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c Manufacture Franc-aise des Pneumatiques Michelin, CERL, Ladoux, 63040 Clermont-Ferrand, France

Keywords:

Rubber material

Anisotropic material

Mechanical testing

Mullins softening

a b s t r a c t

Samples of carbon-black filled styrene butadiene rubbers (SBRs) were submitted to

successive nonproportional loadings in order to define a general criterion for the Mullins

softening. For this purpose, each sample was initially submitted to uniaxial or biaxial

preloadings followed by a cyclic uniaxial tension test. An original experimental analysis

aimed at defining the activation threshold for the Mullins softening during cyclic uniaxial

loadings. The experimental data provide substantial evidences establishing the surface of

the maximum directional stretch undergone by the material as a relevant Mullins softening

criterion. The latter was used to successfully predict the Mullins softening surfaces for

additional loading cases.

1. Introduction

Carbon-black filled rubbers exhibit substantial softening when stretched for the first time. This phenomenon is generally
referred to as the Mullins softening for the amount of work dedicated to the topic by Mullins (1947, 1949, 1950, 1969). Despite
numerous contributions on the Mullins softening over the past decades, no general agreement has been found yet on the
activation criterion of this phenomenon for general loading conditions. The objective of this contribution is to provide such a
criterion essential for filled rubber constitutive modeling.

The Mullins softening may be illustrated by the stress–stretch response of a filled rubber submitted to a cyclic uniaxial
tensile test with increasing maximum stretch. Fig. 1a highlights the stress-softening undergone by a filled rubber when first
loaded. One may notice that once the Mullins softening is evacuated, the material behavior evolves very slowly. To the contrary,
when stretching the material beyond the maximum intensity previously applied, it softens substantially. One may notice also
that while the material softens some residual stretch appears and increases with the maximum stretch applied. Mullins (1947,
1949) conducted extensive experimental studies showing the dependence of filled rubbers softening and residual stretch with
the maximum stretch for uniaxial tension tests. The same author revealed the anisotropy of both the Mullins softening and
the residual stretch by applying successive nonproportional loadings (i.e. successive loadings, changing the directions of
stretching). Subsequent experimental studies focused mainly on proportional loadings, and only a few authors (Laraba-Abbes
et al., 2003; Hanson et al., 2005; Diani et al., 2006a,b; Itskov et al., 2006; Dargazany and Itskov, 2009; Machado, 2011)
conducted nonproportional loadings showing the anisotropy induced by a preloading when applying a series of loadings
according to various directions on the same sample.
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At room temperature, the Mullins softening is generally considered as an irreversible damage and therefore is modeled by
damage parameters and their evolutions (see Diani et al., 2009 for a review). Most models use an isotropic damage definition for
which the damage criterion may be defined in terms of the highest eigenvalue of the deformation gradient tensor (Govindjee
and Simo, 1991, 1992), or of the maximum of any deformation tensor invariant (Lion, 1996; Krishnaswamy and Beatty, 2000;
Chagnon et al., 2004; Elı́as-Zúñiga, 2005), or of the maximum free energy (Simo, 1987; Ogden and Roxburgh, 1999), or of other
scalar quantities. This idealized isotropic representation of the Mullins softening does not account for the anisotropy induced by
the Mullins softening. Actually, very few models deal with an anisotropic criterion. One may cite Göktepe and Miehe (2005)
accounting for directional damage parameters depending on the maximum directional free energy, Diani et al. (2006a,b) and
Dargazany and Itskov (2009) considering directional maximum stretches as directional criterion of damage activation, and Itskov
et al. (2010) using the maximum stretches in the principal directions of the current deformation gradient tensor only. In what
follows, an original analysis of nonproportional loading tests provides experimental evidences that the maximum directional
stretch surface defines a relevant three-dimensional criterion for the Mullins softening activation.

This paper is organized as follows. The next section presents the experimental setup and describes the original method
used to detect the Mullins softening activation. This section also provides the experimental results obtained under
nonproportional loading conditions. In Section 3, the Mullins softening criterion is defined and validated for additional
loading cases. Finally, concluding remarks close the paper.

