives 𝑢 𝑢 𝑢 3 = 𝑢 𝑢 3 ‖ = 1.

6 . 5 .

 65 Orthotropic class. The methodology for an orthotropic Elasticity tensor E 𝑜𝑟𝑡ℎ𝑜 is based on the deep investigation of the family ℱ 𝑜 of second-order symmetric covariants given by (4.2).

Example 6 . 7 .

 67 Consider the degenerate monoclinic Elasticity tensor (5.6), where d ′ = v ′ = 0. (1) A non-vanishing first-order covariant is 𝜔 = 𝜀 : (d 2 c 3 ) which writes 𝜔 = 10 7

Figure 3 .

 3 Figure 3. An algorithm to detect the symmetry class of an Elasticity tensor and recover its normal form.

  𝐸 1111 𝐸 1122 𝐸 1133 𝐸 1123 𝐸 1113 𝐸 1112 𝐸 2211 𝐸 2222 𝐸 2233 𝐸 2223 𝐸 2213 𝐸 2212 𝐸 3311 𝐸 3322 𝐸 3333 𝐸 3323 𝐸 3313 𝐸 3312 𝐸 2311 𝐸 2322 𝐸 2333 𝐸 2323 𝐸 2313 𝐸 2312 𝐸 1311 𝐸 1322 𝐸 1333 𝐸 1323 𝐸 1313 𝐸 1312 𝐸 1211 𝐸 1222 𝐸 1233 𝐸 1223 𝐸 1213 𝐸 1212 𝑖𝑗𝑘𝑙 = 𝑔 𝑖𝑝 𝑔 𝑗𝑞 𝑔 𝑘𝑟 𝑔 𝑙𝑠 𝐸 𝑝𝑞𝑟𝑠

	1.1) Then, there exists a rotation 𝑔 such that the rotated Elasticity tensor, denoted by 𝑔 ⋆ E, and [E] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . where (1.2) (1.3) [𝑔 ⋆ E] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ (𝑔 ⋆ E) 1111 (𝑔 ⋆ E) 1112 (𝑔 ⋆ E) 1112 0 0 0 (𝑔 ⋆ E) 1112 (𝑔 ⋆ E) 1111 (𝑔 ⋆ E) 1112 0 0 0 (𝑔 ⋆ E) 1112 (𝑔 ⋆ E) 1112 (𝑔 ⋆ E) 1111 0 0 0 0 0 0 (𝑔 ⋆ E) 1212 0 0 0 0 0 0 (𝑔 ⋆ E) 1212 0 (𝑔 ⋆ E) has the following Voigt's representation 0 0 0 0 0 (𝑔 ⋆ E) 1212

  𝑖𝑝 𝜀 𝑝𝑗𝑞 𝑎 𝑞𝑘 + 𝑏 𝑖𝑝 𝜀 𝑝𝑘𝑞 𝑎 𝑞𝑗 + 𝑏 𝑗𝑝 𝜀 𝑝𝑖𝑞 𝑎 𝑞𝑘 + 𝑏 𝑗𝑝 𝜀 𝑝𝑘𝑞 𝑎 𝑞𝑖 + 𝑏 𝑘𝑝 𝜀 𝑝𝑖𝑞 𝑎 𝑞𝑗 + 𝑏 𝑘𝑝 𝜀 𝑝𝑗𝑞 𝑎 𝑞𝑖 ) ,

	1.5), the generalized cross product which writes
	(a × b) 𝑖𝑗𝑘 = (𝑏 for two second-order symmetric tensors A = a and B = b (see (B.1) in Appendix B for the 1 6
	detailed expression of each component), and we have the following result [26].
	Lemma 4.1. A second-order symmetric tensor a is orthotropic if and only if the third order
	covariant a 2 × a is non-vanishing.
	Remark 4.2.

  First approximation of E 𝛾 by an orthotropic Elasticity tensor: Approximation of E 𝛾 by a monoclinic Elasticity tensor E 𝛾 𝑚𝑜𝑛𝑜 :

