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Abstract. We propose an effective geometrical approach to recover the normal form of a given
Elasticity tensor. We produce a rotation which brings an Elasticity tensor onto its normal form,
given its components in any orthonormal frame, and this for any tensor of any symmetry class.
Our methodology relies on the use of specific covariants and on the geometric characterization
of each symmetry class using these covariants. An algorithm to detect the symmetry class of
an Elasticity tensor is finally formulated.

1. Introduction

The linear elastic properties of a given material are encoded into an Elasticity tensor E, a
fourth-order tensor which relates linearly the stress tensor to the strain tensor. As it was clearly
emphasized by Boehler and coworkers [7, 8], any rotated Elasticity tensor encodes the same
material properties (in a different orientation). One shall say that the rotated tensor and initial
one are in the same orbit. It should be emphasized here that this has not to be confused with
a change of (orthonormal) basis once a basis has been fixed and the tensors expressed by their
components in this basis. Here, the action of the rotation group is defined intrinsically and
independently of any basis (no components are required to define this action).

The elastic materials are classified by their eight symmetry classes [16] (isotropic, transversely-
isotropic, cubic, trigonal, tetragonal, orthotropic, monoclinic, triclinic). Any non triclinic Elas-
ticity tensor has a given symmetry class and a normal form. An orthonormal frame in which the
matrix representation of this tensor belongs to such a normal form is called a proper or natural
basis for E [15]. For instance, consider a cubic Elasticity tensor which is given in an arbitrary
frame by its Voigt’s (matrix) representation [E] (not to be confused with the tensor E itself) as

(1.1) [E] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 𝐸1123 𝐸1113 𝐸1112

𝐸2211 𝐸2222 𝐸2233 𝐸2223 𝐸2213 𝐸2212

𝐸3311 𝐸3322 𝐸3333 𝐸3323 𝐸3313 𝐸3312

𝐸2311 𝐸2322 𝐸2333 𝐸2323 𝐸2313 𝐸2312

𝐸1311 𝐸1322 𝐸1333 𝐸1323 𝐸1313 𝐸1312

𝐸1211 𝐸1222 𝐸1233 𝐸1223 𝐸1213 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then, there exists a rotation 𝑔 such that the rotated Elasticity tensor, denoted by 𝑔 ⋆ E, and
where

(1.2) (𝑔 ⋆E)𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑝𝑔𝑗𝑞𝑔𝑘𝑟𝑔𝑙𝑠𝐸𝑝𝑞𝑟𝑠
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has the following Voigt’s representation

(1.3) [𝑔 ⋆E] =

⎛⎜⎜⎜⎜⎜⎜⎝
(𝑔 ⋆E)1111 (𝑔 ⋆E)1112 (𝑔 ⋆E)1112 0 0 0
(𝑔 ⋆E)1112 (𝑔 ⋆E)1111 (𝑔 ⋆E)1112 0 0 0
(𝑔 ⋆E)1112 (𝑔 ⋆E)1112 (𝑔 ⋆E)1111 0 0 0

0 0 0 (𝑔 ⋆E)1212 0 0
0 0 0 0 (𝑔 ⋆E)1212 0
0 0 0 0 0 (𝑔 ⋆E)1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

The problem is that it is not always easy to compute explicitly such a rotation. For instance,
given a cubic Elasticity tensor in its normal form (1.3) and applying a rotation of angle 𝜋

6 around
axis < 111 >, it is not an easy matter, if not aware of this transformation, to find a way back.
Moreover, measured tensors are in practice triclinic, due to numerical errors and experimental
discrepancy [1, 17, 14, 20]. Hence, the problem may also be numerically difficult.

Partial answers concerning the explicit determination of a proper basis have already been
investigated in [12, 11, 21, 5, 10] for the monoclinic and the orthotropic symmetry classes. To
do so, the authors construct a basis of eigenvectors for the second-order symmetric tensors that
inherit (part) of the symmetry of E, the dilatation and Voigt’s tensors [12, 11], defined as

(1.4)
d := tr12E (𝑑𝑖𝑗 = 𝐸𝑘𝑘𝑖𝑗),

v := tr13E (𝑣𝑖𝑗 = 𝐸𝑘𝑖𝑘𝑗).

The cornerstone of this approach is that d = d(E) and v = v(E) are covariants of E, meaning
that one has the covariance (equivariance) property

d(𝑔 ⋆E) = 𝑔 ⋆ d(E), v(𝑔 ⋆E) = 𝑔 ⋆ v(E),

where (𝑔 ⋆ a)𝑖𝑗 = 𝑔𝑖𝑘𝑔𝑗𝑙𝑎𝑘𝑙, for a second-order tensor a. In some non-degenerate cases, this leads
to the answer. The weakness of this approach is that d and v have at least the symmetry of E
but they may have more symmetry. For instance, in the cubic case, the pair (d,v) is isotropic.
Such loss of information has to be handled, as they can be experimentally encountered, for
example from the ultrasonic measurements made on a Ni base single crystal superalloy, close to
be cubic [19] (studied in section 5.1).

A natural way is to extend the idea of using covariants of E, which naturally inherit the
symmetry of E, but different from d and v. Note, however, that second-order covariants cannot
always encode all the geometric information carried by a fourth-order tensor [6, 24] (for example
when E is cubic). Taking into account this observation, it has been tried by some authors to use
the harmonic factorization, according to Sylvester’s theorem [29] and Maxwell’s multipoles [30].
However, this involves roots’ computations of polynomials of degree 4 and 8 [3, 5, 9], in order to
build a set of 8 unit vectors (Maxwell’s multipoles), without any clue of how to organize such
data. Besides, Maxwell’s multipoles are not, strictly speaking, first-order covariants of E and
are moreover very sensitive to conditioning.

The main purpose of the present work is to obtain an explicit normal form of an Elasticity
tensor E which belongs to a given symmetry class and a rotation which brings E to it. Note,
by the way, that the problem of determining the symmetry class of a given Elasticity tensor E,
using polynomial covariant equations, has already been solved explicitly in [26]. Of course, our
goal can be achieved numerically, as we can compute E = 𝑔 ⋆E for all 𝑔 ∈ SO(3) and try to find
rotation 𝑔 such that Voigt’s representation [E] has the good shape [17, 19]. A more geometrical
approach, initiated in [12, 11, 21, 5], relying on covariants, is possible and will be described in
this work. We shall first formulate new effective and fast procedures to calculate a natural basis
for a given Elasticity tensor, once we know its symmetry class.

An important tool, introduced in [13, 26] and which will be used many times in this paper, is
the generalized cross product between two totally symmetric tensors of any order A = A𝑠 and
B = B𝑠. It is defined as follows

(1.5) A×B = (B · 𝜀𝜀𝜀 ·A)𝑠 = −B×A,
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where (·)𝑠 means the total symmetrization (over all subscripts) and where 𝜀𝜀𝜀 is Levi-Civita third
order tensor (𝜀𝑖𝑗𝑘 = det(𝑒𝑒𝑒𝑖, 𝑒𝑒𝑒𝑗 , 𝑒𝑒𝑒𝑘) in any direct orthonormal basis (𝑒𝑒𝑒𝑖)). The expressions of the
components of (1.5) are given in section 4 and Appendix B for A and B of order two.

The outline of the paper is as follows. We first recall some mathematical materials on the
normal form of an Elasticity tensor in section 2 and the harmonic decomposition and the notion
of covariants in section 3. Then, in section 4, we formulate and prove theorems that are the
cornerstones to build our algorithms. In section 5, we provide and analyze experimental data,
issued from the literature and which are used to illustrate our methodology. In section 6, we
use our procedures to produce, for any given Elasticity tensor E, a natural basis for it (and a
rotation which brings it back to its normal form). Finally, an algorithm to detect the symmetry
class and recover a normal form is detailed in section 7.

2. Normal form of an Elasticity tensor

An Elasticity tensor E represents a material in a specific orientation, but the same material
is represented in another orientation by a rotated tensor 𝑔 ⋆ E. In mathematical terms, this
means that the rotation group SO(3) acts linearly on the space Ela of Elasticity tensors, which
we write as

E ↦→ E = 𝑔 ⋆E,

where

𝐸𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑝𝑔𝑗𝑞𝑔𝑘𝑟𝑔𝑙𝑠𝐸𝑝𝑞𝑟𝑠,

in any orthonormal basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3). The subset

{𝑔 ⋆E; 𝑔 ∈ SO(3)}

is called the orbit of E. A linear elastic material is thus represented by an orbit of an Elasticity
tensor rather than by a specific Elasticity tensor in its orbit.

The symmetry group of a tensor E ∈ Ela is the subgroup of SO(3) defined as

𝐺E := {𝑔 ∈ SO(3); 𝑔 ⋆E = E} .

Note that the symmetry group of 𝑔 ⋆E is

(2.1) 𝐺E = 𝑔𝐺E𝑔
−1.

Therefore, the classification of symmetries of materials relies on the conjugacy classes

[𝐺E] :=
{︀
𝑔𝐺E𝑔

−1, 𝑔 ∈ SO(3)
}︀
,

rather than on the symmetry groups of their respective tensors in a specific orientation. These
are known as symmetry classes.

It was shown in [16] that there are exactly eight Elasticity symmetry classes: triclinic [1],
monoclinic [Z2], orthotropic [D2], tetragonal [D4], trigonal [D3], transversely-isotropic [O(2)],
cubic [O] and isotropic [SO(3)]. Each symmetry class is a conjugacy class of subgroups and for
each of it, it is useful to fix a particular representative subgroup in it. Such representatives are
provided, for each Elasticity class, in the list below.

∙ The trivial group is designed by 1 := {𝐼}, no specific representative is required for it;
∙ Z2 is generated by the second-order rotation r(𝑒𝑒𝑒3, 𝜋) and is of order 2;
∙ D2 is generated by the second-order rotations r(𝑒𝑒𝑒3, 𝜋) and r(𝑒𝑒𝑒1, 𝜋) and is of order 4;
∙ D3 is generated by the third order rotation r(𝑒𝑒𝑒3,

2𝜋
3 ) and the second-order rotation

r(𝑒𝑒𝑒1, 𝜋). It is of order 6;
∙ D4 is generated by the fourth-order rotation r(𝑒𝑒𝑒3,

𝜋
2 ) and the second-order rotation

r(𝑒𝑒𝑒1, 𝜋). It is of order 8;
∙ O is the octahedral group, the orientation-preserving symmetry group of the cube with

vertices (±1,±1,±1), which is of order 24;
∙ O(2) is the group generated by all rotations r(𝑒𝑒𝑒3, 𝜃) (𝜃 ∈ [0; 2𝜋[) and the second-order

rotation r(𝑒𝑒𝑒1, 𝜋). It is of infinite order.
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In this list, the notation r(𝑛𝑛𝑛, 𝜃) denotes a rotation of angle 𝜃 around axis ⟨𝑛𝑛𝑛⟩, with the
convention that r(𝑒𝑒𝑒3, 𝜃) has the following matrix representation in the canonical basis (𝑒𝑒𝑒𝑖) of R3

r(𝑒𝑒𝑒3, 𝜃) =

⎛⎝cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎞⎠ .

There exists a partial order on symmetry classes, induced by inclusion between subgroups,
and defined as follows:

(2.2) [𝐺1] ⪯ [𝐺2] ⇐⇒ ∃𝑔 ∈ SO(3), 𝐺1 ⊂ 𝑔 𝐺2 𝑔
−1.

