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Starch granules that accumulate in the plastids of plants vary in size, shape, phosphate, 
or protein content according to their botanical origin. Depending on their size, the 
applications in food and nonfood industries differ. Being able to master starch granule 
size for a specific plant, without alteration of other characteristics (phosphate content, 
protein content, etc.), is challenging. The development of a simple and effective screening 
method to determine the size and shape of starch granules in a plant population 
is therefore of prime interest. In this study, we propose a new method, NegFluo, that 
combines negative confocal autofluorescence imaging in leaf and machine learning (ML)-
based image analysis. It provides a fast, automated, and easy-to-use pipeline for both 
in situ starch granule imaging and its morphological analysis. NegFluo was applied to 
Arabidopsis leaves of wild-type and ss4 mutant plants. We validated its accuracy by 
comparing morphological quantifications using NegFluo and state-of-the-art methods 
relying either on starch granule purification or on preparation-intensive electron microscopy 
combined with manual image analysis. NegFluo thus opens the way to fast in situ analysis 
of starch granules.

Keywords: starch, confocal fluorescence imaging, machine learning, Arabidopsis, starch granule 
morphology, autofluorescence

INTRODUCTION

Starch is a polysaccharide that accumulates in plants and is synthesized in either photosynthetic 
or storage organs. In leaves, starch accumulates during the day and is degraded at night to provide 
carbon and energy for the plant in the absence of photosynthetic activity (Pfister and Zeeman, 
2016). The polysaccharide synthetized in seeds or tubers represents the main source of caloric 
intake of human nutrition. Millions of tons of starch are extracted each year in the world from three 
main species: maize, wheat, and potato (Burrell, 2003). Depending on the plant source, the shape, 
size, and composition of the starch granule (amylose/amylopectin ratio, but also lipid, protein, or 
phosphate content) vary greatly (Jane et al., 1994). This is why the biological origin of starch strongly 
influences the properties and use of the polymer (Singh et al., 2003; Singh et al., 2007; Alcazar-
Alay and Meireles, 2015). A large part of the starch extracted is enzymatically digested to produce 
sweeteners. It is also often chemically or physically modified to impart new properties. The starch 
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granule size is one of the parameters that influence its digestibility 
(Dhital et al., 2010; Abebe et al., 2015) and the effectiveness of 
chemical and physical transformations (Zhao et al., 2015; Wang 
et al., 2016; Farooq et al., 2018). In this context, controlling 
the factors conditioning starch granule size in planta without 
impairing neither the ultrastructure nor the composition of the 
granules would represent a decisive advantage. Understanding 
the initial steps of starch synthesis would open the route to 
control the number of starch granules produced in each plastid 
and consequently their size for a given carbon flux: the fewer 
initiation events, the larger the granules.

In recent years, various factors involved in new starch 
granule initiation and influencing the size and/or shape of these 
granules have been identified in Arabidopsis thaliana (Malinova 
et al., 2018). These proteins include specific isoforms of starch 
synthases (SSs), SS4 and SS3 (Roldán et al., 2007; Szydlowski 
et al., 2009), as well as non-catalytic proteins such as PTST2 and 
PTST3 (Seung et al., 2017), PII1/MRC, and MFP1 (Seung et al., 
2018; Vandromme et al., 2019).

Starch synthesis in the photosynthetic organs is very similar to 
that in the storage organs and requires the same set of proteins (Pfister 
and Zeeman, 2016). Moreover, genes coding proteins involved in the 
starch initiation process in Arabidopsis are also conserved in crops. 
Therefore, increasing our knowledge of the factors influencing the 
size and/or shape of starch granules on a model species will provide 
new possibilities for varietal improvement.

