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Abstract: Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG)
chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated
as Langmuir monolayers at the surface of water. The OEG chain in the para position was grafted
with a t-Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are
models of structurally related OEG dendrons that were found to significantly improve the stability
of aqueous dispersions of iron oxide nanoparticles when grafted on their surface. Compression
isotherms showed that all OEG dendrons formed liquid-expanded Langmuir monolayers at large
molecular areas. Further compression led to a transition ascribed to the solubilization of the OEG
chains in the aqueous phase. Brewster angle microscopy (BAM) provided evidence that the dendrons
fitted with hydrocarbon chains formed liquid-expanded monolayers throughout compression, whilst
those fitted with fluorinated end-groups formed crystalline-like domains, even at large molecular
areas. Dimyristoylphosphatidylcholine and dendron molecules were partially miscible in monolayers.
The deviations to ideality were larger for the dendrons fitted with a fluorocarbon end-group chain than
for those fitted with a hydrocarbon chain. Brewster angle microscopy and atomic force microscopy
supported the view that the dendrons were ejected from the phospholipid monolayer during the
OEG conformational transition and formed crystalline domains on the surface of the monolayer.

Keywords: fluorocarbon; interfacial film; Brewster angle microscopy; atomic force microscopy;
molecular recognition

1. Introduction

Dendrimers are monodisperse macromolecules with a regular, highly branched, and well
defined three-dimensional architecture, which have garnered interest in nanotechnology, materials
science, and medicine [1–3]. In particular, they have been used in the synthesis and stabilization
of metal nanoparticles used as drug delivery carriers and chemical and biomedical sensors [4].
Dendrons, which are fractional dendrimers, can assemble in solution to form a variety of nano- and
microstructures [5,6], and have been found to form stable organized molecular films at the air/water
interface [7]. Oligo(ethylene glycol) (OEG) dendrons have been used as efficient coating agents of iron
oxide nanoparticles (IONPs) to improve the dispersibility and stability of these nanoparticles in aqueous
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solution [8,9]. Poly(ethylene glycol) (PEG) dendron-based phospholipids have been utilized for the
preparation of stealth liposomes in biomedical applications [10]. Understanding the behavior of PEG
and OEG dendrons is key to the development of interfacial applications [11,12]. The physicochemical
properties of dendrons and, in particular, their interfacial behavior, strongly depend on their nature,
generation number, and ratio of hydrophilic and hydrophobic parts [13,14]. Langmuir films are
an effective tool for studying monolayers of amphiphilic dendrimers or dendrons at the air/water
interface, which provide information such as dendron size, shape, and compressibility [11,15].
The Langmuir–Blodgett (LB) technique is commonly used for the fabrication of ordered monolayers
by transfer onto solid substrate surfaces. Information about the microstructure of monolayers of
dendrimers prepared by the LB technique has been obtained using X-ray, atomic force microscopy
(AFM), Brewster angle microscopy (BAM), and neutron reflectivity [14,16–18].

Although numerous studies have reported on the behavior of dendrimers or dendrons at the
air/water interface, few investigations have focused on the morphology and orientation of dendrons
bearing OEG chains. One study of dendrons fitted with an OEG chain and poly(benzyl ether) (third
to fifth generation) showed that stability of the monolayers increased with OEG chain length [7].
The stability of monolayers of OEGylated carbazole dendrons was found to depend mostly on the
generation of the hydrophobic part [19]. The interfacial behavior of polyol–polyether dendritic
amphiphiles fitted with two hydrocarbon chains has been examined [20], as well as the interactions of
these dendrons with dipalmitoylphosphatidylcholine (DPPC) [21]. A compression isotherm and BAM
study indicated that dendrons with the highest generation of polyglycerol form denser monolayers,
and that they form mutually soluble binary mixtures with the phospholipid.

Here, we investigated the behavior of OEG-based dendrons at the air/water interface, and the
behavior of combinations of these dendrons with dimyristoylphosphatidylcholine (DMPC). Our OEG
dendrons consisted of a central phenoxyethylcarbamoyl group coupled to a phenyl group onto which
three OEG chains were grafted (Frechet-type dendron), and bearing two phosphonate esters on the
phenoxy group. These OEG dendrons are structurally close to the dendrons that have been found to
improve the dispersibility and stability of iron oxide nanoparticles (IONPs) in aqueous solutions, a
critical property for many studies and applications [8,22]. Recent work has established that IONPs
grafted with OEG dendrons fitted with fluorinated end-groups form spontaneously adsorbed (Gibbs)
films with low interfacial tension, especially when the atmosphere is saturated with a fluorocarbon [23].
As a consequence of this enhanced adsorption, small and stable fluorocarbon-stabilized microbubbles
with a shell of phospholipid incorporating IONPs grafted with C2F5-terminated OEG dendrons were
obtained [23]. The mixed DMPC/OEG dendron monolayers are indeed model interfaces that can
provide insights into the interactions between the components, namely phospholipid and dendron,
that form the microbubble shell.

