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ABSTRACT

In this paper, we propose a novel way of unmixing space-
borne hyperspectral images using a co-registered hyperspec-
tral image and a high-spatial-resolution panchromatic image.
The unmixing is achieved by a two-step approach. First, an
extraction of pure pixels using a panchromatic homogeneity
criterion is performed and a reconstruction error map is gen-
erated. Then, a local semi-supervised Non-negative Matrix
Factorization (NMF) is performed on badly reconstructed ar-
eas in order to estimate material spectra that are not repre-
sented by pure pixels in the image. This approach is tested on
real data for the first step, and on both synthetic and real data
for the second step.

Index Terms— Hyperspectral, panchromatic, unmixing,
spaceborne

1. INTRODUCTION

Earth remote sensing satellites, especially those designed
for acquiring hyperspectral images (HS) [1], allow one to
identify materials based on their specific spectral signatures.
The main issue of spaceborne hyperspectral sensors is their
ground sampling distance (GSD) which is typically in the
range of 10 to 30 meters [2]. For such GSDs, material signa-
tures, also known as endmembers, are therefore mixed into
the pixels. The way of retrieving the pure material spectral
signatures and their abundance fractions with very limited
prior knowledge is called unsupervised hyperspectral unmix-
ing and has been studied for several decades [3]. Most of the
existing methods are based on the assumption of a linear mix-
ing model. Additionnal constraints are typically assumed,
such as the abundance sum-to-one constraint that induces
interesting geometrical properties on the data and leads to
a wide unmixing method family referred to as geometrical
methods [4].

In such conditions, the observed data, minus the noise,
are contained within a P − 1 simplex formed by the end-
members, where P is the number of endmembers. Most of
the geometrical methods use that property to find the end-
members in the observed data by, for example, making the

assumption that each material is represented by at least one
pure pixel in the considered image. However, this assumption
is often invalid in regard to the spaceborne sensor’s spatial
resolution, and the unmixing performance of such methods
is therefore limited. Some well-known geometrical meth-
ods based on pure pixels are the Vertex Component Anal-
ysis (VCA) , N-FINDR , the Fast Iterative Pixel Purity In-
dex (FIPPI) and the Automated Target Generation Process
(ATGP) algorithms. Other geometrical methods find the end-
members by minimizing the volume of the induced simplex.
These methods mainly include the MVC-NMF and SISAL al-
gorithms. Further information is available in [4]. Other fam-
ilies of unsupervised methods also exist which do not require
the pure pixel assumption, e.g. the statistical methods [4] and
those based on Non-negative Matrix Factorization (NMF) [5].
The NMF field offers a well-studied framework to estimate
both the abundance fractions and the endmembers by itera-
tively minimizing a cost function. Several strategies exist,
the well-known Lee and Seung approach [6] with multiplica-
tive update rules or the projected gradient strategy with addi-
tive update rules [7]. The cost function can be penalized by
adding constraint terms to force the abundance fractions or
spectra to satisfy some hypotheses such as spectral smooth-
ness [8] or abundance sparsity [9]. The NMF algorithms are
however extremely sensitive to their initialization. In all these
methods, only the hyperspectral data were used to estimate
the endmembers and their abundance fractions in each pixel.

Recently, a satellite project named HYPXIM [10] has
been proposed by the French Centre National d’Études Spa-
tiales (CNES) shipping two co-registered cameras. The first
camera is a hyperspectral sensor with an 8 m GSD and an
11 nm spectral resolution. The second one is a panchromatic
(PAN) camera whith a 2 m GSD. The spatial resolution of the
panchromatic camera allows one to sense small objects in the
scene and therefore provides more spatial information than
the hyperspectral sensor. This additional information should
be of major interest for the challenging blind unmixing prob-
lem.

In this paper, we propose a novel method taking in ac-
count both PAN and HS images to estimate the endmembers.



This method is composed of two stages. The first stage, called
Homogeneity-Based Endmember Extraction (HBEE), aims at
finding all pure pixels in the HS image based on a homogene-
ity criterion applied to the co-registered PAN image in order
to extract the pure pixel spectra. Then a clustering method is
applied to these pure pixel spectra in order to gather spectra
corresponding to the same material. The second stage aims at
estimating the remaining material spectra that are not repre-
sented by pure pixels by applying local semi-supervised NMF
(LS-NMF). Results are provided for both stages, including for
real data. Finally, a conclusion is proposed.