				⎛	241.3079 139.4923 129.533	5.3342	46.3021 -20.3543 ⎞
	(5.4)	[E	𝛾 (1) 𝑜𝑟𝑡ℎ ] =	⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	139.4923 229.6671 141.1738 -26.2801 129.533 141.1738 239.6264 20.9459 -49.1853 2.8831 5.3342 -26.2801 20.9459 132.5072 5.9215 46.3021 2.8831 -49.1853 5.9215 120.8663	14.4327 5.9215 2.8831 5.3342	⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	,
						-20.3543 14.4327	5.9215	2.8831	5.3342	130.8256
		which is exactly orthotropic with ‖E 𝛾 -E Second approximation of E 𝛾 by an orthotropic Elasticity tensor E 𝛾 (1) 𝑜𝑟𝑡ℎ ‖/‖E 𝛾 ‖ = 0.0988.	𝛾 (2) 𝑜𝑟𝑡ℎ :
				⎛		237.183	141.391	128.075	5.73042	42.1382 -21.4889 ⎞
	(5.5)	[E	𝛾 (2) 𝑜𝑟𝑡ℎ ] =	⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝		141.391 128.075 5.73042 -27.3681 21.7967 228.24 142.671 -27.3681 3.32484 142.671 241.302 21.7967 -44.0867 4.55057 16.2765 133.637 4.397 1.83613 42.1382 3.32484 -44.0867 4.397 114.865 6.93608	⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	,
						-21.4889 16.2765	4.55057	1.83613	6.93608	137.635
		which is exactly orthotropic with ‖E 𝛾 -E	𝛾 (2)
				⎛	240.532	140.501	129.3	0.6715	47.7714 -18.1515
	(5.6)	[E 𝛾 𝑚𝑜𝑛𝑜 ] =	⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	140.501 129.3 0.6715 47.7714	231.37 138.463 -26.3969 25.7254 138.463 -26.3969 242.57 25.7254 -52.2472 -0.1113 4.4758 18.2628 129.796 -0.1113 4.4758 4.4758 -52.2472 -0.1113 120.634 0.6715
						-18.1515 18.2628	-0.1113	4.4758	0.6715	131.834
								.131	144.442	125.760	6.39666	41.9737 -21.1614 ⎞
							144.442 125.760 6.39666 -27.7808 21.3841 223.957 141.935 -27.7808 2.27754 141.935 242.638 21.3841 -44.2512 4.55736 16.6041 133.268 4.55736 2.27754 41.9737 2.27754 -44.2512 4.55736 117.094 6.39666	⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	.
						-21.1614 16.6041	4.55736	2.27754	6.39666	135.776
		which is exactly cubic with ‖E 𝛾 -E 𝛾 𝑐𝑢𝑏𝑖𝑐 ‖/‖E 𝛾 ‖ = 0.105. Approximation of E 𝛾 by a tetragonal Elasticity tensor:
					⎛	239.333	141.383 129.618	5.8239	46.7414 -21.0897 ⎞
	(5.3)	[E 𝛾 𝑡𝑒𝑡𝑟𝑎 ] =	⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	141.383 129.618 5.8239 46.7414	229.664 139.287 -25.7103 1.8896 139.287 241.429 19.8864 -48.631 -25.7103 19.8864 130.62 5.7223 1.8896 -48.631 5.7223 120.951	15.3674 5.7223 1.8896 5.8239	⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
								-21.0897 15.3674	5.7223	1.8896	5.8239	132.716

, which is exactly tetragonal with ‖E 𝛾 -E 𝛾 𝑡𝑒𝑡𝑟𝑎 ‖/‖E 𝛾 ‖ = 0.0996.

𝑜𝑟𝑡ℎ ‖/‖E 𝛾 ‖ = 0.1029.

  𝑇 𝐼 (see section 3). By lemma 4.7, the triplet (d′ , v ′ , d 2 ′) is transversely-isotropic. Thus, one of them, let us call it t, is transversely-isotropic.(2) Let 𝑢 𝑢 𝑢 3 be the unit eigenvector corresponding to the single eigenvalue of t. By remark 4.5, 𝑢 𝑢 𝑢 3 can be obtained by solving the linear system,

	1 -9.93526 -2.23089 1 -2.23089 6.45025 0.0813519 -0.987342 -0.136151 1 1 ⎞ ⎠ , 0.24438 -0.112674 0.963111 -0.966261 -0.111623 0.232121 ⎛ ⎝ (4) And we can check that (E 𝛾 𝑔 = 𝑐𝑢𝑏𝑖𝑐 ) O = 𝑔 ⋆ E 𝛾 𝑐𝑢𝑏𝑖𝑐 writes [(E 𝛾 𝑐𝑢𝑏𝑖𝑐 ) O ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 213.355 148.489 148.489 0 0 148.489 213.355 148.489 0 0 148.489 148.489 213.355 0 0 0 0 0 139.823 0 0 0 0 0 139.823 ⎞ ⎠ . 0 0 0 0 0 139.823 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ The normal form given in [19] is retrieved. which is orthotropic since (a (3) Computing a direct orthonormal basis of eigenvectors for a ′ , we get (︂ t -2 )︂ tr(t 3 ) tr(t 2 ) 1 𝑢 𝑢 𝑢 = 0.	(GPa).