Nevertheless, the acquisition of this knowledge requires the 
establishment of a simple and rapid screening procedure. Current 
tools for the detection of change in size and shape of starch 
granules require the extraction and purification of the granules, 
followed by a particle counteranalysis (Vandromme et al., 2019) 
or by sample observations under a light or electron microscope 
(Roldán et al., 2007; Lappe et al., 2017). In addition, variations in 
the number of starch granules per plastid are generally evaluated 
from leaf sections observed under a light or electron microscope. 
This technique, however, depends on the section plane, and 
a large number of analyses must be carried out to obtain 
statistically reliable data (Seung et al., 2017). While these different 
techniques are suitable to characterize a specific mutant line, they 
are cumbersome, expensive, and ultimately incompatible for 
screening large collection of individuals.

In this paper, we describe an image acquisition and analysis 
method that requires only a minimum of preparation and yet 
sufficiently resolutive to identify a variation in the size and shape 
of starch granules in plant tissues. Furthermore, the proposed 
method is easy to handle without any prior knowledge in 
programming or ML and only requires a traditional confocal 
microscope. We focused our study on starch accumulated in 
the chloroplasts of leaf cells of the model species A. thaliana. In 
a wild-type line, chloroplasts contain on average five to seven 
starch granules having a size between 0.8 and 1 µm (Malinova 
et al., 2018; Vandromme et al., 2019). Our technique was also 
applied to a mutant line impaired for the soluble SS4. This line 
exhibits a reduced number of starch granules per chloroplast. 
Moreover, the remaining granules, compared with the wild type, 
are modified in size and shape, conferring a good validation of 
the new screening method (Roldán et al., 2007).

MATERIALS AND METHODS

Plant Material and Growth Conditions
A. thaliana lines were obtained from Nottingham Arabidopsis 
Stock Centre [NASC; http://arabidopsis.info (Alonso et al., 
2003)]. Columbia (Col-0) line was used as wild-type reference, and 
an SS4-deficient line corresponds to ss4-1 (GABI_290D11) already 
described in Roldán et al. (2007). In all cases, plants were grown in 
a growth chamber (GroBank, BB-XXL.3+). Conditions used were 
16 h : 8 h, light : dark photoperiod at 23°C during the day and 
20°C during the night, and 120 µmol photon m−2 s−1. Seeds were 
incubated at 4°C in 0.1% Phytagel solution (w/v) for 3 days before 
being sown on peat-based compost.

Sample Preparation
Sample preparation was adapted from the protocol described 
in Vandromme et al. (2019). For each genotype, one leaf of 
2-week-old plants was harvested at the end of the light phase 
and placed under vacuum in 1 mL of fixating solution (4% (w/v) 
paraformaldehyde, 4% (w/v) sucrose, and phosphate-buffered 
saline (PBS 1×) at pH 7.3). Fixed leaves were washed in water. 
A section of 2 × 2 mm was then placed between a slide and a 
coverslip. To ensure optimal acquisition, the leaf midribs were 
excluded from the selected samples from which the lower 
epidermis is placed in front of the objective lens.

Confocal Acquisition
The prepared samples were observed under A1 Nikon confocal 
microscope (Nikon Instruments Europe B.V.) with a Plan Apo 
60x Oil (NA = 1.4) objective. The autofluorescence was acquired 
with λex = 488 nm and λem = 500–550 nm (green channel) and 
with λex = 561 nm and λem = 570–620 nm (red channel). To 
further increase the contrast between leaf autofluorescence and 
starch darkness, median filtering and contrast-limited adaptative 
histogram equalization (block size 20, histogram bins 50, 
maximum slope 2.5) was applied using an ImageJ macro before 
the ML step (Majunder and Kumar, 2014).

Machine Learning
The ML approach is based on the “Waikato Environment for 
Knowledge Analysis” (WEKA) implemented in ImageJ (Witten 
et al., 2017). We first defined a classification between four categories: 
starch granule, plastid, membranes, and background. These 
training features thus provided more than 300 parameters for each 
pixel and allowed unambiguous discrimination between the four 
classes after appropriate training of a random forest classifier with 
200 initial trees. Manual labeling was performed in a pixel-by-pixel 
basis between the four classes. To avoid overlearning, training was 
performed on confocal images of leaves from the wild type and 
a mutant line affected for the starch metabolism. Each image is 
then segmented based on obtained probability maps (see method 
description for segmentation) and compared with results achieved 
through manual segmentation. Once 80% of starch granules are 
correctly detected by NegFluo-ML, the classifier is applied to new 
sets of images to validate the training step, and similar results 
were obtained (more than 80% correct detection). Then, for each 
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initial image, a probability map was obtained for each category and 
was used for segmentation.