2. Experimental determination of the Mullins softening activation

2.1. Experimental setup

For this study, we used a 40 phr carbon-black filled styrene butadiene rubber (SBR) processed by Michelin into final
plates of 2.5 mm thickness. The material in-plane isotropy was verified by punching dumbbell samples in various
directions in the plates and testing them in uniaxial tension. In order to submit the material to uniaxial and biaxial loading
conditions, two testing machines were used. The uniaxial tension tests were conducted on an Instron 5882 uniaxial testing
machine at a constant crosshead speed which was chosen in order to reach an average strain rate close to 10�2 s�1. Biaxial
tests were carried out on a planar biaxial testing device built with four perpendicular electromechanical actuators
controlled independently. Any biaxial test is characterized by the biaxial ratio R

R¼
F22�1

F11�1
ð1Þ

with F11 and F22 being the longitudinal and transverse stretchings, respectively. Biaxial tension conditions were set such that
F11ZF22 and R ranging from 0 (pure shear) to 1 (equi-biaxial tension). All biaxial tests were run at constant crosshead speed
corresponding to an average strain rate close to 10�2 s �1 in the direction 1. For proportional uniaxial tension tests, dumbbell
samples of dimension 30 mm long and 4 mm wide were used. For biaxial preloading tests, cross-shaped samples were used. For
uniaxial preloadings, large dumbbell specimens, 25 mm wide and 60 mm long, were used. Finally, for cyclic uniaxial tension
tests 4 mm wide and 10 mm long dumbbell samples were punched in biaxially or uniaxially preloaded specimens. Strains are
measured locally by video extensometry for both machines. Uniaxial tensile test resulting stress is defined by s¼ Fl=S0 with F

being the force, l¼ l=l0 being the stretching, and S0 being the initial sample cross-section. Let us note that s denotes the Cauchy
stress when incompressibility is assumed, which is common for filled rubbers. Biaxial tests were used for preloadings only, and
forces were not recorded for these tests. During subsequent cyclic loadings, the tensile stretch is measured using two paint
marks and is defined as l¼ l=l0, with l0 being the initial distance between the paint marks for the material virgin of any loading.

At this point, let us clarify some notations that will be used along the study, biaxial preloadings are characterized by the
ratio R and the maximum value of stretching is denoted as F11, uniaxial preloadings are characterized by the applied

Fig. 1. Mullins softening: (a) Stress–stretch response of a filled rubber under cyclic uniaxial conditions. (b) Evidence of uniaxial tension (UT) preloading

induced anisotropy.



maximum pre-stretch lpre and each cycle of the subsequent cyclic uniaxial tension loadings is characterized by the
maximum stretch lmax reached during the latter.

2.2. Definition of a parameter for the Mullins softening activation

During a cyclic loading, the material exhibits a significant hysteresis when loaded above the maximum stretch yet
undergone. When loaded below the maximum stretch lmax, the material shows fairly close loading and unloading responses.
Therefore, any of these responses may be used to characterize its softened behavior, and the loading responses were privileged
in the sequel. Along with Mullins softening materials show substantial residual stretch increasing with the applied maximum
stretch (Fig. 1a). Therefore, one may want to use the increase in residual stretch as a Mullins threshold activation.
Unfortunately, as evidenced by Mullins (1949) and Diani et al. (2006a) the residual stretch is perturbed by the filled rubber
viscoelasticity and shows a rapid partial recovery when samples are unclamped. In order to limit interferences between the
residual stretch and the material softening, it seems better to correct the actual measured stretch l according to

lcor
¼

l
lres

, ð2Þ

which withdraws the residual stretch contribution in the cyclic uniaxial tension stress–stretch responses. In order to illustrate
the benefit of such a correction, the cyclic loading responses of a uniaxial sample already pre-stretched to lpre ¼ 2:5 are plotted
in terms of stress vs. amended stretch, lcor, in Fig. 2a. One notes that the loading responses coincide as long as the Mullins effect
is not re-activated (lmaxo2:5). When the Mullins effect is re-activated, the next loading response exhibits a clear softening. As
a consequence, one only needs to compare the difference between two successive loading responses to recognize the Mullins
softening activation. The gap between the loading responses of cycle (i) and the previous one (cycle (i�1)) may be estimated by
various methods. In order to remain consistent with Merckel et al. (2011a), we introduce the parameter a

aðiÞ ¼ max
0rsrmaxðsði�1ÞÞ

lcor
ðiÞ ðsÞ

lcor
ði�1ÞðsÞ

!
ð3Þ

quantifying the difference between the stress–stretch responses of two successive cycles. One may notice that a will remain
close to 1 as long as the Mullins softening is not activated and a will be different from 1 when the Mullins softening occurs.

