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RECOVERING THE NORMAL FORM OF AN ELASTICITY TENSOR

S. ABRAMIAN, B. DESMORAT, R. DESMORAT, B. KOLEV, AND M. OLIVE

Abstract. We propose an effective geometrical approach to recover the normal form of a given
Elasticity tensor, once we know its symmetry class. In other words, we produce a rotation which
brings an Elasticity tensor onto its normal form, given its components in any orthonormal frame,
and this for any tensor of any symmetry class. Our methodology relies on the use of specific
covariants and on the geometric characterization of each symmetry class using these covariants.

Contents

1. Introduction 1
2. Normal form of an Elasticity tensor 3
3. Covariants of the Elasticity tensor 6
4. Recovering normal forms using covariants 6
5. Experimental data 9
5.1. Ni base single crystal superalloy 10
5.2. Trigonal 𝛼-quartz 11
5.3. Transversely isotropic Elasticity tensor 12
6. Effective computations 12
6.1. Cubic class 12
6.2. Transversely isotropic class 13
6.3. Trigonal class 14
6.4. Tetragonal class 15
6.5. Orthotropic class 16
6.6. Monoclinic class 18
Conclusion 19
Appendix A. Harmonic components of considered Elasticity tensors 20
References 21

1. Introduction

The linear elastic properties of a given material are encoded into an Elasticity tensor E,
a fourth-order tensor which relates linearly the stress tensor to the strain tensor. As it was
clearly emphasized by Boehler and coworkers [7], any rotated Elasticity tensor encodes the same
material properties (in a different orientation). One shall say that the rotated tensor and initial
one are in the same orbit.

The elastic materials are classified by their eight symmetry classes [15] (isotropic, transversely-
isotropic, cubic, trigonal, tetragonal, orthotropic, monoclinic, triclinic). Any non triclinic Elas-
ticity tensor has a normal form. An orthonormal frame in which the matrix representation of
this tensor belongs to such a normal form is called a proper or natural basis for E [14]. For
instance, consider a cubic Elasticity tensor which is given in an arbitrary frame by its Voigt
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representation as

(1.1) [E] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 𝐸1123 𝐸1113 𝐸1112

𝐸2211 𝐸2222 𝐸2233 𝐸2223 𝐸2213 𝐸2212

𝐸3311 𝐸3322 𝐸3333 𝐸3323 𝐸3313 𝐸3312

𝐸2311 𝐸2322 𝐸2333 𝐸2323 𝐸2313 𝐸2312

𝐸1311 𝐸1322 𝐸1333 𝐸1323 𝐸1313 𝐸1312

𝐸1211 𝐸1222 𝐸1233 𝐸1223 𝐸1213 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠
Then, there exists a rotation 𝑔 such that the rotated Elasticity tensor, denoted by 𝑔 ⋆ E and
where

(𝑔 ⋆E)𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑝𝑔𝑗𝑞𝑔𝑘𝑟𝑔𝑙𝑠𝐸𝑝𝑞𝑟𝑠,

has the following Voigt representation

(1.2) [𝑔 ⋆E] =

⎛⎜⎜⎜⎜⎜⎜⎝
(𝑔 ⋆E)1111 (𝑔 ⋆E)1112 (𝑔 ⋆E)1112 0 0 0
(𝑔 ⋆E)1112 (𝑔 ⋆E)1111 (𝑔 ⋆E)1112 0 0 0
(𝑔 ⋆E)1112 (𝑔 ⋆E)1112 (𝑔 ⋆E)1111 0 0 0

0 0 0 (𝑔 ⋆E)1212 0 0
0 0 0 0 (𝑔 ⋆E)1212 0
0 0 0 0 0 (𝑔 ⋆E)1212

⎞⎟⎟⎟⎟⎟⎟⎠
The problem is that it is not always easy to compute explicitly such a rotation. For instance,
given a cubic Elasticity tensor in its normal form (1.2) and applying a rotation of angle 𝜋

6 around
axis < 111 >, it is not an easy matter, if not aware of this transformation, to find a way back.
Moreover, measured tensors are in practice triclinic, due to numerical errors and experimental
discrepancy [1, 16, 13, 18]. Hence, the problem may also be numerically difficult.

Partial answers concerning the explicit determination of a proper basis have already been
investigated in [11, 10, 19, 5, 9] for the monoclinic and the orthotropic symmetry classes. To
do so, the authors construct a basis of eigenvectors for the second-order symmetric tensors that
inherit (part) of the symmetry of E; the dilatation and Voigt’s tensors [11, 10], defined as

(1.3)
d := tr12E (𝑑𝑖𝑗 = 𝐸𝑘𝑘𝑖𝑗),

v := tr13E (𝑣𝑖𝑗 = 𝐸𝑘𝑖𝑘𝑗).

The cornerstone of this approach is that d = d(E) and v = v(E) are covariants of E, meaning
that one has the covariance property

d(𝑔 ⋆E) = 𝑔 ⋆ d(E), v(𝑔 ⋆E) = 𝑔 ⋆ v(E),

where (𝑔 ⋆ a)𝑖𝑗 = 𝑔𝑖𝑘𝑔𝑗𝑙𝑎𝑘𝑙, for a second-order tensor a. In some non-degenerate cases, this leads
to the answer. The weakness of this approach is that d and v have at least the symmetry of E
but they may have more symmetry. For instance, in the cubic case, the pair (d,v) is isotropic.
Such loss of information has to be handled, as they can be experimentally encountered, for
example from the ultrasonic measurements made on a Ni base single crystal superalloy, close to
be cubic [17] (studied in section 5.1).

A natural idea is to extend the idea of using covariants of E, which naturally inherit the
symmetry of E, but different from d and v. Note, however, that second-order covariants cannot
always encode all the geometric information carried by a fourth-order tensor [6, 22] (for example
when E is cubic). Taking account this observation, it has been tried by some authors to use
the harmonic factorization, according to Sylvester’s theorem [26] and Maxwell’s multipoles [27].
However, this involves roots’ computations of polynomials of degree 4 and 8 [4, 5, 8], in order to
build a set of 8 unit vectors (Maxwell’s multipoles), without any clue of how to organize such
data. Besides, Maxwell’s multipoles are not, strictly speaking, first-order covariant of E and are
very sensitive to conditioning.

The purpose of the present work is to obtain an explicit normal form of an Elasticity tensor
E once we know its symmetry class. Note, by the way, that the problem of determining the
symmetry class of a given elasticity tensor E, using polynomial covariant equations, has already
been solved explicitly in [23]. Of course, our goal can be achieved numerically, as we can compute
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E = 𝑔 ⋆ E for all 𝑔 ∈ SO(3) and try to find rotation 𝑔 such that Voigt’s representation [E] has
the good shape [16, 17]. A more geometrical approach, initiated in [11, 10, 19, 5], relying on
covariants, is possible and will be described in this work. We shall formulate new effective
and fast algorithms to calculate a natural basis for a given Elasticity tensor, once we know its
symmetry class.

An important tool, introduced in [12, 23] and which will be used many times in this paper, is
the generalized cross product between two totally symmetric tensors of any order A = A𝑠 and
B = B𝑠. It is defined as follows

(1.4) A×B = (B · 𝜀𝜀𝜀 ·A)𝑠 = −B×A,

where (·)𝑠 means the total symmetrization (over all subscripts) and where 𝜀𝜀𝜀 is Levi-Civita third
order tensor (𝜀𝑖𝑗𝑘 = det(𝑒𝑒𝑒𝑖, 𝑒𝑒𝑒𝑗 , 𝑒𝑒𝑒𝑘) in any orthonormal frame (𝑒𝑒𝑒𝑖)).

The outline of the paper is as follows. We first recall some mathematical materials on the
normal form of an Elasticity tensor in section 2 and the harmonic decomposition and covariants
in section 3. Then, in section 4, we formulate and prove theorems that are the cornerstones to
build our algorithms. In section 5, we provide and analyze experimental data, issued from the
literature and which will be used to illustrate our methodology. Finally, in section 6, we explicit
our algorithms, which for any given elasticity tensor E produce a natural basis for it (and thus
a rotation which brings it back to its normal form).

2. Normal form of an Elasticity tensor

An Elasticity tensor E represents a material in a specific orientation, but the same material
is represented in another orientation by a rotated tensor 𝑔 ⋆ E. In mathematical terms, this
means that the rotation group SO(3) acts linearly on the space Ela of Elasticity tensors, which
we write as

E ↦→ E = 𝑔 ⋆E,

where

𝐸𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑝𝑔𝑗𝑞𝑔𝑘𝑟𝑔𝑙𝑠𝐸𝑝𝑞𝑟𝑠,

in any orthonormal basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3). The subset

{𝑔 ⋆E; 𝑔 ∈ SO(3)}
is called the orbit of E. A linear elastic material is thus represented by an orbit of an Elasticity
tensor and not by an individual Elasticity tensor.

The symmetry group of a tensor E ∈ Ela is the subgroup of SO(3) defined as

𝐺E := {𝑔 ∈ SO(3); 𝑔 ⋆E = E} .
Note that the symmetry group of 𝑔 ⋆E is

(2.1) 𝐺E = 𝑔𝐺E𝑔
−1.