Segmentation
Automated analysis allows screening through a high number of 
images. Thus, we chose to analyze starch granules with the highest 
confidence level possible. Probability maps were first thresholded to 
an 80% confidence interval in each pixel for both starch granules 
and plastids. To reinforce the accuracy, we developed an ImageJ 
macro combining (i) various binary operations to ensure that 
detected starch granules were completely embedded into plastids, (ii) 
watershed operations to separate adjacent granules (Beucher, 1992), 
and (iii) automated particle detection, setting in ImageJ (1)  “Set 
Measurements” to area, perimeter, and fit ellipses (from which 
diameter and major and minor axes are extracted) and (2) applying 
the “analyze particles” module with in situ visualization of segmented 
starch granules. These three additional pipeline steps ensure that 
starch granules that are out of focus or at the edge of the image are 
excluded from statistical analysis. From extracted parameters, mean 
values and standard errors were calculated and plotted using Excel 
(Microsoft). Standard error does not represent a measurement error 
but corresponds to the diversity of starch granules size.

Granule Size Distribution
The starch purification and granule size determination using a 
Multisizer 4 Coulter counter (Beckman Coulter Life Science, 
Indianapolis, IN, USA) equipped with a 20-mm aperture tube 
are fully described in Vandromme et al. (2019).

Scanning Electron Microscopy
Leaf fragments were fixed with glutaraldehyde, post-fixed with 
osmium tetroxide (OsO4), and embedded in Epon resin. The blocks 
were cut with a diamond knife in a Leica UC6 ultramicrotome. 
Backscattered electron images of the non-conductive surface were 
recorded under a low pressure of air (100 Pa) in a FEI Quanta 
250 FEG environmental scanning electron microscope (ESEM) 
operating at 7 kV.

Transmission Electron Microscopy
Samples were prepared as described in Boyer et al. (2016). Leaves 
from 3-week-old plants were harvested at the end of the day and 
fixed with glutaraldehyde. Samples were post-fixed with OsO4 and 
embedded in Epon resin. About 70-nm-thin sections were cut 
with a diamond knife in a Leica UC6 ultramicrotome and post-
stained with periodic acid–thiosemicarbazide–silver proteinate 
(PATAg) (Gallant and Guilbot 1969). Samples were observed 
with a Philips CM200 transmission electron microscope (TEM) 
operating at 80 kV. Images were recorded on Kodak SO163 films.

RESULTS

In Situ Confocal Starch Imaging
In situ starch granule imaging performed on fresh leaves is quite 
challenging. Indeed, most plastid components generate a high 
autofluorescence with a global broad excitation and emission 
spectrum. Thus, traditional strategies involving tagging, 

like  iodine staining (Ovecka et al., 2012), are not contrasted 
enough and thus not efficient. In this study, we decided to invert 
the problem. Indeed, starch granules, contrary to all the other 
leaf cell components, present a low autofluorescence. Thus, we 
decided to develop an approach based on inverse fluorescence 
imaging of starch granule (NegFluo). The first step was to 
perform the spectral characterization of the leaves.

Our spectral observations of A. thaliana leaves allowed us, 
according to the literature (Roshchina, 2012), to determine three 
main spectral emission bands of autofluorescence: (i) in blue for a 
maximum emission at 450 nm (azulenes and phenols) and (ii) in 
green, for a maximum at 550 nm (carotenoids), and in red, for 
a maximum at 680 nm (chlorophyll). A more precise analysis of 
the differential between the “non-signal” of the starch granules 
and the surrounding signals allowed us to limit the procedure to a 
two-channel focusing on carotenoids and chlorophyll.