′ ) 2 × a ′ ̸ = 0. 6.2. Transversely isotropic class. The proposed methodology for a transversely-isotropic Elasticity tensor E 𝑇 𝐼 is the following.

(1) Compute the triplet of covariant deviators (d

′ , v ′ , d 2 ′ ) of E

(3)

Complete 𝑢 𝑢 𝑢 3 into a direct orthonormal basis ℬ = (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 , 𝑢 𝑢 𝑢 3 ) of R 3 by choosing an orthonormal pair (𝑢 𝑢 𝑢 1 , 𝑢 𝑢 𝑢 2 ) orthogonal to 𝑢 𝑢 𝑢 3 . For instance, if 𝑢 𝑢 𝑢 3 ̸ = ±𝑒 𝑒 𝑒 3 , one can choose (6.2) 𝑢 𝑢 𝑢 1 = 𝑒 𝑒 𝑒 3 × 𝑢 𝑢 𝑢 3 ‖𝑒 𝑒 𝑒 3 × 𝑢 𝑢 𝑢 3 ‖ and 𝑢 𝑢 𝑢 2 = 𝑢 𝑢 𝑢 3 × 𝑢 𝑢 𝑢 1 .

  𝐸 1111 𝐸 1122 𝐸 1133 𝐸 1123 𝐸 1113 0 𝐸 1122 𝐸 1111 𝐸 1133 -𝐸 1123 -𝐸 1113 0 𝐸 1133 𝐸 1133 𝐸 3333 𝑡𝑟𝑖𝑔 around 𝑢 𝑢 𝑢 3 and of angle 𝜃 0 , solution of (6.4), leads to the normal form (2.5).

								⎞
	𝐸 1123 -𝐸 1123 𝐸 1113 -𝐸 1113	0 0		0 𝐸 1313 0	0 0 𝐸 1313	0 -𝐸 1113 𝐸 1123	⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	.
	0	0	0		-𝐸 1113 𝐸 1123	1 2 (𝐸 1111 -𝐸 1122 )
	Thus, a rotation of E Example 6.3. Consider the trigonal Elasticity tensor (5.7) for 𝛼-quartz.
	(1) We compute						
		tr d = 34.709,	tr v = 59.249 ,
	and						
		⎛	-1.02767		0.4162	0.6064	⎞
	v ′ =	⎝	0.4162	-0.0976667 1.5867	⎠ .
			0.6064		1.5867	1.12533

  Tetragonal class. The methodology for a tetragonal Elasticity tensor E 𝑡𝑒𝑡𝑟𝑎 is similar to the one used for the trigonal case.(1) Compute the transversely-isotropic triplet (d ′ , v ′ , d 2 ′

	.76	0.6	1.33	1.73	0	0	⎞
	0.6 1.33 1.33 10.68 8.76 1.33 -1.73 0 1.73 -1.73 0 5.72 0 0 0 0	0 0 0 5.72 1.73 0 0 0	⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	(GPa).
	0	0	0	0	1.73 4.08	
	6.4.						

  The normal form(2.6) is given by E D 4 = r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) ⋆ E, where r(𝑒 𝑒 𝑒 3 , 𝜃 0 ) is the rotation of angle 𝜃 0 around 𝑒 𝑒 𝑒 3 and its action on E is computed using (1.2). Remark 6.4. Equation (6.6) derives from the observation that the matrix-form of a tetragonal Elasticity tensor with correct third axis 𝑢 𝑢 𝑢 3 writes 𝑡𝑒𝑡𝑟𝑎 around 𝑢 𝑢 𝑢 3 and of angle 𝜃 0 , solution of (6.6), leads to the normal form (2.6).

	(5) (6.7)	[E 𝑡𝑒𝑡𝑟𝑎 ] =	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	𝐸 1111 𝐸 1122 𝐸 1133 𝐸 1122 𝐸 1111 𝐸 1133 𝐸 1133 𝐸 1133 𝐸 3333 0 0 0 0 0 0	0 0 0 𝐸 1313 0	0 0 0 0 𝐸 1313	𝐸 1112 -𝐸 1112 0 0 0	⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	.
				𝐸 1112 -𝐸 1112	0	0	0	𝐸 1212
	Thus, a rotation of E Example 6.4. Consider the tetragonal Elasticity tensor (5.3) for Ni base single crystal superalloy.
	(1) We get d ′ = 0, v ′ = 0 and			
						⎛	1389.87 341.696	47.1186
			d 2	′ =	⎝	341.696 -2729.03 -571.863
							47.1186 -571.863 1339.17
	6.6)	4𝐸 1112 cos 4𝜃 =	(︀	2𝐸 1212 + 𝐸 1122 -𝐸 1111	)︀	sin 4𝜃,
		which always exists if E is tetragonal.

