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Abstract Time-resolved fluorescence (TRF) analysis

is considered to be among the primary research tools

in biochemistry and biophysics. One application of this

method is the investigation of biomolecular interac-

tions with promising applications for biosensing. For

the latter context, time-correlated single photon count-

ing (TCSPC) is the most sensitive, hence preferred

implementation of TRF. However, high throughput

applications are presently limited by the maximum

achievable photon acquisition rate, and even more by

the data processing rate. The latter rate is actually
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limited by the computational complexity to estimate

accurately the fluorescence lifetime from TCSPC data.

Here we propose a solution that would enable the imple-

mentation of TRF detection for fluorescence-activated

droplet sorting (FADS), a particularly high throughput,

microfluidic-based technology.

Most fluorescence lifetime algorithms require a large

number of detected photons for an accurate lifetime

computation. This paper presents an implementation

based on a maximum likelihood estimator (MLE), en-

abling high precision estimation with a limited number

of detected photons, significantly reducing the total

measurement time. This speedup rapidly increases the

input data rate. As a result, off-the-shelf embedded

products cannot handle the data rates produced by

current TCSPC units that are used to measure the
fluorescence. Therefore, a configurable real-time capa-

ble hardware architecture is implemented on a field-

programmable gate array (FPGA) that can handle

the data rates of future TCSPC units, rendering high

throughput droplet sorting with microfluidics possible.

The presented hardware architecture is validated with

experimental input data and produces high precision

results.

Keywords FPGA · time-resolved fluorescence ·
fluorescence lifetime · microfluidics · embedded signal

processing

1 Introduction

Fluorescence describes the emission of light from an

electronically excited state. The lifetime τ is the average

time between its excitation and the emission of a pho-

ton. Fluorescence spectroscopy and time-resolved flu-

orescence analysis methods are among the primary re-
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search tools in biochemistry and biophysics, but are not

limited to these fields. The main biotechnological ap-

plications include flow cytometry, medical diagnostics,

DNA sequencing, forensics and genetic analysis [11]. A

typical example that benefits from increased through-

put is fluorescence-activated droplet sorting (FADS) [3]

that is used for drug discovery [20].

Fluorescence spectroscopy measures the average

emission intensity, but results underlie many influences

such as turbidity, sample concentration, geometry of

the sample and chromophore bleaching. Furthermore,

this analysis method cannot capture important infor-

mation, such as fluorescence emitted by one fluorophore

masking other fluorophores due to spectral overlap as

well as interactions of the fluorophore with the sub-

strate or other macromolecules [11].

Time-resolved fluorescence analysis methods on the

other hand offer more information and are more ro-

bust, but require sophisticated optics and electronics

due to the short time scale of fluorescence processes,

which typically have emission rates of 108s−1 [11]. The

analysis is based on the fluorescence lifetime, which has

no dependency on emission intensity [6,18] and is inde-

pendent of the probe concentration as long as the probe

emission is well above the background signal [11]. The

fluorescence lifetime enables a distinct classification.

Microfluidics is a technology that allows the process-

ing of small amounts of fluids (10−9 to 10−18 liters),

utilizing channels with diameters of tens to hundreds

of micrometers. This analysis technique offers various

benefits such as carrying out separations and detections

with high resolution and sensitivity, low cost and short

times for analysis [24]. In order to combine the robust-

ness of time-resolved fluorescence analysis with high

throughput microfluidics, a sufficiently fast data pro-

cessing is required to form a reliable high throughput

sensing method. A particularly challenging example is

microdroplet or cell sorting. The proposed experiment

setup is illustrated in Fig. 1. A low cost high repetition

rate picosecond laser diode generator is focused with

lens L1 on the microdroplets in the channel, causing

fluorescence. The emitted photons (dotted lines) pass

the dichroic mirror unimpeded, are collected by lens L2

and then hit the single photon avalanche diode (SPAD).

A time to digital converter (TDC) measures the time

between the excitation and the emission of the photon.

Based on this information, a histogram of arrival times

can be generated, see Fig. 2. The fluorescence inten-

sity is defined by Eq. 1, where I0 is the initial intensity

and τ the fluorescence lifetime [11]. The histogram of

arrival times in Fig. 2 reflects the exponential decay

character of the fluorescence intensity and can be used

to extract the fluorescence lifetime τ . The measured

laser
diode

50 MHz

SPAD TDC

Hist

 τ

ctrl

L2

L1

dichroic
mirror

function
generator

Fig. 1: Schematic setup of a microfluidics sorting system

based on time-resolved fluorescence.
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Fig. 2: Histogram of arrival times. Each bin represents a

time slot and contains the number of photons detected

in that slot.