To this end, 10 dendrons were synthesized and investigated that featured two phosphonic esters
and three OEG chains, including a longer one, connected by a phenoxyethylcarbamoylphenoxy group.
The long OEG chain was fitted with a t-Bu, or a hydrocarbon chain (C6H13 or C8H17), or a partially
fluorinated chain (C2F5C4H8 or C4F9C4H8) as the end group (Scheme 1). The number of ethylene
glycol groups x was four, six, or eight. First, we have presented the behavior of these dendrons when
spread on the surface of water, as studied by compression isotherms, compression/expansion cycles,
and Brewster angle microscopy. Second, we have described the monolayer behavior of these OEG
dendrons when mixed with a phospholipid, dimyristoylphosphatidylcholine (DMPC).
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Scheme 1. Molecular structure and schematic representation of the oligo(ethylene glycol) (OEG)
dendrons investigated.

2. Results

2.1. Synthesis of OEG Dendrons

The dendrons were obtained via a multistep synthesis (Scheme 2). Starting from the BenzDen
dendron precursor [24], the methodology involved the removal of the benzyl group and the introduction
of the OEG chain in a basic medium, which provided the t-BuOEGxDen dendrons. After deprotection
of the t-Bu group, the dendrons were alkylated using a hydrocarbon bromide or perfluoroalkyl iodide
to give access to the dendrons fitted with a hydrocarbon chain (CnH2n+1OEG8Den) or a partially
fluorinated chain (CnF2n+1C4H8OEG8Den).
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Scheme 2. Multi-step synthesis of OEG dendrons, starting from (a) the BenzDen precursor, (b)
introduction of t-Bu, and (c) alkylation with an alkyl or a perfluoroalkyl halide.

2.2. Langmuir Monolayers of OEG Dendrons Carrying a t-Bu Group, an Alkyl, or a Partially Fluorinated
Chain

2.2.1. Isotherm Characteristics

The surface pressure/molecular area (π/A) isotherms at 25 ◦C of the 10 OEG dendrons investigated
are presented in Figure 1. The isotherms presented the various regimes that can be ascribed to the
OEG conformational transitions [7,19,20], by analogy to the behavior observed for diblock copolymers
(for example, poly(styrene)-poly(ethylene oxide) [25]. At large molecular areas, liquid-expanded
monolayers were observed in which the dendrons were anchored at the interface by the phenyl groups,
while the OEG chains lay flat at this interface, forming a so-called “pancake” structure [19,26–28].

Within a homologous series (t-BuOEGxDen or C6H13OEGxDen), the extrapolated molecular area
A0 increased with x (Table 1), which confirmed the pancake structure. A break (pseudo-plateau) was
observed at a surface pressure πp. This break was associated with the progressive dissolution of the
OEG chains in the water sub-phase [25,26,29]. The extension of the pseudo-plateau did not depend on
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x, likely because the increments in x were small. For t-BuOEGxDen, a significant increase of πp with x
was visible, however (πp: 6.0–6.5 mN m−1 for x = 4 or 6 and 9.6 mN m−1 for x = 8), in agreement with
earlier reports [30–32]. Although collapse pressures could not be determined, the maximal pressures
reached increased with x for t-BuOEGxDen and CnH2n+1OEG8Den (n = 6 and 8), reflecting better
anchoring at the water surface.
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2.2.2. Isotherm Reversibility 

Figure 1. Compression isotherms at 25 ◦C of Langmuir monolayers of (a) t-BuOEGxDen (x = 4: light blue;
x = 6: dark blue; x = 8: black) and (b) OEG dendrons fitted with hydrophobic chains (C2F5C4H8OEG8Den:
light green; C6H13OEG8Den: orange; C4F9C4H8OEG8Den: dark green; C8H17OEG8Den: purple;
C6H13OEG6Den: brown; and C6H13OEG4Den: blue).

Table 1. Characteristics of monolayers of OEG dendrons. Extrapolated molecular area in the
liquid-expanded phase (A0) and surface pressure on the plateau (πp).