  and one can check that the Elasticity tensor (E 𝛾 𝑜𝑟𝑡ℎ𝑜 ) D 2 = 𝑔 ⋆ E

							𝛾 (1) 𝑜𝑟𝑡ℎ writes
		⎛	219.858 147.607 142.867	0	0	0
	[(E 𝛾 𝑜𝑟𝑡ℎ𝑜 ) D 2 ] =	⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	147.607 207.732 154.992 142.867 154.992 212.473 0 0 0 0 0 0	0 0 146.326 0	0 0 0 134.2	0 0 0 0
			0		0	0	0	0	138.94
					.33	207.103	500.816	⎞
					207.103 -2721.59 -651.919	⎠ ,
					500.816 -651.919 2198.26
	is orthotropic. Its diagonalization defines using (6.1) the rotation
				⎛	0.0813478 -0.987343 -0.136151	⎞
			𝑔 =	⎝	0.244376 -0.112676 0.963112	⎠ ,
				-0.966262 -0.111619 0.232117

  Remark 6.8. Recall that, following[START_REF] Lekhnitskii | Theory of elasticity of an anisotropic elastic body[END_REF][START_REF] Fedorov | Theory of Elastic Waves in Crystals[END_REF], an additional zero can be placed in the normal form︀ E = E Z 2 ofa monoclinic tensor. This is due to the fact that any rotation around the third axis 𝑢 𝑢 𝑢 3 = 𝑒 𝑒 𝑒 3 of the normal form (2.8) does not changes the shape of this normal form. If either

	24438	⎞		⎛	0.418699 ⎞	⎛ -0.874625	⎞
	-0.112674 ⎠ ,	𝑢 𝑢 𝑢 1 =	⎝	0.908125 ⎠ ,	𝑢 𝑢 𝑢 2 =	⎝	0.403254	⎠ ,
	0.963111					0		0.269104
	and			⎛	0.4187		0.90812	0	⎞
		𝑔 =	⎝	-0.87463 0.40325	0.2691	⎠ .
					0.24438 -0.11267 0.96311
	(3) One can check that (E 𝛾 𝑚𝑜𝑛𝑜 ) Z 2 = 𝑔 ⋆ E 𝑚𝑜𝑛𝑜 writes
		⎛	299.7 68.6 142.1	0	0	-42. ⎞
	[(E 𝛾 𝑚𝑜𝑛𝑜 ) Z 2 ] =	⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	68.6 281.3 160.5 142.1 160.5 207.7 0 0 0 0 0 0	0 0 151.8 0.9 0 0 0.9 133.4	41.1 0.9 0 0	⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟	(GPa),
			-42. 41.1	0.9	0	0	59.9
	which is the normal form (2.8).			
			︀ 𝐸 2233 -̂︀ 𝐸 1133 or ̂︀ 𝐸 2323 -̂︀ 𝐸 1313
	does not vanish, then, we can look for a rotation r(𝑒 𝑒 𝑒 3 , 𝜃 36 ) ⋆ ̂︀ E, where
			tan(2𝜃 36 ) = 2 ̂︀ 𝐸 3312 /( ̂︀ 𝐸 2233 -̂︀ 𝐸 1133 ),
	so that the component (r(𝑒 𝑒 𝑒 3 , 𝜃 36 ) ⋆ ̂︀ E) 3312 , in row 3, column 6 and row 6, column 3 of the new
	normal form (2.8) vanishes. Or, we can look for a rotation r(𝑒 𝑒 𝑒 3 , 𝜃 45 ) ⋆ ̂︀ E, where
			tan(2𝜃 45 ) = 2 ̂︀ 𝐸 1323 /( ̂︀ 𝐸 2323 -̂︀ 𝐸 1313 ),
	so that the component (r(𝑒 𝑒 𝑒 3 , 𝜃 45 ) ⋆ ̂︀ E) 1323 in row 4, column 5 and row 5, column 4 of the new
	normal form (2.8) vanishes.						