I(t) = I0e
− t

τ (1)

lifetime is then used to separate the classified micro-

droplets correctly further back in the channel. Due to

the flow velocity, the fluorescence lifetime computation

has a hard real-time deadline set at 5 ms.

The challenge of this approach is the complex-

ity of the time-resolved fluorescence analysis method.

Microfluidics systems have no problem generating a

laminar high throughput flow of up to twenty thou-

sand so called microdroplets per second [22]. However,

there are currently two problems that limit the ac-

tual throughput of such a sorting system. The photon

counting rate for current time-correlated single-photon

counting (TCSPC) systems is limited by the sample’s
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lifetime, the pileup effect and dead-times of electronics,

which will all be discussed in Section 3.

In a previous experimental work, we have investi-

gated how the pile-up effect and the photon shot noise

– inherent to single photon detection – may limit the

applications of TCSPC in very high throughput condi-

tions [12]. More specifically, we have demonstrated that

these limitations do not preclude the use of TCSPC

to detect with high sensitivity and good accuracy the

fluorescence lifetime in microfluidic droplets of 50 mi-

crons diameter circulating at a flow rate exceeding 103

droplets per second. Recently, we applied the same

experimental concept to demonstrate the feasibility

and very good reliability of a biologically-relevant en-

zymatic activity assay based on fluorescence lifetime

detection, in 200-picoliter droplets circulating at 300

droplets per second, by implementing TCSPC [9]. In

these previous experimental demonstrations, the data

analysis (automatic droplet detection, building and fit-

ting of fluorescence histograms for individual droplets)

was done a posteriori, by post-processing the acquired

data.

In this paper, we aim at enabling the real-time data

processing in such experiments. This would be of cen-

tral relevance to extend the above proof-of-principle ex-

periments to microfluidic droplet sorting or fluorescence

assisted cell sorting (FACS) experiments based on flu-

orescence lifetime detection by TCSPC. More specifi-

cally, we demonstrate the FPGA implementation of a

monoexponential decay fit in order to achieve the pro-

cessing of up to 151 histograms per millisecond, in con-

ditions of low photon number per histogram.

Established methods for fluorescence lifetime com-
putation require large photon counts for precise estima-

tion, resulting in a low throughput. Algorithms based

on a maximum likelihood estimator (MLE) deliver reli-

able high precision results even with low photon counts

per histogram. This drastically reduces the required

measurement time and in turn increases the possible

input data rate. Transferring the data to a powerful

workstation consumes too much time and embedded

off-the-shelf products cannot handle the resulting data

rate. Therefore, a dedicated low latency, high through-

put embedded hardware architecture for highly accu-

rate fluorescence lifetime classification based on low

signal-to-noise inputs has been developed. This new ar-

chitecture renders high throughput microfluidic sorting

possible with current TCSPC systems. The system has

been introduced in [15] and is discussed here in more

detail and validated with real experimental input data.

The following section reviews systems and methods

for fluorescence lifetime extraction. After that, factors

limiting the counting rate of TCSPC electronics for

fluorescence measurements are explained in Section 3

and the MLE algorithm is revised in Section 4. Subse-

quently, the hardware architecture is explained in Sec-

tion 5 and compared to existing approaches in Sec-

tion 6. The paper ends with a validation of the pre-

sented hardware architecture with experimental input

data in Section 7 and a brief conclusion in Section 8.

2 Related Work

The following review focuses on the fluorescence life-

time extraction from a given histogram of arrival times,

as displayed in Fig. 2.

The work presented in [5] shows a complete system

similar to Fig. 1. While the TDC and histogram gen-

eration is implemented on a FPGA, the fluorescence

lifetime is being computed externally on a workstation.

Therefore, the histogram data is transferred via UART

(Universal Asynchronous Receiver Transmitter). The

results mention a delay of a few seconds to measure

the fluorescence decay of a substance, which is clearly

too slow for the real-time control system required by

the sorting experiment proposed in this paper. Another

approach using external processing is introduced in [7].

The fluorescence signals are transmitted via TCP/IP

(Transmission Control Protocol/Internet Protocol) to

a workstation that performs the lifetime computa-

tion. The signal acquisition, preprocessing and TCP/IP

transmittance time is given as 9.5 ms. This time does

not include the actual computation of the lifetime,

proving that external computation of the fluorescence

lifetime does not meet the given time constraints and

an embedded approach is necessary to avoid long data

transfer times.