We can thus say that a tensor has “at least” or “at most” such or such symmetry. For example,
a tensor E is said to be at least orthotropic if it is either orthotropic, tetragonal, transversely-
isotropic, cubic or isotropic. A tensor E is said to be at least trigonal if it is either trigonal,
transversely-isotropic, cubic or isotropic. This order is however partial, which means that two
classes cannot necessarily be compared (for example the trigonal and the tetragonal classes). The
symmetry classes and their relations are summarized in Figure 1, where an arrow [𝐺1] → [𝐺2]
means that [𝐺1] ⪯ [𝐺2].

Figure 1. The eight symmetry classes of the Elasticity tensor [16, 2].

For any subgroup 𝐺 of SO(3) in the list above and inducing a symmetry class [𝐺], we define
its fixed point set

Ela𝐺 := {E ∈ Ela; 𝑔 ⋆E = E, ∀𝑔 ∈ 𝐺} .
This linear subspace of Ela is called a linear slice. It meets all the orbits of tensors which have
at least the symmetry class [𝐺]. In other words, given an Elasticity tensor E in the symmetry
class [𝐺], there exists a rotation 𝑔 ∈ SO(3) such that the symmetry group of 𝑔 ⋆E is exactly the
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subgroup 𝐺, which means that 𝑔 ⋆ E ∈ Ela𝐺. We say then that the Elasticity tensor 𝑔 ⋆ E is a
normal form of E.

Remark 2.1. When 𝐺 is a finite group, the linear slice Ela𝐺 is the subspace of solutions of the
linear system 𝑔𝑘 ⋆E = E (𝑘 = 1, . . . , 𝑟), where 𝑔𝑘 generate 𝐺.

We recall now, for each (non trivial) symmetry class [𝐺] of Ela, a normal form for each class in
Voigt’s representation. An orthonormal basis in which Voigt’s representation [E] of an Elasticity
tensor E is a normal form is called a proper basis or a natural basis for E.

∙ The cubic normal form is defined as the subspace of tensors fixed by O. It has 3 independent
parameters and writes

(2.3) [EO] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1112 𝐸1112 0 0 0
𝐸1112 𝐸1111 𝐸1112 0 0 0
𝐸1112 𝐸1112 𝐸1111 0 0 0

0 0 0 𝐸1212 0 0
0 0 0 0 𝐸1212 0
0 0 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

∙ The transversely-isotropic normal form is defined as the subspace of tensors fixed by O(2),
for which the transverse isotropy axis is thus 𝑒𝑒𝑒3. It has 5 independent parameters and writes

(2.4) [EO(2)] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 0
𝐸1122 𝐸1111 𝐸1133 0 0 0
𝐸1133 𝐸1133 𝐸3333 0 0 0

0 0 0 𝐸1313 0 0
0 0 0 0 𝐸1313 0
0 0 0 0 0 1

2(𝐸1111 − 𝐸1122)

⎞⎟⎟⎟⎟⎟⎟⎠ .

∙ The trigonal normal form is defined as the subspace of tensors fixed by D3. It has 6
independent parameters and writes

(2.5) [ED3 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 𝐸1123 0 0
𝐸1122 𝐸1111 𝐸1133 −𝐸1123 0 0
𝐸1133 𝐸1133 𝐸3333 0 0 0
𝐸1123 −𝐸1123 0 𝐸1313 0 0

0 0 0 0 𝐸1313 𝐸1123

0 0 0 0 𝐸1123
1
2(𝐸1111 − 𝐸1122)

⎞⎟⎟⎟⎟⎟⎟⎠ .

∙ The tetragonal normal form is defined as the subspace of tensors fixed by D4. It has 6
independent parameters and writes

(2.6) [ED4 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 0
𝐸1122 𝐸1111 𝐸1133 0 0 0
𝐸1133 𝐸1133 𝐸3333 0 0 0

0 0 0 𝐸1313 0 0
0 0 0 0 𝐸1313 0
0 0 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

∙ The orthotropic normal form is defined as the subspace of tensors fixed by D2. It has 9
independent parameters and writes

(2.7) [ED2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 0
𝐸1122 𝐸2222 𝐸2233 0 0 0
𝐸1133 𝐸2233 𝐸3333 0 0 0

0 0 0 𝐸2323 0 0
0 0 0 0 𝐸1313 0
0 0 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .
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∙ The monoclinic normal form is defined as the subspace of tensors fixed by Z2. It has a
symmetry plane normal to 𝑒𝑒𝑒3, has 13 independent parameters and writes

(2.8) [EZ2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐸1111 𝐸1122 𝐸1133 0 0 𝐸1112

𝐸1122 𝐸2222 𝐸2233 0 0 𝐸2212

𝐸1133 𝐸2233 𝐸3333 0 0 𝐸3312

0 0 0 𝐸2323 𝐸1323 0
0 0 0 𝐸1323 𝐸1313 0

𝐸1112 𝐸2212 𝐸3312 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

3. Covariants of the Elasticity tensor

A polynomial covariant C(E) of the Elasticity tensor E, is a tensor C which is a polynomial
function of E and such that

𝑔 ⋆C(E) = C(𝑔 ⋆E), ∀𝑔 ∈ SO(3).

Examples of covariants are the dilatation and Voigt’s second-order covariants d(E), v(E),
defined by (1.4). A fourth-order covariant H appears in the harmonic decomposition

E = (trd, trv,d′,v′,H)

of an Elasticity tensor (see [3, 27]), where d′ and v′ are the deviatoric parts of d and v, defined
as

(·)′ := (·) − 1

3
tr(·)1.

More precisely, we can write

(3.1) E = E𝑖𝑠𝑜 + Edv + H,

where the isotropic part of E is defined as

E𝑖𝑠𝑜 :=
1

9
(trd) 1⊗ 1 +

1

15
(3 trv − trd) J, J := 1⊗ 1− 1

3
1⊗ 1,

and its dilatation-Voigt part as

Edv :=
1

7

(︀
1⊗ (5d′ − 4v′) + (5d′ − 4v′) ⊗ 1

)︀
+

2

7

(︀
1⊗ (3v′ − 2d′) + (3v′ − 2d′) ⊗ 1

)︀
.

The remaining part

H := E−Edv −E𝑖𝑠𝑜,

is a fourth-order harmonic tensor (i.e. totally symmetric and traceless). The detailed expression
of its components 𝐻𝑖𝑗𝑘𝑙 can be found in [11, 4].

Remark 3.1. In these formulas, we have used the tensor products ⊗ and ⊗ of two symmetric
second-order tensors a and b, defined as

(a⊗ b)𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑗𝑏𝑘𝑙, (a⊗ b)𝑖𝑗𝑘𝑙 =
1

2
(𝑎𝑖𝑘𝑏𝑗𝑙 + 𝑎𝑖𝑙𝑏𝑗𝑘).

The covariants d(E), v(E) and H(E) depend linearly on E but there are other non linear
covariants which are extremely useful to study the geometry of E and which have been used
in [26] to formulate simple characterizations of the Elasticity symmetry classes. One of them is
the following second-order quadratic covariant, first introduced by Boehler and coworkers in [8]:

d2 := tr13(H : H) = H
... H, (d2)𝑖𝑗 = 𝐻𝑖𝑝𝑞𝑟𝐻𝑝𝑞𝑟𝑗 .

It depends on E through H and one has

(3.2) trd2 = ‖H‖2.

A full set of 70 polynomial covariants of H which generates the polynomial covariant algebra of
H has been produced in [26].
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4. Recovering normal forms using covariants

Covariants are useful to characterize the symmetry class of a tensor [26]. For instance, we
have introduced in (1.5), the generalized cross product which writes

(a× b)𝑖𝑗𝑘 =
1

6
(𝑏𝑖𝑝𝜀𝑝𝑗𝑞𝑎𝑞𝑘 + 𝑏𝑖𝑝𝜀𝑝𝑘𝑞𝑎𝑞𝑗 + 𝑏𝑗𝑝𝜀𝑝𝑖𝑞𝑎𝑞𝑘 + 𝑏𝑗𝑝𝜀𝑝𝑘𝑞𝑎𝑞𝑖 + 𝑏𝑘𝑝𝜀𝑝𝑖𝑞𝑎𝑞𝑗 + 𝑏𝑘𝑝𝜀𝑝𝑗𝑞𝑎𝑞𝑖) ,

for two second-order symmetric tensors A = a and B = b (see (B.1) in Appendix B for the
detailed expression of each component), and we have the following result [26].

Lemma 4.1. A second-order symmetric tensor a is orthotropic if and only if the third order
covariant a2 × a is non-vanishing.

Remark 4.2. a× 1 = 0, a′ × b = a× b′ = a′ × b′.

Consider now a family of second-order symmetric tensors ℱ = {a1,a2, . . . ,a𝑛}, with 𝑛 ≥ 2.
Recall that the symmetry class [𝐺ℱ ] of ℱ is the conjugacy class of the subgroup

𝐺ℱ =
⋂︁
𝑖

𝐺a𝑖 = {𝑔 ∈ SO(3); 𝑔 ⋆ a𝑖 = a𝑖, ∀𝑖} ,

and that such a family is either isotropic, transversely-isotropic, orthotropic, monoclinic or
triclinic. We have moreover the following result [26].

Theorem 4.3. Let (a1, . . . ,a𝑛) be an 𝑛-tuple of second-order symmetric tensors. Then:

(1) (a1, . . . ,a𝑛) is isotropic if and only if

a𝑘
′ = 0, 1 ≤ 𝑘 ≤ 𝑛,

where a𝑘
′ is the deviatoric part of a𝑘.

(2) (a1, . . . ,a𝑛) is transversely-isotropic if and only if there exists a𝑗 such that

a𝑗
′ ̸= 0, a𝑗 × a2𝑗 = 0,

and

a𝑗 × a𝑘 = 0, 1 ≤ 𝑘 ≤ 𝑛.

(3) (a1, . . . ,a𝑛) is orthotropic if and only if

tr(a𝑘 × a𝑙) = 0, 1 ≤ 𝑘, 𝑙 ≤ 𝑛,

and
∙ either there exists a𝑗 such that

a𝑗 × a2𝑗 ̸= 0;

∙ or there exists a pair (a𝑖,a𝑗) such that

a𝑖 × a𝑗 ̸= 0.

(4) (a1, . . . ,a𝑛) is monoclinic if and only if there exists a pair (a𝑖,a𝑗) such that

𝜔𝜔𝜔 := tr(a𝑖 × a𝑗) ̸= 0, and (a𝑘𝜔𝜔𝜔) ×𝜔𝜔𝜔 = 0, 1 ≤ 𝑘 ≤ 𝑛.

Remark 4.4. If we define the commutator of a𝑖 and a𝑗 by [a𝑖,a𝑗 ] = a𝑖a𝑗 − a𝑗a𝑖, then we have

tr(a𝑖 × a𝑗) = −1

6
𝜀 : [a𝑖,a𝑗 ].

Theorem 4.3 is the key point to recover the natural basis of a family ℱ = {a1,a2, . . . ,a𝑛} of
second-order symmetric tensors as follows. A natural basis for the family ℱ is one in which all
the members of the family have the same matrix-shape with a maximum of zero (see Figure 2,
where the joined circles mean “equal components” and the stars mean “distinct components”).

The problem of finding a normal form for ℱ is meaningful only when it is transversely-
isotropic, orthotropic or monoclinic. As an illustration of our purpose, we shall now detail how
to find a rotation which brings ℱ into a normal form in each of these three cases.
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Figure 2. Shapes of normal forms for families of second-order symmetric tensors.

∙ ℱ is transversely-isotropic: Find a member a𝑗 as in point (2) of theorem 4.3. Any
basis in which a𝑗 is diagonal, the last vector corresponding to its simple eigenvalue, will
achieve the task.