Fig. 2b shows the evolution of a according to the maximum stretch applied at each cycle ðiÞ for a virgin sample and for a
sample already pre-stretched up to lpre ¼ 2:5. For the virgin sample, a is above 1 for each cycle which shows the increase in
the material softening. For the pre-stretched sample, a remains close to 1 as long as the sample stretching remains below
the maximum pre-stretch, then a evolves suddenly and return onto the a-curve provided by the virgin sample. The
parameter a appears as a relevant and obvious indicator of the Mullins activation.

2.3. Results

The softening evolution parameter a defined above is now applied to nonproportional loadings. First, large uniaxial
dumbbell samples are submitted to a lpre ¼ 2:5 pre-stretch and small dumbbell uniaxial tension samples are punched in
the large samples with a direction of 01, 451 and 901 with respect to the pre-stretch direction. The small specimen are then
submitted to cyclic uniaxial tension tests. Fig. 3 presents the parameter a computed on the cyclic uniaxial tension stress–
stretch responses according to the angle of cut. One notices the strong dependence of the Mullins softening evolution
according to the direction of second loading. As one could expect, for the sample cut along the direction of pre-stretch the
Mullins softening re-activates when the material is stretched beyond the pre-stretch, but for the other two samples, cut at
451 and 901 with respect to the pre-stretch direction, the Mullins softening is activated from the very first cycles. It is also

Fig. 2. (a) ðlcor ,sÞ cyclic uniaxial response of samples uniaxially pre-stretched up to lpre ¼ 2:5. (b) Parameter a evolution during a cyclic uniaxial tension

loading for a virgin sample and for a 2.5-uniaxially pre-stretched sample.



interesting to note that for the sample stretched in the direction of pre-stretching, once the maximum stretch passed the
pre-stretch values, the parameter a returns on the evolution of a provided by the virgin sample. For the other samples,
during the first cycles, the softening evolves but at a lower rate than for the virgin material, evidencing a softening
evolution but from an already pre-damaged state. Finally, the sample cut at 901 and the virgin material show similar
softening evolutions.

Biaxial samples were submitted to a biaxial tension preloading defined by R¼0.5 and F11 ¼ 2:5, the resulting stretch in
the direction 2 being F22 ¼ 1:75. Uniaxial dumbbell samples were cut along various directions. Fig. 4a shows the evolutions
of a for samples cut in directions displaying angles of 01, 451 and 901 with respect to the direction 1. These evolutions are
progressive for every direction and even though it is not obvious to spot the accurate value of lmax exhibiting Mullins-
softening re-activation due to 0.25 stretch steps in between the successive cycles, direction 1 (01) and direction 2 (901)
Mullins activation stretches seem close to the pre-stretch applied in these directions.

Other biaxial samples were submitted to equi-biaxial tension (R¼1) stretching up to F11 ¼ 2:5. For these samples, it was
verified that the cyclic uniaxial tension sample cutting direction had no effect on the softening evolution, the Mullins
softening exhibiting in-plane isotropy. Fig. 4b compares the parameter a for a virgin material sample, the uniaxially pre-
stretched sample cut along the direction of pre-stretching and the equi-biaxially pre-stretched sample. Both pre-stretch
samples show the same threshold of softening activation which corresponds to the pre-stretching. Nonetheless, once this
threshold passed, the return of a on the virgin material a-curve is more gradual for the equi-biaxially pre-stretch sample.

These original results are now used to define a three-dimensional Mullins softening criterion.

3. Mullins softening criterion

3.1. Definition

Considering the directional dependence of the Mullins softening activation evidenced in the previous section and its
well-known dependence to the maximum stretching, we introduce directional stretching scalars along directions u

Fig. 3. Parameter a evolution for uniaxially pre-stretched (F11 ¼ 2:5) samples cut and submitted to a cyclic uniaxial tensions in directions tilted of an

angle 01, 451 or 901 from the direction of pre-stretching.