Dendrons A0 (Å2) ± 50 Å2 πplateau (mN m−1) ± 1 mN m−1

t-BuOEG4Den 750 6.0
t-BuOEG6Den 850 6.5
t-BuOEG8Den 900 9.6

C6H13OEG4Den 700 7.2
C6H13OEG6Den 720 9.9
C6H13OEG8Den 850 9.1

C2F5C4H8OEG8Den 780 13.1
C8H17OEG8Den 470 18.3

C4F9C4H8OEG8Den 580 17.7

For a given x value, A0 was found to be smaller and πp higher for the dendrons fitted with the
most hydrophobic end-groups, such as C8H17, C4F9C4H8, or C2F5C4H8 (Table 1). This suggested that
the latter might counteract the anchoring of the OEG chains at the air/water interface by modifying their
hydrogen bonds with water, and oppose their dissolution in the water phase. It is also likely that the
hydrophobic end-groups promote the coiling of the OEG chain in the para position, thus hindering their
dissolution in the aqueous sub-phase. It is noteworthy that the increase of πp was more pronounced for
C2F5C4H8OEG8Den than for C6H13OEG8Den, reflecting the higher hydrophobicity of the fluorinated
moieties [33,34]. At low molecular areas (high coverage), only some of the isotherms showed a modest
increase in π upon compression, reflecting the fact that a “brush-like” liquid condensed state, in which
the OEG chains would be straightened in water, was not reached.

2.2.2. Isotherm Reversibility

In order to investigate whether the dendrons would expand again after compression, two
compression–expansion cycles were performed for dendrons fitted with a hydrocarbon chain (C6H13
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or C8H17) or a partially fluorinated chain (C2F5C4H8 or C4F9C4H8). Hysteresis cycles were recorded
both in the liquid-expanded state of the monolayers (Figure 2a) and on the OEG chain conformational
transition plateau (Figure 2b). For all dendrons but C6H13OEG8Den, the isotherms exhibited
only minimal hysteresis, reflecting the stability of the monolayers when cycled in the fluid state.
The difference in stability between the fluorinated dendron C2F5C4H8OEG8Den and its hydrocarbon
analog C6H13OEG8Den confirmed the stabilizing effect of the C2F5 group that contributed to anchoring
the monolayer at the interface, owing to the low interfacial tension of the fluorinated chains [35,36].
When the monolayers were successively compressed and expanded on the plateau, the isotherms
presented significant hysteresis, which was likely due to the OEG chain conformational transition that
induced a desorption of the dendrons from the interface.
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Figure 2. Compression–expansion cycles of Langmuir monolayers of OEG dendrons fitted with
hydrophobic end-groups, recorded in (a) the liquid-expanded regime and (b) the plateau. The first and
second compression–decompression cycles are indicated by solid and dashed lines, respectively.

2.2.3. Brewster Angle Microscopy and Atomic Force Microscopy

The monolayers of OEG dendrons fitted with a hydrocarbon chain (C6H13 or C8H17) or a partially
fluorinated chain (C2F5C4H8 or C4F9C4H8) were investigated by BAM and AFM (Figure 3). BAM
images indicated that the hydrocarbon dendrons C6H13OEG8Den and C8H17OEG8Den formed fluid
monolayers at all surface pressures. By contrast, the two fluorinated dendrons (C2F5C4H8OEG8Den
and C4F9C4H8OEG8Den) formed crystalline-like domains from the beginning of the compression.
These domains persisted throughout compression. A variation of the domain size was also observed,
probably reflecting some coalescence.
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2.3. Mixed Langmuir Monolayers of Phospholipid and OEG Dendrons

2.3.1. Characteristics of the Compression Isotherms

Compression isotherms and BAM images were recorded for mixed monolayers of DMPC and OEG
dendrons carrying hydrocarbon chains (C6H13OEG8Den and C8H17OEG8Den), or partially fluorinated
chains (C2F5C4H8OEG8Den and C4F9C4H8OEG8Den). A DMPC/OEG dendron molar ratio of 75:25
was set, this composition having been selected as optimal for the formulation of microbubbles [23].
Most commercially available microbubble-based contrast agents indeed possess a shell made of
phospholipids [37–39]. The compression isotherms of DMPC and of the mixed monolayers are
displayed in Figure 4. The DMPC monolayer presented a monotonous π/A curve, typical of a
liquid-expanded state, throughout compression. The isotherms of the mixed monolayers presented a
significant shift to larger molecular area and a pseudo-plateau, indicating that both components were
present at the interface. The πp values on the plateaus corresponded well to the πp values observed for
dendrons as the sole monolayer component. At small molecular areas, the isotherms of the mixtures
coincided with those of the DMPC monolayer, indicating that dendrons were likely expelled from the
phospholipid monolayer.
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Figure 4. Compression isotherms of dimyristoylphosphatidylcholine (DMPC) (black) and DMPC/OEG
dendron mixed Langmuir monolayers (DMPC/dendron molar ratio: 75:25; C2F5C4H8OEG8Den: green;
C6H13OEG8Den: orange; C4F9C4H8OEG8Den: dark green; C8H16OEG8Den: purple). Temperature
was 25 ◦C.