2. MIXING MODEL

In this work, we use the linear mixing model described in (1):

−→yi =
P∑

p=1

xip
−→sp +−→w xip, −→sp > 0 (1)

where P is the number of endmembers in the scene, xip are
the abundance fractions, −→sp are the pure material signatures,
−→w represents the noise, and −→yi an observed pixel spectrum.
However, we do not use the sum-to-one constraint since, for
real data, this assumption is not fulfilled, e.g. due to the spec-
tral variability of each material [11].

3. PROPOSED APPROACH

3.1. Homogeneity-Based Endmember Extraction (HBEE)

A classical first stage in the unmixing process, before esti-
mating the abundance fractions, is to find the pure pixels.
We perform this stage in several steps, first, by applying a
homogeneity-based criterion on the panchromatic pixels that
cover the considered co-registered HS pixel. Let Aij be the
panchromatic sub-image corresponding to the yij hyperspec-
tral pixel. It is reasonable to assume that if the sub-image Aij

has a homogeneous grey level then the corresponding yij is
a pure pixel. The limitation of such a hypothesis is that dif-
ferent materials may have the same grey level, for example
in shadowed areas. Nevertheless, this case is fairly unusual
in the same sub-image Aij . The homogeneity criterion we
choose to apply is the max-min distance

hij = max(Aij)−min(Aij). (2)

The criterion is strict since any panchromatic outlier will in-
crease this distance. In order to detect pure pixels, one must
choose a threshold value th under which Aij is considered to
be homogeneous and then, the corresponding pixel yij pure.
This method is applied on all the sub-images Aij to build a
set lh of spectra corresponding to the pure pixels.

This method is likely to extract several pure pixels that
represent the same material. A subsequent clustering step,
using the spectral angle (SA), is therefore required to derive

a single spectrum from all spectra corresponding to the same
material. To this end, the collected spectra lh are first sorted
into a list Lh according to their PAN homogeneity criterion
value hij . The user needs to choose a spectral angle threshold
tsa. The clustering operates as follows. During a first pass,
i.e. for k = 1, it creates a new cluster Ck defined by the first
spectrum −→sk of Lh. An SA value is computed between −→sk
and each of the other remaining spectra in Lh. If this distance
is below tsa, the corresponding spectrum is then assigned to
the current cluster Ck and removed from Lh. New passes,
i.e. with increasing k, are then performed on the remaining
list Lh in the same way, until that list is empty. The gener-
ated number of clusters gives us a strong indication about how
many materials are represented by pure pixels in the image.
The endmember matrix Ŝh is constructed with the spectrum
of each cluster having the best homogeneity criterion value.

Then we estimate the abundance fraction matrix X̂h

with the Non-Negative constrained Least Square algorithm
(NNLS) [12] in order to calculate the normalized reconstruc-
tion error map R between the original hyperspectral image Y
and the reconstructed one Ŷ , whose entries read

Rij =
||yij − ŷij ||
||ŷij ||

. (3)

3.2. Local Semi-supervised Non-negative Matrix Factor-
ization (LS-NMF)

Since there is no guarantee that all the endmembers are rep-
resented by pure pixels and then are extracted by the HBEE
method, the reconstruction error map has high values in areas
where the non-extracted material spectra are located. Such
spatial information allows us to locally unmix the remaining
endmembers by making the assumption that there is only one
material to estimate in each poorly reconstructed area. This
unmixing stage only aims at estimating the local endmem-
ber. A classical NMF [6] with multiplicative update rules is
successively applied to each area which yielded a high re-
construction error. The endmember matrix is initialized by
concatenating the endmembers Ŝh extracted with the HBEE
stage, the estimated spectra from previous areas treated dur-
ing the LS-NMF stage and the mean spectrum over the con-
sidered local area. For the initial abundance fraction matrix,
we make the assumption that the unkown material is far more
abundant than the others in the area. We therefore build this
initial abundance fraction matrixXinit as follows. We use the
mean abundance fraction, previously estimated to reconstruct
the image, of each material in a strip of pixels situated around
the considered area to take into account the two most abun-
dant nearby materials. We set these two abundances in the ini-
tial matrixXinit and divide them by an arbitrary a value. The
other material abundances are set to a small value. We then
force the abundance fraction of the unknown material to con-
form, only here, to the sum-to-one constraint. After the NMF
run, the new estimated endmember is added to the matrix Ŝh