  3 • 𝑒 𝑒 𝑒 3 ⎞ ⎠ and then E := 𝑔 1 ⋆ E.Remark 7.2. The output E of Procedure 7.1 is necessary either transversely isotropic, trigonal or tetragonal with transverse isotropy axis ⟨𝑒 𝑒 𝑒 3 ⟩. If the following conditions, 𝐸 1122 ), and 𝐸 1112 = 𝐸 1123 = 𝐸 1113 = 0, hold, then, one gets the transversely isotropic normal form (2.4). Otherwise, there is a rotation r(𝑒 𝑒 𝑒 3 , 𝜃) such that E = r(𝑒 𝑒 𝑒 3 , 𝜃) ⋆ E 0 , where E 0 is either a trigonal Elasticity tensor E D 3 with Voigt's representation, the normal form (2.5) or a tetragonal Elasticity tensor E D 4 with Voigt's representation, the normal form(2.6). When E 0 = E D 3 is trigonal (with Voigt's representation (2.5) and with components 𝐸 𝑖𝑗𝑘𝑙 in the basis (𝑒 𝑒 𝑒 𝑖 )), the calculation of E = r(𝑒 𝑒 𝑒 3 , 𝜃) ⋆ E D 3 so that 𝐸 1123 ̸ = 0 or 𝐸 1113 ̸ = 0. If this is not the case, the considered Elasticity tensor is neither transversely isotropic, nor trigonal but tetragonal.

	𝐸 1212 = (𝐸 1111 -(using (1.2)) leads to 1 2	
	(7.1)	{︃ 𝐸 1123 = 𝐸 1123 (2 cos 2𝜃 -1) cos 𝜃 𝐸 1113 = -𝐸 1123 (2 cos 2𝜃 + 1) sin 𝜃	,

  ) If both families ℱ 𝑜 and ℱ 𝑚 are monoclinic, then E is monoclinic by theorem 4.8(1). (3) If ℱ 𝑜 is orthotropic, then E is orthotropic by theorem 4.8(2). (4) If ℱ 𝑜 is transversely isotropic, E is then either tetragonal, trigonal or transversely isotropic by theorem 4.8(3). Using procedure 7.1, we build a new tensor E with components 𝐸 𝑖𝑗𝑘𝑙 and by remark 7.2: (a) if 𝐸 1112 = 𝐸 1123 = 𝐸 1113 = 0 and 𝐸 1212 = 1 2 (𝐸 1111 -𝐸 1122 ) then E is transversely isotropic; (b) otherwise if 𝐸 1123 = 𝐸 1113 = 0 then E is tetragonal, and if 𝐸 1123

  3.1); (b) or d 2 ̸ = 0 and H is cubic by [26, Theorem 9.3] and so is E, by [26, Theorem 10.2].

	ℱ 𝑜 monoclinic	Familly ℱ 𝑚	E monoclinic (subsection 6.6)
	ℱ 𝑜 orthotropic		E orthotropic (subsection 6.5)
			E tetragonal
			(subsection 6.4)
	Familly	•	
	ℱ 𝑜		
	Compute E		E trigonal
	using Procedure 7.1		(subsection 6.3)
	ℱ 𝑜 transversely isotropic		E transversely isotropic (subsection 6.2)
			E cubic
	ℱ 𝑜 isotropic		(subsection 6.1)
			E isotropic

.