Next, the miscibility of DMPC and the dendrons in mixed monolayers was examined by plotting
the variation of the molecular area A0 versus the dendron molar ratio (Figure 5). Positive deviations
from ideality were determined using the additivity rule [40,41]. For dendrons fitted with the longest
chains, the deviations were observed to affect monolayers with a larger dendron molar ratio. Partial
fluorination of the hydrophobic chain also increased the deviation to ideality. This indicated limited
miscibility with repulsive interactions between the monolayer components.
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2.3.2. Isotherm Reversibility

Mixed DMPC/OEG dendron monolayers were subjected to compression–expansion cycles in the
transition regime (Figure 6). Strong hysteresis was observed during decompression for both fluorinated
and hydrocarbon dendrons, which indicated that the monolayer components did not re-spread easily
at the interface due to intermolecular interactions, suggesting the possible formation of crystalline-like
domains. During the second compression π strongly decreased, which indicated that the dendrons
were progressively expelled from the monolayers when the mixed monolayers were compressed at
π > πp.
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monolayers at the air/water interface (DMPC/dendron molar ratio: 75:25). First and second
compression–expansion cycles are indicated by solid and dashed lines, respectively.

2.3.3. Brewster Angle Microscopy and Atomic Force Microscopy

Representative BAM images of the mixed DMPC/OEG dendron monolayers are displayed in
Figure 7. The DMPC monolayer was in a liquid-expanded state throughout compression, which
resulted in a featureless BAM image.
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By contrast, the images of the mixed monolayers displayed domains (white features) for all
dendrons and all surface pressures. These domains became more numerous as π increased. It is
noteworthy that even the dendrons fitted with the hydrocarbon chains, which formed fluid monolayers
when spread alone on the surface of water, formed domains when mixed with DMPC. The domains
were particularly numerous in the case of C2F5C4H8OEG8Den, owing to the increased lipophobicity of
the fluorinated chains.

Atomic force microscopy was performed in order to get more information on the domains formed
in the DMPC/C2F5C4H8OEG8Den (75:25 molar ratio) mixed monolayers. The micrographs showed
that, when the monolayers were transferred on the plateau (14 mN m−1), small circular domains
were predominantly formed, along with some rare coiled aggregates (Figure 8a). When π increased,
the number of coiled aggregates and their size increased (Figure 8b). At 44 mN m−1, that is, near
collapse, a dendritic pattern of dendrons was formed that quasi-totally covered the DMPC monolayer
(Figure 8c). This indicated that the dendrons were progressively expelled from the phospholipid
monolayer. The mean height of the aggregates above the DMPC monolayer was consistent with a
bilayer of dendrons (∼6 nm). Furthermore, it was observed that the height of the aggregates increased
slightly, but significantly, with the surface pressure at which the monolayers were transferred. For
example, the measured heights were 5.1, 6.3, and 7.0 ± 0.3 nm for transfer pressures of 14, 30, and
44 mN m−1, respectively (Figure 8c). This trend also supported the view that the dendron aggregates,
which were initially embedded in the DMPC monolayer, were progressively expelled, self-assembled
into strands, and eventually formed plaques that covered the monolayer.

Molecules 2019, 24, x FOR PEER REVIEW 8 of 13 

 

Figure 7. BAM images of DMPC/OEG dendron mixed Langmuir monolayers at the air/water interface 

(a) at the transition, (b) at 30 mN m−1, and (c) after collapse at 40 mN m−1. 

By contrast, the images of the mixed monolayers displayed domains (white features) for all 

dendrons and all surface pressures. These domains became more numerous as  increased. It is 

noteworthy that even the dendrons fitted with the hydrocarbon chains, which formed fluid 

monolayers when spread alone on the surface of water, formed domains when mixed with DMPC. 

The domains were particularly numerous in the case of C2F5C4H8OEG8Den, owing to the increased 

lipophobicity of the fluorinated chains. 

