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Abstract

Graph transformation is a specification technique suitable for a wide range of
applications, specially the ones that require a sophisticated notion of state. In
graph transformation, states are represented by graphs and actions are specified
by rules. Most algebraic approaches to graph transformation proposed in the
literature ensure that if an item is preserved by a rule, so are its connections
with the graph where it is embedded. But there are applications in which it is
desirable to specify different embeddings. For example when cloning an item,
there may be a need to handle the original and the copy in different ways. We
propose a new algebraic approach to graph transformation, AGREE: Algebraic
Graph Rewriting with controllEd Embedding, where rules allow one to specify
how the embedding should be carried out. We define this approach in the
framework of classified categories which are categories endowed with partial
map classifiers. This new approach leads to graph transformations in which
effects may be non-local, e.g. a rewrite step may alter a node of the host graph
which is outside the image of the left-hand side of the considered rule. We
propose a syntactic condition on AGREE rules which guarantees the locality of
transformations. We also compare AGREE with other algebraic approaches to
graph transformation.
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1. Introduction

Graphs are used to describe a wide range of situations in a precise yet in-
tuitive way. Different kinds of graphs are involved in modelling techniques
depending on the investigated fields, which include computer science [2], chem-
istry [34], biology [14], quantum computing [6], etc. When system states are
represented by graphs, it is natural to use rewrite rules that transform graphs
to describe the system evolution. There are two main streams in the research
on graph transformations: (i) the algorithmic approaches which describe explic-
itly, with concrete algorithms, the result of applying a rule to a graph [26, 20],
and (ii) the algebraic approaches [25, 30] which define graph transformation
steps abstractly using basic constructs borrowed from category theory. We con-
sider the latter in this work and are interested in a family of algebraic graph
transformation systems where rewrite rules are defined as spans of the form
L + K — R. In such systems, a rewrite step, as depicted below, transforms a
graph G into a graph H, using a match (graph homomorphism) m : L — G, in
two steps. The first one, depicted by square X, consists in building the graph
D, by “replacing” L by K in G. This may be accomplished in different ways
that will be discussed below. Then a second step is performed, building the
graph H by “replacing” K by R in D. This is typically done by means of a
pushout construction (square PO).

Lé—i—K—+—R
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When X is a pushout, D is constructed as a pushout complement (POC),
and the approach is known as double-pushout (DPO) [25]. This approach has
been widely investigated in the literature [13, 21]. It is well suited when the
required transformations add, delete, preserve, or merge graph items. However,
the DPO approach fails to specify cloning of nodes. Indeed, to clone a node
one needs to use a non injective morphism ! : K — L. In such a situation
the POC is not always unique and thus transformations are not deterministic.
To overcome this situation, the object D can be defined as the final pullback
complement (FPBC), as it is done in the sesqui-pushout approach (SqPO) [12].
In this case the square X is a pullback. Cloning a node in this approach copies
all its incident edges. There is no flexibility for determining the incident edges
to be copied.

In order to overcome the restrictions imposed by the construction of FPBC,
we propose, in this paper, a new algebraic approach called Algebraic Graph
Rewriting with controllEd Embedding (AGREE), where the square X is a pull-
back that can be constructed from an additional morphism ¢ : K — Tk. Thus
an AGREE rule is a span of the form L +- K — R, enriched with a third mor-
phism ¢ : K — Tk called the embedding. Intuitively, the embedding morphism
specifies, in the case of node cloning, how a copy of a node is connected to the
rest of the graph. A graph G to be transformed can be described as the disjoint



union of the image of L (still denoted L here) and its context, which itself is
made of the strict complement G\ L of L in G, i.e. the largest subgraph of G
disjoint from L, and the adjacent edges E, i.e. the edges of G not in L but with
at least one incident node in L. Similarly, H is the disjoint union of R, H \ R
and R. In the SqPO approach, H \ R is isomorphic to G\ L and R is built in
a systematic way from L in order to fit with the replacement of L by R.

A first attempt to offer a flexible way to deal with the adjacent edges was
proposed in the rewriting with polarized cloning approach (PSqPO) [16], by
distinguishing incoming and outgoing adjacent edges. The AGREE approach
goes beyond PSqPO and provides a powerful tool for controlling the modifica-
tion of the adjacent edges. In fact, the AGREE transformation system allows
one to modify the whole context: both the strict complement and the adja-
cent edges. When the embedding ¢ satisfies some additional property, AGREE
becomes local, i.e. it modifies the adjacent edges in a flexible way without mod-
ifying the strict complement. When ¢ satisfies a still more restrictive property,
then AGREE coincides with SqPO. In this case a final pullback complement re-
sults from a simple pullback construction, and it follows that AGREE subsumes
SqPO, However, it is fair to stress that AGREE transformations are defined
only for monic matches on categories with a partial map classifier, as defined
later, while SqPO transformations are defined also for non-monic matches and
in categories satisfying much less restrictive requirements.

Let us consider a basic rule p which clones one node. Rule p can be drawn
informally as in Figure 1, where the white circle represents a clone of the black
circle.

Figure 1: Rule p specifying the cloning of a node.

What should be the result of applying p to a given graph? Different approaches
may provide different answers to this question. In Figure 2, we show three
possible results of cloning a specific node, represented by a black circle, in a given
graph G. All graphs Hy, Hs and Hs can be obtained as AGREE transformations
of graph G using suitable variants of rule p. Instead, only graphs H; and Hs can
be obtained as PSqPO steps while H; is the unique graph that can be obtained
via SqPO.

Figure 2: Three possible rewriting steps using rule p.

The paper is organized as follows. The AGREE approach is presented in
Section 2. As usual for the algebraic approaches, AGREE rewriting is defined in
a more general setting of categories satisfying suitable requirements, mainly the
existence of a partial map classifier. While AGREE rewriting does not satisfy
the locality property in general, we propose in Section 3 sufficient conditions



which ensure local transformation of AGREE rewrite steps. Then, in Section 4,
the AGREE approach is compared to related work with some emphasis on
sesqui-pushout rewriting (restricted to monic matches), rewriting with polarised
cloning as well as rewriting in span-categories [31]. Concluding remarks are
given in Section 5. This paper is mainly based on the conference paper [7].

2. Algebraic Graph Rewriting with Controlled Embedding

In this section, we introduce the AGREE algebraic rewriting approach by
defining rules, matches and rewrite steps. One main difference with respect
to the DPO and SqPO approaches is that a rule has an additional component
t : K — Tk, called the embedding, that enriches the interface K and can
be used to control the embedding of items in K to items outside the image
of the match. Another important difference is that a rewrite step requires
only a pullback and a pushout construction, in contrast with the “complement”
constructions like the pushout complement of DPO [25] and the final pullback
complement used in SqPO [12] and in the gluing construction of [31]. We start
recalling some definitions and properties concerning pullbacks and partial map
classifiers in Section 2.1, then several classified categories of graphs are presented
in Section 2.2, and finally the AGREE approach is defined in Section 2.3. We
refer to [1] for basic categorical notions like pullback, pushout etc., and to [5, 28]
for the notion of partial map classifier.