  𝛼 𝑡𝑟𝑖𝑔 (5.7) of 𝛼-quartz Elasticity tensor: tr d = 34.72, tr v = 59.24, 𝐾𝑆 𝑇 𝐼(5.8) of E 𝐾𝑆 : tr d = 6.0707, tr v = 6.4911,Appendix B. The generalized cross-product in componentsThe 10 independent components of the totally symmetric third order tensor a × b, where both a and b are symmetric second order tensors, are:(B.1) (a × b) 111 = 𝑎 12 𝑏 13 -𝑎 13 𝑏 12 , 𝑎 11 𝑏 13 + 𝑎 12 𝑏 23 + 𝑎 13 𝑏 11 -𝑎 13 𝑏 22 + 𝑎 22 𝑏 13 -𝑎 23 𝑏 12 ), (a × b) 113 = 1 3 (𝑎 11 𝑏 12 -𝑎 12 𝑏 11 + 𝑎 12 𝑏 33 -𝑎 13 𝑏 23 + 𝑎 23 𝑏 13 -𝑎 33 𝑏 12 ), (a × b) 122 = 1 3 (-𝑎 11 𝑏 23 -𝑎 12 𝑏 13 + 𝑎 13 𝑏 12 + 𝑎 22 𝑏 23 + 𝑎 23 𝑏 11 -𝑎 23 𝑏 22 ), (a × b) 123 = 1 6 (𝑎 11 𝑏 22 -𝑎 11 𝑏 33 + 𝑎 22 𝑏 33 -𝑎 22 𝑏 11 + 𝑎 33 𝑏 11 -𝑎 33 𝑏 22 ), (a × b) 133 = 1 3 (𝑎 11 𝑏 23 -𝑎 12 𝑏 13 + 𝑎 13 𝑏 12 -𝑎 23 𝑏 11 + 𝑎 23 𝑏 33 -𝑎 33 𝑏 23 ), (a × b) 222 = 𝑎 23 𝑏 12 -𝑎 12 𝑏 23 , (a × b) 223 = 1 3 (𝑎 12 𝑏 22 -𝑎 12 𝑏 33 -𝑎 13 𝑏 23 -𝑎 22 𝑏 12 + 𝑎 23 𝑏 13 + 𝑎 33 𝑏 12 ), (a × b) 233 = 1 3 (𝑎 12 𝑏 23 + 𝑎 13 𝑏 22 -𝑎 13 𝑏 33 -𝑎 22 𝑏 13 -𝑎 23 𝑏 12 + 𝑎 33 𝑏 13 ), (a × b) 333 = 𝑎 13 𝑏 23 -𝑎 23 𝑏 13 . 𝑏 13 -𝑎 13 𝑏 12 + 𝑎 22 𝑏 23 -𝑎 23 𝑏 22 + 𝑎 23 𝑏 33 -𝑎 33 𝑏 23 ), (tr(a × b)) 2 = 1 3 (-𝑎 11 𝑏 13 -𝑎 12 𝑏 23 + 𝑎 13 𝑏 11 -𝑎 13 𝑏 33 + 𝑎 23 𝑏 12 + 𝑎 33 𝑏 13 ), (tr(a × b)) 3 = 1 3 (𝑎 11 𝑏 12 -𝑎 12 𝑏 11 + 𝑎 12 𝑏 22 + 𝑎 13 𝑏 23 -𝑎 22 𝑏 12 -𝑎 23 𝑏 13 ).