∙ ℱ is orthotropic: If there exists a𝑗 orthotropic in ℱ (i.e a𝑗
2 × a𝑗 ̸= 0), then just

diagonalize a𝑗 and this will answer the question. Otherwise, by point (3) of theorem 4.3,
we can find an orthotropic pair (a𝑖,a𝑗) in ℱ where both a𝑖 and a𝑗 are transversely-
isotropic. In that case, the eigenspaces of a𝑖 and a𝑗 corresponding to single eigenvalues
are one-dimensional and mutually orthogonal. A natural basis for ℱ is obtained by
choosing a unit vector 𝑢𝑢𝑢 in the first space, 𝑣𝑣𝑣 in the second space and completing to a
(direct) basis by adding 𝑢𝑢𝑢× 𝑣𝑣𝑣.

∙ ℱ is monoclinic: In that case, construct 𝜔 as in point (4) of theorem 4.3. Normalize
it to a unit vector and complete it into a basis by adding an orthonormal basis of the
plane 𝜔⊥. Permute, if necessary, the vectors to obtain a direct basis and we are done.

Remark 4.5. If t is a non-vanishing transversely-isotropic deviator, we do not need to solve a
polynomial equation to compute its unique simple eigenvalue. It is given by

𝜆 = 2
tr(t3)

tr(t2)
,

and the main axis of t (eigenspace of the simple eigenvalue) corresponds to the one-dimensional
subspace

(4.1) ker

(︂
t− 2

tr(t3)

tr(t2)
1

)︂
.

Remark 4.6. If (a1,a2) is an orthotropic couple where both a1 and a2 are transversely-isotropic,
then, their respective main axes are orthogonal and correspond respectively to

ker

(︂
t− 2

tr(a31)

tr(a21)
1

)︂
and ker

(︂
t− 2

tr(a32)

tr(a22)
1

)︂
.

The methodology developed above for a family ℱ of second-order symmetric tensors will
allow us to find a natural basis of all Elasticity tensors E, provided they are either transversely-
isotropic, tetragonal, trigonal, orthotropic or monoclinic. The isotropic case is trivial and the
triclinic case will not be considered in this paper (even if it also possible to define some kind
of normal form for a triclinic tensor [15, 25]). The cubic case will be treated at the end of this
section. To start with, we recall the following result which is a corollary of theorem [26, Theorem
10.2]. It allows us to solve the problem when E is either transversely-isotropic, tetragonal or
trigonal (details will be provided in section 6).

Lemma 4.7. Let E be a transversely-isotropic, tetragonal or trigonal Elasticity tensor. Then,
the triplet (d′,v′,d2

′) is transversely-isotropic.

To be able to reduce the case of an Elasticity tensor E to a family of second-order symmetric
tensors, when E is either orthotropic or monoclinic, we need more second-order symmetric
covariants which we shall introduce now. First, let us recall that the 2-contraction between H
and a second-order tensor a is defined as

(H : a)𝑖𝑗 := 𝐻𝑖𝑗𝑝𝑞𝑎𝑝𝑞.



RECOVERING NORMAL FORMS 9

Using this operation, we produce first the following two covariants

c3 := H : d2, and c4 := H : c3,

and introduce two families of symmetric second-order covariants of E, which will allow us to
solve the problem when E is either orthotropic or monoclinic. The first family,

(4.2) ℱ𝑜 :=
{︀
d′,v′,d2

′, c3, c4,H : d,H : v,H : d2,H : v2
}︀
,

will be used in the orthotropic case and the second family,

(4.3) ℱ𝑚 :=
{︀
d′,v′,d2

′, c3, c4,H : d,H : v,H : d2,H : v2,H : (dv)𝑠,H : (dd2)
𝑠,H : (vd2)

𝑠
}︀
,

will be used in the monoclinic case. Here, (·)𝑠 stands for the symmetric part of a second-order
tensor. The key-point to conclude is the following result, which is a consequence of [26, Theorem
10.2] and [26, Remark 10.4].

Theorem 4.8. For any Elasticity tensor E:

(1) E is monoclinic if and only if the family ℱ𝑚 of second-order tensors is monoclinic.
(2) E is orthotropic if and only if the family ℱ𝑜 of second-order tensors is orthotropic.
(3) Moreover, if the family ℱ𝑜 is transversely isotropic, then, the triplet (d′,v′,d2

′) is trans-
versely isotropic and E is either tetragonal, trigonal or transversely isotropic.

It remains to solve the problem when E is cubic. In that case, each second-order covariant
of E is isotropic [26]. Therefore its fourth-order covariant H is necessarily cubic (and thus non-
vanishing). A natural basis for H is therefore also one for E. The key-point to calculate such a
natural basis is then provided by the following theorem.

Theorem 4.9. Let H be a fourth-order cubic harmonic tensor. Then, the solutions of the linear
equation

(4.4) tr(H× a) = 0,

where a is a second-order symmetric tensor, is a three-dimensional vector space. Moreover,
orthotropic tensors a which are solution of (4.4) form a dense open set and the natural basis of
any such orthotropic tensor is a natural basis for H.

Remark 4.10. This means that solving the linear system (4.4) and picking-up randomly a solution
among them provides us with an orthotropic second-order symmetric tensor a which eigenvectors
define a proper basis for H.

Remark 4.11. In an orthonormal basis, the 10 components of the totally symmetric three-order
tensor tr(H× a) write

(tr(H× a))𝑖𝑗𝑘 =
1

10
(𝜀𝑖𝑝𝑞𝐻𝑗𝑘𝑝𝑟 + 𝜀𝑗𝑝𝑞𝐻𝑖𝑘𝑝𝑟 + 𝜀𝑘𝑝𝑞𝐻𝑖𝑗𝑝𝑟) 𝑎𝑞𝑟.

The detailed expressions of each component of tr(H× a) are provided by (B.2) in Appendix B.

Proof. The binary operation tr(H × a) being covariant, solutions a of tr(H × a) = 0 write as
𝑔 ⋆ a0, where a0 are the solutions of tr(H0 × a0) = 0, and where H0 is the normal form of H.
This normal form H0 (see for instance [2]) writes, in Voigt’s representation (1.1), as

[H0] = 𝛿

⎛⎜⎜⎜⎜⎜⎜⎝
8 −4 −4 0 0 0
−4 8 −4 0 0 0
−4 −4 8 0 0 0
0 0 0 −4 0 0
0 0 0 0 −4 0
0 0 0 0 0 −4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 𝛿 ̸= 0. It can be checked that the space of solutions of the equation tr(H0 × a0) = 0 cor-
responds exactly to the three-dimensional vector space of diagonal tensors, in which orthotropic
tensors are a dense open set. Hence, any natural basis for H0 (there are 24 such ones) is a
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natural basis for any solution a0 of tr(H0 × a0) = 0. Conversely, any natural basis of an or-
thotropic solution a0 corresponds to a natural basis of H0, since there are only 24 such bases.
Therefore, any natural basis for H corresponds to a natural basis of a, an orthotropic solution
of tr(H× a) = 0, and vice-versa, which ends the proof. �

5. Experimental data

As pointed out in the introduction, natural bases have been obtained in the literature for
some non-degenerate situations, using the dilatation or Voigt’s tensors [12, 11, 21, 5, 10]. We
present here some data which will be used in section 6 to illustrate our methodology. They
consist in

∙ a Ni base single crystal superalloy (with its successive exactly cubic, tetragonal, or-
thotropic and monoclinic Elasticity approximations),

∙ an 𝛼-quartz (which belongs to the trigonal crystal system, its exactly trigonal Elasticity
approximation [28, 30] is therefore considered),

∙ an exactly transversely-isotropic approximation issued from [22].

The Ni base single crystal superalloy has a nearly cubic microstructure [19]. Thus, for this
material, we will consider first the best cubic approximation of its associated Elasticity tensor
obtained by François and coworkers by a minimization procedure fully described in [17, 18, 19]
(and for which the covariants are at least cubic, thus as second order deviatoric tensors d′ = v′ =
0). We will consider then successive relevant approximations, still obtained by a minimization
procedure, preserving the symmetry planes of initial exactly cubic symmetry, and keeping d′ =
v′ = 0 (in order to illustrate the abilities of proposed methodology to handle the degenerate
cases). These approximations will exactly belong to one of the tetragonal, orthotropic and
monoclinic symmetry classes.

Note that in this section and section 6, all experimental tensors, as well as their linear co-
variants, are expressed in GPa and that their fourth-order harmonic components are provided
in Appendix A. Moreover, all Voigt’s (matrix) representations are given in the same fixed
orthonormal basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3).

5.1. Ni base single crystal superalloy. Voigt’s representation of the measured Elasticity
tensor E𝛾 of a Ni base single crystal superalloy, obtained by ultrasonic measurements in [19],
writes as

[E𝛾 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
243 136 135 22 52 −17
136 239 137 −28 11 16
135 137 233 29 −49 3
22 −28 29 133 −10 −4
52 11 −49 −10 119 −2
−17 16 3 −4 −2 130

⎞⎟⎟⎟⎟⎟⎟⎠ .

We get

trd = 1531, trv = 1479,

and

d′ =

⎛⎝11
3 2 14
2 5

3 23
14 23 −16

3

⎞⎠ , v′ =

⎛⎝ −1 −11 −1
−11 9 −1
−1 −1 −8

⎞⎠ .

The fourth-order harmonic part of E𝛾 writes

[H] =

⎛⎜⎜⎜⎜⎜⎜⎝
− 1986

35
1093
35

893
35

5 352
7

− 99
7

1093
35

− 2306
35

1213
35

−31 3
7

132
7

893
35

1213
35

− 2106
35

26 − 355
7

− 33
7

5 −31 26 1213
35

− 33
7

3
7

352
7

3
7

− 355
7

− 33
7

893
35

5
− 99

7
132
7

− 33
7

3
7

5 1093
35

⎞⎟⎟⎟⎟⎟⎟⎠ .
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We get thus

‖E𝛾‖2 = ‖E𝑖𝑠𝑜‖2 + ‖Edv‖2 + ‖H‖2,

where ‖E𝛾‖2 := 𝐸𝛾
𝑖𝑗𝑘𝑙𝐸

𝛾
𝑖𝑗𝑘𝑙. Moreover:

∙ The squared norm of the isotropic part E𝑖𝑠𝑜 of E𝛾 writes

‖E𝑖𝑠𝑜‖2 =
1

15
(2(trd)2 − 2 trd trv + 3(trv)2),

and corresponds to the contribution of the isotropic parts of the dilatation and the Voigt
tensors.

∙ The squared norm of the dilatation-Voigt parts Edv of E𝛾 writes

‖Edv‖2 =
2

21
‖d′ + 2v′‖2 +

4

3
‖d′ − v′‖2,

and corresponds to the contribution of the deviatoric parts of the dilatation and the
Voigt tensors.

∙ The squared norm of the harmonic part H of E𝛾 writes

(5.1) ‖H‖2 = trd2.

For this single crystal superalloy, the isotropic contribution is the largest,

‖E𝑖𝑠𝑜‖2

‖E𝛾‖2
= 0.880438 ,

while the anisotropic dilatational-Voigt contribution is negligible, as

‖Edv‖2

‖E𝛾‖2
= 0.005826 ,

and the fourth-order harmonic contribution is of order two in magnitude,

‖H‖2

‖E𝛾‖2
= 0.113736 .

All the following approximations have identical isotropic parts.