2.1. Some properties of pullbacks and partial map classifiers

We recall some properties of pullbacks in any category (illustrated in Dia-
gram (1)), that are used repeatedly in the paper. Pullbacks preserve monomor-
phisms: if square (1) is a pullback and m is a monomorphism, then n is a
monomorphism as well. Pullbacks satisfy the following composition and decom-
position properties: if diagram (2)4@®) is commutative with square (3) a pullback,
then (2) is a pullback if and only if the outer square 2)+@) is a pullback. Pull-
backs satisfy the following dynamic version of the decomposition property: if
diagram 9+ is commutative with square (5) and the outer square @+Q®)
pullbacks, then there is a unique arrow (the dotted one) such that the top
triangle and square (4) commute and, in addition, (@) is a pullback.

These properties imply Lemma 1, which states, that commutative squares
and pullbacks can be pulled back in any category. To avoid ambiguities: in
cubes as in Diagram (2), the left, right, front and back faces refer respectively
to the front-left, back-right, front-right and back-left faces.



Lemma 1 (cube lemma for pullbacks). Given the cube at the left of Dia-
gram (2), if the left, bottom, right and top faces are pullbacks then: if the front
face is commutative so is the back face, and if the front face is a pullback so
is the back face. Given the part in solid arrows of the cube at the right of Di-
agram (2), if the left, bottom and right faces are pullbacks and the front face
commutes, then there is a unique arrow (the dotted arrow) such that the top face
s a pullback.

.(7.

l/\

Definition 2 (reflection).
Given objects X, Y, Z and arrows f: X = Z,g:Y —

Z, we say that f is reflected along g if there is an arrow X —idx X
h: X — Y such that (h, idx) is pullback of (g, f). Then | !
h is uniquely determined by f and g and we say that f ﬁ rB i

is reflected along g by h, or that h reflects f along g. Y — ¢ —Z

Note that if f is monic, then h is a monomorphism. The properties in the
following lemma are obvious consequences of the definition of pullback.

Lemma 3 (some properties of reflection). Given objects X, Y, Z and ar-
rows f: X —>Z,9g:Y —Zand h: X =Y, the followings hold:

1. f is reflected along g by h if and only if for all objects W and arrows
a:W—=>X,b:W-=Y,if foa=gobthen hoa =0,
2. if g is a monomorphism and go h = f, then h reflects f along g.

As mentioned in the Introduction, the AGREE approach requires the notion
of partial map classifier that we recall here. Our terminology is based on [28§],
it may differ slightly from other papers, for instance from [5]. In any category
C, a class M of monomorphism is stable (under pullback) if for each pair of
morphisms (m : Z — X, f :' Y — X) with m in M and for each pullback
(ff W —=>2Zm': W —Y)of mand f, the monomorphism m’ is in M. A
class M of monomorphisms is admissible if it contains all identities, it is closed
under composition, each pair of morphisms (m: Z — X, f:Y — X) with m
in M has a pullback, and M is stable under pullback.

In a category C with an admissible class of monomorphisms M, an M-partial
map (m, f) : Z — Y is a span made of a monomorphism m : X — Z in M
and an arrow f: X — Y in C, up to the equivalence relation (m’, f') ~ (m, f)
whenever there is an isomorphism h with m’oh = m and f'oh = f. A category
C with an admissible class of monomorphisms M has a M-partial map classifier
(T, n)if T'is a functor T : C — C and 7 is a natural transformation n : Idc = T,
such that for each object Y of C the arrow 7y is in M and for each M-partial



map (m, f) : Z = Y there is a unique arrow ¢(m, f) : Z — T(Y) such that
square (3) @ is a pullback. Then the monomorphism ny : Y — T'(Y) is the M-
partial map classifier of Y. In addition, for each monomorphism m : X — Z
in M we use the notation m = ¢(m,idx), so that m is uniquely defined by
pullback (3) @. Thus nx is reflected along m by m.

X I Y X idx X (3)
T T T T

m PB @ ny m PB @ nx

+ ¥ + +

Z o(m,f) — T(Y) Z — m=p(m,idx) + T(X)

Informally, if (m, f) : Z — Y is a partial map, the total arrow o(m, f) : Z —
T(Y) should agree with (m, f) on the items of Z on which (m, f) is defined, and
should map any item of Z on which (m, f) is not defined in a unique possible
way to some item of T'(Y) which does not belong to (the image via 7y of) Y.
And m can be seen as a kind of inverse for the monomorphism m.

Remark 4. Every elementary topos has an M-partial map classifier, with M
the class of all monomorphisms [5]. The category Set is an elementary topos,
as well as each presheaf category Set® where C is a small category and each
slice category CJ X where C is an elementary topos.

In the rest of the paper, when the admissible class of monomorphisms M
consists of all the monomorphisms of C we will omit explicit references to it,
calling M-partial maps simply partial maps and M-partial map classifier simply
partial map classifier.

For example, in Set the partial map classifier is made of the functor 1" such
that T'(X) = X + {x} and T(f) = f + idy,y, and the natural transformation
n is made of the inclusions nx : X — X + {x}. For each partial function
(m, f): Z =Y, the function ¢(m, f) : Z — Y + {*} extends f by mapping z
to f(z') when x = m(z’) and x to * when z is not in the image of m. For each
monomorphism m : X — Z the function m : Z — X + {x} is the inverse of m
on m(X) and it maps every element of Z outside m(X) to *.

In Section 2.2 we will describe some categories of graphs with a partial map
classifier.

Definition 5 (classified category). A classified category (C, M, T,n) is made
of a category C with all pullbacks, an admissible class of monomorphisms M
on C and an M-partial map classifier (T, 7).

Notice that all pullbacks are required, not only pullbacks over monomor-
phisms in M. This condition will be exploited in the definition of AGREE
rewriting (Definition 11).

Proposition 6 (some properties of classified categories). In a classified
category (C, M, T,n):

1. T preserves pullbacks.



2. The natural transformation 7 is cartesian, which means that for each arrow
f: X =Y in C the naturality square (4) is a pullback, or equivalently,
that p(nx, f) =T(f). It follows that Nx = idp(x).

X f Y (4)
T T
nx PB ny
¥ v

T(X)— 7(5) — T(Y)

3. Let (m, f) : X =Y be an M-partial map, then
e(m, f) = e(nx, f) o p(m,idx) =T(f) o m.
PROOF.

1. This is [5, Prop.2.2.vi.]. In fact T is a right adjoint and thus it preserves
all limits.

2. This is [5, Prop.2.2.ii.].

3. Apply the composition property of pullbacks to pullback (3) @ followed
by pullback (4). O

2.2. Ezxamples of classified categories

We introduce here some classified categories: the categories of graphs Gr, of
typed graphs Gr ] Gy, and of polarized graphs Gr™. Other classified (presheat)
categories will be considered in the examples of Section 3.3.

Definition 7 (graphs). The category of graphs Gr is defined as the presheaf
category Set©er where Cgy is the category having two objects ¥, N and two
non-identity arrows s,t : £ — N. Spelling out the definition, an object of Gr
is a graph X = (Nx, Ex,sx,tx), made of a set of nodes Nx, a set of edges Fx
and two functions sx,tx : Ex — Nx, called source and target, respectively. As
usual, we write n - p when e € Ex, n = sx(e) and p = tx(e). An arrow in Gr
from graph X to graph Y is a (graph) (homo)morphism f : X — Y, made of

two functions fy : Nx — Ny and fg : Ex — Fy, such that fy(n) fﬂe) fn(p)

in Y for each edge n = p in X. A monomorphism m : X ~— Y is a morphism
such that both components are injective.