Atomic force microscopy was performed in order to get more information on the domains 

formed in the DMPC/C2F5C4H8OEG8Den (75:25 molar ratio) mixed monolayers. The micrographs 

showed that, when the monolayers were transferred on the plateau (14 mN m−1), small circular 

domains were predominantly formed, along with some rare coiled aggregates (Figure 8a). When  

increased, the number of coiled aggregates and their size increased (Figure 8b). At 44 mN m−1, that 

is, near collapse, a dendritic pattern of dendrons was formed that quasi-totally covered the DMPC 

monolayer (Figure 8c). This indicated that the dendrons were progressively expelled from the 

phospholipid monolayer. The mean height of the aggregates above the DMPC monolayer was 

consistent with a bilayer of dendrons (~6 nm). Furthermore, it was observed that the height of the 

aggregates increased slightly, but significantly, with the surface pressure at which the monolayers 

were transferred. For example, the measured heights were 5.1, 6.3, and 7.0 ± 0.3 nm for transfer 

pressures of 14, 30, and 44 mN m−1, respectively (Figure 8c). This trend also supported the view that 

the dendron aggregates, which were initially embedded in the DMPC monolayer, were progressively 

expelled, self-assembled into strands, and eventually formed plaques that covered the monolayer. 

 

 

 

 

 

 

 

 

 

Figure 8. Atomic force microscopy (AFM) images and height profiles of mixed 

DMPC/C2F5C4H8OEG8Den monolayers (molar ratio: 75:25) after transfer onto silicon wafers at (a) 14 

mN m−1, (b) 30 mN m−1, and (c) 44 mN m−1. 

3. Conclusions and Perspectives 

Our main objective was to investigate the interfacial behavior of phospholipid-embedded OEG 

dendrons containing a t-Bu, a hydrocarbon, or a fluorinated end-group. These compounds are 

structurally close to the dendrons used to coat iron oxide nanoparticles developed for imaging and 

hyperthermia procedures. These dendronized magnetic nanoparticles are presently being 

investigated in combination with phospholipids to stabilize medical microbubbles. All the 

experiments conducted in this study indicated that OEG dendrons were expelled during 

compression, both from the air/water interface when they were spread as the sole component, and 

Figure 8. Atomic force microscopy (AFM) images and height profiles of mixed
DMPC/C2F5C4H8OEG8Den monolayers (molar ratio: 75:25) after transfer onto silicon wafers at
(a) 14 mN m−1, (b) 30 mN m−1, and (c) 44 mN m−1.

3. Conclusions and Perspectives

Our main objective was to investigate the interfacial behavior of phospholipid-embedded OEG
dendrons containing a t-Bu, a hydrocarbon, or a fluorinated end-group. These compounds are
structurally close to the dendrons used to coat iron oxide nanoparticles developed for imaging and
hyperthermia procedures. These dendronized magnetic nanoparticles are presently being investigated
in combination with phospholipids to stabilize medical microbubbles. All the experiments conducted
in this study indicated that OEG dendrons were expelled during compression, both from the air/water
interface when they were spread as the sole component, and from DMPC monolayers, when they were
co-spread at the interface with this phospholipid. When the surface density of dendrons triggered the
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OEG conformational transition, the dendrons were desorbed from the interface and expelled in the
aqueous phase. This means that the three OEG chains of unequal lengths were not hydrophilic enough
to enable the formation of a brush-like liquid condensed phase, as has been observed with PEG- and
some OEGylated dendrons. These mixed phospholipid/dendron monolayers can be viewed as model
interfaces of the monolayers that form the shells of medical microbubbles. In this regard, this work
suggests that the propensity of OEG dendrons to be squeezed out from phospholipid monolayers
could be exploited to facilitate the delivery of dendronized magnetic nanoparticles in vivo, and most
particularly for the combined use of ultrasound and magnetic resonance tumor imaging modalities.

4. Materials and Methods

4.1. Materials

1,2-dimyristoylphosphatidylcholine (DMPC) was purchased as a dry powder (99% purity) from
Avanti Polar Lipids (Alabaster, AL, USA) and used as received. Water was purified using a Millipore
system (surface tension 72.1 mN m−1 at 20 ◦C, resistivity: 18.2 MΩ cm).