and this stage is repeated on all the local badly reconstructed
areas of the updated reconstruction error map. Once all the
poorly reconstructed areas have been treated, we estimate the
abundance fractions on the entire image using the NNLS al-
gorithm and the endmembers estimated from both the HBEE
and LS-NMF stages in order to complete the unmixing pro-
cess.

4. SIMULATIONS OF HYPXIM-P DATA

The image used to test the proposed unmixing method was
acquired by the AisaFenix1 HS sensor over the Mauzac vil-
lage (France) in August 2017. The GSD of this acquisition is
equal to 55 cm. Since our investigation is focused on space-
borne hyperspectral data, a multi-step simulation has been
performed to simulate the HYPXIM-P image from the air-
borne radiance image. First, an atmospheric correction is ap-
plied on the AisaFenix image using COCHISE [13] to get a
reflectance image with a 55 cm GSD. A direct radiative trans-
fer model COMANCHE [13] is then applied to obtain a ra-
diance image at the satellite altitude. We then produce the 8
m and 2 m GSD hyperspectral radiance images by means of
spatial integration knowing the expected point-spread func-
tion and noise parameters. A last COCHISE step is applied
to simulate the observed reflectance image. A co-registered
PAN image is generated by summing over the [0.4− 0.8] µm
domain the satellite simulated 2 m GSD radiance image (see
Fig. 1).

(a) (b)

Fig. 1. (a) 8 m GSD hyperspectral reflectance image, (b) 2 m
GSD panchromatic radiance image.

A seventeen-class spectral ground truth (GT) is gener-
ated from the 55 cm GSD hyperspectral reflectance image by
means of photo-interpretation. Each class of materials con-
tains several dozens of spectra. Some classes may depict the
same material, as the intraclass spectral variability led us to
split materials into two classes. The presence of some ob-
jects, such as cars and pools, can cause issues in the unmixing
process due to their sparse distribution, their small size and/or
their low reflectance. In order to limit their influence in any

1http://www.specim.fi/products/aisafenix-hyperspectral-sensor/

unmixing method, we chose to add representative spectra of
cars and pools in the endmember set.

5. RESULTS

This section presents results for the HBEE and LS-NMF
stages. The performance criteria used to assess the perfor-
mance of the algorithm are the mean, over all estimated
endmembers, of their spectral angle (SA) with respect to the
closest spectra in the ground thruth library, and the spatial
mean of the Normalized Root Mean Square Error (NRMSE)
between the original and re-built image pixel spectra.

5.1. HBEE stage results

The HBEE stage has been performed with a set of parameters
detailed hereafter. The homogeneity threshold th has been
set to 0.045 by computing the average max-min distance of
visually homogeneous areas. As it is commonly stated that
two spectra represent the same material for an SA lower than
0.1 rad, the SA threshold tsa has been set to 0.05 rad (2.86o)
for strictness purpose. The pure 8 m x 8 m PAN areas then
extracted are shown in Fig. 2. Large homogeneous area ag-
glomerates exist as well as single isolated homogeneous ar-
eas.

Fig. 2. Locations of the homogenous 8 m panchromatic areas
(in white).

As seen in Fig. 3, some clusters provided by this stage are
quite similar. This is due to the low spectral angle threshold
value tsa. This allows us to address the spectral variability by
considering several endmembers for a unique material. This
result shows that very few materials are represented by pure
pixels in the image and therefore, the reconstruction error map
in Fig. 4 obtained after the method detailed in Section 3.1 has
high values where unknown materials are indeed present. In
our case, the materials within the most poorly reconstructed
areas are the metal sheet roof tile of a large building and a
large tree with some sparse shadow. In this paper, we focus
on these major badly reconstructed areas by thresholding the
reconstruction error image with a threshold set to tRE = 0.12.
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Fig. 3. The eight clusters of spectra, resulting from the clus-
tering step.