Therefore, the classification of symmetries of materials relies on the conjugacy classes

[𝐺E] :=
{︀
𝑔𝐺E𝑔

−1, 𝑔 ∈ SO(3)
}︀

rather than on the symmetry groups of their respective tensors in a specific orientation. These
are known as symmetry classes.

It was shown in [15] that there are exactly eight Elasticity symmetry classes: triclinic [1],
monoclinic [Z2], orthotropic [D2], tetragonal [D4], trigonal [D3], transversely-isotropic [O(2)],
cubic [O] and isotropic [SO(3)]. Here, the subgroup 1 contains only the identity element of
SO(3), while all the others (except SO(3)) are represented in the canonical basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3) of
R3 as follows.

∙ Z2 is generated by the second-order rotation r(𝑒𝑒𝑒3, 𝜋). It has order 2;
∙ D2 is generated by the second-order rotations r(𝑒𝑒𝑒3, 𝜋) and r(𝑒𝑒𝑒1, 𝜋). It has order 4;
∙ D3 is generated by the third order rotation r(𝑒𝑒𝑒3,

2𝜋
3 ) and the second-order rotation

r(𝑒𝑒𝑒1, 𝜋). It has order 6;
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∙ D4 is generated by the fourth-order rotation r(𝑒𝑒𝑒3,
𝜋
4 ) and the second-order rotation

r(𝑒𝑒𝑒1, 𝜋). It has order 8;
∙ O is the octahedral group, the orientation-preserving symmetry group of the cube with

vertices (±1,±1,±1), which has order 24;
∙ O(2) is the group generated by all rotations r(𝑒𝑒𝑒3, 𝜃) (𝜃 ∈ [0; 2𝜋[) and the second-order

rotation r(𝑒𝑒𝑒1, 𝜋). It is of infinite order.

There exists a partial order on symmetry classes, induced by inclusion between subgroups,
defined as follows:

(2.2) [𝐺1] ⪯ [𝐺2] ⇐⇒ ∃𝑔 ∈ SO(3), 𝐺1 ⊂ 𝑔 𝐺2 𝑔
−1.

We can thus say that a tensor has “at least” or “at most” such or such symmetry. For example,
a tensor E is said to be at least orthotropic if it is either orthotropic, tetragonal, transversely-
isotropic, cubic or isotropic. A tensor E is said to be at least trigonal if it is either trigonal,
transversely-isotropic, cubic or isotropic. This order is however partial, which means that two
classes cannot necessarily be compared (for example the trigonal and the tetragonal classes). The
symmetry classes and their relations are summarized in Figure 1, where an arrow [𝐺1] → [𝐺2]
means that [𝐺1] ⪯ [𝐺2].

Figure 1. The eight symmetry classes of the Elasticity tensor [15, 3].

For any subgroup 𝐺 of SO(3) in the list defined above and defining a symmetry class [𝐺],
consider the fixed point set

Ela𝐺 := {E ∈ Ela; 𝑔 ⋆E = E, ∀𝑔 ∈ 𝐺} .

This linear subspace of Ela is called a linear slice. It meets all the orbits of tensors which have
at least the symmetry class [𝐺]. In other words, given an Elasticity tensor E in the symmetry
class [𝐺], there exists a rotation 𝑔 ∈ SO(3) such that the symmetry group of 𝑔 ⋆E is exactly the
subgroup 𝐺, which means that 𝑔 ⋆ E ∈ Ela𝐺. We say then that the Elasticity tensor 𝑔 ⋆ E is a
normal form of E.

Remark 2.1. When 𝐺 is a finite group, the linear slice Ela𝐺 is the subspace of solutions of the
linear system 𝑔𝑘 ⋆E = E (𝑘 = 1, . . . , 𝑟), where the 𝑔𝑘 generate 𝐺.
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We recall now, for each (non trivial) symmetry class [𝐺] of Ela, a normal form for each class in
the Voigt representation. An orthonormal basis in which the Voigt representation of an elasticity
tensor E is a normal form is called a proper basis or a natural basis for E.

∙ The cubic normal form has 3 independent parameters and writes

(2.3) [EO] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1112 𝐸1112 0 0 0
𝐸1112 𝐸1111 𝐸1112 0 0 0
𝐸1112 𝐸1112 𝐸1111 0 0 0

0 0 0 𝐸1212 0 0
0 0 0 0 𝐸1212 0
0 0 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠
∙ The transversely-isotropic normal form has 5 independent parameters and writes

(2.4) [EO(2)] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 0
𝐸1122 𝐸1111 𝐸1133 0 0 0
𝐸1133 𝐸1133 𝐸3333 0 0 0

0 0 0 𝐸1313 0 0
0 0 0 0 𝐸1313 0
0 0 0 0 0 1

2(𝐸1111 − 𝐸1122)

⎞⎟⎟⎟⎟⎟⎟⎠
∙ The trigonal normal form has 6 independent parameters and writes

(2.5) [ED3 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 𝐸1123 0 0
𝐸1122 𝐸2222 𝐸1133 −𝐸1123 0 0
𝐸1133 𝐸1133 𝐸3333 0 0 0
𝐸1123 −𝐸1123 0 𝐸1313 0 0

0 0 0 0 𝐸1313 𝐸1123

0 0 0 0 𝐸1123
1
2(𝐸1111 − 𝐸1122)

⎞⎟⎟⎟⎟⎟⎟⎠
∙ The tetragonal normal form has 6 independent parameters and writes

(2.6) [ED4 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 0
𝐸1122 𝐸1111 𝐸1133 0 0 0
𝐸1133 𝐸1133 𝐸3333 0 0 0

0 0 0 𝐸1313 0 0
0 0 0 0 𝐸1313 0
0 0 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠
∙ The orthotropic normal form has 9 independent parameters and writes

(2.7) [ED2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 0
𝐸1122 𝐸2222 𝐸2233 0 0 0
𝐸1133 𝐸2233 𝐸3333 0 0 0

0 0 0 𝐸2323 0 0
0 0 0 0 𝐸1313 0
0 0 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠
∙ The monoclinic normal form has 13 independent parameters and writes

(2.8) [EZ2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 𝐸1112

𝐸1122 𝐸2222 𝐸2233 0 0 𝐸2212

𝐸1133 𝐸2233 𝐸3333 0 0 𝐸3312

0 0 0 𝐸2323 𝐸1323 0
0 0 0 𝐸1323 𝐸1313 0

𝐸1112 𝐸2212 𝐸3312 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠
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3. Covariants of the Elasticity tensor

A polynomial covariant C(E) of the Elasticity tensor E, is a tensor C which is a polynomial
function of E and such that

𝑔 ⋆C(E) = C(𝑔 ⋆E), ∀𝑔 ∈ SO(3).

Examples of covariants are the dilatation and Voigt’s second-order covariants d(E), v(E),
defined by (1.3). Fourth-order covariants appear in the harmonic decomposition

E = (trd, trv,d′,v′,H)

of an elasticity tensor (see [4, 24, 2]), where d′ and v′ are the deviatoric parts of d and v, defined
as

(·)′ := (·) − 1

3
tr(·)1.

More precisely, we can write

(3.1) E = E𝑖𝑠𝑜 + Edv + H

where the isotropic part of E is defined as

E𝑖𝑠𝑜 :=
1

9
(trd) 1⊗ 1 +

1

15
(3 trv − trd) J, J := 1⊗ 1− 1

3
1⊗ 1,

and its dilatation-Voigt part as

Edv :=
1

7

(︀
1⊗ (5d′ − 4v′) + (5d′ − 4v′) ⊗ 1

)︀
+

2

7

(︀
1⊗ (3v′ − 2d′) + (3v′ − 2d′) ⊗ 1

)︀
.

The remaining part

H := E−Edv −E𝑖𝑠𝑜

is a fourth-order harmonic tensor (i.e. totally symmetric and traceless).

Remark 3.1. In these formulas, we have used the tensor products ⊗ and ⊗ of two symmetric
second-order tensors a and b

(a⊗ b)𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑗𝑏𝑘𝑙, (a⊗ b)𝑖𝑗𝑘𝑙 =
1

2
(𝑎𝑖𝑘𝑏𝑗𝑘 + 𝑎𝑖𝑙𝑏𝑗𝑘).

The covariants d(E), v(E) and H(E) depend linearly on E but there are other non linear
covariants which are extremely useful to study the geometry of E and they have been extensively
used in [23] to formulate simple characterizations of the Elasticity symmetry classes. One of them
is the following second-order, quadratic covariant, first introduced by Boehler and coworkers [7]:

(3.2) d2 := tr13(H : H) = H
... H, (d2)𝑖𝑗 = 𝐻𝑖𝑝𝑞𝑟𝐻𝑝𝑞𝑟𝑗 .

It depends on E through H. A full set of 70 polynomial covariants of H which generates the
polynomial covariant algebra of H has been produced in [23].