Approximation of E𝛾 by a cubic Elasticity tensor:

(5.2) [E𝛾
𝑐𝑢𝑏𝑖𝑐] =

⎛⎜⎜⎜⎜⎜⎜⎝
240.131 144.442 125.760 6.39666 41.9737 −21.1614
144.442 223.957 141.935 −27.7808 2.27754 16.6041
125.760 141.935 242.638 21.3841 −44.2512 4.55736
6.39666 −27.7808 21.3841 133.268 4.55736 2.27754
41.9737 2.27754 −44.2512 4.55736 117.094 6.39666
−21.1614 16.6041 4.55736 2.27754 6.39666 135.776

⎞⎟⎟⎟⎟⎟⎟⎠ .

which is exactly cubic with ‖E𝛾 −E𝛾
𝑐𝑢𝑏𝑖𝑐‖/‖E

𝛾‖ = 0.105.
Approximation of E𝛾 by a tetragonal Elasticity tensor:

(5.3) [E𝛾
𝑡𝑒𝑡𝑟𝑎] =

⎛⎜⎜⎜⎜⎜⎜⎝
239.333 141.383 129.618 5.8239 46.7414 −21.0897
141.383 229.664 139.287 −25.7103 1.8896 15.3674
129.618 139.287 241.429 19.8864 −48.631 5.7223
5.8239 −25.7103 19.8864 130.62 5.7223 1.8896
46.7414 1.8896 −48.631 5.7223 120.951 5.8239
−21.0897 15.3674 5.7223 1.8896 5.8239 132.716

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is exactly tetragonal with ‖E𝛾 −E𝛾
𝑡𝑒𝑡𝑟𝑎‖/‖E𝛾‖ = 0.0996.
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First approximation of E𝛾 by an orthotropic Elasticity tensor:

(5.4) [E
𝛾 (1)
𝑜𝑟𝑡ℎ ] =

⎛⎜⎜⎜⎜⎜⎜⎝
241.3079 139.4923 129.533 5.3342 46.3021 −20.3543
139.4923 229.6671 141.1738 −26.2801 2.8831 14.4327
129.533 141.1738 239.6264 20.9459 −49.1853 5.9215
5.3342 −26.2801 20.9459 132.5072 5.9215 2.8831
46.3021 2.8831 −49.1853 5.9215 120.8663 5.3342
−20.3543 14.4327 5.9215 2.8831 5.3342 130.8256

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is exactly orthotropic with ‖E𝛾 −E
𝛾 (1)
𝑜𝑟𝑡ℎ‖/‖E

𝛾‖ = 0.0988.

Second approximation of E𝛾 by an orthotropic Elasticity tensor E
𝛾 (2)
𝑜𝑟𝑡ℎ :

(5.5) [E
𝛾 (2)
𝑜𝑟𝑡ℎ ] =

⎛⎜⎜⎜⎜⎜⎜⎝
237.183 141.391 128.075 5.73042 42.1382 −21.4889
141.391 228.24 142.671 −27.3681 3.32484 16.2765
128.075 142.671 241.302 21.7967 −44.0867 4.55057
5.73042 −27.3681 21.7967 133.637 4.397 1.83613
42.1382 3.32484 −44.0867 4.397 114.865 6.93608
−21.4889 16.2765 4.55057 1.83613 6.93608 137.635

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is exactly orthotropic with ‖E𝛾 −E
𝛾 (2)
𝑜𝑟𝑡ℎ‖/‖E

𝛾‖ = 0.1029.
Approximation of E𝛾 by a monoclinic Elasticity tensor E𝛾

𝑚𝑜𝑛𝑜:

(5.6) [E𝛾
𝑚𝑜𝑛𝑜] =

⎛⎜⎜⎜⎜⎜⎜⎝
240.532 140.501 129.3 0.6715 47.7714 −18.1515
140.501 231.37 138.463 −26.3969 4.4758 18.2628
129.3 138.463 242.57 25.7254 −52.2472 −0.1113
0.6715 −26.3969 25.7254 129.796 −0.1113 4.4758
47.7714 4.4758 −52.2472 −0.1113 120.634 0.6715
−18.1515 18.2628 −0.1113 4.4758 0.6715 131.834

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is exactly monoclinic with ‖E𝛾 −E𝛾
𝑚𝑜𝑛𝑜‖/‖E𝛾‖ = 0.0883.

5.2. Trigonal 𝛼-quartz. We consider now the trigonal Elasticity tensor of the 𝛼-quartz, pro-
vided in [30] and obtained from experimental data issued from [28]. In Voigt’s representation,
it writes

(5.7) [E𝛼
𝑡𝑟𝑖𝑔] =

⎛⎜⎜⎜⎜⎜⎜⎝
7.9122 0.7161 2.1801 −0.0778 −0.054 −0.6541
0.7161 10.808 −0.0235 0.4322 −0.0725 2.1674
2.1801 −0.0235 10.2544 0.8267 0.5779 −1.2035
−0.0778 0.4322 0.8267 4.3259 −1.0971 0.0825
−0.054 −0.0725 0.5779 −1.0971 6.2917 0.3278
−0.6541 2.1674 −1.2035 0.0825 0.3278 4.5151

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is exactly trigonal.

5.3. Transversely isotropic Elasticity tensor. Finally, we will consider the transversely-
isotropic Elasticity tensor E𝐾𝑆

𝑇𝐼 , obtained in [22]. In Voigt’s representation, it writes

(5.8) [E𝐾𝑆
𝑇𝐼 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
1.4373 0.5382 0.2699 −0.0879 −0.181 −0.054
0.5382 1.4577 0.2634 −0.1688 −0.1009 −0.0553
0.2699 0.2634 1.0327 0.0295 0.0324 0.0348
−0.0879 −0.1688 0.0295 0.4046 0.0588 −0.0209
−0.181 −0.1009 0.0324 0.0588 0.4156 −0.015
−0.054 −0.0553 0.0348 −0.0209 −0.015 0.4615

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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which is exactly transversely isotropic and which was obtained as the closest transversely-
isotropic tensor to the following raw Elasticity tensor

[E𝐾𝑆 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
1.3045 0.6327 0.2592 −0.1039 −0.2385 −0.1215
0.6327 1.4131 0.2648 −0.1261 −0.0705 −0.0301
0.2592 0.2648 1.0389 0.0395 0.045 0.0317
−0.1039 −0.1261 0.0395 0.4794 0.019 −0.0514
−0.2385 −0.0705 0.045 0.019 0.3747 −0.016
−0.1215 −0.0301 0.0317 −0.0514 −0.016 0.5128

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with relative error ‖E𝐾𝑆 −E𝐾𝑆
𝑇𝐼 ‖/‖E𝐾𝑆‖ = 0.1278.

6. Effective computations

For each symmetry class, we shall explain how to find a rotation which brings an Elasticity
tensor E whose components are given in an arbitrary orthonormal direct basis ℬ0 = (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3),
into its normal form. More precisely, we will compute an orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3),
and hence a rotation

(6.1) 𝑔 =

⎛⎝𝑢𝑢𝑢1 · 𝑒𝑒𝑒1 𝑢𝑢𝑢1 · 𝑒𝑒𝑒2 𝑢𝑢𝑢1 · 𝑒𝑒𝑒3
𝑢𝑢𝑢2 · 𝑒𝑒𝑒1 𝑢𝑢𝑢2 · 𝑒𝑒𝑒2 𝑢𝑢𝑢2 · 𝑒𝑒𝑒3
𝑢𝑢𝑢3 · 𝑒𝑒𝑒1 𝑢𝑢𝑢3 · 𝑒𝑒𝑒2 𝑢𝑢𝑢3 · 𝑒𝑒𝑒3

⎞⎠ ,

such that the Voigt’s representation (1.1) of 𝑔⋆E is a normal form of the symmetry class of E. In
the following, all Voigt’s representations of Elasticity tensors are given in the initial orthonormal
basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3).

6.1. Cubic class. The proposed methodology for a cubic Elasticity tensor E𝑐𝑢𝑏𝑖𝑐 is the follow-
ing.

(1) Calculate the fourth-order harmonic tensor H of E𝑐𝑢𝑏𝑖𝑐 from (3.1).
(2) Solve the linear system

tr(H× a) = 0, (tr(H× a))𝑖𝑗𝑘 =
1

10
(𝜀𝑖𝑝𝑞𝐻𝑗𝑘𝑝𝑟 + 𝜀𝑗𝑝𝑞𝐻𝑖𝑘𝑝𝑟 + 𝜀𝑘𝑝𝑞𝐻𝑖𝑗𝑝𝑟) 𝑎𝑞𝑟,

where a is a second-order symmetric tensor and (see Appendix B for the detailed com-
ponents expressions for third order tensor tr(H × a)). Pick-up randomly a solution a
among them. According to theorem 4.9, it will be orthotropic (i.e. a will have three
distinct eigenvalues). This can be checked by verifying that a2 × a ̸= 0.

(3) Diagonalize a and compute a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) of eigenvectors
for a.

(4) The normal form (2.3) is given by EO = 𝑔 ⋆E𝑐𝑢𝑏𝑖𝑐 with 𝑔 defined by (6.1) and its action,
by (1.2).

Remark 6.1. Since tr(H× 1) = 0 for every tensor H, it is enough to solve the equation

tr(H× a′) = 0,

for deviatoric tensors a′, which leads to solve a linear system in a five-dimensional space.

Example 6.1. Consider the cubic Elasticity tensor (5.2) for Ni base single crystal superalloy. It
is such that trd = 1531, trv = 1479, d′ = 0, v′ = 0.

(1) Its fourth-order harmonic part H is given by (A.1) and we get d2
′ = (tr13H

2)′ = 0.
(2) Setting arbitrarily 𝑎′13 = 1 and 𝑎′12 = 1, the solution of tr(H× a′) = 0 (see remark 6.1)

leads to

a′ =

⎛⎝3.485 1 1
1 −9.93526 −2.23089
1 −2.23089 6.45025

⎞⎠ ,

which is orthotropic since (a′)2 × a′ ̸= 0.
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(3) Computing a direct orthonormal basis of eigenvectors for a′, we get

𝑔 =

⎛⎝0.0813519 −0.987342 −0.136151
0.24438 −0.112674 0.963111

−0.966261 −0.111623 0.232121

⎞⎠ .

(4) And we can check that (E𝛾
𝑐𝑢𝑏𝑖𝑐)O = 𝑔 ⋆E𝛾

𝑐𝑢𝑏𝑖𝑐 writes

[(E𝛾
𝑐𝑢𝑏𝑖𝑐)O] =

⎛⎜⎜⎜⎜⎜⎜⎝
213.355 148.489 148.489 0 0 0
148.489 213.355 148.489 0 0 0
148.489 148.489 213.355 0 0 0

0 0 0 139.823 0 0
0 0 0 0 139.823 0
0 0 0 0 0 139.823

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

The normal form given in [19] is retrieved.

6.2. Transversely isotropic class. The proposed methodology for a transversely-isotropic
Elasticity tensor E𝑇𝐼 is the following.

(1) Compute the triplet of covariant deviators (d′,v′,d2
′) of E𝑇𝐼 (see section 3). By

lemma 4.7, the triplet (d′,v′,d2
′) is transversely-isotropic. Thus, one of them, let us

call it t, is transversely-isotropic.
(2) Let 𝑢𝑢𝑢3 be the unit eigenvector corresponding to the single eigenvalue of t. By remark 4.5,

𝑢𝑢𝑢3 can be obtained by solving the linear system,(︂
t− 2

tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0.