Two color images were then processed using a homemade 
ImageJ macro in order to reduce the noise and to increase local 
contrast. This macro further improves contrast between starch 
granules and the surrounding plastids. In order to validate this 
new visualization method, we first chose two well-described 
and contrasted samples: a wild-type reference (Col-0) and the 
ss4 mutant. A. thaliana leaves were collected at the end of the 
illuminated period (when the starch amount is maximum) and, 
for practical reasons, fixed with paraformaldehyde (Figure 1).

These samples were then observed through NegFluo and 
compared with traditional electron microscopy imaging. As 
shown in Figure 2, both methods provide equivalent visual 
estimate of starch granule phenotype. We have recently applied 
NegFluo to decipher phenotypes of pii1 mutant as described by 
Vandromme et al. (2019).

Machine Learning for Automated Starch 
Granule Segmentation
To characterize the starch granules in more details, one needs to 
measure their size and shape. However, manual segmentation is 
time-consuming and not adapted to analyze a large number of 
starch granules. While NegFluo provides ease to visually analyze 
images, extracting robust parameters to automatically discriminate 
between the different structures of the leaf is not trivial using 
parametric approaches. We thus developed an ML-based pipeline 
to circumvent this technical limitation.

We developed the procedure based on Trainable Weka 
Segmentation module, since it combines the benefits of (i) FiJi 
(Schindelin et al., 2012) for image processing and simplicity of 
the manipulation of microscopy files by biologists and (ii) WEKA 
for ML (Frank et al., 2016).

Moreover, its implementation is modular and transparent, 
which allowed us to control the different steps as well as the 
possibility of customizing the algorithms and their evaluation 
(Arganda-Carreras et al., 2017). The NegFluo-ML algorithm 
follows two main steps: the extraction of images characteristics 
and the semantic segmentation by classification of pixels.

(i) The initial image (Figure 3A) was first modified to 
highlight different characteristics of the objects. At first glance, we 
could classify them into four broad categories (Arganda-Carreras 
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et al., 2017): edge detection, texture filters, noise reduction, and 
cytosol detection (Figure 3B). The set of these filters and the 
different parameters that we could adjust make it possible to obtain 
more than 300 images (Figure 3C) starting from the initial image. 
To achieve the best compromise between accuracy and training 
speed, we selected training features based on Gaussian blur, Sobel 
filter, Hessian, difference of Gaussians, membrane projections, 
variance, mean, anisotropic diffusion, bilateral, Lipschitz, Kuwahara, 

Gabor, entropy, and neighbors. The algorithm could then analyze 
each original pixel through 300 parameters that will be used to 
determine its belonging to the appropriate class (Figure 3D). The 
converted image was then generated based on attribution of each 
pixel to one of the different classes (Figure 3E).

(ii) Dozens of Arabidopsis leaf images were manually labeled 
in several classes. We tested configuration ranging from two 
classes (starch granules and non-starch granules) to five classes 

FIGURE 1 | NegFluo starch analysis pipeline. Leaves of 2-week-old Arabidopsis thaliana were collected at the end of the illuminated period and fixed. A fragment 
measuring 2 × 2 mm was placed between the slide and coverslip before autofluorescence confocal imaging. In-focus cells, plastids, and starch granules can easily 
be observed as respectively highlighted in violet, green, and red through NegFluo. A local enhancement step is then applied to ease the machine learning-based 
segmentation step, NegFluo-ML. Starch granules size and morphology can then be measured.

FIGURE 2 | NegFluo applied to reference samples. To validate the procedure, we acquired NegFluo of Col-0 (A and D) and ss4 (C and F) and ESEM images of 
Col-0 (B and E). Both techniques provide the same morphological information. Representative leaf components are highlighted with colored stars (red, starch; 
green, plastid stroma; violet, cell membranes and cytosol; and yellow, background). Col-0, Columbia; ESEM, environmental scanning electron microscope.
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(starch granules, plastids, membranes, background, and vacuole). 
The optimal configuration consisted of defining four classes: the 
starch granule, the plastid, the cytosol delimited by cell membrane, 
and the background. Below four classes, the algorithm could not 
properly discriminate between starch granules and background, 
while five classes increased the number of pixels inaccurately 
attributed between these two dark-pixel structures. Different 
classifiers were also available. We selected the fast random forest 
(200 initial trees). It required a relatively low number of images 
for training (20  labeled images), was polyvalent, and avoided 
overfitting, and its computational cost for training was low. Part of 
the image pixels was then used for training, while the remaining 
pixels were subject to the algorithm to validate its accuracy 
(Figure 3B).