4. Recovering normal forms using covariants

Covariants are useful to characterize the symmetry class of a tensor [23]. For instance, we
have introduced in (1.4), the generalized cross product which writes

(a× b)𝑖𝑗𝑘 =
1

6
(𝑏𝑖𝑝𝜀𝑝𝑗𝑞𝑎𝑞𝑘 + 𝑏𝑖𝑝𝜀𝑝𝑘𝑞𝑎𝑞𝑗 + 𝑏𝑗𝑝𝜀𝑝𝑖𝑞𝑎𝑞𝑘 + 𝑏𝑗𝑝𝜀𝑝𝑘𝑞𝑎𝑞𝑖 + 𝑏𝑘𝑝𝜀𝑝𝑖𝑞𝑎𝑞𝑗 + 𝑏𝑘𝑝𝜀𝑝𝑗𝑞𝑎𝑞𝑖) ,

for two second-order symmetric tensors A = a and B = b, and we have the following result [23].

Lemma 4.1. A second-order symmetric tensor a is orthotropic if and only if the third order
covariant a2 × a is non-vanishing.

Remark 4.2. a× 1 = 0, a′ × b = a× b′ = a′ × b′.
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Consider now a family of second-order symmetric tensors ℱ = {a1,a2, . . . ,a𝑛}, with 𝑛 ≥ 2.
Recall that the symmetry class [𝐺ℱ ] of ℱ is the conjugacy class of the subgroup

𝐺ℱ =
⋂︁
𝑖

𝐺a𝑖 = {𝑔 ∈ SO(3); 𝑔 ⋆ a𝑖 = a𝑖, ∀𝑖} ,

and that such a family is either isotropic, transversely-isotropic, orthotropic or monoclinic. We
have moreover the following result [23].

Theorem 4.3. Let (a1, . . . ,a𝑛) be an 𝑛-tuple of second-order symmetric tensors. Then:

(1) (a1, . . . ,a𝑛) is isotropic if and only if

a𝑘
′ = 0, 1 ≤ 𝑘 ≤ 𝑛,

where a𝑘
′ is the deviatoric part of a𝑘.

(2) (a1, . . . ,a𝑛) is transversely-isotropic if and only if there exists a𝑗 such that

a𝑗
′ ̸= 0, a𝑗 × a2𝑗 = 0,

and
a𝑗 × a𝑘 = 0, 1 ≤ 𝑘 ≤ 𝑛.

(3) (a1, . . . ,a𝑛) is orthotropic if and only if

tr(a𝑘 × a𝑙) = 0, 1 ≤ 𝑘, 𝑙 ≤ 𝑛,

and
∙ either there exists a𝑗 such that

a𝑗 × a2𝑗 ̸= 0;

∙ or there exists a pair (a𝑖,a𝑗) such that

a𝑖 × a𝑗 ̸= 0.

(4) (a1, . . . ,a𝑛) is monoclinic if and only if there exists a pair (a𝑖,a𝑗) such that

𝜔𝜔𝜔 := tr(a𝑖 × a𝑗) ̸= 0, and (a𝑘𝜔𝜔𝜔) ×𝜔𝜔𝜔 = 0, 1 ≤ 𝑘 ≤ 𝑛.

Remark 4.4. If we define the commutator of a𝑖 and a𝑗 by [a𝑖,a𝑗 ] = a𝑖a𝑗 − a𝑗a𝑖, then we have

tr(a𝑖 × a𝑗) = −1

6
𝜀 : [a𝑖,a𝑗 ].

Theorem 4.3 is the key point to recover the natural basis of a family ℱ = {a1,a2, . . . ,a𝑛} of
second-order symmetric tensors as follows. A natural basis for the family ℱ is one in which all
the members of the family have the same matrix-shape with a maximum of zero (see Figure 2).

Figure 2. Shapes of normal forms for families of second-order symmetric tensors.

The problem of finding a normal form for ℱ is meaningful only when it is transversely-
isotropic, orthotropic or monoclinic. As an illustration of our purpose, we shall now detail how
to find a rotation which brings ℱ into a normal form in each of these three cases.

∙ ℱ is transversely-isotropic: Find a member a𝑗 as in point (2) of theorem 4.3. Any
basis in which a𝑗 is diagonal, the last vector corresponding to its simple eigenvalue, will
achieve the task.
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∙ ℱ is orthotropic: If there exists a𝑗 orthotropic in ℱ (i.e a𝑗
2 × a𝑗 ̸= 0), then just

diagonalize a𝑗 and this will answer the question. Otherwise, by point (3) of theorem 4.3,
we can find an orthotropic pair (a𝑖,a𝑗) in ℱ where both a𝑖 and a𝑗 are transversely-
isotropic. In that case, the eigenspaces of a𝑖 and a𝑗 corresponding to single eigenvalues
are one-dimensional and mutually orthogonal. A natural basis for ℱ is obtained by
choosing a unit vector 𝑢𝑢𝑢 in the first space, 𝑣𝑣𝑣 in the second space and completing to a
(direct) basis by adding 𝑢𝑢𝑢× 𝑣𝑣𝑣.

∙ ℱ is monoclinic: In that case, construct 𝜔 as in point (4) of theorem 4.3. Normalize
it to a unit vector and complete it into a basis by adding an orthonormal basis of the
plane 𝜔⊥. Permute, if necessary, the vectors to obtain a direct basis and we are done.

Remark 4.5. If t is a non-vanishing transversely-isotropic deviator, we do not need to solve a
polynomial equation to compute its unique simple eigenvalue. It is given by

𝜆 = 2
tr(t3)

tr(t2)
,

and the main axis of t (eigenspace of the simple eigenvalue) corresponds to the one-dimensional
subspace

(4.1) ker

(︂
t− 2

tr(t3)

tr(t2)
1

)︂
.

Remark 4.6. If (a1,a2) is an orthotropic couple where both a1 and a2 are transversely-isotropic,
then, their respective main axes are orthogonal and correspond respectively to

ker

(︂
t− 2

tr(a31)

tr(a21)
1

)︂
and ker

(︂
t− 2

tr(a32)

tr(a22)
1

)︂
.

The methodology developed above for a family ℱ of second-order symmetric tensors will
allow us to find a natural basis of all elasticity tensors E, provided they are either transversely-
isotropic, tetragonal, trigonal, orthotropic or monoclinic. The isotropic case is trivial and the
triclinic case will not be considered in this paper (even if it also possible to define some kind of
normal form for a triclinic tensor). The cubic case will be treated at the end of this section. To
start with, we recall the following result which was obtained in [23]. It allows us to solve the
problem when E is either transversely-isotropic, tetragonal or trigonal (details will be provided
in section 6).

Theorem 4.7. Let E be a transversely-isotropic, tetragonal or trigonal Elasticity tensor. Then,
the triplet (d′,v′,d2

′) is transversely-isotropic.

To be able to reduce the case of an elasticity tensor E to a family of second-order symmetric
tensors, when E is either orthotropic or monoclinic, we need more second-order symmetric
covariants which we shall introduce now. First, let us recall that the 2-contraction between H
and a second-order tensor a is defined as

(H : a)𝑖𝑗 := 𝐻𝑖𝑗𝑝𝑞𝑎𝑝𝑞.

Using this operation, we produce first the following two covariants

c3 := H : d2, and c4 := H : c3,

and introduce two families of symmetric second-order covariants of E, which will allow us to
solve the problem when E is either orthotropic or monoclinic. The first family

(4.2) ℱ𝑜 :=
{︀
d′,v′,d2

′, c3, c4,H : d,H : v,H : d2,H : v2
}︀

will be used in the orthotropic case and the second family

(4.3) ℱ𝑚 :=
{︀
d′,v′,d2

′, c3, c4,H : d,H : v,H : d2,H : v2,H : (dv)𝑠,H : (dd2)
𝑠,H : (vd2)

𝑠
}︀

will be used in the monoclinic case. Here, (·)𝑠 stands for the symmetric part of a second-order
tensor. The key-point to conclude is the following result [23, Theorem 10.2].



RECOVERING NORMAL FORMS 9

Theorem 4.8. For any Elasticity tensor E:

(1) If E is orthotropic then the family ℱ𝑜 of second-order tensors is orthotropic.
(2) If E is monoclinic then the family ℱ𝑚 of second-order tensors is monoclinic.

It remains to solve the problem when E is cubic. In that case, each second-order covariant
of E is isotropic [23]. Therefore its fourth-order covariant H is necessarily cubic (and thus non-
vanishing). A natural basis for H is therefore also one for E. The key-point to calculate such a
natural basis is then provided by the following theorem.

Theorem 4.9. Let H be a fourth-order cubic harmonic tensor. Then, the solutions of the linear
equation

(4.4) tr(H× a) = 0,

where a is a second-order symmetric tensor, is a three-dimensional vector space. Moreover,
orthotropic tensors a which are solution of (4.4) form a dense open set and the natural basis of
any such orthotropic tensor is a natural basis for H.

Remark 4.10. This means that solving the linear system (4.4) and picking-up randomly a solution
among them provides us with an orthotropic second-order symmetric tensor a which eigenvectors
define a proper basis for H.