By Remark 4 category Gr has a partial map classifier (T, 7). It is defined
as follows for each graph G:

o The graph T'(G) contains as nodes all nodes of G and one additional node
*. Also, T(G) contains all the edges of G plus one edge *, ) : n — p for
each pair of nodes (n,p) in (Ng + {*}) x (Ng + {*}).

e ng: G — T(G) embeds G into T(G).

If f: X — G is a morphism and m : X — H is a monomorphism, defining a
partial graph morphism (m, f) : H — G, the total morphism @(m, f) : H —
T(G) is defined as follows:



o For each item x € Xy + Xg, o(m, f)(m(z)) = f(x): this is well defined
because m is a monomorphism and defines ¢(m, f) on the image of m.

o For each node n € Hy \ m(Xy), o(m, f)n(n) = *.

o Foreachedgen 5 p € He\m(Xg), p(m, f)e(e) = *(@(m, f)n (n),0(m, f)n ()

The node * and the edges *(, ) will be called the *-items of T'(G), they form
the context of G in T(G).

Definition 8 (typed graphs). Given a fixed graph Gy, called the type graph,
the category of graphs typed over Gy is the slice category Gr | Gy. An object
of this category is a pair (G, tg) consisting of a graph G and a morphism t¢ :
G — Go. An arrow f : (G,tg) — (G',tgs) is a graph morphism f : G — G’
such that tg o f = tg.

Again by Remark 4, category Gr | Gy has a partial map classifier (T, 7).
For each graph (G, tg) typed over Gy, the typed graph T'(G,ts) contains G, as
well as a node #, for each node n € Ng,. Additionally, for each edge n % p
of Gy, it also includes one edge *( ;) :  — y for each pair of nodes (z,y) in
(tg'(n) + {*,}) x (t5'(p) + {*p}). The typing morphism ¢ : T(G,tg) — Go is
defined in the expected way: t(x) = tg(z) for all x € Eg + Ng, tn(x,) = n
for all n € Ng; and tg(*(4,)) = e for the remaining edges. The typed graph
monomorphism ng : G — T(G,tg) simply embeds G into T(G).

Given a partial typed graph morphism (m, f) : (H,tg) — (G,tg), where
f:(X,tx) = (G,tg) and m : (X,tx) — (H,ty), the total morphism @(m, f) :
(H,tg) = T(G,tg) is defined as follows:

o For each item = € Xy + Xg, o(m, f)(m(z)) = f(x).

 For each node n € Hy \ m(Xn), o(m, f)n(n) = %, n)-

o For each edge n 5 p € Hp \ m(Xg), ¢(m, f)g(e) = *(e,a,y), Where z =
@(m, f)n(n) and y = o(m, f)n(p).

We refer to [7, Example 2] for a concrete example of this construction.

Definition 9 (polarized graphs [17]). A polarized graph X = (X, N, Ny)
is a graph X with a pair (N, N7) of subsets of the set of nodes Nx such that
for each edge n = p, n € N; and p € Ny. A node n € Nx has polarity + if
n € N;(', it has polarity — if n € Ny, and it has polarity + if n € N;(' N Nx.
A morphism of polarized graphs f : X — Y, where X = (X, Ny, Ny) and
Y = (Y, N;", Ny'), is a morphism of graphs f : X — Y which preserves the
polarization, i.e. such that f(Ny) C Ny and f(Ny) C Ny.. This defines the
category Gr™ of polarized graphs. A morphism of polarized graphs f : X — Y
is strict, or strictly preserves the polarization, if f(N¥) = f(Nx) N Ny and
f(Nx) = f(Nx)NNy.



The category of polarized graphs (that will be used later in Section 4.3) is
a category with an M-partial map classifier for a family M which is a proper
subset of all monomorphisms. Indeed, it is easy to check that strict monomor-
phisms form a stable system of monomorphisms (denoted S) for the category
Gri, and that Gr™ has an S-partial map classifier (T, 7). Morphism 7g em-
beds a polarized graph K into T'(K), which is the disjoint union of K with a
node * having polarity + and with an edge *(, ) : n — p for each pair of nodes
(n,p) € (N + {*}) x (Ng + {*}). For a partial morphism of polarized graphs
(m, p) the total morphism ¢(m, f) is defined as for the case of graphs.

2.3. The AGREE approach to graph transformation

We start this section by considering the classified category of graphs Gr
(with M the class of all monomorphisms) in order to introduce the AGREE
algebraic rewriting approach in an intuitive way. An AGREE rule is made of
three graph morphisms with the same source: [ : K — L, r : K — R and
t : K — T with t monic. When specifying a transformation using an AGREE
rule, the designer describes with the left-hand side L the items that must be
present to trigger the application of the rule. The morphism [ from the gluing
graph K to L describes which items of L will be preserved, cloned, or deleted.
More precisely, an item of L is deleted if it is not in the image of [, it is preserved
if it is the image of exactly one item of K along [, and it is cloned if it is the
image of more than one item of K along [. The morphism r to the right-hand
side R defines the items that will be kept, merged, or created: items of R with
a unique antecedent along r are items of K that are kept, different items of K
are merged if they have the same image along r, and items of R that are not in
the image of r are created.

Thus, given an injective match m : L ~ G, the morphisms [ and r describe
how the image of L in G is modified by the rule. In addition, the embedding
componentt : K — Ty, which is typical of AGREE, describes how the context of
L in G, i.e. the items of G which are not in the image of the match, are modified
by the rule. Let 7y, : L ~— T(L) be the partial map classifier of L, as described in
Section 2.1 (see Diagram 5 below). Since the embedding component ¢ : K — Tk
is a monomorphism, (¢t : K — Tk,l: K — L) is a partial map (¢,1) : Tk — L.
Thus [ : K — L can be extended in a unique way to o(t,l) : Tx — T(L)
(forming a pullback), which coincides with I on the image of ¢ and which maps
each item of T outside the image of ¢ to the corresponding *-item of T'(L).
The match m : L — G determines the morphism m = ¢(m,idy) : G — T(L),
which is a kind of inverse of m: it maps m(z) to x for each item z in L (since
m is a monomorphism this is well-defined) and it maps each node and edge in
the context of L in G to the corresponding *-item of 7'(L). Then, the notions
of deletion, preservation, and cloning can be extended to the context of L in G:
an item x of G which is not in the image of m is deleted if m(x) is not in the
image of ¢(t,1), it is preserved if m(x) is the image of exactly one item of Tk
along o(t,1), and it is cloned if () is the image of more than one item of Tk

)
along o(t,1).



In order to define AGREE rewriting on any classified category, we introduce
the notion of pullback complement over a monomorphism, which is defined and
computed simply from a pullback. In this way we get a notion of pullback
complement directly from the universal property of pullbacks.

Definition 10 (pullback complement over a monomorphism). Let (C, M, T,n)
be a classified category. Let [ : K — L be an arrow in C and let m : L — G

and t : K — Tk be monomorphisms in M.

Let (g,n') be the pullback of (7, p(¢,1)). Then

there is a unique n : K — D such that L+—1—K (5)
square (5) @ and triangle (5) @ commute (by al T\
the universal property of pullbacks), and in ad- / @’ﬁ PBC/t® Z@

dition square (5) @ is a pullback (by pu.llback niL, Ge—y—D
decomposition) and n € M (because M is sta- = | | =
ble under pullbacks). In this situation (n,g) is \ m PEQ W /
called the pullback complement of (I,m) over t TzlL) 13;
and pullback (5) @) is denoted PBC//t. o(t,1)

Definition 11 (AGREE rewriting). Let (C, M,T,n) be a classified category
with pushouts along monomorphisms in M. An AGREE rule is a triple of ar-
rows with the same source p = (I : K — L,r: K — R,t: K — Tg), with ¢ in
M.