(iii) Once the classifier was trained, it was applied to new 
images and provided four probability maps. Thus, each pixel 
was assigned with a probability to be part of each category. Pixel 

color corresponds to the higher probability between the starch 
granule (red), the plastid (green), the membranes (blue), and the 
background (white) (Figures 3D, E).

(iv) From the probability maps, one could apply a traditional 
segmentation algorithm. To ensure optimal quality of starch 
detection, we developed an ImageJ macro (a) segmenting pixels 
with a probability higher than 80%, (b) segmenting starch granule 
with starch pixels embedded in plastids pixels, and (c) separating 
adjacent starch granules based on the watershed algorithm. 
Morphological properties of starch granules were then extracted 
from the segmented images (Figure 3E).

Automated Morphological 
Characterization of Starch Granules
While visual inspection of segmented images was perfectly 
consistent, NegFluo-ML allowed morphological characterization 
of starch granules, and various parameters such as area, perimeter, 

FIGURE 3 | NegFluo-ML machine learning-based segmentation step. A set of NegFluo images (A) was manually and partially labeled in four classes (B) that 
were used for training (red, starch; green, plastid stroma; violet, membranes; and yellow, background). The algorithm then created from each image a stack of 
hundreds of its transformed versions (12 examples of the transformed image from (A) is presented in (C), see text for parameters details). Thus, each pixel can 
now be described by hundreds of parameters than are used to discriminate between the four classes. In (D), top graph, four pixels from different regions were 
compared (red, starch; green, plastid stroma; violet, cell membranes and cytosol; and yellow, background), while the bottom graph compares four pixels from 
starch region. The machine learning algorithm is then trained, using several images taken from different samples, to find the best sets of parameters allowing 
pixel classification between the four classes. Once the training reaches the desired accuracy level, it provides for each pixel a probability to be part of each class. 
It thus converts the original image into four probability maps (E) (red, starch; green, plastid stroma; blue, cell membranes and cytosol; and white, background). 
Finally, the trained algorithm is applied to a new set of images to validate its accuracy and ensure its applicability to any samples. Traditional segmentation 
algorithms can then be used for morphometric analysis.
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or diameter could be extracted (Figure 4A). In all cases, extracted 
parameters are significantly higher for ss4 starch granules compared 
with wild type, which is in complete agreement with already 
published data (Roldán et al., 2007; Crumpton-Taylor et al., 2013). 
Furthermore, since the method was automated, a large number 
of granules could be measured, giving access to the global size 
distribution such as illustrated on the granules area in Figure 4B. 
In both Col-0 and ss4 lines, starch granule size distribution behaves 
like a Gaussian curve. The curve is shifted toward higher size in the 
ss4 line.

To ensure the relevance of these measurements, it was required 
to compare morphological parameters extracted from NegFluo-ML 
to state-of-the-art starch analysis methods. We thus analyzed images 
from Col-0 and ss4 and compared them with both manual analysis of 
electron microscopy images (area, Figure 4C) and extracted starch 
granules analyzed with a Coulter counter (diameter, Figure  4D). 
For electron microscopy analyses, we used images previously 
acquired from TEM and manually determined starch granule size 
using ImageJ software. Several tens of starch granule areas were 
determined for Col-0 and ss4 (61 and 70, respectively), while the 
average starch granule areas are significantly different between 
Col-0 and ss4 using both methods (p < 0.001 with both techniques). 