Remark 4.11. In an orthonormal basis, the 10 components of the totally symmetric three-order
tensor tr(H× a) write

(tr(H× a))𝑖𝑗𝑘 =
1

10

∑︁
𝑝,𝑞,𝑟

(𝜀𝑖𝑝𝑞𝐻𝑗𝑘𝑝𝑟 + 𝜀𝑗𝑝𝑞𝐻𝑖𝑘𝑝𝑟 + 𝜀𝑘𝑝𝑞𝐻𝑖𝑗𝑝𝑟) 𝑎𝑞𝑟.

Proof. The binary operation tr(H × a) being covariant, solutions a of tr(H × a) = 0 write as
𝑔 ⋆ a0, where a0 are the solutions of tr(H0 × a0) = 0, and where H0 is the normal form of H.
This normal form H0 (see for instance [3]) writes, in Voigt’s representation (1.1), as

[H0] = 𝛿

⎛⎜⎜⎜⎜⎜⎜⎝
8 −4 −4 0 0 0
−4 8 −4 0 0 0
−4 −4 8 0 0 0
0 0 0 −4 0 0
0 0 0 0 −4 0
0 0 0 0 0 −4

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝛿 ̸= 0. It can be checked that the space of solutions of the equation tr(H0 × a0) = 0 cor-
responds exactly to the three-dimensional vector space of diagonal tensors, in which orthotropic
tensors are a dense open set. Hence, any natural basis for H0 (there are 24 such ones) is a
natural basis for any solution a0 of tr(H0 × a0) = 0. Conversely, any natural basis of an or-
thotropic solution a0 corresponds to a natural basis of H0, since there are only 24 such bases.
Therefore, any natural basis for H corresponds to a natural basis of a, an orthotropic solution
of tr(H× a) = 0, and vice-versa, which ends the proof. �

5. Experimental data

As pointed out in the introduction, natural bases have been obtained in the literature for some
non-degenerate situations, using the dilatation or Voigt’s tensors [11, 10, 19, 5, 9]. We present
here some data which will be used in section 6 to illustrate are methodology. They consist
in a Ni base single crystal superalloy (with its cubic, tetragonal, orthotropic and monoclinic
approximations), an 𝛼-quartz [25, 27] (with its trigonal approximations), and a transversely-
isotropic approximation issued from [20]. Note that the Ni base single crystal superalloy has a
microstructure close to be cubic [17]. Thus, we consider relevant approximations of its associated
Elasticity tensor to be cubic (and thus d′ = v′ = 0). These approximations have exactly
the corresponding symmetry. Finally, in this section, all the experimental tensors, and their
linear covariants, are expressed in GPa and their fourth-order harmonic components are given
in Appendix A.
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5.1. Ni base single crystal superalloy. The Voigt representation of the measured Elasticity
tensor E𝛾 of a Ni base single crystal superalloy, obtained by ultrasonic measurements in [17],
writes as

[E𝛾 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
243 136 135 22 52 −17
136 239 137 −28 11 16
135 137 233 29 −49 3
22 −28 29 133 −10 −4
52 11 −49 −10 119 −2
−17 16 3 −4 −2 130

⎞⎟⎟⎟⎟⎟⎟⎠
We get

trd = 1531, trv = 1479,

and

d′ =

⎛⎝11
3 2 14
2 5

3 23
14 23 −16

3

⎞⎠ , v′ =

⎛⎝ −1 −11 −1
−11 9 −1
−1 −1 −8

⎞⎠
The harmonic fourth-order part of E𝛾 has Voigt’s representation

[H] =

⎛⎜⎜⎜⎜⎜⎜⎝
− 1986

35
1093
35

893
35

5 352
7

− 99
7

1093
35

− 2306
35

1213
35

−31 3
7

132
7

893
35

1213
35

− 2106
35

26 − 355
7

− 33
7

5 −31 26 1213
35

− 33
7

3
7

352
7

3
7

− 355
7

− 33
7

893
35

5
− 99

7
132
7

− 33
7

3
7

5 1093
35

⎞⎟⎟⎟⎟⎟⎟⎠
We get thus

‖E𝛾‖2 = ‖E𝑖𝑠𝑜‖2 + ‖Edv‖2 + ‖H‖2

where ‖E𝛾‖2 := 𝐸𝛾
𝑖𝑗𝑘𝑙𝐸

𝛾
𝑖𝑗𝑘𝑙. Moreover:

∙ the square of the norm of the isotropic part E𝑖𝑠𝑜 of E𝛾 writes

‖E𝑖𝑠𝑜‖2 =
1

15
(2(trd)2 − 2 trd trv + 3(trv)2).

It corresponds to the contribution of the isotropic parts of the dilatation and the Voigt
tensors.

∙ the square of the norm of the dilatation-Voigt parts Edv of E𝛾 writes

‖Edv‖2 =
2

21
‖d′ + 2v′‖2 +

4

3
‖d′ − v′‖2.

It corresponds to the contribution of the deviatoric parts of the dilatation and the Voigt
tensors.

∙ the square of the norm of the harmonic part H of E𝛾 writes

(5.1) ‖H‖2 = trd2.

For this single crystal superalloy the isotropic contribution is the largest,

‖E𝑖𝑠𝑜‖2

‖E𝛾‖2
= 0.880438

while the anisotropic dilatational-Voigt contribution is negligible, as

‖Edv‖2

‖E𝛾‖2
= 0.005826

and the fourth-order harmonic contribution is second in magnitude,

‖H‖2

‖E𝛾‖2
= 0.113736

All the following approximations have identical isotropic parts.
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Cubic approximation: ‖E𝛾 −E𝛾
𝑐𝑢𝑏𝑖𝑐‖/‖E

𝛾‖ = 0.105 and we have

[E𝛾
𝑐𝑢𝑏𝑖𝑐] =

⎛⎜⎜⎜⎜⎜⎜⎝
240.131 144.442 125.760 6.39666 41.9737 −21.1614
144.442 223.957 141.935 −27.7808 2.27754 16.6041
125.760 141.935 242.638 21.3841 −44.2512 4.55736
6.39666 −27.7808 21.3841 133.268 4.55736 2.27754
41.9737 2.27754 −44.2512 4.55736 117.094 6.39666
−21.1614 16.6041 4.55736 2.27754 6.39666 135.776

⎞⎟⎟⎟⎟⎟⎟⎠ .(5.2)

Tetragonal approximation: ‖E𝛾 −E𝛾
𝑡𝑒𝑡𝑟𝑎‖/‖E𝛾‖ = 0.0996 and we have

(5.3) [E𝛾
𝑡𝑒𝑡𝑟𝑎] =

⎛⎜⎜⎜⎜⎜⎜⎝
239.333 141.383 129.618 5.8239 46.7414 −21.0897
141.383 229.664 139.287 −25.7103 1.8896 15.3674
129.618 139.287 241.429 19.8864 −48.631 5.7223
5.8239 −25.7103 19.8864 130.62 5.7223 1.8896
46.7414 1.8896 −48.631 5.7223 120.951 5.8239
−21.0897 15.3674 5.7223 1.8896 5.8239 132.716

⎞⎟⎟⎟⎟⎟⎟⎠ .

First orthotropic approximation: ‖E𝛾 −E𝛾
𝑜𝑟𝑡ℎ‖/‖E

𝛾‖ = 0.0988 and we have

(5.4) [E𝛾
𝑜𝑟𝑡ℎ] =

⎛⎜⎜⎜⎜⎜⎜⎝
241.3079 139.4923 129.533 5.3342 46.3021 −20.3543
139.4923 229.6671 141.1738 −26.2801 2.8831 14.4327
129.533 141.1738 239.6264 20.9459 −49.1853 5.9215
5.3342 −26.2801 20.9459 132.5072 5.9215 2.8831
46.3021 2.8831 −49.1853 5.9215 120.8663 5.3342
−20.3543 14.4327 5.9215 2.8831 5.3342 130.8256

⎞⎟⎟⎟⎟⎟⎟⎠ .

Second orthotropic approximation: ‖E𝛾 −E𝛾 ′
𝑜𝑟𝑡ℎ‖/‖E

𝛾‖ = 0.1029 and we have

(5.5) [E𝛾 ′
𝑜𝑟𝑡ℎ] =

⎛⎜⎜⎜⎜⎜⎜⎝
237.183 141.391 128.075 5.73042 42.1382 −21.4889
141.391 228.24 142.671 −27.3681 3.32484 16.2765
128.075 142.671 241.302 21.7967 −44.0867 4.55057
5.73042 −27.3681 21.7967 133.637 4.397 1.83613
42.1382 3.32484 −44.0867 4.397 114.865 6.93608
−21.4889 16.2765 4.55057 1.83613 6.93608 137.635

⎞⎟⎟⎟⎟⎟⎟⎠
Monoclinic approximation: ‖E𝛾 −E𝛾

𝑚𝑜𝑛𝑜‖/‖E𝛾‖ = 0.0883 and we have

(5.6) [E𝛾
𝑚𝑜𝑛𝑜] =

⎛⎜⎜⎜⎜⎜⎜⎝
240.532 140.501 129.3 0.6715 47.7714 −18.1515
140.501 231.37 138.463 −26.3969 4.4758 18.2628
129.3 138.463 242.57 25.7254 −52.2472 −0.1113
0.6715 −26.3969 25.7254 129.796 −0.1113 4.4758
47.7714 4.4758 −52.2472 −0.1113 120.634 0.6715
−18.1515 18.2628 −0.1113 4.4758 0.6715 131.834

⎞⎟⎟⎟⎟⎟⎟⎠ .