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) of R3 by choosing an
orthonormal pair (𝑢𝑢𝑢1,𝑢𝑢𝑢2) orthogonal to 𝑢𝑢𝑢3. For instance, if 𝑢𝑢𝑢3 ̸= ±𝑒𝑒𝑒3, one can choose

(6.2) 𝑢𝑢𝑢1 =
𝑒𝑒𝑒3 × 𝑢𝑢𝑢3
‖𝑒𝑒𝑒3 × 𝑢𝑢𝑢3‖

and 𝑢𝑢𝑢2 = 𝑢𝑢𝑢3 × 𝑢𝑢𝑢1.

(4) The normal form (2.4) is given by EO(2) = 𝑔 ⋆E𝑇𝐼 with rotation 𝑔 defined by (6.1) and
its action on E𝑇𝐼 computed using (1.2).

Remark 6.2. If t = t′ is a transversely-isotropic deviator, then t2×t = 0 with t ̸= 0, and t writes
t = (−1

2𝜆,−
1
2𝜆, 𝜆) in its proper basis, where its simple eigenvalue 𝜆 is derived as in remark 4.5.

Example 6.2. Consider the transversely-isotropic Elasticity tensor (5.8).

(1) We find

d′ =

⎛⎝0.221833 −0.0745 −0.2495
−0.0745 0.235733 −0.2272
−0.2495 −0.2272 −0.457567

⎞⎠ ,

v′ = 0.679222d′, d2
′ = −0.0977232d′,

and we can check that the triplet (d′,v′,d2
′) is transversely-isotropic. We choose t = d′.

Its simple eigenvalue is given by

𝜆 = 2
tr(d′3)

tr(d′2)
= −0.607173.

(2) Solving the linear system (4.1) returns:

𝑢𝑢𝑢3 =

⎛⎝ 0.29966
0.272898
0.914183

⎞⎠ .
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(3) Build a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) from (6.2) and compute 𝑔 using (6.1):

𝑔 =

⎛⎝−0.673321 0.73935 0
−0.675902 −0.615539 0.405301

0.29966 0.272898 0.914183

⎞⎠ .

(4) Then, we can check that (E𝐾𝑆
𝑇𝐼 )O(2) = 𝑔 ⋆E𝐾𝑆

𝑇𝐼 writes

(6.3) [(E𝐾𝑆
𝑇𝐼 )O(2)] =

⎛⎜⎜⎜⎜⎜⎜⎝
1.5641 0.6046 0.1583 0 0 0
0.6046 1.5642 0.1582 0 0 0
0.1583 0.1582 1.0997 0 0 0

0 0 0 0.3258 0 0
0 0 0 0 0.3257 0
0 0 0 0 0 0.4799

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa),

which is the normal form of the optimal transversely-isotropic tensor obtained in [22].

6.3. Trigonal class. The proposed methodology for a trigonal Elasticity tensor E𝑡𝑟𝑖𝑔 is the
following. The first three steps are the same as those for the transversely-isotropic case.

(1) Compute the transversely-isotropic triplet (d′,v′,d2
′) from E𝑡𝑟𝑖𝑔 (see lemma 4.7 and

section 3). Extract from this triplet a transversely-isotropic deviator t (remark 6.2).
(2) Let 𝑢𝑢𝑢3 be a unit vector, solution of the linear system(︂

t− 2
tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0.

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) of R3, using (6.2), for
instance, and define 𝑔1 as the rotation given by (6.1).

(4) Compute E := 𝑔1 ⋆E𝑡𝑟𝑖𝑔 (using (1.2)) and define 𝜃0 to be one solution of the equation

(6.4) 𝐸1123 sin 3𝜃 = 𝐸1113 cos 3𝜃.

(5) The normal form (2.5) of E𝑡𝑟𝑖𝑔 is given by ED3 = r(𝑒𝑒𝑒3, 𝜃0) ⋆ E, where r(𝑒𝑒𝑒3, 𝜃0) is the

rotation of angle 𝜃0 around axis 𝑒𝑒𝑒3 and its action on E is computed using (1.2).

Remark 6.3. Equation (6.4) derives from the observation that the matrix form of a trigonal
Elasticity tensor with correct third axis 𝑢𝑢𝑢3 writes

(6.5) [E𝑡𝑟𝑖𝑔] =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸1111 𝐸1122 𝐸1133 𝐸1123 𝐸1113 0
𝐸1122 𝐸1111 𝐸1133 −𝐸1123 −𝐸1113 0
𝐸1133 𝐸1133 𝐸3333 0 0 0
𝐸1123 −𝐸1123 0 𝐸1313 0 −𝐸1113

𝐸1113 −𝐸1113 0 0 𝐸1313 𝐸1123

0 0 0 −𝐸1113 𝐸1123
1
2(𝐸1111 − 𝐸1122)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, a rotation of E𝑡𝑟𝑖𝑔 around 𝑢𝑢𝑢3 and of angle 𝜃0, solution of (6.4), leads to the normal
form (2.5).

Example 6.3. Consider the trigonal Elasticity tensor (5.7) for 𝛼-quartz.

(1) We compute

trd = 34.709, trv = 59.249 ,

and

v′ =

⎛⎝−1.02767 0.4162 0.6064
0.4162 −0.0976667 1.5867
0.6064 1.5867 1.12533

⎞⎠ .

We check that v′ is transversely-isotropic (v′2 × v′ = 0) and observe that

d′ = 0.74434v′, and d2
′ = −0.828279v′.
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The simple eigenvalue of v′ is given by

2
tr(v′3)

tr(v′2)
= 2.37334 .

(2) Solving the linear system (4.1) with t = v′ gives

𝑢𝑢𝑢3 =

⎛⎝ 0.21137
0.553074
0.805873

⎞⎠ , ‖𝑢𝑢𝑢3‖ = 1.

(3) We build then a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) using (6.2) and define 𝑔1
using (6.1),

𝑔1 =

⎛⎝−0.934108 0.356991 0
−0.287689 −0.752773 0.592088

0.21137 0.553074 0.805873

⎞⎠ .

(4) The Elasticity tensor E = 𝑔1 ⋆E𝑡𝑟𝑖𝑔 writes

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝
8.76 0.6 1.33 1.706 0.289 0
0.6 8.76 1.33 −1.706 −0.288 0
1.33 1.33 10.68 0 0 0
1.706 −1.706 0 5.72 0 −0.288
0.289 −0.288 0 0 5.72 1.706

0 0 0 −0.288 1.706 4.08

⎞⎟⎟⎟⎟⎟⎟⎠ .

We solve (6.4) and choose the solution

𝜃0 =
1

3
arctan

(︂
𝐸1113

𝐸1123

)︂
= 0.0558614 .

(5) We define

r(𝑒𝑒𝑒3, 𝜃0) =

⎛⎝ 0.99844 −0.0558324 0
0.0558324 0.99844 0

0 0 1

⎞⎠ .

Finally, one can check that (E𝛼
𝑡𝑟𝑖𝑔)D3 = r(𝑒𝑒𝑒3, 𝜃0) ⋆E writes

[(E𝛼
𝑡𝑟𝑖𝑔)D3 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
8.76 0.6 1.33 1.73 0 0
0.6 8.76 1.33 −1.73 0 0
1.33 1.33 10.68 0 0 0
1.73 −1.73 0 5.72 0 0

0 0 0 0 5.72 1.73
0 0 0 0 1.73 4.08

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

6.4. Tetragonal class. The methodology for a tetragonal Elasticity tensor E𝑡𝑒𝑡𝑟𝑎 is similar to
the one used for the trigonal case.

(1) Compute the transversely-isotropic triplet (d′,v′,d2
′) from E𝑡𝑒𝑡𝑟𝑎 (see lemma 4.7 and

section 3). Extract from this triplet a transversely-isotropic deviator t (remark 6.2).
(2) Let 𝑢𝑢𝑢3 with ‖𝑢𝑢𝑢3‖ = 1 be a solution of the linear system(︂

t− 2
tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0 .

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) of R3, using (6.2), for
instance and define 𝑔1 as the rotation given by (6.1).

(4) Compute E := 𝑔1 ⋆E𝑡𝑒𝑡𝑟𝑎 (using (1.2)) and define 𝜃0 to be one solution of

(6.6) 4𝐸1112 cos 4𝜃 =
(︀
2𝐸1212 + 𝐸1122 − 𝐸1111

)︀
sin 4𝜃,

which always exists if E is tetragonal.
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(5) The normal form (2.6) is given by ED4 = r(𝑒𝑒𝑒3, 𝜃0) ⋆E, where r(𝑒𝑒𝑒3, 𝜃0) is the rotation of
angle 𝜃0 around 𝑒𝑒𝑒3 and its action on E is computed using (1.2).

Remark 6.4. Equation (6.6) derives from the observation that the matrix-form of a tetragonal
Elasticity tensor with correct third axis 𝑢𝑢𝑢3 writes

(6.7) [E𝑡𝑒𝑡𝑟𝑎] =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸1111 𝐸1122 𝐸1133 0 0 𝐸1112

𝐸1122 𝐸1111 𝐸1133 0 0 −𝐸1112

𝐸1133 𝐸1133 𝐸3333 0 0 0
0 0 0 𝐸1313 0 0
0 0 0 0 𝐸1313 0

𝐸1112 −𝐸1112 0 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, a rotation of E𝑡𝑒𝑡𝑟𝑎 around 𝑢𝑢𝑢3 and of angle 𝜃0, solution of (6.6), leads to the normal
form (2.6).

Example 6.4. Consider the tetragonal Elasticity tensor (5.3) for Ni base single crystal superalloy.

(1) We get d′ = 0, v′ = 0 and

d2
′ =

⎛⎝1389.87 341.696 47.1186
341.696 −2729.03 −571.863
47.1186 −571.863 1339.17

⎞⎠ ,

which is transversely-isotropic ((d2
′)2 × d2

′ = 0). Its simple eigenvalue is given by

2
tr(d′3

2 )

tr(d′2
2 )

= −2836.05 .

(2) Solving the linear system (4.1) with t = d2
′ gives

𝑢𝑢𝑢3 =

⎛⎝0.0813519
−0.987342
−0.136151

⎞⎠ , ‖𝑢𝑢𝑢3‖ = 1.

(3) We build then a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) using (6.2) and define 𝑔1
using (6.1),

𝑔1 =

⎛⎝ 0.996623 0.0821166 0
0.0111802 −0.135691 0.990688
0.0813519 −0.987342 −0.136151

⎞⎠ .

(4) We compute E := 𝑔1 ⋆E𝑡𝑒𝑡𝑟𝑎 and solve (6.6) and choose the solution

𝜃0 =
1

4
arctan

(︂
4𝐸1112

2𝐸1212 + 𝐸1122 − 𝐸1111

)︂
= 0.236501 .

(5) Finally, we can check that (E𝛾
𝑡𝑒𝑡𝑟𝑎)D4 = r(𝑒𝑒𝑒3, 𝜃0) ⋆E writes

[(E𝛾
𝑡𝑒𝑡𝑟𝑎)D4 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
210.103 154.993 145.237 0 0 0
154.993 210.103 145.237 0 0 0
145.237 145.237 219.858 0 0 0

0 0 0 136.571 0 0
0 0 0 0 136.571 0
0 0 0 0 0 146.326

⎞⎟⎟⎟⎟⎟⎟⎠ .

6.5. Orthotropic class. The methodology for an orthotropic Elasticity tensor E𝑜𝑟𝑡ℎ𝑜 is based
on the deep investigation of the family ℱ𝑜 of second-order symmetric covariants given by (4.2).
This family is orthotropic by theorem 4.8 and we have to distinguish between two cases.