4.2. Synthesis of the Dendrons

t-BuOEGxDen (x = 4, 6, 8): Pd/C 10% (0.1 equiv.) was added to a solution of BenzDen (1.0 equiv.)
in EtOAc (0.1 M). The heterogeneous solution was backfilled five times with an atmosphere of hydrogen,
then vigorously stirred at room temperature overnight. The catalyst was filtered over Celite and
the crude product was concentrated under reduced pressure and dissolved in acetone (0.1 M), after
which K2CO3 (1.5 equiv.) and OTsOEGxCO2t-Bu (1.1 equiv.) were added. The resulting heterogenous
solution was stirred at reflux for 16 h and cooled to room temperature. After filtration, the crude
product was concentrated under reduced pressure. Chromatography on silica gel afforded the final
product as a yellow oil.

t-Bu-OEG4Den: 1H NMR (500 MHz, CDCl3): δ (ppm): 7.11 (s, 2H), 6.88 (brs, 1H), 6.82 (s, 1H), 6.78 (d,
J = 2.2 Hz, 1H), 4.22 (t, J = 4.7 Hz, 4H), 4.14 (t, J = 4.9 Hz, 2H), 4.02 (qt, J = 7.4 Hz, 8H), 3.85 (t, J = 5.1 Hz,
4H), 3.82–3.77 (m, 4H), 3.72–3.60 (m, 56H), 3.54–3.52 (m, 4H), 3.36 (s, 6H), 3.09 (d, 2JP-H = 22.3 Hz, 4H),
2.50 (t, J = 6.2 Hz, 2H), 1.44 (s, 9H), 1.25 (t, J = 7.2 Hz, 12H). 13C NMR (125 MHz, CDCl3): δ (ppm):
170.9, 167.2, 152.4, 133.3, 129.5, 114.6, 107.3, 80.5, 72.3, 71.9, 70.6-70.5 (several peaks), 70.3, 69.7, 69.1,
66.9, 66.7, 62.1 (d, 2JC-P = 6.6 Hz), 59.0, 39.5, 36.2, 33.6 (d, 1JC-P = 138.4 Hz), 28.1, 16.4 (d, 3JC-P = 5.4 Hz).
31P NMR (202 MHz, CDCl3): δ (ppm): 26.0.

t-Bu-OEG6Den: 1H NMR (500 MHz, CDCl3): δ (ppm): 7.11 (s, 2H), 6.88 (brs, 1H), 6.82 (s, 1H), 6.78 (d,
J = 2.2 Hz, 1H), 4.22 (t, J = 4.7 Hz, 4H), 4.14 (t, J = 4.9 Hz, 2H), 4.02 (qt, J = 7.4 Hz, 8H), 3.85 (t, J = 5.1 Hz,
4H), 3.82–3.77 (m, 4H), 3.72–3.60 (m, 56H), 3.54–3.52 (m, 4H), 3.36 (s, 6H), 3.09 (d, 2JP-H = 22.3 Hz, 4H),
2.50 (t, J = 6.2 Hz, 2H), 1.44 (s, 9H), 1.25 (t, J = 7.2 Hz, 12H). 13C NMR (125 MHz, CDCl3): δ (ppm):
170.9, 167.2, 158.8, 152.5, 141.7, 133.3, 129.5, 124.4, 114.6, 107.3, 80.5, 72.3, 71.9, 70.7–70.3 (several peaks),
69.7, 69.1, 66.9, 66.7, 62.1 (d, 2JC-P = 7.2 Hz), 59.0, 39.5, 36.2, 33.6 (d, 1JC-P = 137.8 Hz), 28.1, 16.4 (d,
3JC-P = 5.6 Hz). 31P NMR (202 MHz, CDCl3): δ (ppm): 26.0.

t-Bu-OEG6Den: See characteristics in [24].

CnH2n+1OEG8Den (n = 6 and 8) and CnF2n+1C4H8OEG8Den (n = 2 and 4): TFA (5.0 equiv.) was
added to a solution of t-BuOEG8Den (1.0 equiv.) in CH2Cl2 (0.1 M). The solution was stirred at room
temperature for 4 h, concentrated under reduced pressure, dissolved in acetonitrile (0.1 M) before K2CO3