There are several algorithms available that calcu-

late the fluorescence lifetime. These algorithms can be

classified into two groups. The first type are model

based fitting methods such as Bayesian [19], maximum

likelihood [17] or maximum entropy [21], method of

moments [8] and least squares deconvolution with La-

guerre expansion [16,7]. These fitting methods return

precise results, but have a relatively high computational

complexity and easily converge to a local minimum.

Furthermore, each model is derived from application

knowledge such as the number of lifetimes contained in

the data and thus the fitting approach is limited to the

selected data [25].

The second algorithm class are nonfitting meth-

ods. Examples are the rotational invariance technique

introduced in [25], the phasor analysis [4], Prony’s

method [26], the integral equation method [14] and

the center of mass method [13,23]. These algorithms

offer a greatly reduced computational complexity when
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4 Tobias Lieske et al.

compared to the fitting based methods. Yet, some ap-

proaches are limited to monoexponential decays. An

evaluation of these approaches is given in [25]. As

will be shown in Section 6.2, the estimation quality of

nonfitting methods is subpar and model based fitting

methods offer superior results.

However, the main goal is to speed up the sort-

ing process while maintaining the measurement preci-

sion. [17] shows that the maximum likelihood estima-

tion (MLE) performs better on low signal-to-noise fluo-

rescence decays than the popular least squares method

and a classification of monoexponential decays is possi-

ble with very few photons [10]. In addition to that, the

computational complexity for fluorescence lifetime esti-

mation using the MLE algorithm is significantly lower

than for the least squares algorithm [8]. Therefore, the

MLE algorithm has been selected for further analysis,

since collecting less photons per droplet results in a

shorter measurement time and in a higher experiment

throughput.

3 Counting Rates of TCSPC Electronics

As already mentioned, the photon counting rate of

TCSPC systems is limited by three factors. For one,

TCSPC electronics exhibits a dead-time after a photon

has been detected. Thus, photons arriving later at the

SPAD can be masked by photons arriving early. This

effect is called pulse pileup and deforms the recorded

histogram in such a way that the measured fluorescence

lifetime is reduced. This problem is usually addressed

by following the 1% rule that states the excitation

energy of one laser pulse should be so low that only

one electron is emitted out of 100 excitation pulses.

However, this 1% rule is being considered as overcau-

tious. Counting rates at 10% decrease the lifetime by

less than 1% and even a 30% count rate results only

in a modest change [11]. Therefore, the technically

maximum pulse repetition rate of the used laser can

limit the photon counting rates. On the other hand, the

maximum pulse repetition rate in order to determine

the lifetime properly depends on the fluorescence de-

cay times of the sample. The time between the pulses

should be at least four times the longest lifetime in

the sample [11]. Another technical limit is the actual

duration of the dead-time of the TCSPC electronics.

Effective counting rates further drop by 50% [11]. Con-

sidering an example with a lifetime of 5 ns, a maximum

laser repetition rate of 50 MHz is allowed. Targeting a

30% count rate results in 15 Mcps (counts per second),

which can be handled by currently available TCSPC

products [2]. As will be shown in Section 6.2, a total

photon count of 500 per histogram is enough for pre-

cise lifetime extraction with an average error below 0.5

% using the MLE algorithm. Provided one achieves a

sufficiently fast fitting rate, up to 30000 microdroplets

could be sorted per second. Our objective is therefore

to implement a fitting routine that may process up to

several 104 histograms per second.

4 Fluorescence Lifetime Estimation

The maximum likelihood estimator for monoexponen-

tial fluorescence decay signals has been derived in [8]

and is given in Eq. 2. With x = T/τ , T the time step of

1 + (ex − 1)−1 −m(emx − 1)−1 = ν (2)

one histogram bin, m the number of histogram bins, ν

as defined in Eq. 3 and Ni the number of photons in his-

ν =

∑m

i
iNi∑m

i
Ni

(3)

togram bin i. The term ν can be seen as the histogram

bin index with the “average” number of photons. The

left-hand side of Eq. 2 is strictly monotone decreasing

and admits a unique solution as long as the source is

decaying. Therefore, a solution can be easily obtained

by applying the Newton-Raphson method, as displayed

in Eqs. 4 to 6.