(1) If there exists an orthotropic tensor a in the family ℱ𝑜, then, a direct orthonormal basis
of eigenvectors for a is also a natural basis for ℱ𝑜.
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(2) Otherwise, we can find an orthotropic couple (a1,a2) in ℱ𝑜. In that case, both a1 and
a2 are transversely-isotropic and their respective main axis are orthogonal. Let 𝑢𝑢𝑢1 and
𝑢𝑢𝑢2 be unit vectors spanning these axes (they can be obtained using remark 4.6). Then,
a natural basis for E𝑜𝑟𝑡ℎ𝑜 is ℬ := (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢1 × 𝑢𝑢𝑢2).

In both cases, the orthotropic normal form (2.7) is recovered by (E𝑜𝑟𝑡ℎ𝑜)D2 = 𝑔 ⋆ E𝑜𝑟𝑡ℎ𝑜, where
𝑔 is defined by (6.1) and its action on E𝑜𝑟𝑡ℎ𝑜 is computed using (1.2).

In [26, Theorem 10.2], it was shown that if E𝑜𝑟𝑡ℎ𝑜 is orthotropic, then the triplet (d′,v′,d2
′)

is either orthotropic or transversely-isotropic. This observation leads to a possible optimization
of the methodology proposed above.

∙ If this triplet is orthotropic, our methodology can be optimized, by looking for an or-
thotropic tensor or an orthotropic couple of transversely-isotropic tensors in this triplet,
rather than in the whole family ℱ𝑜.

∙ If the triplet is transversely-isotropic, an alternative methodology similar to the one used
for a trigonal or a tetragonal tensor is still possible and is detailed below.
(1) Extract a transversely-isotropic deviator t from the triplet (d′,v′,d2

′).
(2) Compute 𝑢𝑢𝑢3 with ‖𝑢𝑢𝑢3‖ = 1 as a solution of the linear system(︂

t− 2
tr(t3)

tr(t2)
1

)︂
𝑢𝑢𝑢 = 0,

as explained in remark 4.5.
(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ1 = (𝑤𝑤𝑤1,𝑤𝑤𝑤2,𝑢𝑢𝑢3) of R3, using (6.2) for

instance, and define 𝑔1 as the rotation given by (6.1).
(4) Compute E := 𝑔1 ⋆E𝑜𝑟𝑡ℎ𝑜 (using (1.2)) and let 𝜃0 be a solution of

(6.8) 2𝐸3312 cos 2𝜃 = (𝐸1133 − 𝐸2233) sin 2𝜃,

which always exists as E is an orthotropic tensor.
(5) The normal form (2.7) is given by (E𝑜𝑟𝑡ℎ𝑜)D2 = r(𝑒𝑒𝑒3, 𝜃0) ⋆ E, where r(𝑒𝑒𝑒3, 𝜃0) is the

rotation of angle 𝜃0 around 𝑒𝑒𝑒3 and its action on E is computed using (1.2).

Remark 6.5. As in the trigonal and the tetragonal cases, equation (6.8) is derived from the
observation that an orthotropic Elasticity tensor with one correct axis, say 𝑢𝑢𝑢3, writes

[E𝑜𝑟𝑡ℎ𝑜] =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸1111 𝐸1122 𝐸1133 0 0 𝐸1112

𝐸1122 𝐸2222 𝐸2233 0 0 𝐸2212

𝐸1133 𝐸2233 𝐸3333 0 0 𝐸3312

0 0 0 𝐸2323 0 0
0 0 0 0 𝐸1313 0

𝐸1112 𝐸2212 𝐸3312 0 0 𝐸1212

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, a rotation of E𝑜𝑟𝑡ℎ𝑜 around 𝑢𝑢𝑢3 and of angle 𝜃0, solution of (6.8), leads to the normal
form (2.7).

Example 6.5. Consider the orthotropic Elasticity tensor (5.4) for Ni base single crystal superalloy.
This example is interesting because both the dilatation and the Voigt second-order covariants
of this Elasticity tensor are isotropic, d′ = v′ = 0. Hence, simple methods to recover its normal
form fail. However, one can check that its deviatoric second-order covariant

d2
′ =

⎛⎝ 523.33 207.103 500.816
207.103 −2721.59 −651.919
500.816 −651.919 2198.26

⎞⎠ ,

is orthotropic. Its diagonalization defines using (6.1) the rotation

𝑔 =

⎛⎝0.0813478 −0.987343 −0.136151
0.244376 −0.112676 0.963112
−0.966262 −0.111619 0.232117

⎞⎠ ,



RECOVERING NORMAL FORMS 19

and one can check that the Elasticity tensor (E𝛾
𝑜𝑟𝑡ℎ𝑜)D2 = 𝑔 ⋆E

𝛾 (1)
𝑜𝑟𝑡ℎ writes

[(E𝛾
𝑜𝑟𝑡ℎ𝑜)D2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
219.858 147.607 142.867 0 0 0
147.607 207.732 154.992 0 0 0
142.867 154.992 212.473 0 0 0

0 0 0 146.326 0 0
0 0 0 0 134.2 0
0 0 0 0 0 138.94

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa),

and corresponds to its orthotropic normal form (2.7).

Example 6.6. Consider now the second orthotropic Elasticity tensor approximation (5.5) for
Ni base single crystal superalloy. This time d2

′ = 0 (since its fourth-order harmonic part is
cubic) and both d′ and v′ are transversely-isotropic but not of the same axis. The pair (d′,v′) is
orthotropic. The unit eigenvectors 𝑢𝑢𝑢1 and 𝑢𝑢𝑢2 corresponding respectively to the simple eigenvalue
of d′ and v′ are

𝑢𝑢𝑢1 =

⎛⎝−0.966261
−0.111623
0.232121

⎞⎠ , 𝑢𝑢𝑢2 =

⎛⎝0.0813519
−0.987342
−0.136151

⎞⎠ .

The rotation 𝑔 build from (6.1), with 𝑢𝑢𝑢3 = 𝑢𝑢𝑢1 × 𝑢𝑢𝑢2, is such that the Elasticity tensor

(E𝛾 ′
𝑜𝑟𝑡ℎ𝑜)D2 = 𝑔 ⋆E

𝛾 (1)
𝑜𝑟𝑡ℎ has the orthotropic normal form

[(E𝛾 ′
𝑜𝑟𝑡ℎ𝑜)D2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
217.806 149.478 145.095 0. 0. 0.
149.478 212.006 150.896 0. 0. 0.
145.095 150.896 210.252 0. 0. 0.

0. 0. 0. 137.507 0. 0.
0. 0. 0. 0. 141.857 0.
0. 0. 0. 0. 0. 140.104

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa).

Remark 6.6. Compared to previous works [12, 11, 21, 5, 10], our procedure, relying on theo-
rem 4.8, is exhaustive and allows to handle all degenerate cases. It is based on the list ℱ𝑜 of
second-order covariants which carries all the information required to recover the normal form of
an orthotropic Elasticity tensor.

6.6. Monoclinic class. The methodology for a monoclinic Elasticity tensor E𝑚𝑜𝑛𝑜 is based on
the investigation of the family ℱ𝑚 of second-order symmetric covariants given by (4.3). This
family is monoclinic by theorem 4.8. The algorithm is the following.

(1) Find a common eigenvector 𝜔 for all second-order covariants in the family ℱ𝑚, by com-
puting the commutators (𝜔 = 𝜀 : [a𝑖,a𝑗 ]), as in theorem 4.3.

(2) Set 𝑢𝑢𝑢3 = 𝜔𝜔𝜔/‖𝜔𝜔𝜔‖ and complete it into a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3), us-
ing (6.2) for instance.

(3) The monoclinic normal form (2.8) is given by 𝑔 ⋆E𝑚𝑜𝑛𝑜 where 𝑔 is defined by (6.1) and
its action on E𝑚𝑜𝑛𝑜 is computed using (1.2).

Remark 6.7. In most (non degenerate) cases, the commutator 𝜀 : [d,v] = 2 𝜀 : (dv) of the
dilatation and the Voigt tensors will allow to initiate the first step of the algorithm (as in [12,
11, 21]). But 𝜀 : [d,v] may vanish, as in the next example. In that case, another candidate is
required (for instance 𝜔 = 𝜀𝜀𝜀 : (d2c3) in the next example). Our methodology relies on Theorem
4.8 and is exhaustive.

Example 6.7. Consider the degenerate monoclinic Elasticity tensor (5.6), where d′ = v′ = 0.

(1) A non-vanishing first-order covariant is 𝜔 = 𝜀 : (d2c3) which writes

𝜔 = 107

⎛⎝ 16.727
−7.71214
65.9218

⎞⎠ .
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(2) Set

𝑢𝑢𝑢3 =
1

‖𝜔‖
𝜔, 𝑢𝑢𝑢1 =

1√︀
𝑛2
1 + 𝑛2

2

⎛⎝−𝑛2

𝑛1

0

⎞⎠ , 𝑢𝑢𝑢2 = 𝑢𝑢𝑢3 × 𝑢𝑢𝑢1.

We get then

𝑢𝑢𝑢3 =

⎛⎝ 0.24438
−0.112674
0.963111

⎞⎠ , 𝑢𝑢𝑢1 =

⎛⎝0.418699
0.908125

0

⎞⎠ , 𝑢𝑢𝑢2 =

⎛⎝−0.874625
0.403254
0.269104

⎞⎠ ,

and

𝑔 =

⎛⎝ 0.4187 0.90812 0
−0.87463 0.40325 0.2691
0.24438 −0.11267 0.96311

⎞⎠ .

(3) One can check that (E𝛾
𝑚𝑜𝑛𝑜)Z2 = 𝑔 ⋆E𝑚𝑜𝑛𝑜 writes

[(E𝛾
𝑚𝑜𝑛𝑜)Z2 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
299.7 68.6 142.1 0 0 −42.
68.6 281.3 160.5 0 0 41.1
142.1 160.5 207.7 0 0 0.9

0 0 0 151.8 0.9 0
0 0 0 0.9 133.4 0

−42. 41.1 0.9 0 0 59.9

⎞⎟⎟⎟⎟⎟⎟⎠ (GPa),

which is the normal form (2.8).

Remark 6.8. Recall that, following [23, 15], an additional zero can be placed in the normal form̂︀E = EZ2 of a monoclinic tensor. This is due to the fact that any rotation around the third axis
𝑢𝑢𝑢3 = 𝑒𝑒𝑒3 of the normal form (2.8) does not changes the shape of this normal form. If either̂︀𝐸2233 − ̂︀𝐸1133 or ̂︀𝐸2323 − ̂︀𝐸1313

does not vanish, then, we can look for a rotation r(𝑒𝑒𝑒3, 𝜃36) ⋆ ̂︀E, where

tan(2𝜃36) = 2 ̂︀𝐸3312/( ̂︀𝐸2233 − ̂︀𝐸1133),

so that the component (r(𝑒𝑒𝑒3, 𝜃36) ⋆ ̂︀E)3312, in row 3, column 6 and row 6, column 3 of the new

normal form (2.8) vanishes. Or, we can look for a rotation r(𝑒𝑒𝑒3, 𝜃45) ⋆ ̂︀E, where

tan(2𝜃45) = 2 ̂︀𝐸1323/( ̂︀𝐸2323 − ̂︀𝐸1313),

so that the component (r(𝑒𝑒𝑒3, 𝜃45) ⋆ ̂︀E)1323 in row 4, column 5 and row 5, column 4 of the new
normal form (2.8) vanishes.