Arrows [ and r are the left- and right-hand I ! K r R
side, respectively, and t is called the embed-

ding. An AGREE match of rule p is a monomor- It

phism L % G in M. The AGREE rewrite step Tk

G =,m H is constructed in two phases: first

(n, g) is the pullback complement of (I,m) over L¢—1—K—r —R
t, so that n is in M, second (p, h) is the pushout ;E PBC/t n PO 1‘7
of (’I"7 n) <4 <4 <

G+—g—D—n—H

Remark 12. Since the pullback complement of (I,m) over ¢ has been defined
by the pullback of ¢(¢,1) and m (Definition 10), an AGREE rewrite step is
essentially a pullback followed by a pushout.

Proposition 13 says more about the commutative triangles (5) ® and (5) @.
Proposition 13 (some properties of PBC/t). With the notations and as-
sumptions of Definition 10, squares (6) ®) and (6) @ are pullbacks and ton' = .

When in addition Tx = T(K) and t = ni, then p(t,1) = T(l) and n' =7, as
depicted in Diagram (6) 5)+().

10



L ¢id— L<—Z—K id— K %(—I—IT( (6)
-
G(*g*D Ge—y—D )"
\ | 7 l | |
. m PBQ _ m PB(® =
N4 1 " + +
T(L) ¢ Tie — 7 > T(K) T(L) ¢~ T(K

PROOF. Square (6) ® is a pullback by definition of m. For square (6) @
consider the cube on the left of (7). The left face is a pullback by definition
of ¢(t,1), the front face is a pullback by definition of 7, the bottom and right
faces are pullbacks by definition of an AGREE rewrite step (5) @ and (5) (2,
and the top face is trivially a pullback. Then by Lemma 1 the back face is also
a pullback, which means that square (6) @ is a pullback. Thus square (7) @) is
a pullback, while (7) @ is a pullback by definition of ¢. By composition @+
is a pullback, and by definition of m we get ton’ = n. When ¢t = ng then
t = idp(k), so that the equalities £ o n’ = 7 (just proved) and (t,1) = T(I) ot

roposition 6 item ecome respectively n’ =n and ¢(¢,[) = .
P 6 3)b ly n/ d l T(l O
K (7)
id i ‘ ~ !
ke P
id
t‘ l\)L(/l - 7; ?HidK IT{esz IT(
\
@ @ =«
J D . J o i v
— ~ T(K)+t — Tk — D
TK o) - _— G - /
s

e

Remark 14. It follows from Proposition 13 and from the composition property
of pullbacks that, as depicted in Diagram (8), the pullback complement of [ and
m over t is composed of the pullback complement of [ and m over ng followed
by the pullback complement of idx and ng over t. Roughly speaking, in this
way first the image of the match is modified, then its context.

L 1 K idx K (8)
T T T
m PBC/nk no \ PBC/t n \
N A Yooy
G go DO —1— d D ]
| \ |
m PB no / PB n’
4 4 N
T(L) T(1) T(K) i Tk

11



Remark 15. Definitions 10 and 11 introduce the squares @), (2), and (3 of
Diagram (9). An additional square (@) can be added to the construction, making
it more symmetric: arrow p’ is the unique arrow such that @ and (6) commute,
because (2) is a pushout. More properties of (4) are mentioned in Section 4.4.

L ! K r R (9)
| | AN
m PBC/t() g PO (2 p
¥ + + "
G g D h H :\;
\ \ \
m PB(® n = p'@y
+ + +
T(L) < o)) — T — otr) > T(R)

3. Locality in AGREE

In Sections 3.1 and 3.2 we study restrictions on AGREE rewriting which
guarantee that all transformations are local, in the sense that they do not mod-
ify the strict complement of L in G. For graphs, this means that local transfor-
mations are allowed to modify only the image of L in G and the adjacent edges.
Then some applications of AGREE rewriting are discussed in Section 3.3.

8.1. Local AGREE transformation system

Now assume that the category C has an initial object 0 and let us consider
the pullback complement over the monomorphism 7. For each object L of C let
0z : 0 — L denote the unique arrow from 0 to L. The notion of complement of
a subset in a set can be generalized to graphs as follows: the strict complement
of a subgraph L in a graph G is the largest subgraph G \ L of G' which does
not intersect L. Then G is made of the graph L, the graph G \ L, and the set
of adjacent edges, i.e. the set of edges of G not in L but incident to some node
in L. When G = T(L) and 7y, is the inclusion, this is the partition of T'(L)
as: the graph L, the graph T'(L) \ L made of the node * and the loop *(, ) on
it, and the set of adjacent edges *(, ) : n — p for all (n,p) # (*,*). Thus for
any graph G and any m : L — G in M, the partition of G is the inverse image
by m : G — T(L) of the partition of T'(L). In addition, T(L) \ L is the image
of T(01) : T(0) — T(L), where 0 denotes the empty graph and 0 : 0 — L
the inclusion, so that T'(0) can be identified with the strict complement of L in
T(L). This is now generalized.

Definition 16 (strict complement).

12



Let (C,M,T,n) be a classified category

with an initial object 0. The strict comple- L+— o, 0, (10)
ment of a monomorphism m : L — G in M T I
Oc\z G\m m  PBC/n @ 06, \
is the pullback complement 0 — G\L — + N
Gof 0% L G over . Tt follows that (‘;H G\m — G‘\L |
0\ z is in M and that the arrow from G\ L = IO v
to T'(0) in Diagram (10) is O\, (by Propo- + +

—~

sition 13). T(L) <+ T(or) —T(0)

Notice that the object G \ L depends on m, not only on L and G, but this
notation will always be used in a context where it is not ambiguous.

Remark 17 (T'(L) \ L is isomorphic to 7'(0)). In Diagram (10) let G = T'(L)
and m = 0, so that m = idp(r). Since square (10) @ is a pullback it follows
that Opyvz 2 T(L) \ L — T'(0) is an isomorphism.

In the general case the embedding ¢ of an AGREE rule may give raise to
non-local effects on the rewritten object, as illustrated by the following example.

Example 18. In category Set, the rule depicted in Figure 3 simply preserves
a single element and the embedding t : K — Tk is the identity. If applied to
set G, as shown, its effect is to delete all the elements not matched by m. We
say that this rewrite step is non-local because it modifies the strict complement
of the image of L in G.

Figure 3: An example of non-local rule.

To prevent non-local effects, restrictions on AGREE rewriting may be de-
fined, ensuring that all transformations are local in the sense that they do not
modify the strict complement of L in G. For graphs, this means that local
transformations are allowed to modify only the image of L in G and the ad-
jacent edges. Intuitively, in graph rewriting, an AGREE rewrite step as in
Definition 11 is local, if the strict complement of L in G is isomorphic to the
strict complement of K in D, and an AGREE rewrite rule with embedding
t: K — Tk is local, if the strict complement of L in T(L) is isomorphic to the
strict complement of K in Tk. The next definition formalizes this idea.