Starch granules size was also determined using a Coulter counter, 
and the results were compared with those obtained by NegFluo-ML. 
Again, the results are consistent between the two methods, and 
the differences between the diameters of the Col-0 and ss4 starch 
granules can be highlighted by both techniques

Measurements performed using NegFluo-ML were in perfect 
agreement with those obtained with previously used methods 
without the need to embed the samples in a resin for electron 
microscopy or to extract starch granules for Coulter analysis.

DISCUSSION

With this work, we propose a user friendly new pipeline for in 
situ starch granule morphological characterization. Previous 
works using confocal imaging for in situ starch granule 
observation (Ovecka et al., 2012) required several steps of 
sample preparation and iodine staining. In this example, starch 
granule is anti-correlated to chlorophyll autofluorescence 
signal. However, because of leaf autofluorescence heterogeneity, 
taking into account of chlorophyll autofluorescence alone 
does not allow precise discrimination of starch granule size 

FIGURE 4 | NegFluo-ML morphological analysis of Col-0 and ss4 starch granules. Several parameters can be measured from segmented starch granules. In (A), 
four parameters are represented: area (µm2), perimeter (Perim, µm), and major and minor axes (Major, Minor, µm). Beyond this traditional representation of means and 
standard error, this automated procedure ensures the analysis of hundreds of granules, allowing distribution analysis as depicted for granules area in (B). NegFluo-ML 
thus allows unambiguous discrimination between Col-0 and ss4 phenotypes. Furthermore, NegFluo-ML provides equivalent estimates for both area and diameter 
quantification compared with two state-of-the-art methods: manual quantification determined from transmission electron microscopy images (C) and Coulter counter (D). 
For Coulter counter measurement, the values correspond to the average size of 30,000 particles determined from purified starch. The manual analysis of TEM images 
corresponds to a total of 61 and 70 granules, while NegFluo-ML automatically analyzed 153 and 74 granules for Col-0 and ss4, respectively. Vertical error bars represent 
a standard error. This value does not represent a measurement error but reflects the diversity of the starch granules sizes as illustrated in (B). Col-0, Columbia.
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and shape. The new proposed approach, combining imaging 
of several leaf autofluorescence signals, allows performing a 
negative fluorescence image providing the same morphological 
information without the need of starch granule staining or 
extensive sample preparation. It can be applied to both fresh and 
fixed leaf slices.

Although NegFluo provides an instant overview of starch 
granule phenotype, quantification of starch granule shape 
and size in situ remains challenging whatever the acquisition 
technique. We thus developed NegFluo-ML, a procedure 
combining state-of-the-art ML methods with segmentation 
methods from the traditional signal-processing field. While 
both methods are highly complementary, they overcome their 
individual limitations with a faster training, requiring only 
dozens of images and maintaining a high detection accuracy.

We validated these methods either by comparing them with 
high-throughput purified granule methods or by manual analysis of 
SEM images. While the results are highly comparable, NegFluo-ML 
presents several advantages. In NegFluo-ML compared with 
purified granule methods, morphological information can be 
associated to local information such as the number of granule 
per plastid and granule morphology, which are lost in a particle 
counter. Compared with manual analysis of leaf images, it provides 
two main advantages. The most obvious is the time gained through 
the process. Indeed, manual segmentation of images showing 
hundreds of starch granules is time-consuming and reduces, 
therefore, the overall number of analyzed structures. Furthermore, 
human segmentation is often highly impacted by user-biased 
analysis. Indeed, humans have their individual ways to select objects 
boundaries or to discard objects that seems nonrepresentative. 
Thus, different experimenters cannot perform such studies with a 
good reproducibility, and NegFluo-ML overcomes this limitation.

This manuscript focuses on the complete NegFluo/NegFluo-ML 
package applied to starch granule study in Arabidopsis leaf, but it can 
be extended. While both modules provide a complete acquisition 
and analysis pipeline, they are independent, and thus, NegFluo-ML 
can be transferred to other imaging methods such as SEM by 
adapting training features. Transposition to other plants could also 
be done after autofluorescence characterization adaptation. It thus 

opens the way to in situ, reliable, fast, and easy morphological 
characterization of starch granules.
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