7. An algorithm to detect the symmetry class and recover a normal form

In this final section, we formulate an algorithm, based on the previous calculations, which
allows to obtain the exact symmetry class of any Elasticity tensor and its normal form. To
achieve this task, we will use the two families of deviatoric second order covariants of E already
introduced in section 3,

ℱ𝑜 :=
{︀
d′,v′,d2

′, c3, c4,H : d,H : v,H : d2,H : v2
}︀
,

and
ℱ𝑚 := ℱ𝑜 ∪ {H : (dv)𝑠,H : (dd2)

𝑠,H : (vd2)
𝑠} ,

where c3 = H : d2 and c4 = H : c3. The families ℱ𝑜 and ℱ𝑚 are used in the orthotropic
and monoclinic cases. For an Elasticity tensor which is either transversely isotropic, trigonal
or tetragonal, all its second order covariants are transversely isotropic with the same axis, say
𝑢𝑢𝑢3. To determine this axis, and find a rotation which brings it to 𝑒𝑒𝑒3, a common procedure
was described in subsection 6.2, subsection 6.3 and subsection 6.4. It is summarized below as
Procedure 7.1.
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Procedure 7.1. Input : A transversely isotropic, trigonal or tetragonal Elasticity tensor E, with
components 𝐸𝑖𝑗𝑘𝑙 in a fixed orthonormal basis (𝑒𝑒𝑒𝑖).

Output : A rotation 𝑔1 ∈ SO(3) and an Elasticity tensor E = 𝑔1 ⋆E such that all its second
order covariants are transversely isotropic and of axis ⟨𝑒𝑒𝑒3⟩, with components 𝐸𝑖𝑗𝑘𝑙 in the basis
(𝑒𝑒𝑒𝑖).

(1) Compute the triplet of covariant deviators (d′,v′,d2
′) of E. One of them is transversely

isotropic, call it t.
(2) Let 𝑢𝑢𝑢3 = 𝑛𝑛𝑛 be a unit eigenvector corresponding to the single eigenvalue of t, obtained

by solving the linear system
(︀
t− 2 tr(t3)

tr(t2)
1
)︀
𝑢𝑢𝑢 = 0.

(3) Complete 𝑢𝑢𝑢3 into a direct orthonormal basis ℬ = (𝑢𝑢𝑢1,𝑢𝑢𝑢2,𝑢𝑢𝑢3) of R3 by choosing an
orthonormal pair (𝑢𝑢𝑢1,𝑢𝑢𝑢2) orthogonal to 𝑢𝑢𝑢3.

(4) Define 𝑔1 as

𝑔1 =

⎛⎝𝑢𝑢𝑢1 · 𝑒𝑒𝑒1 𝑢𝑢𝑢1 · 𝑒𝑒𝑒2 𝑢𝑢𝑢1 · 𝑒𝑒𝑒3
𝑢𝑢𝑢2 · 𝑒𝑒𝑒1 𝑢𝑢𝑢2 · 𝑒𝑒𝑒2 𝑢𝑢𝑢2 · 𝑒𝑒𝑒3
𝑢𝑢𝑢3 · 𝑒𝑒𝑒1 𝑢𝑢𝑢3 · 𝑒𝑒𝑒2 𝑢𝑢𝑢3 · 𝑒𝑒𝑒3

⎞⎠ and then E := 𝑔1 ⋆E.

Remark 7.2. The output E of Procedure 7.1 is necessary either transversely isotropic, trigonal
or tetragonal with transverse isotropy axis ⟨𝑒𝑒𝑒3⟩. If the following conditions,

𝐸1212 =
1

2
(𝐸1111 − 𝐸1122), and 𝐸1112 = 𝐸1123 = 𝐸1113 = 0,

hold, then, one gets the transversely isotropic normal form (2.4). Otherwise, there is a rotation
r(𝑒𝑒𝑒3, 𝜃) such that E = r(𝑒𝑒𝑒3, 𝜃) ⋆ E0, where E0 is either a trigonal Elasticity tensor ED3 with
Voigt’s representation, the normal form (2.5) or a tetragonal Elasticity tensor ED4 with Voigt’s
representation, the normal form (2.6). When E0 = ED3 is trigonal (with Voigt’s representa-
tion (2.5) and with components 𝐸𝑖𝑗𝑘𝑙 in the basis (𝑒𝑒𝑒𝑖)), the calculation of E = r(𝑒𝑒𝑒3, 𝜃) ⋆ ED3

(using (1.2)) leads to

(7.1)

{︃
𝐸1123 = 𝐸1123(2 cos 2𝜃 − 1) cos 𝜃

𝐸1113 = −𝐸1123(2 cos 2𝜃 + 1) sin 𝜃
,

so that 𝐸1123 ̸= 0 or 𝐸1113 ̸= 0. If this is not the case, the considered Elasticity tensor is neither
transversely isotropic, nor trigonal but tetragonal.

Finally, the algorithm to detect the symmetry class of a given Elasticity tensor is summarized
in Figure 3 and detailed below.

(1) If either the family ℱ𝑜 or ℱ𝑚 is triclinic, then E is triclinic (else its covariants would
have inherited its symmetry group [8, 26]).

(2) If both families ℱ𝑜 and ℱ𝑚 are monoclinic, then E is monoclinic by theorem 4.8(1).
(3) If ℱ𝑜 is orthotropic, then E is orthotropic by theorem 4.8(2).
(4) If ℱ𝑜 is transversely isotropic, E is then either tetragonal, trigonal or transversely

isotropic by theorem 4.8(3). Using procedure 7.1, we build a new tensor E with compo-
nents 𝐸𝑖𝑗𝑘𝑙 and by remark 7.2:

(a) if 𝐸1112 = 𝐸1123 = 𝐸1113 = 0 and 𝐸1212 = 1
2(𝐸1111 − 𝐸1122) then E is transversely

isotropic;
(b) otherwise if 𝐸1123 = 𝐸1113 = 0 then E is tetragonal, and if 𝐸1123 ̸= 0 or 𝐸1113 ̸= 0

then E is trigonal.
(5) If ℱ𝑜 is isotropic, then, d′

2 = d′ = v′ = 0, thus d2 = 1
3 (trd2)1 and trd2 = ‖H‖2

by (3.2)). In that case,
(a) either d2 = 0, so that H = 0, and therefore E = E𝑖𝑠𝑜 is isotropic by (3.1);
(b) or d2 ̸= 0 and H is cubic by [26, Theorem 9.3] and so is E, by [26, Theorem 10.2].
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Familly
ℱ𝑜

ℱ𝑜 isotropic

E isotropic

E cubic
(subsection 6.1)

ℱ𝑜 transversely
isotropic

Compute E
using Procedure 7.1

E transversely isotropic
(subsection 6.2)

E trigonal
(subsection 6.3)

∙

E tetragonal
(subsection 6.4)

ℱ𝑜 orthotropic
E orthotropic
(subsection 6.5)

ℱ𝑜 monoclinic
Familly
ℱ𝑚

E monoclinic
(subsection 6.6)

ℱ𝑜 triclinic E triclinic

d2 = 0

d′
2 = 0

d2 ̸= 0

{︃
𝐸1112 = 𝐸1123 = 𝐸1113 = 0

𝐸1212 = 1
2 (𝐸1111 − 𝐸1122)

Else
𝐸1123 ̸= 0 or 𝐸1113 ̸= 0

𝐸1123 = 𝐸1113 = 0

ℱ𝑚 monoclinic

ℱ𝑚 triclinic

Figure 3. An algorithm to detect the symmetry class of an Elasticity tensor
and recover its normal form.

Conclusion

We have formulated effective methods to recover the normal form of an Elasticity tensor,
measured in any basis, provided that we know to which symmetry class it belongs to (this other
problem having been solved, by the way, in a previous work [26]). For each symmetry class, a
simple algorithm has been provided. In particular, thanks to the generalized cross product (1.5)
between totally symmetric tensors, a very simple method has been proposed to recover the
normal form of an Elasticity tensor with cubic symmetry. It requires only to solve a linear
system in five variables and diagonalize a three-dimensional symmetric matrix.

These procedures are moreover exhaustive. All degenerate cases are handled, in particular,
when second-order covariants, like d′ and v′, or first-order covariants like 𝜀 : [d,v] vanish. To
formulate and prove these results, we have used families of covariants derived in [26], which are
crucial to establish necessary and sufficient conditions for an Elasticity tensor to belong to a
given symmetry class. As a by-product, applying our procedures to a given Elasticity tensor E
allows, not only to recognize a normal form for it, but is also a way to determine its symmetry
class. An algorithm to achieve this task has been formulated in section 7.

Besides, to illustrate our methods, we have applied them on experimental Elasticity tensors
found in the literature, and this for each symmetry class.

Noises and experimental errors have not been considered since this subject is a full work in
itself and will be addressed in forthcoming papers.
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Appendix A. Harmonic components of considered Elasticity tensors

In this section, all the linear covariants d, v, H are given in GPa and the fourth-order harmonic
part H is expressed in Voigt’s representation.

Cubic approximation E𝛾
𝑐𝑢𝑏𝑖𝑐 (5.2) of E𝛾:

d′ = v′ = 0, d2
′ = 0, trd = 1531, trv = 1479, and

(A.1) [H𝛾
𝑐𝑢𝑏𝑖𝑐] =

⎛⎜⎜⎜⎜⎜⎜⎝
−59.1358 38.9089 20.2269 6.39666 41.9737 −21.1614
38.9089 −75.3102 36.4013 −27.7808 2.27754 16.6041
20.2269 36.4013 −56.6282 21.3841 −44.2512 4.55736
6.39666 −27.7808 21.3841 36.4013 4.55736 2.27754
41.9737 2.27754 −44.2512 4.55736 20.2269 6.39666
−21.1614 16.6041 4.55736 2.27754 6.39666 38.9089

⎞⎟⎟⎟⎟⎟⎟⎠ .

Tetragonal approximation E𝛾
𝑡𝑒𝑡𝑟𝑎 (5.3) of E𝛾:

d′ = v′ = 0, trd = 1531, trv = 1479, and

(A.2) [H𝛾
𝑡𝑒𝑡𝑟𝑎] =

⎛⎜⎜⎜⎜⎜⎜⎝
−59.9342 35.8495 24.0847 5.8239 46.7414 −21.0897
35.8495 −69.6028 33.7533 −25.7103 1.8896 15.3674
24.0847 33.7533 −57.8381 19.8864 −48.631 5.7223
5.8239 −25.7103 19.8864 33.7533 5.7223 1.8896
46.7414 1.8896 −48.631 5.7223 24.0847 5.8239
−21.0897 15.3674 5.7223 1.8896 5.8239 35.8495

⎞⎟⎟⎟⎟⎟⎟⎠ .

First orthotropic approximation E
𝛾 (1)
𝑜𝑟𝑡ℎ𝑜 (5.4) of E𝛾:

d′ = v′ = 0, trd = 1531, trv = 1479 and

(A.3) [H𝛾
𝑜𝑟𝑡ℎ] =

⎛⎜⎜⎜⎜⎜⎜⎝
−57.9586 33.959 23.9997 5.3342 46.3021 −20.3543

33.959 −69.5995 35.6405 −26.2801 2.88311 14.4327
23.9997 35.6405 −59.6402 20.9459 −49.1853 5.92151
5.3342 −26.2801 20.9459 35.6405 5.92151 2.88311
46.3021 2.88311 −49.1853 5.92151 23.9997 5.3342
−20.3543 14.4327 5.92151 2.88311 5.3342 33.959

⎞⎟⎟⎟⎟⎟⎟⎠ .