(2.0 equiv.) and the appropriate alkyl (or F-alkyl) halide (4.0 equiv., C6H13Br, C8H17Br, C2F5C4H8I, or
C4F9C4H8I) was added. After stirring at reflux for 16 h and cooling to room temperature, the solid was
filtered and the crude product was concentrated under reduced pressure. Chromatography on silica
gel afforded the product as a yellow oil.
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C6H13OEG8Den: 1H NMR (500 MHz, CDCl3): δ (ppm): 7.10 (s, 2H), 6.77 (s, 1H), 6.76 (s, 2H), 4.21 (t,
J = 4.9 Hz, 4H), 4.18 (t, J = 5.1 Hz, 2H), 4.13 (t, J = 5.1 Hz, 2H), 4.07 (t, J = 6.8 Hz, 2H), 4.04–3.97 (m,
10H), 3.84 (t, J = 4.9 Hz, 4H), 3.81–3.76 (m, 6H), 3.73 (t, J = 6.4 Hz, 2H), 3.71–3.58 (m, 50H), 3.53–3.51
(m, 4H), 3.35 (s, 6H), 3.08 (d, 2JP-H = 21.6 Hz, 4H), 2.58 (t, J = 6.5 Hz, 2H), 1.61 (qt, J = 9.5 Hz, 2H),
1.38—1.26 (m, 8H), 1.24 (t, J = 7.1 Hz, 12H), 0.88 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ
(ppm): 171.6, 167.3, 158.6, 152.4, 141.4, 133.3, 129.6, 124.0, 114.7, 107.3, 72.3, 71.9, 70.7–70.4 (several
peaks), 69.7, 69.0, 66.7, 64.7 62.3, 59.0, 39.6, 35.1, 34.1, 33.0, 31.4, 28.5, 25.5, 22.5, 16.4, 14.0. 31P NMR
(202 MHz, CDCl3): δ (ppm): 26.0.

C8H17OEG8Den: 1H NMR (500 MHz, CDCl3): δ (ppm): 7.10 (s, 2H), 6.88 (brs, 1H), 6.80 (s, 1H), 6.76
(s, 2H), 4.21 (t, J = 5.2 Hz, 4H), 4.18 (t, J = 5.2 Hz, 2H), 4.13 (t, J = 5.2 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H),
4.04–3.97 (m, 8H), 3.84 (t, J = 4.9 Hz, 4H), 3.80–3.77 (m, 4H), 3.74 (t, J = 6.7 Hz, 2H), 3.70–3.59 (m, 50H),
3.53–3.51 (m, 4H), 3.35 (s, 6H), 3.07 (d, 2JP-H = 21.6 Hz, 4H), 2.58 (t, J = 6.7 Hz, 2H), 1.60 (qt, J = 9.5
Hz, 2H), 1.36–1.23 (m, 34H), 0.87 (t, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm): 171.6,
167.3, 158.8, 152.5, 141.7, 133.2 129.5, 124.1, 114.7, 107.4, 72.4, 71.9, 70.7–70.4 (several peaks), 69.7, 69.1,
66.7, 64.7 62.2, 59.0, 39.6, 35.1, 34.2, 33.1, 31.9, 29.6, 29.5, 29.3, 29.2, 26.3, 25.9, 22.7, 16.4, 14.1. 31P NMR
(202 MHz, CDCl3): δ (ppm): 26.0 ppm.

C2F5C4H8OEG8Den: 1H NMR (500 MHz, CDCl3): δ (ppm): 7.10 (s, 2H), 7.00 (brs, 1H), 6.80 (s, 1H),
6.76 (s, 2H), 4.20 (t, J = 4.4 Hz, 4H), 4.17 (t, J = 4.6 Hz, 2H), 4.13–4.09 (m, 4H), 4.00 (qt, J = 7.4 Hz, 8H),
3.83 (t, J = 4.7 Hz, 4H), 3.79–3.75 (m, 4H), 3.73 (t, J = 6.4 Hz, 2H), 3.70–3.60 (m, 50H), 3.52–3.50 (m,
4H), 3.34 (s, 6H), 3.07 (d, 2JP-H = 22.2 Hz, 4H), 2.58 (t, J = 6.6 Hz, 2H), 2.11–1.99 (m, 4H), 1.74–1.62 (m,
4H), 1.23 (t, J = 7.1 Hz, 12H). 13C NMR (125 MHz, CDCl3): δ (ppm): 171.5, 167.2, 158.6, 152.4, 141.4,
133.2, 129.5, 124.0, 114.7, 107.3, 72.3, 71.9, 70.6–70.4 (several peaks), 69.7, 69.0, 66.7, 66.5, 63.6, 62.2 (d,
2JC-P = 6.9 Hz), 59.0, 39.5, 35.0, 34.1, 33.0, 30.9, 30.4, 30.2, 30.0, 29.7, 28.0, 17.1, 16.4 (d, 3JC-P = 5.8 Hz).
31P NMR (202 MHz, CDCl3): δ (ppm): 26.3. 19F NMR (282 MHz, CDCl3): δ (ppm): −85.4, −118.3.