5.2. Trigonal 𝛼-quartz. We consider now the trigonal Elasticity tensor of the 𝛼-quartz. It was
given in [27] and determined from experimental values issued from [25]. In Voigt’s notation, it
writes

(5.7) [E𝛼
𝑡𝑟𝑖𝑔] =

⎛⎜⎜⎜⎜⎜⎜⎝
7.9122 0.7161 2.1801 −0.0778 −0.054 −0.6541
0.7161 10.808 −0.0235 0.4322 −0.0725 2.1674
2.1801 −0.0235 10.2544 0.8267 0.5779 −1.2035
−0.0778 0.4322 0.8267 4.3259 −1.0971 0.0825
−0.054 −0.0725 0.5779 −1.0971 6.2917 0.3278
−0.6541 2.1674 −1.2035 0.0825 0.3278 4.5151

⎞⎟⎟⎟⎟⎟⎟⎠ .
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5.3. Transversely isotropic Elasticity tensor. Finally, we will consider the transversely-
isotropic Elasticity tensor E𝐾𝑆

𝑇𝐼 , obtained in [20]. In Voigt’s representation, it writes

(5.8) [E𝐾𝑆
𝑇𝐼 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
1.4373 0.5382 0.2699 −0.0879 −0.181 −0.054
0.5382 1.4577 0.2634 −0.1688 −0.1009 −0.0553
0.2699 0.2634 1.0327 0.0295 0.0324 0.0348
−0.0879 −0.1688 0.0295 0.4046 0.0588 −0.0209
−0.181 −0.1009 0.0324 0.0588 0.4156 −0.015
−0.054 −0.0553 0.0348 −0.0209 −0.015 0.4615

⎞⎟⎟⎟⎟⎟⎟⎠ .

It was obtained as the closest transversely-isotropic tensor with relative error

‖E𝐾𝑆 −E𝐾𝑆
𝑇𝐼 ‖/‖E𝐾𝑆‖ = 0.1278

to the following raw Elasticity tensor

[E𝐾𝑆 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
1.3045 0.6327 0.2592 −0.1039 −0.2385 −0.1215
0.6327 1.4131 0.2648 −0.1261 −0.0705 −0.0301
0.2592 0.2648 1.0389 0.0395 0.045 0.0317
−0.1039 −0.1261 0.0395 0.4794 0.019 −0.0514
−0.2385 −0.0705 0.045 0.019 0.3747 −0.016
−0.1215 −0.0301 0.0317 −0.0514 −0.016 0.5128

⎞⎟⎟⎟⎟⎟⎟⎠ .

6. Effective computations

For each symmetry class, we shall explain how to find a rotation which brings an Elasticity
tensor E whose components are given in an arbitrary orthonormal direct basis ℬ0 = (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3),
into its normal form. More precisely, we will compute an orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3),
and hence a rotation

(6.1) 𝑔 =

⎛⎝𝑢𝑢𝑢1 · 𝑒𝑒𝑒1 𝑢𝑢𝑢1 · 𝑒𝑒𝑒2 𝑢𝑢𝑢1 · 𝑒𝑒𝑒3
𝑢𝑢𝑢2 · 𝑒𝑒𝑒1 𝑢𝑢𝑢2 · 𝑒𝑒𝑒2 𝑢𝑢𝑢2 · 𝑒𝑒𝑒3
𝑢𝑢𝑢3 · 𝑒𝑒𝑒1 𝑢𝑢𝑢3 · 𝑒𝑒𝑒2 𝑢𝑢𝑢3 · 𝑒𝑒𝑒3

⎞⎠
such that the Voigt’s representation (1.1) of 𝑔 ⋆E is a normal form of the symmetry class of E.

6.1. Cubic class. The proposed methodology for a cubic Elasticity tensor E𝑐𝑢𝑏𝑖𝑐 is the follow-
ing.

(1) Calculate the fourth-order harmonic tensor H of E𝑐𝑢𝑏𝑖𝑐 from (3.1).
(2) Solve the linear system

tr(H× a) = 0,

where a is a second-order symmetric tensor.
(3) Pick-up randomly a solution a among them. According to theorem 4.9, it will be or-

thotropic. This can be checked by verifying that a2 × a ̸= 0.
(4) Diagonalize a and compute a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) of eigenvectors

for a.
(5) The normal form (2.3) is given by EO = 𝑔 ⋆E𝑐𝑢𝑏𝑖𝑐 with 𝑔 defined by (6.1).

Remark 6.1. Since tr(H× 1) = 0 for every tensor H, it is enough to solve the equation

tr(H× a′) = 0,

for deviatoric tensors a′, which leads to solve a linear system in a five-dimensional space.

Example 6.2. Consider the cubic Elasticity tensor (5.2) for Ni base single crystal superalloy. It
is such that trd = 1531, trv = 1479, d′ = 0, v′ = 0. Its fourth-order harmonic part H is given
by (A.1) and we get d2

′ = (tr13H
2)′ = 0. Setting arbitrarily 𝑎′13 = 1 and 𝑎′12 = 1, the solution

of tr(H× a′) = 0 leads to

a′ =

⎛⎝3.485 1 1
1 −9.93526 −2.23089
1 −2.23089 6.45025

⎞⎠
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which is orthotropic since (a′)2 × a′ ̸= 0. Computing a direct orthonormal basis of eigenvectors
for a′, we get

𝑔 =

⎛⎝0.0813519 −0.987342 −0.136151
0.24438 −0.112674 0.963111

−0.966261 −0.111623 0.232121

⎞⎠
and we can check that (E𝛾

𝑐𝑢𝑏𝑖𝑐)O = 𝑔 ⋆E𝛾
𝑐𝑢𝑏𝑖𝑐 writes

[(E𝛾
𝑐𝑢𝑏𝑖𝑐)O] =

⎛⎜⎜⎜⎜⎜⎜⎝
213.355 148.489 148.489 0 0 0
148.489 213.355 148.489 0 0 0
148.489 148.489 213.355 0 0 0

0 0 0 139.823 0 0
0 0 0 0 139.823 0
0 0 0 0 0 139.823

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

The normal form given in [17] is retrieved.

6.2. Transversely isotropic class. The proposed methodology for a transversely-isotropic
Elasticity tensor E𝑇𝐼 is the following.

(1) Compute the triplet of covariant deviators (d′,v′,d2
′) of E𝑇𝐼 (see section 3). By theo-

rem 4.7, the triplet (d′,v′,d2
′) is transversely-isotropic. Thus, one of them, let us call

it t, is transversely-isotropic.
(2) Let 𝑢𝑢𝑢3 be the unit eigenvector corresponding to the single eigenvalue of t. By remark 4.5,

𝑢𝑢𝑢3 can be obtained by solving the linear system,(︂
t− 2

tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0.

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) of R3 by choosing an
orthonormal pair (𝑢𝑢𝑢1,𝑢𝑢𝑢1) orthogonal to 𝑢𝑢𝑢3. For instance, if 𝑢𝑢𝑢3 ̸= ±𝑒𝑒𝑒3, one can choose

(6.2) 𝑢𝑢𝑢1 =
𝑒𝑒𝑒3 × 𝑢𝑢𝑢3
‖𝑒𝑒𝑒3 × 𝑢𝑢𝑢3‖

and 𝑢𝑢𝑢2 = 𝑢𝑢𝑢3 × 𝑢𝑢𝑢1.

(4) The normal form (2.4) is given by EO(2) = 𝑔 ⋆E𝑇𝐼 with 𝑔 defined by (6.1).

Example 6.3. Consider the transversely-isotropic Elasticity tensor (5.8). We find

d′ =

⎛⎝0.221833 −0.0745 −0.2495
−0.0745 0.235733 −0.2272
−0.2495 −0.2272 −0.457567

⎞⎠
v′ = 0.679222d′, d2

′ = −0.0977232d′

and we can check that the triplet (d′,v′,d2
′) is transversely-isotropic. We choose t = d′. Its

simple eigenvalue is given by

𝜆 = 2
tr(d′3)

tr(d′2)
= −0.607173.

Solving the linear system (4.1) returns:

𝑢𝑢𝑢3 =

⎛⎝ 0.29966
0.272898
0.914183

⎞⎠ .

Build a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) from (6.2) and compute 𝑔 using (6.1):

𝑔 =

⎛⎝−0.673321 0.73935 0
−0.675902 −0.615539 0.405301

0.29966 0.272898 0.914183

⎞⎠ .
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Then, we can check that (E𝐾𝑆
𝑇𝐼 )O(2) = 𝑔 ⋆E𝐾𝑆

𝑇𝐼 writes

(6.3) [(E𝐾𝑆
𝑇𝐼 )O(2)] =

⎛⎜⎜⎜⎜⎜⎜⎝
1.5641 0.6046 0.1583 0 0 0
0.6046 1.5642 0.1582 0 0 0
0.1583 0.1582 1.0997 0 0 0

0 0 0 0.3258 0 0
0 0 0 0 0.3257 0
0 0 0 0 0 0.4799

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

which is the normal form of the optimal transversely-isotropic tensor obtained in [20].