Definition 19 (locality in AGREE). Let (C, M,T,n) be a classified cate-
gory with an initial object and with pushouts along monomorphisms in M.
An AGREE rewrite step as in Definition 11 is local if G\ m : G\ L — G is
reflected along g : D — G. An AGREE rule p = (I,7,t) is local if T(L) \ 1y, :
T(L)\ L — T(L) is reflected along ¢(¢,1).

Remark 20. There are many ways to characterise locality. Obviously, a rule
is local, if and only if applying this rule to the match nz, : L — T(L) is a local

13



step. The definition of a local step means that there is an arrow o, : G\L — D
such that (11) @ is a pullback, and the definition of a local rule means that
there is an arrow o, : T(L) \ L — T'(L) such that (11) @ is a pullback. Since
T(OL) o OT(L)\L = T(L) \’/]L and OT(L)\L : T(L) \ L— T(O) is an iSOInOI‘phiSHl
(by Remark 17), a local rule can also be characterised by the existence of j :

T(0) — Ty such that (11) () is a pullback, with 8o OpLy\ L = ay, -

G\L¢ia-G\L T(L)\L<ia-T(L)\L T(0)« i —T0) (11)
\ [ \ \ \ \

am O an TN\ @ ay, T0,) ©® 8
B 1 1 ! v 1
G—g9g—D T(L) ¢+ o)) — Tk T(L) ¢ oty — Tk

Theorem 21 shows that local rules always give rise to local steps.

Theorem 21 (locality of AGREE rewrite steps). Let (C, M, T,n) be a clas-
sified category with an initial object and with pushouts along monomorphisms

in M. Let p = (l,r,t) be an AGREE rule. Then p is local if and only if for

each AGREE match m : L — G the AGREE rewrite step G =, H is local.

PROOF. (If part) It is immediate to check that the condition of locality for p of
Definition 19 coincides with the condition of locality for the rewrite step using
rule p and the match ny : L — T'(L).

(Only if part) In Diagram (12), the bottom face is a pullback by Remark 20
because the rule is local, the left face is a pullback by definition of AGREE
rewriting, the right face is trivially a pullback, and the front face is pullback (10)
(@ in the definition of strict complements. Thus by Lemma 1 there is a unique
arrow o, : G\ L — D such that the top and back faces are pullbacks. The fact

that the top face is a pullback means that the rewrite step is local. O
G\ L (12)
am | e id -
Lo 0
l\) T o — G\

g\G</l To

| |
l o — 7(0) — J
Tt > 7(0)

—

~ Lp(t’l) \ ( )/ T(OL)
T(L

8.2. Strict complement of arrow

In this section, we state Proposition 24 which gives another characterisation
of locality, under the following Assumption 22.

Assumption 22. The arrow T(0r) is reflected along T(1) by T(0x), or equiv-
alently, square (13) @ is a pullback.

14



Since T preserves pullbacks (item 1 in Proposition 6), a sufficient condition
is that arrow 0, is reflected along I by O, or equivalently, square (13) @ is a
pullback.

T(0) +— idr@, — T(0) 0¢— ido — O (13)
\ \ \ \

T(0r) ©) T(0x) 0L ©) Ok
+ + ¥ +

T(L) +— 1(0) — T(K) Lé—1—K

Recall that an initial object 0 is strict if each arrow with target 0 must have 0
as source, or equivalently, if each arrow with target 0 is idy. Then it is easy to
check that O, is a monomorphism for each object L and that square (13) (@) is
a pullback for each arrow [. Thus since T preserves pullbacks, when the initial
object 0 is strict, Assumption 22 is satisfied. All examples in this paper are
based on elementary toposes, which have strict initial objects.

Proposition 23 (strict complement of arrow).

Let (C, M, T,n) be a classified category with

an initial object 0. Given an AGREE Ge—y D (14)
rewrite step as in Definition 11, there is a GTm @ DT\n
unique arrow g\l : D\ K — G\ L such that \ \
squares (14) @ and (14) @ commute. If G\L<+— g\t — D\K
in addition Assumption 22 is satisfied, then L ® |
square (14) @ is a pullback. The arrow g\! OCL\L ODQK

is called the strict complement of [ in g. T(0) < idr, — T(0)

PROOF. Let us prove that Diagram (15) is an instance of (1) @+®.

/@‘ moT (1) —
T(L) ¢— m € g D (15)
+ T T
T(?L) ® G\‘m ® D‘\n
T(0) +— gz — G\ L< g\l D\ K
© -

Op\ K

Triangle (15) @ is commutative because square (6) ) is commutative. Square (15)
@® is pullback (10) @. The outer square in (15) is (16) ®+®, with (16) ©®
another instance of pullback (10) @) and with (16) (3) commutative since it is
the image by T of the commutative square (13) @. Thus square (16) ®+® is
commutative. If in addition Assumption 22 is satisfied then square (16) () is a
pullback, and thus square (16) ®+(@®) also is a pullback.

T(L)«— 1) —T(K)+— = D (16)
5 o T

T(0) ® T(0x) ® D\n
\ \ \

T(0) < idroy — T(0) — 0ok — D\ K
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Finally, in the general case as well as in the specific case where Assumption 22
is satisfied, the result follows from the decomposition property of pullbacks. [J

We conclude by providing new characterizations of locality in AGREE. In
particular, the last statement of the next proposition shows that the definition
of locality for AGREE proposed in [7] coincides with the definition of this paper
when C is an elementary topos.

Proposition 24. Let (C, M, T,n) be a classified category with an initial object
and with pushouts along monomorphisms in M. If Assumption 22 is satisfied,
then using the notation of Definition 19 the followings hold:

1. An AGREE rewrite step is local iff g\l : G\L — D\ K is an isomorphism.

2. An AGREE rule is local iff o(t,0)\1: T \ K — T(L)\ L is an isosomor-
phism.

3. An AGREE rule is local iff t is reflected along T(Of).

PROOF. 1. By Proposition 23 square (14) @ is a pullback, so that a step is
local if and only if g\ I : D\ K — G\ L is an isomorphism.
2. This follows from the previous point, by setting m = np.
3. Consider Diagram (17) below. Square (D is a pullback because it is
square (13) (@), therefore M+@ is a pullback (and the rule is local by

Remark 20) if and only if (2 is a pullback. O
T(0) «— id — T(0) +— ia — T(0) (17)
\ \ \
T0) @  T0Ox) @ B
N2 + \
T(L)¢+ 1) —T(K)+—7—Tx
—en

8.8. Applications of AGREE rewriting

In order to illustrate the expressive power of AGREE rules, we present three
examples of local AGREE rewriting.

Example 25 (Copy of web pages). Using the AGREE approach, it is pos-
sible to model a web page copy operation. The idea is that graphs represent web
pages (nodes) and hyperlinks among them (edges). It is reasonable to expect
that the result of copying a page of a graph is such that the new hyperlinks are
created only in the new page, and not in the pages pointing to the original one.

This effect can be modelled using the rule (Ky — Ly, K; — Ry, K; —
Tk,) in category Gr shown in Figure 4. Nodes represent web pages and edges
represent links. The different node colours and shapes are used only to define the
morphisms. The black node represents the page to be copied, and it is preserved
by all morphisms. The white node with an inscribed symbol c represents the
the cloned page, i.e. the copy of the black page. When the rule is applied to
graph G1, only outgoing links from the matched node are copied to the clone:
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Figure 4: Rule for copying a web page and example of application.

the links from other nodes to the matched node are not copied. All grey nodes
of G and Dy, representing the context, are mapped to *-nodes of T(L;) and
Tk, , respectively.