C4F9C4H8OEG8Den: 1H NMR (500 MHz, CDCl3): δ (ppm): 7.09 (s, 2H), 6.88 (brs, 1H), 6.79 (s, 1H),
6.75 (s, 2H), 4.20 (t, J = 4.9 Hz, 4H), 4.17 (t, J = 4.9 Hz, 2H), 4.11–4.09 (m, 4H), 4.03–3.96 (m, 8H), 3.82
(t, J = 5.1 Hz, 4H), 3.79–3.75 (m, 4H), 3.73 (t, J = 6.5 Hz, 2H), 3.69–3.56 (m, 48H), 3.51–3.50 (m, 4H),
3.33 (s, 6H), 3.07 (d, 2JP-H = 21.6 Hz, 4H), 2.57 (t, J = 6.6 Hz, 2H), 2.18–2.02 (m, 4H), 1.74–1.63 (m, 4H),
1.23 (t, J = 7.0 Hz, 12H). 13C NMR (125 MHz, CDCl3): δ (ppm): 171.5, 167.2, 158.6, 152.4, 141.5, 133.3,
129.5, 124.0, 114.6, 107.3, 72.2, 71.9, 70.7–70.4 (several peaks), 69.7, 69.1, 66.7, 63.6 62.2, 59.0, 39.5, 35.0,
34.2, 33.1, 30.4, 28.0, 17.0, 16.4. 31P NMR (202 MHz, CDCl3): δ (ppm): 26.0 ppm. 19F NMR (480 MHz,
CDCl3): δ (ppm): −126.0, 124.5, −114.5, −81.0.

4.3. Langmuir Monolayers

The surface pressure (π) versus molecular area (A) isotherms were recorded using a Langmuir
minitrough (KSV NIMA, Finland) equipped with two movable barriers (initial area: 365 × 75 mm2,
compression speed: 10 cm2 min−1, which corresponded to a reduction of the total area of ∼3.6% min−1).
π was measured using the Wilhelmy plate (paper) method. The trough was maintained at 25 ± 0.5 ◦C.
Solutions of OEG dendrons (1 mmol L−1) in chloroform were spread on the surface of water (320 mL).
Subsequently, 15 min was allowed for chloroform to evaporate and the film to equilibrate before
compression was initiated. All the experiments were performed at least three times. Since our
Langmuir trough only allowed for a surface area compression of about 10, isotherms were recorded in
three separate experiments.

4.4. Atomic Force Microscopy (AFM)

The monolayers of dendrons or DMPC/dendron mixtures were compressed up to the desired
surface pressure and transferred at constant surface pressure onto silicon wafers using the
Langmuir–Blodgett technique (one monolayer transferred; lift speed: 1 mm min−1). Silicon wafers
were cleaned for 30 min in a sonication bath containing ethanol/milliQ water (1:1 vol:vol), followed
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by 2 min in a plasma cleaner. The LB films were immediately analyzed by AFM after preparation.
Images of the transferred films were recorded in tapping mode (AFM multimode 8, Bruker, Santa
Barbara, CA, USA). The cantilever (Budget Sensors) had a 3–10 nm radius silicon tip. The typical
resonance frequency was 300 kHz and the spring constant was 40 N m−1. At least three different
samples were analyzed and several areas were scanned on the silicon wafer for each sample. Errors of
the measurements along the z axis were estimated to be ± 0.5 nm.

4.5. Brewster Angle Microscopy (BAM)

When a laser beam polarized parallel to the plane of incidence hits the air/water interface at an
angle of 53.15◦, which is called the Brewster angle (= arctan nwater/nair, with n the refractive index),
there is essentially no light reflected. However, the presence of a monolayer at the interface alters the
Brewster conditions, which results in some light being reflected. The intensity of the reflected light
is a function of film thickness and refractive index. With an optical microscope set at the Brewster
angle, the water surface appears dark and the thin film brighter. In this way, BAM allows the direct
observation of some morphological characteristics of monolayers. A Bam2Plus microscope (NFT,
Gottingen, Germany) equipped with a KSV Minitrough Langmuir system (320 × 75 mm2) was used for
the experiments. The volumes of dendron solution (1 mM) and DMPC/dendron mixtures (molar ratio:
75:25) deposited on the surface were 5 µL and 20 µL, respectively. Snapshots were captured when
the monolayers were compressed up to desired pressures at a compression speed of 1.5 cm2 min−1.
The scale of the images is 600 × 500 µm.
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