6.3. Trigonal class. The proposed methodology for a trigonal Elasticity tensor E𝑡𝑟𝑖𝑔 is the
following. The first three steps are the same as the ones for the transversely-isotropic case.

(1) Compute the transversely-isotropic triplet (d′,v′,d2
′) from E𝑡𝑟𝑖𝑔 (see proposition 4.7

and section 3). Extract from this triplet a transversely-isotropic deviator t.
(2) Let 𝑢𝑢𝑢3 be a unit vector, solution of the linear system(︂

t− 2
tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0.

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) of R3, using (6.2), for
instance, and define 𝑔1 as the rotation given by (6.1).

(4) Compute E := 𝑔1 ⋆E𝑡𝑟𝑖𝑔 and define 𝜃0 to be one solution of the equation

(6.4) 𝐸1123 sin 3𝜃 = 𝐸1113 cos 3𝜃.

(5) The normal form (2.5) of E𝑡𝑟𝑖𝑔 is given by ED3 = r(𝑒𝑒𝑒3, 𝜃0) ⋆ E, where r(𝑒𝑒𝑒3, 𝜃0) is the
rotation of angle 𝜃0 around axis 𝑒𝑒𝑒3.

Remark 6.4. Equation (6.4) derives from the observation that the matrix form of a trigonal
Elasticity tensor with correct third axis 𝑢𝑢𝑢3 writes

[E𝑡𝑟𝑖𝑔] =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸1111 𝐸1122 𝐸1133 𝐸1123 𝐸1113 0
𝐸1122 𝐸1111 𝐸1133 −𝐸1123 −𝐸1113 0
𝐸1133 𝐸1133 𝐸3333 0 0 0
𝐸1123 −𝐸1123 0 𝐸1313 0 −𝐸1113

𝐸1113 −𝐸1113 0 0 𝐸1313 𝐸1123

0 0 0 −𝐸1113 𝐸1123
1
2(𝐸1111 − 𝐸1122)

⎞⎟⎟⎟⎟⎟⎟⎠
Thus, a rotation of E𝑡𝑟𝑖𝑔 around 𝑢𝑢𝑢3 and of angle 𝜃0, solution of (6.4), leads to the normal
form (2.5).

Example 6.5. Consider the trigonal Elasticity tensor (5.7) for 𝛼-quartz. We compute

trd = 34.709, trv = 59.249

and

v′ =

⎛⎝−1.02767 0.4162 0.6064
0.4162 −0.0976667 1.5867
0.6064 1.5867 1.12533

⎞⎠ .

We check that v′ is transversely-isotropic (v′2 × v′ = 0) and observe that

d′ = 0.74434v′, and d2
′ = −0.828279v′.

The simple eigenvalue of v′ is given by

2
tr(v′3)

tr(v′2)
= 2.37334.
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Solving the linear system (4.1) with t = v′ gives

𝑢𝑢𝑢3 =

⎛⎝ 0.21137
0.553074
0.805873

⎞⎠ , ‖𝑢𝑢𝑢3‖ = 1.

We build then a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) using (6.2) and define 𝑔1 using (6.1),

𝑔1 =

⎛⎝−0.934108 0.356991 0
−0.287689 −0.752773 0.592088

0.21137 0.553074 0.805873

⎞⎠ .

The Elasticity tensor E = 𝑔1 ⋆E𝑡𝑟𝑖𝑔 writes

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝
8.76 0.6 1.33 1.706 0.289 0
0.6 8.76 1.33 −1.706 −0.288 0
1.33 1.33 10.68 0 0 0
1.706 −1.706 0 5.72 0 −0.288
0.289 −0.288 0 0 5.72 1.706

0 0 0 −0.288 1.706 4.08

⎞⎟⎟⎟⎟⎟⎟⎠
We solve (6.4) and choose the solution

𝜃0 =
1

3
arctan

(︂
𝐸1113

𝐸1123

)︂
= 0.0558614,

to define

r(𝑒𝑒𝑒3, 𝜃0) =

⎛⎝ 0.99844 −0.0558324 0
0.0558324 0.99844 0

0 0 1

⎞⎠ .

Finally, one can check that (E𝛼
𝑡𝑟𝑖𝑔)D3 = r(𝑒𝑒𝑒3, 𝜃0) ⋆E writes

[(E𝛼
𝑡𝑟𝑖𝑔)D3 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
8.76 0.6 1.33 1.73 0 0
0.6 8.76 1.33 −1.73 0 0
1.33 1.33 10.68 0 0 0
1.73 −1.73 0 5.72 0 0

0 0 0 0 5.72 1.73
0 0 0 0 1.73 4.08

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

6.4. Tetragonal class. The methodology for a tetragonal Elasticity tensor E𝑡𝑒𝑡𝑟𝑎 is similar to
the one used for the trigonal case.

(1) Compute the transversely-isotropic triplet (d′,v′,d2
′) from E𝑡𝑒𝑡𝑟𝑎 (see proposition 4.7

and section 3). Extract from this triplet a transversely-isotropic deviator t.
(2) Let 𝑢𝑢𝑢3 with ‖𝑢𝑢𝑢3‖ = 1 be a solution of the linear system(︂

t− 2
tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) of R3, using (6.2), for
instance and define 𝑔1 as the rotation given by (6.1).

(4) Compute E := 𝑔1 ⋆E𝑡𝑒𝑡𝑟𝑎 and define 𝜃0 to be one solution of

(6.5) 4𝐸1112 cos 4𝜃 =
(︀
2𝐸1212 + 𝐸1122 − 𝐸1111

)︀
sin 4𝜃

which always exists if E is tetragonal.
(5) The normal form (2.6) is given by ED4 = r(𝑒𝑒𝑒3, 𝜃0) ⋆E, where r(𝑒𝑒𝑒3, 𝜃0) is the rotation of

angle 𝜃0 around 𝑒𝑒𝑒3.



16 S. ABRAMIAN, B. DESMORAT, R. DESMORAT, B. KOLEV, AND M. OLIVE

Remark 6.6. Equation (6.5) derives from the observation that the matrix-form of a tetragonal
Elasticity tensor with correct third axis 𝑢𝑢𝑢3 writes

[E𝑡𝑒𝑡𝑟𝑎] =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸1111 𝐸1122 𝐸1133 0 0 𝐸1112

𝐸1122 𝐸1111 𝐸1133 0 0 −𝐸1112

𝐸1133 𝐸1133 𝐸3333 0 0 0
0 0 0 𝐸1313 0 0
0 0 0 0 𝐸1313 0

𝐸1112 −𝐸1112 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, a rotation of E𝑡𝑒𝑡𝑟𝑎 around 𝑢𝑢𝑢3 and of angle 𝜃0, solution of (6.5), leads to the normal
form (2.6).

Example 6.7. Consider the tetragonal Elasticity tensor (5.3) for Ni base single crystal superalloy.
We get d′ = 0, v′ = 0 and

d2
′ =

⎛⎝1389.87 341.696 47.1186
341.696 −2729.03 −571.863
47.1186 −571.863 1339.17

⎞⎠
which is transversely-isotropic ((d2

′)2 × d2
′ = 0). Its simple eigenvalue is given by

2
tr(d′3

2 )

tr(d′2
2 )

= −2836.05.

Solving the linear system (4.1) with t = d2
′ gives

𝑢𝑢𝑢3 =

⎛⎝0.0813519
−0.987342
−0.136151

⎞⎠ , ‖𝑢𝑢𝑢3‖ = 1.

We build then a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) using (6.2) and define 𝑔1 using (6.1),

𝑔1 =

⎛⎝ 0.996623 0.0821166 0
0.0111802 −0.135691 0.990688
0.0813519 −0.987342 −0.136151

⎞⎠
We solve (6.5) and choose the solution

𝜃0 =
1

4
arctan

(︂
4𝐸1112

2𝐸1212 + 𝐸1122 − 𝐸1111

)︂
= 0.236501.

Finally, we can check that (E𝛾
𝑡𝑒𝑡𝑟𝑎)D4 = r(𝑒𝑒𝑒3, 𝜃0) ⋆E writes

[(E𝛾
𝑡𝑒𝑡𝑟𝑎)D4 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
210.103 154.993 145.237 0 0 0
154.993 210.103 145.237 0 0 0
145.237 145.237 219.858 0 0 0

0 0 0 136.571 0 0
0 0 0 0 136.571 0
0 0 0 0 0 146.326

⎞⎟⎟⎟⎟⎟⎟⎠ .

6.5. Orthotropic class. The methodology for an orthotropic Elasticity tensor E𝑜𝑟𝑡ℎ𝑜 is based
on the deep investigation of the family ℱ𝑜 of second-order symmetric covariants given by (4.2).
This family is orthotropic by theorem 4.8 and we have to distinguish between two cases.

(1) If there exists an orthotropic tensor a in the family ℱ𝑜, then, a direct orthonormal basis
of eigenvectors for a is also a natural basis for ℱ𝑜.