Example 26 (Social network anonymization). Huge network data sets, like
social networks (describing personal relationships and cultural preferences) or
communication networks (the graph of phone calls or email correspondents)
become more and more common. These data sets are analyzed in many ways
varying from the study of disease transmission to targeted advertising. Selling
network data sets to third-parties is a significant part of the business model
of major internet companies. Usually, in order to preserve the confidentiality
of the sold data set, only “anonymized” data is released. The structure of the
network is preserved, but personal identification information is erased and re-
placed by random numbers. This anonymized network may then be subject to
further processing to make sure that it is not possible to identify the nodes of
the network (see [27] for a discussion about re-identification issues). We show
how AGREE rewriting can be used for such an anonymization procedure. We
focus on the first task of the anonymization process: the creation of a clone of
a portion of a social network in which only non-sensitive links are copied.

We assume that the data of the social network are allocated to sites, and
that links among data (possibly allocated to different sites) are either public
or private: the latter denote sensitive information that should not be disclosed.
The AGREE rule depicted below in Figure 6 models the operation of cloning
a site including all the data allocated to it. But it does so only for public
links between copied data, or from copied data to data allocated to other sites.
Since the number of data to be cloned is not known, we cannot represent data as
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nodes of a graph, because an AGREE rule can copy only a fixed number of nodes.
Instead, we exploit the fact that the application of a rule can copy an unspecified
number of edges. Therefore we model social networks using a suitably defined
category of 2-graphs, i.e. graphs with 2-edges among edges. Intuitively, nodes
represent sites, (unary) edges represent data and 2-edges represent links between
data.

Definition 27 (SN-graphs). The category of 5 ST
SN-graphs is the presheaf category Set©s¥ where P
Cgy is the free category generated by the graph t
depicted to the right.

Figure 5: An SN-graph representing a social network. Data (circles) are allocated to sites
(boxes) and can be linked by private (dashed) or public (solid) links.

Spelling out the definition, an SN-graph is made of a set S of sites, a set D of
data, two sets P and R of public and private links respectively, and of functions
mapping each data to a site (p : D — S), and each link to its source and to
its target data (s,t : P — D and sr,tr : R — D). A morphism of SN-graphs
f+ N — N'is a four-tuple of functions (fs : S = S, fp: D = D', fp: P —
P’ fr : R — R’) preserving the structure in the expected way. An example
of SN-graph is depicted in Figure 5. It consists of two sites (depicted as white
boxes) and four data (white circles, connected with the corresponding site with
an undirected edge). Plain and dashed arrows represent public and private links,
respectively, drawn from the source to the target.

By Remark 4 the category of SN-graphs has partial maps classifiers and,
like all toposes, it has pushouts along monomorphisms, therefore we can apply
AGREE rewriting. Figure 6 shows a rule that generates a public copy of a site
and its application to the SN-graph of Figure 5 (since the right-hand side of
the rule is an identity morphism, the obvious pushout is not depicted). The
morphisms are determined on sites by the inscriptions in the corresponding
boxes (but | 2 |is mapped vertically to [«], and [¢]is mapped horizontally to ),
and on data they are defined in the expected way preserving the layout and the
links.

Clearly, the only non-obvious part of the rule of Figure 6 is the embedding
morphims ¢ : K = Tk . It is worth showing how this morphism can be defined
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Figure 6: Rule for creating a public copy of a portion of a social network and example of
application. Doubly headed arrows in the bottom graphs represent pairs of arrows in both
directions.

in a reasonably easy way, at least when, as in this case, the rule is intended to
copy a certain structure but not all links involving it. The idea is to start, as a
first approximation of the embedding, from the partial map classifier nx : K —
T(K). As discussed later in Section 4.2, a rule with such an embedding has
the same effect of a rule in the sesqui-pushout approach, thus for each cloned
node it will copy all the incident edges. Therefore it is sufficient to delete from
T(K) the edges representing links that should not be copied. More precisely,
Figure 7 shows the embedding ¢t : K »— Tk of our rule, together with the
partial map classifier nx : K — T(K). Comparing them, it is obvious, that Tk
was obtained from T'(K) by deleting all dashed edges incident to the data on
the cloned site (because private links should not be disclosed), the solid edges
between the copied data and their clones, and the solid edge from data on other
sites to the cloned data, for the same reasons as in Example 25.
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Figure 7: Comparing the embedding ¢ : K — Tk with the partial map classifier ng.

Example 28 (Forking strategies). In Unix-like operating systems there are
standard mechanisms to create a new child process from its parent process. This
is done through specific system calls typically named fork() or clone(). Both
the parent and child processes run exactly the same code. They differ by the
return code of the system call. Actually there are many variants of such system
calls (see [33] for concrete examples). The variants differ in the way the address
space of parent and child processes are separated or shared. For instance it
is possible to create a child process with an address space completely different
from the one of its parent process. It is also possible that both the parent and
the child processes share parts of their execution context.

in_ AT (18)
) S
tl

P+t EB—'yAS

In this example we show how such subtleties can be modeled with AGREE
rules. We assume that each process can have one or more address spaces contain-
ing addresses (e.g. memory locations), and that address spaces can be shared
among processes. We represent the possible states as functors from the free
category Cp generated by the graph of Diagram (18) to Set, i.e. as objects
of the presheaf category Set®”. Therefore a state has a set of processes P, a
set of address spaces AS, and a set of addresses A. An edge e € E represents
the fact that process s(e) has access to the address space t(e). Each address
a € A belongs to the address space in(a). Finally, a link [ € L models the fact
that the memory cell sl(l) contains the address of location tI(l).> For the sake
of generality, we allow an address to point also to addresses outside its own
address space.

States are depicted graphically as in Figure 8. Processes are represented
by white boxes, address spaces by white circles and addresses by smaller black
circles. Dashed arrows represent edges, solid arrows links, and undirected arrows
the allocation of addresses to address spaces.

ITherefore each address should be the source of at most one link. Rules should be designed
in order to guarantee the preservation of this property.
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Figure 8: An abstract representation of two processes (boxes) accessing three address spaces
(white circles) one of which is shared, containing a total of five addresses (black circles) linked
in a suitable way.

Figure 9 shows a rule that creates a child process with a copy (o) of the
address space (@) of the parent process [1], sharing no addresses with it, and
its application to the state of Figure 8. Morphisms are uniquely determined
by requiring that they preserve the identity of items, as inscribed in boxes and
circles, with the exception that [c]and (¢) are mapped to| 1 |and (o) by morphisms
from right to left, and that items whose identity cannot be preserved by the
vertical morphisms are mapped to or (.

Note that links among addresses in (o) are preserved in the copy, and links
from addresses in (@ to other address spaces are copied as well (see the link
to the first address in (), while links from other address spaces to (@) are not
copied. This effect is obtained by including in Tk a link from the address in
(© to that in (»), but not the reverse arrow. Note also that in Tk there is no
edge from [« ] to (o), meaning that if the address space (a) was shared by another
process its copy (¢ would not be shared. A more liberal policy allowing (©) to
be shared by process and/or by other processes can be specified easily by
adding to Tk suitable edges.