5.2. LS-NMF stage results

In this section, we present a first test on synthethic data and
then propose a proof of concept on real data. The synthetic
data are generated as follows: three real spectra have been se-
lected to be the known endmembers Si. To fulfill the assump-
tion of an unknown local predominant endmember, the abun-
dance fractions Xij are randomly set and the coefficients cor-
responding to the known endmembers are divided by three.
The abundance fraction of the endmember to be estimated is
then calculated to conform to the sum-to-one constraint. The
observed N synthetic spectra are then generated. The un-
known endmember is a metal sheet spectrum. The initialisa-
tion matrices are set as mentioned in Section 3 but the abun-
dance fractions of the known material are randomly set and
divided by a for this experiment on synthetic data. The re-
sults for this experiment are shown in Table 1 for ten iterations
of the NMF with a, a coefficient dividing the initial random
abundance fractions of the known endmembers. As can be
seen, after ten iterations and for any value of a, the NMF out-
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Fig. 4. Reconstruction error map (NRMSE) after the HBEE
stage.

N a
1 2 3 4 5 6 7 10

5 1.90 0.69 1.68 2.23 2.57 2.80 2.98 3.33
10 3.19 0.38 0.77 1.38 1.76 2.04 2.23 2.61
18 3.68 0.97 0.20 0.87 1.30 1.60 1.83 2.26

Table 1. Spectral angle value (in degrees) between the es-
timated endmembers and the true endmember after 10 NMF
iterations on the synthetic data. The spectral angles of the ini-
tial guess (iteration 0) are 5.08o, 4.26o, 4.08o respectively for
N= 5, 10, 18.

put has estimated a better endmember than the initial guess
(the mean of the observed data) in a spectral angle sense. The
optimal value of a (2 or 3) is coherent with the true abundance
values of the processed data.

For real data, tests using the LS-NMF algorithm presented
in Section 3.2 were done after the HBEE stage shown in Sec-
tion 5.1. The dividing coefficient value a was set arbitrarily
to three. This stage treated two poorly reconstructed areas.
The spectral angles between the estimated spectrum and the
corresponding 55 cm GT are shown in Table 2.

Material SA(init, GT) SA(final, GT)
Metal sheet 6.64 5.65
Vegetation 3.53 3.34

Table 2. Spectral angle between the estimated spectrum and
the groundtruth before the first NMF iteration and after the
end of the NMF on the HYPXIM-P image.

These preliminary results show a significant enhancement
of the reconstruction error, especially in the treated areas but
also where the estimated endmembers are in the scene (e.g.
the grass field located on the image top right). Although
some of the GT spectra have not been estimated, e.g. tiles
and awning spectra, this LS-NMF stage estimates satisfac-
tory endmembers that are not represented by pure pixels in
the image by using prior knowledge of the panchromatic im-
age. Further investigations on the combined reconstruction
error map and panchromatic image will be conducted in order
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Fig. 5. Evolution of the reconstruction error map after pro-
cessing the first area containing the vegetation (a) and, in ad-
dition, the second area containing a metal sheet (b).

to estimate the remaining endmembers. As compared to the
standard methods in Table 3, the proposed approach shows
similar or better performance by estimating two endmembers
in addition to those extracted from pure pixels, with a total
of 10 estimated endmembers. The other methods have been
applied, assuming the same number of endmembers to be es-
timated.

Criterion HBee-LSNMF VCA NFINDR ATGP SISAL MVCNMF

RE(%) 1.72 1.69 1.88 2.22 2.11 1.41
SAM(o) 5.44 6.60 5.19 5.75 8.85 5.9

Table 3. Compared performances for 10 estimated endmem-
bers.

6. CONCLUSION

A new blind unmixing method using both panchromatic and
hyperspectral images was developed to extract the endmem-
bers. A first stage using a homogeneity criterion followed
by a spectral clustering is used to build a first set of end-
members that are present in pure pixels. The remaining end-
members are then estimated locally using both previously ex-
tracted spectra and the reconstruction error map. The results
are promising since the method yields results similar to or bet-
ter than those of the standard methods. Current works aim at
improving the differents stages, especially the LS-NMF stage
by taking in account the panchromatic image.
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