(2) Otherwise, we can find an orthotropic couple (a1,a2) in ℱ𝑜. In that case, both a1 and
a2 are transversely-isotropic and their respective main axis are orthogonal. Let 𝑢𝑢𝑢1 and
𝑢𝑢𝑢2 be unit vectors spanning these axes (they can be obtained using remark 4.6). Then,
a natural basis for E𝑜𝑟𝑡ℎ𝑜 is ℬ := (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢1 × 𝑢𝑢𝑢2).
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In both cases, the orthotropic normal form (2.7) is recovered by (E𝑜𝑟𝑡ℎ𝑜)D2 = 𝑔 ⋆ E𝑜𝑟𝑡ℎ𝑜, where
𝑔 is defined by (6.1).

In [23, Theorem 10.2], it was shown that if E𝑜𝑟𝑡ℎ𝑜 is orthotropic, then the triplet (d′,v′,d2
′)

is either orthotropic or transversely-isotropic. This observation leads to a possible optimization
of the methodology proposed above.

∙ If this triplet is orthotropic, our methodology can be optimized, by looking for an or-
thotropic tensor or an orthotropic couple of transversely-isotropic tensors in this triplet
rather than in the whole family ℱ𝑜.

∙ If the triplet is transversely-isotropic, an alternative methodology similar to the one used
for a trigonal or a tetragonal tensor is still possible and is detailed below.
(1) Extract a transversely-isotropic deviator t from the triplet (d′,v′,d2

′).
(2) Compute 𝑢𝑢𝑢3 with ‖𝑢𝑢𝑢3‖ = 1 as a solution of the linear system(︂

t− 2
tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0,

as explained in remark 4.5.
(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) of R3, using (6.2) for

instance, and define 𝑔1 as the rotation given by (6.1).
(4) Compute E := 𝑔1 ⋆E𝑜𝑟𝑡ℎ𝑜 and let 𝜃0 be a solution of

(6.6) 2𝐸3312 cos 2𝜃 = (𝐸1133 − 𝐸2233) sin 2𝜃

which always exists as E is an orthotropic tensor.
(5) The normal form (2.7) is given by (E𝑜𝑟𝑡ℎ𝑜)D2 = r(𝑒𝑒𝑒3, 𝜃0) ⋆ E, where r(𝑒𝑒𝑒3, 𝜃0) is the

rotation of angle 𝜃0 around 𝑒𝑒𝑒3.

Remark 6.8. As in the trigonal and the tetragonal cases, equation (6.6) is derived from the
observation that an orthotropic Elasticity tensor with one correct axis, say 𝑢𝑢𝑢3, writes

[E𝑜𝑟𝑡ℎ𝑜] =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸1111 𝐸1122 𝐸1133 0 0 𝐸1112

𝐸1122 𝐸2222 𝐸2233 0 0 𝐸2212

𝐸1133 𝐸2233 𝐸3333 0 0 𝐸3312

0 0 0 𝐸2323 0 0
0 0 0 0 𝐸1313 0

𝐸1112 𝐸2212 𝐸3312 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠
Thus, a rotation of E𝑜𝑟𝑡ℎ𝑜 around 𝑢𝑢𝑢3 and of angle 𝜃0, solution of (6.6), leads to the normal
form (2.7).

Example 6.9. Consider the orthotropic Elasticity tensor (5.4) for Ni base single crystal superalloy.
This example is interesting because both the dilatation and the Voigt second-order covariants
of this Elasticity tensor are isotropic, d′ = v′ = 0. Hence simple methods to recover its normal
form fail. However, one can check that its deviatoric second-order covariant

d2
′ =

⎛⎝ 523.33 207.103 500.816
207.103 −2721.59 −651.919
500.816 −651.919 2198.26

⎞⎠
is orthotropic. Its diagonalization defines using (6.1) the rotation

𝑔 =

⎛⎝0.0813478 −0.987343 −0.136151
0.244376 −0.112676 0.963112
−0.966262 −0.111619 0.232117

⎞⎠
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and one can check that the Elasticity tensor (E𝛾
𝑜𝑟𝑡ℎ𝑜)D2 = 𝑔 ⋆E𝛾

𝑜𝑟𝑡ℎ writes

[(E𝛾
𝑜𝑟𝑡ℎ𝑜)D2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
219.858 147.607 142.867 0 0 0
147.607 207.732 154.992 0 0 0
142.867 154.992 212.473 0 0 0

0 0 0 146.326 0 0
0 0 0 0 134.2 0
0 0 0 0 0 138.94

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa)

and is its orthotropic normal form (2.7).

Example 6.10. Consider now the second orthotropic Elasticity tensor approximation (5.5) for
Ni base single crystal superalloy. This time d2

′ = 0 (since its fourth-order harmonic part is
cubic) and both d′ and v′ are transversely-isotropic but not of the same axis. The pair (d′,v′) is
orthotropic. The unit eigenvectors 𝑢𝑢𝑢1 and 𝑢𝑢𝑢2 corresponding respectively to the simple eigenvalue
of d′ and v′ are

𝑢𝑢𝑢1 =

⎛⎝−0.966261
−0.111623
0.232121

⎞⎠ , 𝑢𝑢𝑢2 =

⎛⎝0.0813519
−0.987342
−0.136151

⎞⎠ .

The rotation 𝑔 build from (6.1), with 𝑢𝑢𝑢3 = 𝑢𝑢𝑢1 × 𝑢𝑢𝑢2, is such that the Elasticity tensor
(E𝛾 ′

𝑜𝑟𝑡ℎ𝑜)D2 = 𝑔 ⋆E𝛾
𝑜𝑟𝑡ℎ has the orthotropic normal form

[(E𝛾 ′
𝑜𝑟𝑡ℎ𝑜)D2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
217.806 149.478 145.095 0. 0. 0.
149.478 212.006 150.896 0. 0. 0.
145.095 150.896 210.252 0. 0. 0.

0. 0. 0. 137.507 0. 0.
0. 0. 0. 0. 141.857 0.
0. 0. 0. 0. 0. 140.104

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

Remark 6.11. Compared to previous works [11, 10, 19, 5, 9], our procedure, relying on theo-
rem 4.8, is exhaustive and allows to handle all degenerate cases. It is based on the list ℱ𝑜 of
second-order covariants which carries all the information required to recover the normal form of
an orthotropic Elasticity tensor.

6.6. Monoclinic class. The methodology for a monoclinic Elasticity tensor E𝑚𝑜𝑛𝑜 is based on
the investigation of the family ℱ𝑚 of second-order symmetric covariants given by (4.3). This
family is monoclinic by theorem 4.8. The algorithm is the following.

(1) Find a common eigenvector 𝜔 for all second-order covariants in the family ℱ𝑚, by com-
puting the commutators (𝜔 = 𝜀 : [a𝑖,a𝑗 ]), as in theorem 4.3.

(2) Set 𝑢𝑢𝑢3 = 𝜔𝜔𝜔/‖𝜔𝜔𝜔‖ and complete it into a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3), us-
ing (6.2) for instance.

(3) The monoclinic normal form (2.8) is given by 𝑔 ⋆E𝑚𝑜𝑛𝑜 where 𝑔 is defined by (6.1).

Remark 6.12. In most (non degenerate) cases, the commutator 𝜀 : [d,v] = 2 𝜀 : (dv) of the
dilatation and the Voigt tensors will allow to initiate the first step of the algorithm (as in [11,
10, 19]). But 𝜀 : [d,v] may vanish, as in the next example. In that case, another candidate is
required (for instance 𝜔 = 𝜀𝜀𝜀 : (d2c3) in the next example). Our methodology relies on Theorem
4.8 and is exhaustive.

Example 6.13. Consider the degenerate monoclinic Elasticity tensor (5.6), where d′ = v′ = 0.
A non-vanishing first-order covariant is 𝜔 = 𝜀 : (d2c3) which writes

𝜔 = 107

⎛⎝ 16.727
−7.71214
65.9218

⎞⎠ .
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Set

𝑛𝑛𝑛 =
1

‖𝜔‖
𝜔, 𝑢𝑢𝑢 =

1√︀
𝑛2
1 + 𝑛2

2

⎛⎝−𝑛2

𝑛1

0

⎞⎠ , 𝑣𝑣𝑣 = 𝑛𝑛𝑛× 𝑢𝑢𝑢.

We get then

𝑛𝑛𝑛 =

⎛⎝ 0.24438
−0.112674
0.963111

⎞⎠ , 𝑢𝑢𝑢 =

⎛⎝0.418699
0.908125

0

⎞⎠ , 𝑣𝑣𝑣 =

⎛⎝−0.874625
0.403254
0.269104

⎞⎠ .

and

𝑔 =

⎛⎝ 0.4187 0.90812 0
−0.87463 0.40325 0.2691
0.24438 −0.11267 0.96311

⎞⎠ .

One can check that (E𝛾
𝑚𝑜𝑛𝑜)Z2 = 𝑔 ⋆E𝑚𝑜𝑛𝑜 writes

[(E𝛾
𝑚𝑜𝑛𝑜)Z2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
299.7 68.6 142.1 0 0 −42.
68.6 281.3 160.5 0 0 41.1
142.1 160.5 207.7 0 0 0.9

0 0 0 151.8 0.9 0
0 0 0 0.9 133.4 0

−42. 41.1 0.9 0 0 59.9

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa),

which is the normal form (2.8).