L(x) =1 + (ex − 1)−1 −m(emx − 1)−1 − ν = 0 (4)

xi+1 =xi −
L(xi)

L′(xi)
(5)

=xi −
1 + (ex − 1)−1 −m(emx − 1)−1 − ν

m2emx(memx − 1)−2 − ex(ex − 1)−2
(6)

Depending on the measured time window length,

the total number of detected photons and the fluores-

cence lifetime, there is a visible noise floor, which can

be seen in Fig. 2. As already mentioned, the photon

count for the high throughput sorting application is

relatively low. Therefore, higher index photon counts

are relatively speaking stronger influenced by this noise

floor, as these bins generally have a very low photon

count. The noise floor deforms the exponential decay

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Embedded Fluorescence Lifetime Determination for High-throughput, Low-photon-number Applications 5

and directly influences ν and thus the estimated fluo-

rescence lifetime value τ , see Eq. 3. Therefore, an iter-

ative noise removal process called auto-windowing has

been developed to acquire an improved approximation

of the fluorescence lifetime. Depending on the estimated

fluorescence lifetime, the input histogram is truncated

to remove noisy bins and the fluorescence lifetime is

recomputed, until a stable result is acquired.

This algorithm has been implemented in C on an

ARM® Cortex®-A53 quad-core processor. Processing

one histogram of 1024 bins takes 152.365 µs. Assum-

ing no delays caused by concurrent memory accesses,

a total of 26.25 histograms per millisecond can be pro-

cessed with this embedded processor, which is not suffi-

cient to handle the data rate of 30 histograms per mil-

lisecond of the numerical example given in Section 3.

However, TCSPC electronics continuously improve en-

abling higher counting rates. Additionally, measuring

a lifetime less than 5 ns allows higher laser repetition

rates resulting in even higher counting rates, which in

turn cannot be handled by the ARM® Cortex®-A53

quad-core processor.

5 Hardware Implementation

Therefore, a dedicated hardware implementation has

been developed in VHDL to avoid compute-bound

fluorescence measurement systems and maximize the

sorting throughput. The presented fluorescence lifetime

computation system is displayed in the block diagram

in Fig. 3 connected to the histogram and control unit,

as shown in the experiment setup in Fig. 1. The input

and output interfaces use asynchronous FIFO (first-in-

first-out) buffers for clock synchronization. The actual

computation system consists of a preprocessing stage

and a computation stage. The first part addresses the

input data and performs some preprocessing to com-

pute ν for Eq. 6. The second stage implements the

Newton-Raphson iteration of the estimator function

Eq. 6 to compute the fluorescence lifetime τ . This

pipeline-like system structure enables concurrent pro-

cessing of input data.

5.1 Preprocessing

The preprocessing stage is designed as a streaming ar-

chitecture that accepts each input histogram bin by bin

and computes the ν value, which is required to solve

Eq. 6. As displayed in Eq. 3, ν depends on the number

of histogram bins. However, the histogram size changes

when the auto-windowing approach truncates the his-

togram. Therefore, different νi values will be required

hist

νi

fixed2float

νi buffer system

auto-windowing

Newton-Raphson

NR-iteration pipe

FIFO

ctrl

preprocessing

clk_i
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Fig. 3: System overview of the presented fluorescence

lifetime computation unit.

to compute the fluorescence lifetime with this iterative

approach. In order to avoid any delays by on-demand

computations, νi is computed on the fly for every his-

togram bin index i and stored in a buffering system.

The computations in this stage are performed on

fixed-point data that scales throughout the module de-

pending on the configurable input data width. This ap-

proach reduces the hardware resource requirements as

opposed to a floating-point based implementation. Fur-

thermore, the critical path of the preprocessing stage

is reduced. In combination with the separate clock re-

gions for the preprocessing and computation stages, this

increases the maximum input data frequency and there-

fore the system throughput. The measurements per-

formed in Sections 6 and 7 show that the fixed-point

computation does not impair a precise fluorescence life-
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time computation when compared to a floating-point

implementation.

The preprocessing module in Fig. 3 is required to ex-

tract the actual histogram that represents the exponen-

tial decay function from the noisy input provided by the

histogram generation module, see Fig. 2. The two main

noise components in such a measured histogram are the

noise floor caused by background light and spikes in the

histogram caused by Poisson noise, which is inherent

for photon counting processes [11]. In order to compen-

sate both noise sources, the start of the histogram is

computed as the mean index position of the maximum,

which is determined within a configurable window at

the beginning of the input histogram. In the course of

an experiment, temperature changes influence the TDC

behavior and can thus gradually shift the beginning of

the histogram. Therefore, the mean maximum index is

only computed over a dynamically configurable window

size of the last histograms to account for this behavior.

While the preprocessing can be implemented in

a fully pipelined streaming fashion, both the auto-

windowing approach and the Newton-Raphson method

are iterative algorithms. In order to maximize the

throughput, the computed νi values are stored in a

buffer system as single-precision floating point values.