An operation that creates a child process sharing an address space with the
parent process can be specified easily by changing the rule so that and
point to the same address space in K, and using as embedding arrow ng : K —
T(K). More elaborated operations that mix, for different address spaces of the
parent process, the copying and the sharing policies can also be specified in
a flexible way by AGREE rules. However, each relevant address space has to
be included explicitly in the left-hand side of the rule, which means that it is
not possible with a single rule to specify, for example, that the child process
must have a copy of all the address spaces of the parent process. This level of
genericity (a sort of universal quantification) is not expressible in AGREE, that
in this respect is less expressive that the gluing construction proposed in [31],
as discussed in Section 4.4.

4. Relation with other algebraic approaches to graph rewriting

In this Section we compare AGREE rewriting respectively to SqPO rewriting
(Section 4.2), to graph rewriting with polarized cloning (Section 4.3) and to the
gluing construction in span-categories (Section 4.4). Since all these graph trans-
formation approaches are based on final pullback complements, in Section 4.1

21



Figure 9: Rule for forking a process with an independent copy of an address space.

we recall this notion and we compare it to the notion of final pullback comple-
ment over a monomorphism (Definition 10). Other approaches are discussed in
Section 4.5.

4.1. Final pullback complements

Final pullback complements are defined in the following way in [19].

Definition 29 (final pullback complement). Let C be any category. In Di-

agram (19) K % D % G is a final pullback complement (FPBC) of K Lrna
if:

1. square (19) @ is a pullback, and d
2. for each pullback G & L L RS L(KH h *K"/ (19)
D' % G and arrow K’ %% K such that m @O  n ® e
loh = d, there is a unique arrow D’ EN é B 5/
D such that aog = f and goe = noh. a— g
K .

Then square (19) @) is a pullback by the property of pullback decomposi-

tion. When K % L 8 G has a final pullback complement, it is unique up to
isomorphism.
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Proposition 30 shows that under suitable assumptions final pullback com-
plements coincide with pullback complements over the partial map classifier
ng : K — T(K).

Proposition 30 (building final pullback complements). Let (C, M, T,n)
be a classified category. Letl: K — L be an arrow in C and let m : L — G be
a monomorphism in M. Then the final pullback complement of | and m exists
and it is the pullback complement of | and m over ng according to Definition 10.

First a proof of Proposition 30 under the assumption that the final pullback
complement exists was given in [7]. Then Proposition 30 as stated here was
proved in [32].

4.2. AGREE subsumes SqPO rewriting with injective matches
As recalled in the Introduction, in the SqPO approach [12] a rule is a span

L4 K5 R and a rewrite step for a match L 5 G, if it exists, is made of a
first phase where the final pullback complement D is constructed, followed by
a pushout where the result H is computed.

Definition 31 (SqPO rewriting).

A SqPO rule is a span L L KSR A SqPO

matcﬁ isan arrowSLPg G. 'Then t}}ere isa SqPO Li- | —K-— 3R
rewrite step G =797 H if the diagram to the | | |
right can be constructed, where (n, g) is the final ZL FPBC z PO i
pullback complement of (I,m), and (p, h) is the Giog—D—n—1H

pushout of (r,n).

Comparing to the definition of AGREE rewriting (Definition 11) and using
Proposition 30, it is obvious that the AGREE approach is a conservative ex-
tension of the SqPO approach with monic matches, because the two coincide
if the embedding of the AGREE rule is the partial map classifier nx of K.
More precisely, as stated by the following proposition, the application of rule
p = (I,r) at monic match m using the SqPO approach has exactly the same
effect of the application to m of the same rule p enriched with the embedding
Nk : K — T(K) using the AGREE approach.

Proposition 32 (AGREE vs. SqPO). Let (C, M, T,n) be a classified cate-
gory with pushouts along monomorphisms, where M is the set of all monomor-

phisms. Let L LK 5 Rbea SqPO rule and let nk : K — T(K) be the partial
map classifier of K. Then for each monomorphisms m: L — G

G =590 [ if and only if G =AhCGREE

(t,r),m (Lrinx),m
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4.8. AGREE subsumes polarized node cloning on graphs

We now show that AGREE rewriting allows to simulate rewriting with po-
larized cloning on graphs, which is defined in [17] by using the polarized graphs
of Definition 9. Polarization is used in rewriting to control the copies of the
adjacent edges (i.e. the edges that are not matched but incident to the matched
nodes).

Remark 33. The underlying graph of a polarized graph X = (X, N;,N)}) is
X. This defines a functor @ : Gr™ — Gr which has both a right and a left
adjoint functor denoted P and P* : Gr — Gr* resp., ie. P* 4 Q 4 P.
Functor P maps each graph X to the polarized graph induced by X, defined
as X = (X, Nx, Nx), and each graph morphism f : X — Y to itself; it is
easy to check that P(f): P(X) — P(Y) is a strict polarized graph morphism.
Furthermore we have that @ o P = Idg,, and we denote the unit of adjunction
QA Pasu: Idges = PoQ, thus ux : X — P(Q(X)). Functor P* maps
each graph X to the polarized graph X = (X, N¥, Ny ), where a node is in N3’
(resp. in Ny ) if and only if it has at least one outgoing (resp. incoming) edge in
X. Since @ has a left adjoint, we have that @) preserves limits and in particular
pullbacks.

The category Gr™T has final pullback complements along strict monomor-
phisms: their construction is given in [16, Appendix].

Definition 34 (PSqPO rewriting). A PSqPO rule p is made of a span of
graphs L L K5 Randa polarized graph K = (K, N;%, N;;) with underlying
graph K. A PSqPO match of the PSqPO rewrite rule p is a monomorphism
m : L — G in Gr. A PSqPO rewrite step G :>pP,§gPO H is constructed as
follows:

1. The left-hand side I of the rule p gives rise to an arrow | = P(l) ouk :
K — P(L) in Gr®. The match m gives rise to a strict monomorphism

P(m) : P(L) — P(G) in Gr™. Then K % D % P(G) is constructed as
the final pullback complement of K —lA> P(L) Pl P(G) in category Gr™.

2. Since Q(K) = K, we get Q(n) : K — Q(D) in Gr. Then R % H & Q(D)
is built as the pushout of R <~ K Qﬁf) Q(D) in category Gr.

% P(L)+—1 K K r— R

Y | | |
m I—P> P(m)  FPBC n H———  Q(n) PO p
+ + + + +
G P(G)+— ¢ D QD)—n—H

Recall that, as observed in Section 2.2, category Gr™ has an S-partial map
classifier (T,7), where S is made of the strict monomorphisms. This will be
exploited in the next result, which can be seen as a generalization of Proposi-
tion 32.
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Proposition 35 (AGREE vs. PSqPO). Let p be a PSqPO rule made of span
LL KSR and polarized graph K = (K, Njt, Ny). Consider the component
on K of the natural transformation n : Idg,+ = T, and let T = Q(T(K)) and
t=Qnk): QK) = Q(T(K)), thus t : K — Tk. Furthermore, let m : L — G
be a monomorphism. Then

G :>,F;,§3PO H if and only if G :>8§1};EE H

PRrROOF. The first phase of PSqPO rewriting consists of building the FPBC of
(P(m),l) in category Gr*. According to Proposition 30, since P(m) is strict,
such a F'PBC can be obtained as square (20) (), where both squares D and @
are pullbacks in Gr™. The second phase consists of taking the pushout of arrows
K 5 Rand Q(n): K — Q(D) in Gr. By applying functor @ to the left part
of Diagram (20) we obtain its right part, where both squares 3 and (@) are
pullbacks because ) preserves limits. In fact, recall that @ o P = Idqg,, that
K = Q(K) and that t = Q(nk); the fact that T(L) = Q(T(P(L))) can be
checked easily by comparing the construction of the S-partial map classifiers in
Gr and in Gr.