		and				
			⎛ -1.4953 -0.0086	1.504	-0.0148 -0.2917 -0.8173 ⎞
	(A.5)	[H 𝛼 𝑡𝑟𝑖𝑔 ] =	0, tr d = 1531, tr v = 1479, and -59.1358 38.9089 20.2269 6.39666 -0.8173 2.0042 -1.187 -0.0484 -0.0148 -0.0086 41.9737 -21.1614 ⎜ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -0.0086 0.6713 -0.6626 -0.1899 -0.0484 2.0042 1.504 -0.6626 -0.8413 0.2046 0.3402 -1.187 -0.0148 -0.1899 0.2046 -0.6626 -1.187 -0.0484 -0.2917 -0.0484 0.3402 -1.187 1.504 ⎠ -0.0148 ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ .	⎞
	(A.1) Transversely isotropic approximation E d ′ = [H 𝛾 𝑐𝑢𝑏𝑖𝑐 ] = ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 38.9089 -75.3102 36.4013 -27.7808 2.27754 20.2269 36.4013 -56.6282 21.3841 -44.2512 4.55736 16.6041 6.39666 -27.7808 21.3841 36.4013 4.55736 2.27754 41.9737 2.27754 -44.2512 4.55736 20.2269 6.39666 -21.1614 16.6041 4.55736 2.27754 6.39666 38.9089 ⎛ 0.221833 -0.0745 -0.2495 ⎞ ⎛ 0.1507 -0.0505 -0.1695 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎝ -0.0745 0.235733 -0.2272 ⎠ , v ′ = ⎝ -0.0505 0.1601 -0.1543 ⎠ , Tetragonal approximation E 𝛾 -0.2495 -0.2272 -0.457567 -0.1695 -0.1543 -0.3108 𝑡𝑒𝑡𝑟𝑎 (5.3) of E 𝛾 : d ′ = v ′ = 0, tr d = 1531, tr v = 1479, and and	.
	(A.2)	[H 𝛾 𝑡𝑒𝑡𝑟𝑎 ] = [H 𝐾𝑆 𝑇 𝐼 ] =	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -59.9342 35.8495 35.8495 -69.6028 33.7533 -25.7103 1.8896 24.0847 5.8239 46.7414 -21.0897 ⎞ ⎛ 0.0176 ⎞ 0.0123 -0.0299 -0.0138 -0.0969 -0.0289 15.3674 24.0847 33.7533 -57.8381 19.8864 -48.631 5.7223 5.8239 -25.7103 19.8864 33.7533 5.7223 1.8896 46.7414 1.8896 -48.631 5.7223 24.0847 5.8239 -21.0897 15.3674 5.7223 1.8896 5.8239 -0.0289 -0.0302 0.0592 -0.0195 -0.0138 0.0123 35.8495 ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0.0123 0.0287 -0.0409 -0.0923 -0.0195 -0.0302 -0.0299 -0.0409 0.0708 0.106 0.1165 0.0592 -0.0138 -0.0923 0.106 -0.0409 0.0592 -0.0195 -0.0969 -0.0195 0.1165 ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 0.0592 -0.0299 -0.0138 ⎠	.
	First orthotropic approximation E d ′ = v ′ = 0, tr d = 1531, tr v = 1479 and 𝛾 (1) 𝑜𝑟𝑡ℎ𝑜 (5.4) of E 𝛾 :
		⎛ -57.9586	33.959	23.9997		5.3342	46.3021 -20.3543 ⎞
	(A.3) Second orthotropic approximation E [H 𝛾 𝑜𝑟𝑡ℎ ] = ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 33.959 -69.5995 35.6405 -26.2801 2.88311 23.9997 35.6405 -59.6402 20.9459 -49.1853 5.92151 14.4327 5.3342 -26.2801 20.9459 35.6405 5.92151 2.88311 46.3021 2.88311 -49.1853 5.92151 23.9997 5.3342 -20.3543 14.4327 5.92151 2.88311 5.3342 33.959 𝛾 (2) 𝑜𝑟𝑡ℎ𝑜 (5.5) of E 𝛾 : tr d = 1531, tr v = 1479, d ′ = ⎛ ⎝ -3.6837 -0.661831 1.37627 -0.661831 1.96893 0.158989 1.37627 0.158989 1.71477 ⎞ ⎠ , v ′ = ⎛ ⎝ -3.31669 -0.8154 -0.112441 ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ -0.8154 6.51238 1.36466 -0.112441 1.36466 -3.19569 ⎞ . ⎠ , and H = H 𝛾 𝑐𝑢𝑏𝑖𝑐 is given by (A.1) (in particular d 2 ′ = 0). Monoclinic approximation E 𝛾 𝑚𝑜𝑛𝑜 (5.6) of E 𝛾 : d ′ = v ′ = 0, tr d = 1531, tr v = 1479 and (A.4) [H 𝛾 𝑚𝑜𝑛𝑜 ] = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -58.7344 34.9674 23.767 0.6715 47.7714 -18.1515 34.9674 -67.8968 32.9294 -26.3969 4.4758 18.2628 23.767 32.9294 -56.6964 25.7254 -52.2472 -0.1113 0.6715 -26.3969 25.7254 32.9294 -0.1113 4.4758 47.7714 4.4758 -52.2472 -0.1113 23.767 0.6715 -18.1515 18.2628 -0.1113 4.4758 0.6715 34.9674 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (a × b) 112 = 1 3 (-For the components of its trace (which is a vector) one has
	⎛ ⎝ Trigonal approximation E d ′ = -0.764933 0.3098 0.3098 -0.0727333 1.1811 0.4514 (tr(a × b)) 1 = 1 3 (𝑎 12	⎞ ⎠ , v ′ =	⎛ ⎝	-1.02767 0.4162	0.4162 -0.0976667 1.5867 0.6064	⎞ ⎠ ,
		0.4514	1.1811	0.837667		0.6064	1.5867	1.12533