The νi values of different input histograms are stored

in separate buffers slots and accessible to the second

stage to enable concurrent computations of Eq. 6.

5.2 Fluorescence Lifetime Computation

The computation of the fluorescence lifetime is per-

formed in the computation stage of the system, see

Fig. 3. Due to the large dynamic range of the expo-

nential terms in Eq. 6, floating-point values are used

instead of fixed point. In order to avoid that the criti-

cal path of floating-point arithmetic degrades the per-

formance of the preprocessing stage, separate clocks are

used for each stage and clock synchronization is imple-

mented in the νi buffer system module.

The second stage is fully pipelined, although auto-

windowing and Newton-Raphson are both iterative al-

gorithms. The νi buffer system in Fig. 3 signals the

auto-windowing module when a new complete set of

νi values is available. The auto-windowing module in

turn creates a new computation job and dispatches it to

the Newton-Raphson module. A computation job con-

sists of a number of job properties that are listed in

Table 1. These are the current iteration indices j and

k for the auto-windowing and Newton-Raphson itera-

tions, the current histogram size mj , which decreases

Table 1: Computation job properties.

Job Property Value

AW-Iteration j
NR-Iteration k

hist size mj
ν νmj

Table 2: Experiment-wide job properties.

Experiment Property Value

AW-Limit jlimit
NR-Limit klimit
Time Step T

Initial Lifetime τ0

with each auto-windowing iteration due to the trunca-

tion process, and the current ν value which depends on

the current histogram size. Further runtime parameters

are set experiment-wide when configuring the compu-

tation system. These are listed in Table 2. The iteration

limits jlimit and klimit can be set within the range of

statically configured values Jlimit and Klimit set at syn-

thesis time. Apart from the histogram data itself, Eq. 4

requires information about the time step T of one his-

togram bin during the measurement and an initial value

x0 = T/τ0. Therefore, the time step T and an initial

fluorescence lifetime τ0 are part of the configuration as

well. Nevertheless, the computed fluorescence lifetime

empirically converges within ten Newton-Raphson iter-

ations, regardless of τ0.

With the job properties listed in Tables 1 and 2, the

Newton-Raphson module displayed in Fig. 3 computes

klimit iterations of Eq. 6 in order to solve Eq. 4 and get

a first estimate of the fluorescence lifetime τ . Once the

Newton-Raphson iteration reaches klimit, the computed

fluorescence lifetime τ is passed to the auto-windowing

module where the histogram size mj for the next auto-

windowing iteration is derived and the corresponding
νmj is loaded from the νi buffer system to update the

job state in Table 1.

Figure 3 shows that the Newton-Raphson module

controls the NR-iteration pipe block, which is a fully

pipelined implementation of Eq. 6. In order to avoid

numeric instability, critical parts of the computation

are performed in double-precision. By pipelining the

NR-iteration pipe block, up to 130 fluorescence life-

time computations can be performed in parallel each

identified by a tag to ensure unambiguous assignment

of input histogram to output lifetime. In reality, the

number of parallel computation jobs is bound to the

statically configurable number of buffer slots in the νi
buffer system module that is required to synchronize

the input histogram stream with the computation per-
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Table 3: Configuration parameters for implementation

results in Table 4.

Data Width mmax Jlimit Klimit #Buffer
32 1024 10 10 16

formance. This means, the fluorescence lifetime com-

putation for preprocessed histogram data stored as νi
values in buffer slot l has to be completed by the com-

putation stage before the preprocessing stage overwrites

the νi values in slot l with data from a new input his-

togram. Using the input bin data frequency and the

worst-case iteration counts Jlimit and Klimit, the mini-

mum number of buffer slots can be computed easily, as

will be shown in Section 6.

Using this system structure, multiple preprocessing

stages can be connected to share one fluorescence life-

time computation stage to save resources.

6 Evaluation

6.1 Implementation Results

In order to evaluate the presented fluorescence lifetime

computation system, a parameter set for the configura-

tion has to be selected. Table 3 shows an excerpt of the

static configuration parameters and their values used

for the implementation results in Table 4 obtained by

Quartus Prime 15.1.0. The Data Width defines the in-

put bit width of a histogram bin represented as fixed

point number. mmax configures buffer sizes and sets the

maximum supported histogram size. AW Itermax con-

figures the counter bit width for the auto-windowing

iterations. The actual iteration count can be set dynam-

ically between 1 and AW Itermax. The same applies for

the Newton-Raphson iteration count that is configured

via NR Itermax. The #Buffer parameter sets up the νi
buffer system.