Second orthotropic approximation E
𝛾 (2)
𝑜𝑟𝑡ℎ𝑜 (5.5) of E𝛾:

trd = 1531, trv = 1479,

d′ =

⎛⎝ −3.6837 −0.661831 1.37627
−0.661831 1.96893 0.158989

1.37627 0.158989 1.71477

⎞⎠ , v′ =

⎛⎝ −3.31669 −0.8154 −0.112441
−0.8154 6.51238 1.36466

−0.112441 1.36466 −3.19569

⎞⎠ ,

and H = H𝛾
𝑐𝑢𝑏𝑖𝑐 is given by (A.1) (in particular d2

′ = 0).
Monoclinic approximation E𝛾

𝑚𝑜𝑛𝑜 (5.6) of E𝛾:
d′ = v′ = 0, trd = 1531, trv = 1479 and

(A.4) [H𝛾
𝑚𝑜𝑛𝑜] =

⎛⎜⎜⎜⎜⎜⎜⎝
−58.7344 34.9674 23.767 0.6715 47.7714 −18.1515
34.9674 −67.8968 32.9294 −26.3969 4.4758 18.2628
23.767 32.9294 −56.6964 25.7254 −52.2472 −0.1113
0.6715 −26.3969 25.7254 32.9294 −0.1113 4.4758
47.7714 4.4758 −52.2472 −0.1113 23.767 0.6715
−18.1515 18.2628 −0.1113 4.4758 0.6715 34.9674

⎞⎟⎟⎟⎟⎟⎟⎠ .

Trigonal approximation E𝛼
𝑡𝑟𝑖𝑔 (5.7) of 𝛼-quartz Elasticity tensor:

trd = 34.72, trv = 59.24,

d′ =

⎛⎝−0.764933 0.3098 0.4514
0.3098 −0.0727333 1.1811
0.4514 1.1811 0.837667

⎞⎠ , v′ =

⎛⎝−1.02767 0.4162 0.6064
0.4162 −0.0976667 1.5867
0.6064 1.5867 1.12533

⎞⎠ ,
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and

(A.5) [H𝛼
𝑡𝑟𝑖𝑔] =

⎛⎜⎜⎜⎜⎜⎜⎝
−1.4953 −0.0086 1.504 −0.0148 −0.2917 −0.8173
−0.0086 0.6713 −0.6626 −0.1899 −0.0484 2.0042

1.504 −0.6626 −0.8413 0.2046 0.3402 −1.187
−0.0148 −0.1899 0.2046 −0.6626 −1.187 −0.0484
−0.2917 −0.0484 0.3402 −1.187 1.504 −0.0148
−0.8173 2.0042 −1.187 −0.0484 −0.0148 −0.0086

⎞⎟⎟⎟⎟⎟⎟⎠ .

Transversely isotropic approximation E𝐾𝑆
𝑇𝐼 (5.8) of E𝐾𝑆:

trd = 6.0707, trv = 6.4911,

d′ =

⎛⎝0.221833 −0.0745 −0.2495
−0.0745 0.235733 −0.2272
−0.2495 −0.2272 −0.457567

⎞⎠ , v′ =

⎛⎝ 0.1507 −0.0505 −0.1695
−0.0505 0.1601 −0.1543
−0.1695 −0.1543 −0.3108

⎞⎠ ,

and

[H𝐾𝑆
𝑇𝐼 ] =

⎛⎜⎜⎜⎜⎜⎜⎝
0.0176 0.0123 −0.0299 −0.0138 −0.0969 −0.0289
0.0123 0.0287 −0.0409 −0.0923 −0.0195 −0.0302
−0.0299 −0.0409 0.0708 0.106 0.1165 0.0592
−0.0138 −0.0923 0.106 −0.0409 0.0592 −0.0195
−0.0969 −0.0195 0.1165 0.0592 −0.0299 −0.0138
−0.0289 −0.0302 0.0592 −0.0195 −0.0138 0.0123

⎞⎟⎟⎟⎟⎟⎟⎠ .

Appendix B. The generalized cross-product in components

The 10 independent components of the totally symmetric third order tensor a × b, where
both a and b are symmetric second order tensors, are:

(B.1)

(a× b)111 = 𝑎12𝑏13 − 𝑎13𝑏12,

(a× b)112 =
1

3
(−𝑎11𝑏13 + 𝑎12𝑏23 + 𝑎13𝑏11 − 𝑎13𝑏22 + 𝑎22𝑏13 − 𝑎23𝑏12),

(a× b)113 =
1

3
(𝑎11𝑏12 − 𝑎12𝑏11 + 𝑎12𝑏33 − 𝑎13𝑏23 + 𝑎23𝑏13 − 𝑎33𝑏12),

(a× b)122 =
1

3
(−𝑎11𝑏23 − 𝑎12𝑏13 + 𝑎13𝑏12 + 𝑎22𝑏23 + 𝑎23𝑏11 − 𝑎23𝑏22),

(a× b)123 =
1

6
(𝑎11𝑏22 − 𝑎11𝑏33 + 𝑎22𝑏33 − 𝑎22𝑏11 + 𝑎33𝑏11 − 𝑎33𝑏22),

(a× b)133 =
1

3
(𝑎11𝑏23 − 𝑎12𝑏13 + 𝑎13𝑏12 − 𝑎23𝑏11 + 𝑎23𝑏33 − 𝑎33𝑏23),

(a× b)222 = 𝑎23𝑏12 − 𝑎12𝑏23,

(a× b)223 =
1

3
(𝑎12𝑏22 − 𝑎12𝑏33 − 𝑎13𝑏23 − 𝑎22𝑏12 + 𝑎23𝑏13 + 𝑎33𝑏12),

(a× b)233 =
1

3
(𝑎12𝑏23 + 𝑎13𝑏22 − 𝑎13𝑏33 − 𝑎22𝑏13 − 𝑎23𝑏12 + 𝑎33𝑏13),

(a× b)333 = 𝑎13𝑏23 − 𝑎23𝑏13.

For the components of its trace (which is a vector) one has

(tr(a× b))1 =
1

3
(𝑎12𝑏13 − 𝑎13𝑏12 + 𝑎22𝑏23 − 𝑎23𝑏22 + 𝑎23𝑏33 − 𝑎33𝑏23),

(tr(a× b))2 =
1

3
(−𝑎11𝑏13 − 𝑎12𝑏23 + 𝑎13𝑏11 − 𝑎13𝑏33 + 𝑎23𝑏12 + 𝑎33𝑏13),

(tr(a× b))3 =
1

3
(𝑎11𝑏12 − 𝑎12𝑏11 + 𝑎12𝑏22 + 𝑎13𝑏23 − 𝑎22𝑏12 − 𝑎23𝑏13).
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When S is a totally symmetric fourth order tensor and a is a symmetric second order tensor,
the ten independent components of the totally symmetric third order tensor tr(S× a) are
(B.2)

(tr(S× a))111 =
3

10

(︁
− 𝑎12(2𝑆1113 + 𝑆1223 + 𝑆1333) + 𝑎13(2𝑆1112 + 𝑆1222 + 𝑆1233) − 𝑎22𝑆1123

+ 𝑎23(𝑆1122 − 𝑆1133) + 𝑎33𝑆1123

)︁
,

(tr(S× a))112 =
1

10

(︁
𝑎11(2𝑆1113 + 𝑆1223 + 𝑆1333) − 𝑎12(2𝑆1123 + 𝑆2223 + 𝑆2333)

+ 𝑎13(−2𝑆1111 + 2𝑆1122 + 𝑆2222 + 𝑆2233) − 𝑎22(𝑆1113 + 3𝑆1223 + 𝑆1333)

+ 𝑎23(3𝑆1222 − 𝑆1233) + 𝑎33(2𝑆1223 − 𝑆1113)
)︁
,

(tr(S× a))113 =
1

10

(︁
− 𝑎11(2𝑆1112 + 𝑆1222 + 𝑆1233) + 𝑎12(2𝑆1111 − 2𝑆1133 − 𝑆2233 − 𝑆3333)

+ 𝑎13(2𝑆1123 + 𝑆2223 + 𝑆2333) + 𝑎22(𝑆1112 − 2𝑆1233) + 𝑎23(𝑆1223 − 3𝑆1333)

+ 𝑎33(𝑆1112 + 𝑆1222 + 3𝑆1233)
)︁
,

(tr(S× a))122 =
1

10

(︁
𝑎11(3𝑆1123 + 𝑆2223 + 𝑆2333) + 𝑎12(𝑆1113 + 2𝑆1223 + 𝑆1333) + 𝑎13(𝑆1233 − 3𝑆1112)

− 𝑎22(𝑆1123 + 2𝑆2223 + 𝑆2333) − 𝑎23(𝑆1111 + 2𝑆1122 + 𝑆1133 − 2𝑆2222) + 𝑎33(𝑆2223 − 2𝑆1123)
)︁
,

(tr(S× a))123 =
1

20

(︁
𝑎11(3𝑆1133 − 3𝑆1122 − 𝑆2222 + 𝑆3333) + 2𝑎12(𝑆1112 − 𝑆1222) + 2𝑎13(𝑆1333 − 𝑆1113)

+ 𝑎22(𝑆1111 + 3𝑆1122 − 3𝑆2233 − 𝑆3333) + 2𝑎23(𝑆2223 − 𝑆2333)

+ 𝑎33(−𝑆1111 − 3𝑆1133 + 𝑆2222 + 3𝑆2233)
)︁
,

(tr(S× a))133 =
1

10

(︁
− 𝑎11(3𝑆1123 + 𝑆2223 + 𝑆2333) + 𝑎12(3𝑆1113 − 𝑆1223) − 𝑎13(𝑆1112 + 𝑆1222 + 2𝑆1233)

+ 𝑎22(2𝑆1123 − 𝑆2333) + 𝑎23(𝑆1111 + 𝑆1122 + 2𝑆1133 − 2𝑆3333) + 𝑎33(𝑆1123 + 𝑆2223 + 2𝑆2333)
)︁
,

(tr(S× a))222 =
3

10

(︁
𝑎11𝑆1223 + 𝑎12(𝑆1123 + 2𝑆2223 + 𝑆2333) + 𝑎13(𝑆2233 − 𝑆1122)

− 𝑎23(𝑆1112 + 2𝑆1222 + 𝑆1233) − 𝑎33𝑆1223

)︁
,

(tr(S× a))223 =
1

10

(︁
𝑎11(2𝑆1233 − 𝑆1222) + 𝑎12(𝑆1133 − 2𝑆2222 + 2𝑆2233 + 𝑆3333) + 𝑎13(3𝑆2333 − 𝑆1123)

+ 𝑎22(𝑆1112 + 2𝑆1222 + 𝑆1233) − 𝑎23(𝑆1113 + 2𝑆1223 + 𝑆1333) − 𝑎33(𝑆1112 + 𝑆1222 + 3𝑆1233)
)︁
,

(tr(S× a))233 =
1

10

(︁
𝑎11(𝑆1333 − 2𝑆1223) + 𝑎12(𝑆1123 − 3𝑆2223) + 𝑎13(2𝑆3333 − 𝑆1122 − 𝑆2222 − 2𝑆2233)

+ 𝑎22(𝑆1113 + 3𝑆1223 + 𝑆1333) + 𝑎23(𝑆1112 + 𝑆1222 + 2𝑆1233) − 𝑎33(𝑆1113 + 𝑆1223 + 2𝑆1333)
)︁
,

(tr(S× a))333 =
3

10

(︁
− 𝑎11𝑆1233 + 𝑎12(𝑆1133 − 𝑆2233) − 𝑎13(𝑆1123 + 𝑆2223 + 2𝑆2333) + 𝑎22𝑆1233

+ 𝑎23(𝑆1113 + 𝑆1223 + 2𝑆1333)
)︁
.
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et Technologie, 91190, Gif-sur-Yvette, France

E-mail address: sophie.abramian@ens-paris-saclay.fr
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