  𝑎 12 (2𝑆 1113 + 𝑆 1223 + 𝑆 1333 ) + 𝑎 13 (2𝑆 1112 + 𝑆 1222 + 𝑆 1233 ) -𝑎 22 𝑆 1123 + 𝑎 23 (𝑆 1122 -𝑆 1133 ) + 𝑎 33 𝑆 1123 𝑎 11 (2𝑆 1113 + 𝑆 1223 + 𝑆 1333 ) -𝑎 12 (2𝑆 1123 + 𝑆 2223 + 𝑆 2333 ) + 𝑎 13 (-2𝑆 1111 + 2𝑆 1122 + 𝑆 2222 + 𝑆 2233 ) -𝑎 22 (𝑆 1113 + 3𝑆 1223 + 𝑆 1333 ) + 𝑎 23 (3𝑆 1222 -𝑆 1233 ) + 𝑎 33 (2𝑆 1223 -𝑆 1113 ) 𝑎 11 (2𝑆 1112 + 𝑆 1222 + 𝑆 1233 ) + 𝑎 12 (2𝑆 1111 -2𝑆 1133 -𝑆 2233 -𝑆 3333 ) + 𝑎 13 (2𝑆 1123 + 𝑆 2223 + 𝑆 2333 ) + 𝑎 22 (𝑆 1112 -2𝑆 1233 ) + 𝑎 23 (𝑆 1223 -3𝑆 1333 ) + 𝑎 33 (𝑆 1112 + 𝑆 1222 + 3𝑆 1233 ) 𝑎 11 (3𝑆 1123 + 𝑆 2223 + 𝑆 2333 ) + 𝑎 12 (𝑆 1113 + 2𝑆 1223 + 𝑆 1333 ) + 𝑎 13 (𝑆 1233 -3𝑆 1112 ) -𝑎 22 (𝑆 1123 + 2𝑆 2223 + 𝑆 2333 ) -𝑎 23 (𝑆 1111 + 2𝑆 1122 + 𝑆 1133 -2𝑆 2222 ) + 𝑎 33 (𝑆 2223 -2𝑆 1123 ) 𝑎 11 (3𝑆 1133 -3𝑆 1122 -𝑆 2222 + 𝑆 3333 ) + 2𝑎 12 (𝑆 1112 -𝑆 1222 ) + 2𝑎 13 (𝑆 1333 -𝑆 1113 ) + 𝑎 22 (𝑆 1111 + 3𝑆 1122 -3𝑆 2233 -𝑆 3333 ) + 2𝑎 23 (𝑆 2223 -𝑆 2333 ) + 𝑎 33 (-𝑆 1111 -3𝑆 1133 + 𝑆 2222 + 3𝑆 2233 ) 𝑎 11 (3𝑆 1123 + 𝑆 2223 + 𝑆 2333 ) + 𝑎 12 (3𝑆 1113 -𝑆 1223 ) -𝑎 13 (𝑆 1112 + 𝑆 1222 + 2𝑆 1233 ) + 𝑎 22 (2𝑆 1123 -𝑆 2333 ) + 𝑎 23 (𝑆 1111 + 𝑆 1122 + 2𝑆 1133 -2𝑆 3333 ) + 𝑎 33 (𝑆 1123 + 𝑆 2223 + 2𝑆 2333 ) 𝑎 11 𝑆 1223 + 𝑎 12 (𝑆 1123 + 2𝑆 2223 + 𝑆 2333 ) + 𝑎 13 (𝑆 2233 -𝑆 1122 ) -𝑎 23 (𝑆 1112 + 2𝑆 1222 + 𝑆 1233 ) -𝑎 33 𝑆 1223 𝑎 11 (2𝑆 1233 -𝑆 1222 ) + 𝑎 12 (𝑆 1133 -2𝑆 2222 + 2𝑆 2233 + 𝑆 3333 ) + 𝑎 13 (3𝑆 2333 -𝑆 1123 ) + 𝑎 22 (𝑆 1112 + 2𝑆 1222 + 𝑆 1233 ) -𝑎 23 (𝑆 1113 + 2𝑆 1223 + 𝑆 1333 ) -𝑎 33 (𝑆 1112 + 𝑆 1222 + 3𝑆 1233 ) 𝑎 11 (𝑆 1333 -2𝑆 1223 ) + 𝑎 12 (𝑆 1123 -3𝑆 2223 ) + 𝑎 13 (2𝑆 3333 -𝑆 1122 -𝑆 2222 -2𝑆 2233 ) + 𝑎 22 (𝑆 1113 + 3𝑆 1223 + 𝑆 1333 ) + 𝑎 23 (𝑆 1112 + 𝑆 1222 + 2𝑆 1233 ) -𝑎 33 (𝑆 1113 + 𝑆 1223 + 2𝑆 1333 ) 𝑎 11 𝑆 1233 + 𝑎 12 (𝑆 1133 -𝑆 2233 ) -𝑎 13 (𝑆 1123 + 𝑆 2223 + 2𝑆 2333 ) + 𝑎 22 𝑆 1233 + 𝑎 23 (𝑆 1113 + 𝑆 1223 + 2𝑆 1333 ) )︁ .

	(B.2)				
	(tr(S × a)) 111 =	3 10	(︁	-)︁	,
	(tr(S × a)) 112 =	10 1	(︁		
						)︁	,
	(tr(S × a)) 113 =	1 10	(︁	-)︁	,
	(tr(S × a)) 122 =	10 1	(︁		
						)︁	,
	(tr(S × a)) 123 =	20 1	(︁		
						)︁	,
	(tr(S × a)) 133 =	1 10	(︁	-)︁	,
	(tr(S × a)) 222 =	10 3	(︁		
						)︁	,
	(tr(S × a)) 223 =	10 1	(︁		
						)︁	,
	(tr(S × a)) 233 =	10 1	(︁		
						)︁	,
	(tr(S × a)) 333 =	3 10	(︁	-