An FPGA-based TDC and histogram generation

module is introduced in [5]. Such a module can be

implemented along with the here presented fluores-

cence lifetime computation system on the same FPGA

chip, given the unused resources in Table 4. Input

histograms are streamed to the preprocessing stage

bin by bin sequentially. Thus, the reported maximum

clock frequency in Table 4 for the preprocessing stage

corresponds to a potential input data stream of 151

histograms per millisecond, each histogram 1024 bins

wide. Such a histogram rate may occur when the fluo-

rescence lifetime needs to be measured at several points

along the microfluidics channel or when counting rates

of TCSPC electronics further improve.

Filling 1 of the 16 buffers in the νi buffer system

takes about 6.59 µs (1024 cycles). Assuming a contin-

uous input data stream, the time window to process

the data just stored in this buffer is about 98.98 µs

(15360 cycles), which is the time to fill 15 buffers. Run-

ning the computation with the highest iteration count

of 10 auto-windowing iterations, each consisting of 10

Newton-Raphson iterations, takes 93.86 µs (13840 cy-

cles).

This means that even though an iterative algorithm

has been chosen for the fluorescence lifetime compu-

tation, the presented architecture is IO bound due to

smart parallel processing strategies. The given configu-

ration can easily process 151 histograms per millisecond

with a maximum computation delay of about 100,46

µs per histogram on a low cost FPGA development

board [1]. The throughput and BRAM resource utiliza-

tion of the system can be scaled down, by reducing the

size of the νi buffer system. In case higher input data

rates need to be processed, several preprocessing stages

can be connected with some glue logic to one shared

computation stage.

6.2 Quality of Computed Fluorescence Lifetimes

CV: στ / µτ

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

C
V

τ
 =

 1
 n

s

C
VHDL
Input

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

C
V

τ
 =

 3
 n

s

C
VHDL
Input

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

C
V

τ
 =

 5
 n

s

C
VHDL
Input

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

500 600 700 800 900 1000 1100 1200 1300 1400 1500

C
V

τ
 =

 1
5

 n
s

Total Number of Photons

C
VHDL
Input

Fig. 4: Coefficient of variation for the C and VHDL

implementation, as well for the input histogram.

In order to test the quality of the computed fluores-

cence lifetimes, input histograms for four fluorescence
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Table 4: Implementation results on Altera Cyclone V 5CSEMA4U23C6.

fstage 1 fstage 2 FF ALM DSP BRAM
155.18 MHz 147.45 MHz 29891 (47 %) 11937 (75 %) 71 (85 %) 228 (84 %)

Table 5: Time step and histogram size for each τ test

case.

τ [ns] 1 3 5 15
T [ps] 45 90 90 90
m 512 512 512 1024

lifetimes τ ∈ {1 ns, 3 ns, 5 ns, 15 ns} have been gen-

erated. The time step T and number of histograms

bins m have been selected according to Table 5. Pois-

son noise has been added to the histograms, since this

kind of noise is inherent for photon counting processes

and also is the prominent kind of noise for low photon

counts [11]. Further, the behavior for low photon counts

needs to be analyzed. Therefore, histograms with a dif-

ferent total photon count N ∈ {500, 600, . . . , 1500}
have been generated. Due to the Poisson noise, the

total number of photons deviates and is not exact for

each histogram. For every {τ,N} set, 1000 histograms

have been generated and the corresponding lifetime has

been computed with the MLE algorithm implemented

in C and by simulating the VHDL design.

Figure 4 lists the coefficient of variation (CV), which

is the quotient of the standard deviation to the mean.

This ratio is a standardized measure of dispersion. The

results show that the noise introduced by the process-

ing is in an acceptable range compared to the input

noise (CV of Poisson distribution is 1/
√
N) and de-

creases with increasing N . Slight variations are caused

by the added Poisson noise. Some histograms are noisier

than others and some sets include more of such “nois-

ier” histograms. Similarly, N varies from histogram to

histogram.

The non fitting algorithms analyzed in [25] are com-

pared by their normalized bias (∆τ/τ) and the F -value,

which is the normalized precision defined as F =
√
N ·

στ/µτ . An ideal computation has F = 1, while realis-

tic computations feature F > 1 and F � 1 [25]. The

histograms used in [25] have m = 1024 and a time bin

width T = 12.5 ns / 1024 ≈ 12.2 ps, which is a much

finer temporal resolution than the one used for the test

cases in this paper, see Table 5. Unfortunately, N is

not given, but the number of photons in the first bin

is, which is either 1000 when τ is being varied or τ is

fixed at 3 ns and the number of photons in the first bin

varies from 100 to 5000. In order to put these numbers

into context, the mean photon count in the first bin

where the exponential decay starts is listed in Table 6

Normalized Bias: (µτ - τ) / τ
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Fig. 5: Normalized bias for C and VHDL implementa-

tion. The optimum is a bias of 0.

for all test cases used in this paper. It is obvious that the

test cases used in this paper feature a drastically lower

total photon count N , which implies a much shorter

measurement time per droplet and thus improves the

throughput. Nonetheless, the resulting bias and F-value

measurements presented in Figs. 5 and 6 respectively,

show that the MLE algorithm returns superior results.