Fig. 4. Parameter a evolution during cyclic uniaxial tension loadings according to the direction of stretching (which compares to the direction of

maximum pre-stretch) for biaxially pre-stretched samples up to F11 ¼ 2:5. (a) R¼0.5. (b) Equibiaxial ðR¼ 1Þ.



according to

lu
ðy,j,CÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u � C � u
p

ð4Þ

with C ¼ FtF being the right Cauchy–Green tensor, F being the deformation gradient tensor and u¼ ðcosðyÞ,sinðyÞ cosðjÞ,
sinðyÞ sinðjÞÞ unit vectors characterized by their polar angles ðy,jÞ. We observed that the Mullins softening was evolving
when at least one direction was stretched above its maximum stretch already undergone; therefore, we propose the
following criterion for the activation of the Mullins softening:

(uðy,jÞ9ðlu
�lu

maxÞ ¼ 0 ð5Þ

with lu
max being the maximum stretch along direction u over the loading history, which writes

lu
max ¼max

0-t
½lu
ðCðtÞÞ�: ð6Þ

Let us note that such a Mullins softening activation criterion has been already applied by Diani et al. (2006a,b), Dargazany
and Itskov (2009), Merckel et al. (2011b) and studied by Itskov et al. (2010), though without any experimental evidences
supporting its relevance.

According to Eq. (6), the Mullins criterion may be represented by the three-dimensional surface defined by lu
max. For

proportional loadings, one may write analytical expressions specifying the Mullins threshold surface. For nonproportional
loadings, the surface contour is reached through numerical computations. Fig. 5 shows the three-dimensional representations
of the surfaces resulting from uniaxial, biaxial (R¼0.5) and equi-biaxial loading conditions, which are the preloading conditions
of our study.

The criterion proposed in Eq. (5) is now confronted to the experimental results.

3.2. Analysis

Fig. 6 presents the evolution lu
max with the applied loading for lpre ¼ 2:5 uniaxially pre-stretched samples cut in

directions 01, 451 and 901 and submitted to a cyclic uniaxial tension with the maximum stretch increasing of Dl¼ 0:25 at
each cycle. This figure corresponds to the evolution of lu

max for the Mullins softening progression experimentally studied in
Fig. 3. In order to ease the understanding, the evolution of lu

max is plotted in the specimen stretching plane. The dashed line
draws the preloading surface, the solid lines result from the post uniaxial tension cycles when increasing the dimension of
the lu

max surface.
Fig. 6a, corresponding to proportional uniaxial tension loadings, shows that the surface defined by lu

max evolves when
the applied stretch goes beyond the initial pre-stretch. Moreover, when evolving, a substantial number of directions are

Fig. 5. Three-dimensional representation of the surface defined by lu
maxðy,jÞ for a F11 ¼ 2:5 loading in (a) uniaxial tension, (b) R¼0.5 biaxial tension, and

(c) equi-biaxial tension (R¼1).

Fig. 6. Projection of the lu
maxðy,jÞ surface in the sample plane. Dashed line: uniaxial pre-stretch up to lpre ¼ 2:5. Solid line: surface evolution during cyclic

uniaxial loadings performed in directions (a) 01, (b) 451 and (c) 901 compared to the direction of pre-stretching.



affected. For samples cut at 451 (Fig. 6b), the maximum stretching surface evolves from the first cycle and the number of
directions affected starts low and grows gradually at each cycle. Fig. 6c shows that the lu

max surface, corresponding to
samples cut at 901 with respect to the pre-stretching direction, evolves from the very first cycle.

Fig. 7 shows the evolution of lu
max for a biaxial preloading characterized by R¼0.5 and F11 ¼ 2:5, followed by a cyclic

uniaxial tension at 01, 451 and 901 with respect to direction 1. This figure compares with Fig. 4a. For this preloading, one
may notice that the lu

max surfaces evolve only after reaching a stretch threshold depending on the direction of cut (01, 451
or 901), the surfaces evolve after cycles 6, 4 and 3, respectively (corresponding to lmax equal to 2.5, 2 and 1.75,
respectively), which corroborates the Mullins softening activation thresholds given by Fig. 4a. A similar lu

max surface
analysis works well for the equi-biaxial preloading case also.

The former qualitative analysis may be reinforced by a quantitative analysis of the surface created at each cycle. For this
purpose, we introduce the parameter

g¼ 1

4p

ZZ
S
gu sinðyÞ dj dy ð7Þ

with guðy,jÞ ¼ 1 when @lu
max=@t40 and guðy,jÞ ¼ 0 when @lu

max=@t¼ 0, t being the time.
Parameter g, inspired by the former work by Diani and Gilormini (2005), computes the fraction of directions stretched

above their maximum stretch already undergone. Fig. 8 shows the values of g continuously computed for lmax ranging
from 1 to 5, for the loading histories studied in Section 2.3. We marked by symbols each cycle of the actual cyclic uniaxial
tension tests. This figure is to be compared with Figs. 3 and 4. These figures reveal a strong correlation between a and g
characterizing the increase in material softening and the increase in the lu

max surface, respectively, and they provide solid
evidences supporting the relevance of criterion equation (5).