P(L)+— T H% %<7 1 K (20)
p(m) PBQ n m PB®) Q(n)

i 4 1
P(G)+— ¢4 D C‘¥<7 QD)

\

% j7:10) ﬁ‘ m PB@ Q(n)

4 v 4 1

T(P(L)) +—10)— T(K) T(L) +—— T = Q(T(K))

Now, the first phase of AGREE rewriting with rule (I,r,¢) and match m
consists of taking the pullback in Gr of ™ and the only arrow Tx — T(L)
that makes square (20) ®+@ a pullback. This arrow is precisely Q(T(ZA)), and
therefore the pullback is exactly (20) @. The second phase consists of taking the
pushout of K > R and of the only arrow K — Q(D) that makes the diagram
commute; but @(n) is such an arrow, thus the pushout is the same computed
by the PSqPO approach. This concludes the proof. O

4.4. Span rewriting subsumes AGREE with monic right-hand side

The gluing construction is introduced in the context of graph rewriting in
span-categories in [31]. It is compared to AGREE rewriting in [32]: an AGREE
rewrite step can be seen as a gluing construction under the assumption that the
rule is right-linear, i.e. that the right-hand side of the rule is monic.

Definition 36 (gluing construction). In any category C, the gluing of two
spans (a, b) (the rule) and (¢, d) (the match), if it exists, is given by Diagram (21)
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where square (1) is a pullback, squares (2) and @) are final pullback complements
and square (@) is a pushout.

®e<— a (] b ——e®

i PB(Q) TFPBC@T

\

i I I (21)
d FPBc@l j2e10) J

1

Gluing construction [31]

When c is the identity only (3) and (@) are left, so that obviously the gluing
construction coincides with SqPO rewriting. When d is the identity only O and
(2 are left, and it can be proved that the gluing construction, under some as-
sumptions, coincides with AGREE rewriting in this case: this is Proposition 37,
which is proved in [32, Theorem 11].

The proof proceeds by comparing O+® in (21) with @+@®@ in (9), which
means, by proving that @ in (9) is a final pullback complement when r in (9)
is a monomorphism.

Proposition 37 (gluing construction vs. AGREE). An AGREE rewrite step
with respect to an AGREE rule with monic right-hand side is a gluing construc-
tion.

The gluing construction in its generality is able to express transformations
that cannot be specified with AGREE rules. As shown in [31], a single rule can
specify the firing of a Petri Net transition, independently of the number of pre-
and post-conditions, by exploiting a form of universal quantification. Therefore,
making reference to Example 28, it is possible to specify the creation of a child
process with a copy of all the address spaces of the parent process, which is
impossible in AGREE. This greater expressiveness requires to specify the match
as a suitable span, instead of as a simple monomorphism as in AGREE.

4.5. Comparison with other approaches

The idea of controlling explicitly how the right-hand side of a rule is em-
bedded in the context graph is not new in graph rewriting, as it is a standard
ingredient of the algorithmic approaches. For example, in Node Label Con-
trolled (NLC) graph rewriting and its variations [26], productions are equipped
with embedding rules which allow one to specify how the right-hand side of a
production has to be embedded in the context graph obtained by deleting the
corresponding left-hand side.

L ¥ R
o e |
G H

SPO rewrite step [30]
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In the SPO approach [30, 23], a rule is a partial graph morphism ¢ : L — R
and a match is a total morphism m : L — G. A graph G rewrites into a
graph H using rule 9 and match m if a square like the one above can be
constructed, which is a pushout in the category of graphs and partial morphisms.
Deleting, adding and merging items can easily be specified with SPO rules and
the approach is appropriate for specifying deletion of nodes without knowing
the precise embedding of the deleted nodes, thanks to partial morphisms. The
deletion of a node causes the deletion of all edges connected to it (symmetrically
to what happens in the cloning of nodes in the SqPO approach). However, since
a rule is defined as a single graph morphism, cloning items cannot be specified
directly in SPO.

In the framework of adaptive star grammars [15], node cloning is performed
by means of rewrite rules of the form S ::= R where graph S has a shape of a
star (i.e. a central node with several neighbors that are not connected to one
another) and R is a graph. The cloning operation, see [15, Definitions 5 and 6],
shares the same restrictions as the sesqui-pushout approach: nodes are cloned
with all their incident edges.

The double-pullback approach (DPB) presented in [3] is an alternative to the
algebraic approaches discussed in the introduction. The main differences with
respect to the SPO, DPO and SqPO approaches are that the match m : L — G
of L in G is replaced by an occurrence o : G — L of L in G and pushouts are
replaced by pullbacks. Rules are cospans of the form L — K < R.

L— 1 — K¢+—~r R
To PB T PB T
G D H

DPB rewrite step [3]

The first step constructs graph D as a pullback complement PBC and the
second step builds H as a pullback. As in the case of building a pushout comple-
ment, the pullback complement is not a universal construction and conditions
for its existence and uniqueness must be checked. It is proved in [3] that DPB
subsumes DPO under suitable assumptions. This approach does not satisfy
locality properties in general.

5. Conclusion

A new approach to algebraic graph rewriting, called AGREE is introduced
in this paper. The main new feature provided by this approach is the possibility
to specify in a rule which edges are cloned as a side effect of the copy of a node.
This feature, described by the embedding morphism ¢, offers new facilities to
specify applications in which nodes can be copied in unknown contexts. In such
cases, the left-hand sides of the rules are not enough to describe all possible
edges that are copied together with a node as illustrated in the examples of
section 3.3.
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The expressive power of AGREE allows one to define rules with the ability
to modify the context surrounding the image of the left-hand side. Such global
transformations, which are not possible in classical algebraic approaches such as
DPO, SPO, SqPO, etc., led us to investigate and define precisely the notions of
local transformations and rules. To our knowledge these notions have not been
defined before in the literature. Furthermore, we propose sufficient conditions
on AGREE rules that ensure the locality of AGREE transformations.

Ensuring the parallel independence of rewrite rules is a topic that has been
studied for the most important algebraic graph rewrite methods [13, 24, 12, 29,
4, 22, 10]. Unlike such previous contributions, the AGREE approach proposes
a somewhat elaborated cloning mechanism which requires new parallel indepen-
dence analysis. Recently, necessary and sufficient conditions that characterise
parallel independence of AGREE rules have been proposed in [32]. These con-
ditions generalise those proposed earlier in [11].

Concerning the applicability of our approach to other structures, in practice
the requirement of the existence of partial maps classifiers might be a hurdle for
its use. Actually, AGREE rewriting works well in the framework of categories
of typed/colored graphs, which are used in several applications, as they are
slice categories over graphs, and thus toposes. However, extension of AGREE
to categories of attributed graphs [18], which are not toposes, is not always
possible as partial map classifiers may not exist for attributes. An attempt to
extend the AGREE approach to the framework of attributed graph categories
has been proposed in [8, 9] where rules (two spans together with their typing
morphisms) and matches (a classical match and a co-match) are more complex
than those involved in AGREE rewrite steps.
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