The bias for all measurements plotted in Fig. 5 is

clearly below 0.5%, while the bias reported in [25] for τ

= 3 ns for the integral equation method (IEM) is about

-1.6% and about 6.3% for the center of mass method

(CMM). Both clearly exceeding the bias of the MLE.

Further, the listed phasor analysis features a bias of

about 0.8% (τ = 3 ns), while the presented fluorescence

lifetime estimation via rotational invariance techniques

(FLERIT) algorithm is very close to 0% bias (τ = 3 ns).

Extracting an exact range from the plot is not possible

due to the coarse scale. The CMM method is discarded

for the further comparison considering its excessive life-

time dependent bias.

Looking at the F-values reported in [25], it is clear

that FLERIT, IEM and phasor exhibit a lifetime de-

pendent precision. The authors list optimized regions

for the analyzed algorithms, where F < 4. These re-
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Table 6: Mean photon count in the first bin of the exponential decay.

τ [ns] 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1 22.38 27.00 31.61 34.88 40.09 43.34 48.86 52.15 57.67 61.78 67.17
3 13.34 16.56 19.19 21.85 24.50 27.10 29.24 33.07 35.16 37.88 41.23
5 8.83 10.35 11.89 13.80 15.63 16.89 18.84 20.77 22.18 24.05 25.63

15 2.97 3.46 4.10 4.60 5.24 5.89 6.57 7.31 7.68 8.24 8.86

F-Value: √N στ / µτ
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Fig. 6: F-Value for C and VHDL implementation.

gions are from 0.4 ns to 14 ns for FLERIT, 0.4 ns to

8.8 ns for IEM and 0.4 ns to 4.23 ns for phasor. A higher

resolution plot for τ = 3 ns shows that the F-value for

the two best algorithms FLERIT and IEM varies be-

tween 1.5 and 2.0 [25]. In contrast to this, the F-value

measurements of the MLE algorithm given in Fig. 6

show no dependency on the lifetime and no test case

exceeds a F-value of 1.22.

7 Application to Real Experimental Data

In order to assess the performances of the above fit-

ting procedure and VHDL implementation with real

data, we use experimental data recorded in a proof-

of-principle experiment demonstrating the feasibility of

an enzymatic activity assay based on fluorescence life-

time detection, at very high-throughput in microflu-

idic droplets [9]. More specifically, in this assay, a flu-

orescently labeled substrate is used such that if the

enzyme is active, the fluorophore is cleaved from the

substrate and its fluorescence lifetime increases. Two

data sets named 1 and 2, were acquired by implement-
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(b) Exemplary histograms from data set 2.

Fig. 7: Exemplary histogram data acquired from the

experimental measurement setup in [9] with additional

postprocessing to remove the non-zero offset.

ing TCSPC in microfluidic droplets (as in Fig. 1, see

also [9]) at a throughput of 300 droplets per second, in

conditions where about 2500 single photons were col-

lected per droplet. Two successive experiments where

performed to generate data set 1 and 2 in which the

droplet contents were the bare substrate (data set 1 )

or the substrate cleaved by the enzyme (data set 2 ). A

histogram of the time-stamped single photon detection

events was constructed for each droplet, by off-line data

post-processing. Figures 7a and 7b display exemplary

three histograms from data set 1 and data set 2 respec-

tively. Here we present the analysis of the two sets of

histograms with the presented VHDL fitting scheme.
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Table 7: Statistical properties for the computation results for data sets 1 and 2 from Fig. 8a and the corresponding

reference results from [9].

VHDL reference
u [ns] sig [ns] CV [%] F-Value u [ns] sig [ns] CV [%]

data set 1 8.3 0.25 3.0 1.5 6.9 0.25 ∼3.6
data set 2 12.2 0.47 3.8 1.8 11.4 0.42 ∼3.6

Table 8: Statistical properties for the computation results for data sets 1 and 2 from Fig. 8b and the corresponding

reference results from [9].