3.3. Validation

We presented a number of experimental results leading to the definition equation (5) of a Mullins softening criterion.
The criterion is now tested on other loading conditions. For this purpose, biaxial samples were submitted to different
loading histories leading to the same lu

max surfaces. Then uniaxial tension samples were cut at 01, 451 and 901 and
submitted to cyclic uniaxial tension tests. During the latter tests, the Mullins softening activation was estimated with the
parameter a and compared according to the loading history.

Fig. 7. Projection of the lu
maxðy,jÞ surface in the sample plane. Dashed line: R¼0.5 biaxial pre-stretch up to F11 ¼ 2:5. Solid line: surface evolution during

cyclic uniaxial loadings performed in directions (a) 01, (b) 451 and (c) 901 compared to the direction of pre-stretching.

Fig. 8. Fraction of active elongated chains g evolution during cyclic uniaxial loadings performed in different directions for pre-stretch samples with a

F11 ¼ 2:5 loading intensity, preloading paths are grouped according to Figs. 3 and 4.



The two loading histories are sketched in Fig. 9a. The first one from A to B1 is made of two successive perpendicular
pure shear loadings. The second loading from A to B2 adds a biaxial compression-tension to the pure shear according to
direction 1 (A). Both loading paths cause the identical maximum stretch surface drawn in Fig. 9b and should evolve when
uniaxial tension stretches reach lmax ¼ 3:5, 2.6 and 3.5 according to directions 01, 451 and 901, respectively. These paths
were chosen specifically for several reasons. First, the resulting maximum stretch surface exhibit an interesting change of
convexity at 451, second, during preloading from A to B2, direction 1 is first stretched and then quite severely compressed
(F11 ¼ 0:62), which puts to test the criterion when some directions are stretched and then compressed.

Fig. 10 shows the parameter a resulting from the cyclic uniaxial tension stress–stretch responses for samples cut at 01,
451 and 901 for both preloading cases. One notices that both preloadings lead to the same evolution of the softening
parameter a; therefore, both preloadings are identical in terms of Mullins softening. Finally, Fig. 10 shows that Mullins
softening activates earlier for samples cut at 451 compare to samples cut in directions 1 and 2 and Fig. 10b illustrates that
the post-stretching compression in the direction 1 does not change the evolution of a which is similar for both directions 1
and 2. Therefore, a stretched direction does not recover from its Mullins softening when submitted to a compression. Both
results reinforce the well-grounded of criterion equation (5).

4. Conclusion

This contribution aimed at defining a Mullins softening activation criterion for filled rubbers submitted to general
loading conditions, including nonproportional loadings. The criterion is grounded on an original analysis of unconventional
experimental data. By comparing the stress–stretch responses of successive uniaxial tension cycles with increasing
maximum stretch, a softening evolution parameter is defined. According to this softening parameter evolution, it is
possible to recognize the Mullins softening activation. The method applies for preloaded samples, and allows the definition
of the directional stretch necessary to re-activate the Mullins softening in the direction of cyclic uniaxial stretching. The
method has been applied to several samples uniaxially or biaxially preloaded, including proportional and nonproportional
post cyclic uniaxial loadings. Results provide solid evidences for the definition of a Mullins softening activation criterion as
the three-dimensional surface of maximum directional stretch submitted to the material along the loading history. Also,

Fig. 9. (a) F11�F22 plane schematic representation of two specific loading paths: A to B1 and A to B2. (b) Projection of lu
maxðy,jÞ surfaces for both

loading paths.

Fig. 10. Parameter a evolution during cyclic uniaxial loadings for (a) path A to B1 and (b) path A to B2 preloaded samples.



two specific loading cases involving different loading paths with identical maximum direction stretch surfaces were
considered in order to test the criterion predictive ability. The Mullins softening activation threshold was well predicted by
the criterion. The definition of such a valid experimentally based criterion is a critical point for constitutive modeling of the
Mullins softening, it should open new perspectives in terms of mechanical modeling.
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