Remark 6.14. Recall that, following [21, 14], an additional zero can be placed in the normal

form ̂︀E = EZ2 of a monoclinic tensor. This is due to the fact that any rotation around the third
axis 𝑛𝑛𝑛 = 𝑒𝑒𝑒3 of the normal form (2.8) does not changes the shape of this normal form. If either̂︀𝐸2233 − ̂︀𝐸1133 or ̂︀𝐸2323 − ̂︀𝐸1313

does not vanish, we can look for a rotation r(𝑒𝑒𝑒3, 𝜃36) ⋆ ̂︀E where

tan(2𝜃36) = 2 ̂︀𝐸3312/( ̂︀𝐸2233 − ̂︀𝐸1133)

so that the component (r(𝑒𝑒𝑒3, 𝜃36) ⋆ ̂︀E)3312, in row 3, column 6 and row 6, column 3 of the new

normal form (2.8) vanishes. Or, we can look for a rotation r(𝑒𝑒𝑒3, 𝜃45) ⋆ ̂︀E where

tan(2𝜃45) = 2 ̂︀𝐸1323/( ̂︀𝐸2323 − ̂︀𝐸1313)

so that the component (r(𝑒𝑒𝑒3, 𝜃45) ⋆ ̂︀E)1323 in row 4, column 5 and row 5, column 4 of the new
normal form (2.8) vanishes.

Conclusion

We have formulated effective algorithms to recover the normal form of an Elasticity tensor,
measured in any basis, provided that we know to which symmetry class it belongs to (this other
problem having been solved, by the way, in a previous work [23]). Thanks to the definition of
the generalized cross product (1.4) between totally symmetric tensors, a quite simple method
has been proposed for Elasticity tensors with cubic symmetry, which required only to solve a
linear system in five variables and diagonalize a three-dimensional symmetric matrix.

Moreover, a simple algorithm has been provided for each symmetry class of the Elasticity
tensor. These procedures are moreover exhaustive. In particular, all the degenerate cases (when
second-order covariants, such as d′ and v′, or first-order covariants such as 𝜀 : [d,v] vanish) are
handled. To formulate and prove these results, we have used the families of covariants derived
in [23], which were crucial to establish necessary and sufficient conditions for an Elasticity tensor
to belong to a given symmetry class.

Besides, we have illustrated our methods, for each symmetry class, by applying them on
experimental Elasticity tensors found in the literature. More generally, applying the above
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procedure to a given Elasticity tensor E allows to recognize a normal form for it and is a way
to determine its symmetry class.

Appendix A. Harmonic components of considered Elasticity tensors

In this section, all the linear covariants d, v, H are given in GPa and the fourth-order harmonic
part H is expressed in Voigt’s representation.

Cubic approximation (5.2): d′ = v′ = 0, d2
′ = 0, trd = 1531, trv = 1479 and

(A.1) [H𝛾
𝑐𝑢𝑏𝑖𝑐] =

⎛⎜⎜⎜⎜⎜⎜⎝
−59.1358 38.9089 20.2269 6.39666 41.9737 −21.1614
38.9089 −75.3102 36.4013 −27.7808 2.27754 16.6041
20.2269 36.4013 −56.6282 21.3841 −44.2512 4.55736
6.39666 −27.7808 21.3841 36.4013 4.55736 2.27754
41.9737 2.27754 −44.2512 4.55736 20.2269 6.39666
−21.1614 16.6041 4.55736 2.27754 6.39666 38.9089

⎞⎟⎟⎟⎟⎟⎟⎠
Tetragonal approximation (5.3): d′ = v′ = 0, trd = 1531, trv = 1479 and

(A.2) [H𝛾
𝑡𝑒𝑡𝑟𝑎] =

⎛⎜⎜⎜⎜⎜⎜⎝
−59.9342 35.8495 24.0847 5.8239 46.7414 −21.0897
35.8495 −69.6028 33.7533 −25.7103 1.8896 15.3674
24.0847 33.7533 −57.8381 19.8864 −48.631 5.7223
5.8239 −25.7103 19.8864 33.7533 5.7223 1.8896
46.7414 1.8896 −48.631 5.7223 24.0847 5.8239
−21.0897 15.3674 5.7223 1.8896 5.8239 35.8495

⎞⎟⎟⎟⎟⎟⎟⎠
First orthotropic approximation (5.4): d′ = v′ = 0, trd = 1531, trv = 1479 and

(A.3) [H𝛾
𝑜𝑟𝑡ℎ] =

⎛⎜⎜⎜⎜⎜⎜⎝
−57.9586 33.959 23.9997 5.3342 46.3021 −20.3543

33.959 −69.5995 35.6405 −26.2801 2.88311 14.4327
23.9997 35.6405 −59.6402 20.9459 −49.1853 5.92151
5.3342 −26.2801 20.9459 35.6405 5.92151 2.88311
46.3021 2.88311 −49.1853 5.92151 23.9997 5.3342
−20.3543 14.4327 5.92151 2.88311 5.3342 33.959

⎞⎟⎟⎟⎟⎟⎟⎠
Second orthotropic approximation (5.5): trd = 1531, trv = 1479,

d′ =

⎛⎝ −3.6837 −0.661831 1.37627
−0.661831 1.96893 0.158989

1.37627 0.158989 1.71477

⎞⎠ , v′ =

⎛⎝ −3.31669 −0.8154 −0.112441
−0.8154 6.51238 1.36466

−0.112441 1.36466 −3.19569

⎞⎠
and H = H𝛾

𝑐𝑢𝑏𝑖𝑐 is given by (A.1) (in particular d2
′ = 0).

Monoclinic approximation (5.6): d′ = v′ = 0, trd = 1531, trv = 1479 and

(A.4) [H𝛾
𝑚𝑜𝑛𝑜] =

⎛⎜⎜⎜⎜⎜⎜⎝
−58.7344 34.9674 23.767 0.6715 47.7714 −18.1515
34.9674 −67.8968 32.9294 −26.3969 4.4758 18.2628
23.767 32.9294 −56.6964 25.7254 −52.2472 −0.1113
0.6715 −26.3969 25.7254 32.9294 −0.1113 4.4758
47.7714 4.4758 −52.2472 −0.1113 23.767 0.6715
−18.1515 18.2628 −0.1113 4.4758 0.6715 34.9674

⎞⎟⎟⎟⎟⎟⎟⎠
Trigonal approximation of 𝛼-quartz Elasticity tensor (5.7): trd = 34.72, trv = 59.24,

d′ =

⎛⎝−0.764933 0.3098 0.4514
0.3098 −0.0727333 1.1811
0.4514 1.1811 0.837667

⎞⎠ , v′ =

⎛⎝−1.02767 0.4162 0.6064
0.4162 −0.0976667 1.5867
0.6064 1.5867 1.12533

⎞⎠
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and

(A.5) [H𝛼
𝑡𝑟𝑖𝑔] =

⎛⎜⎜⎜⎜⎜⎜⎝
−1.4953 −0.0086 1.504 −0.0148 −0.2917 −0.8173
−0.0086 0.6713 −0.6626 −0.1899 −0.0484 2.0042

1.504 −0.6626 −0.8413 0.2046 0.3402 −1.187
−0.0148 −0.1899 0.2046 −0.6626 −1.187 −0.0484
−0.2917 −0.0484 0.3402 −1.187 1.504 −0.0148
−0.8173 2.0042 −1.187 −0.0484 −0.0148 −0.0086

⎞⎟⎟⎟⎟⎟⎟⎠
Transversely approximation of Elasticity tensor (5.8): trd = 6.0707, trv = 6.4911,

d′ =

⎛⎝0.221833 −0.0745 −0.2495
−0.0745 0.235733 −0.2272
−0.2495 −0.2272 −0.457567

⎞⎠ , v′ =

⎛⎝ 0.1507 −0.0505 −0.1695
−0.0505 0.1601 −0.1543
−0.1695 −0.1543 −0.3108

⎞⎠
and

[H𝐾𝑆
𝑇𝐼 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
0.0176 0.0123 −0.0299 −0.0138 −0.0969 −0.0289
0.0123 0.0287 −0.0409 −0.0923 −0.0195 −0.0302
−0.0299 −0.0409 0.0708 0.106 0.1165 0.0592
−0.0138 −0.0923 0.106 −0.0409 0.0592 −0.0195
−0.0969 −0.0195 0.1165 0.0592 −0.0299 −0.0138
−0.0289 −0.0302 0.0592 −0.0195 −0.0138 0.0123

⎞⎟⎟⎟⎟⎟⎟⎠
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(Boris Desmorat) Sorbonne Université, UMPC Univ Paris 06, CNRS, UMR 7190, Institut d’Alembert,
F-75252 Paris Cedex 05, France & Univ Paris Sud 11, F-91405 Orsay, France

E-mail address: boris.desmorat@upmc.fr

(Rodrigue Desmorat) LMT (ENS Paris-Saclay, CNRS, Université Paris Saclay), F-94235 Cachan
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