VHDL reference
u [ns] sig [ns] CV [%] F-Value u [ns] sig [ns] CV [%]

data set 1 8.1 0.07 0.9 1.4 6.9 0.08 ∼1.2
data set 2 12.1 0.14 1.1 1.7 11.2 0.13 ∼1.2
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(b) Fluorescence lifetime distribution for data sets 1 and 2,
where 10 individual droplet histograms were summed up to
one input histogram.

Fig. 8: Distribution of the fluorescence lifetimes that

were computed by the presented VHDL implementa-

tion. The input data are the measurements from [9]

with additional postprocessing to remove the non-zero

offset.

The original experimental data featured a non-zero

offset that results in an overestimation of the fluores-

cence lifetime with the presented MLE algorithm and

thus had to be removed before processing the histogram

data. Further improvement will be to include an auto-

mated procedure for offset subtraction online during

data acquisition.

For easier comparison with the results analysis

from [9], the computed fluorescence lifetime values,

which are computed with the same system setup de-

scribed in Section 6, are plotted as histograms in

Fig. 8a. Similar to the evaluation in Section 6, the

parameters µτ , στ , the coefficient of variation and the

F-value are listed in Table 7, along with the reference

values published in [9]. The results for στ , as well as the

related coefficient of variation and the F-value, are in

good agreement with the reported values from [9]. The

matching of these parameters indicates a high precision

of the fluorescence lifetime estimate by the presented

computation system.

However, the computed fluorescence lifetimes do not

accurately match. The main reason for this is that in [9],
the fluorescence lifetime of each droplet was computed

offline with a 5-parameter fit implemented via a nonlin-

ear least-square minimizing Matlab routine to fit each

individual histogram, whereas here we perform a single-

parameter fit based on the above MLE algorithm. In

principle, both fitting procedure must give identical re-

sults in the case of purely monoexponential decays with

zero offset, and strictly poissoninan noise distribution.

Here, the original experimental data do feature a non-

zero offset, which strongly influences the fluorescence

lifetime estimate if it is not taken into account. Hence,

for the present validation, we had to estimate and sub-

tract this average offset before processing the histogram

data, which reduces the discrepancy between the aver-

age lifetimes to less than 20% between both analysis

schemes, as shown in Tables 7 and 8. In addition, the

fluorescence decays are not rigorously monoexponen-

tial as can be readily seen for instance in Figure 7a (see

residual systematic glitch at 15 ns, induced by a slight

defect in the FPGA-based TDC). We conclude that the
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average fluorescence lifetime extracted by both fitting

procedure is not affected in the same way by the devi-

ations from purely monoexponential decays.

Future improvements to enhance the accuracy of on-

line fluorescence lifetime determination by the present

MLE routine will be to include an automated proce-

dure for offset subtraction during data acquisition, and

to correct the residuals defects of the TDC.

Most importantly, while we just discussed the ori-

gins of inaccuracy (i.e. bias in the average lifetimes) we

now underline the very good precision (width of the

lifetime distributions) of the present method, which is

similar to that obtained by the off-line 5-parameter fit

of ref [9]. This very good precision is certainly the most

critical and important result the present work, even in

the case of non perfect data sets, because the precision

is the most important criterion in screening applications

where the goal is to be able to distinguish between two

distinct values.

Finally, following the example in [9], the droplet his-

tograms were summed up 10 by 10 to simulate a 10-fold

increase of the effective droplets exposure time during

the measurement and reduce the Poisson noise by a

factor of
√

10. The computed fluorescence lifetimes for

these two newly created data sets are plotted in Fig. 8b

and the results of the statistical analysis are listed in

Table 8 together with the reference values from [9]. As

expected, the precision, estimated by the στ parameter,

improves by a factor of ∼
√

10.

The measurement results in Tables 7 and 8 show

that, remarkably, the presented MLE-based fluores-

cence lifetime computation system still produces very

high precision results, even if the accuracy may be

affected by imperfect data quality.

8 Conclusion

Time-resolved fluorescence analysis is among the pri-

mary research tools in biochemistry and biophysics [11].

Increasing the throughput of FADS systems improves

the efficiency of drug discovery and can help finding

new cures for diseases. This paper presents the imple-

mentation of a MLE based fluorescence measurement

system. The results show that the algorithm offers su-

perior fluorescence lifetime estimations, even for very

low signal-to-noise inputs, i.e. low photon count. This

enables shorter measurement times, which in turn in-

creases the throughput of FADS systems, while also im-

proving the measurement quality.

The MLE algorithm features indeed a higher com-

putational complexity than non fitting algorithms.

However, this paper shows that a flexible low cost

FPGA implementation is capable of processing high

data rates in real time.
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