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Abstract

By means of Discrete-Element simulations with Bonded-Cell method for particle
breakage, we investigate the evolution of crushable granular materials in a 2D
rotating drum partially filled with heavy balls and powder grains. The grinding
process with balls of different sizes or numbers is analyzed in terms of grain
size and specific surface. The grinding rate is an increasing function of the
number of balls, but, as a result of increasing energy dissipation by inelastic
collisions between the balls, the process becomes energetically less efficient for
larger number of balls. When the total volume of balls is kept constant, the ball
size has generally little influence on particle breakage. We also introduce a model
for the evolution of three size classes by accounting for the cushioning effect
and transition rates between the classes. This model predicts an exponential
decrease of the volume of large particles at the beginning of the process.

Keywords: Granular materials, Grinding, Ball mill, Discret-Element Method,
Bonded-Cell method, Contact Dynamics Method

1. Introduction

Ball mills are widely used in agronomy, mining and pharmaceutical indus-
tries. The mixture of crushable particles with heavy balls introduced in a ro-
tating hollow cylinder evolves by continuous size reduction as a result of the
collisions of the balls (grinding media) with the particles (feed) [1, 2]. Several
length scales are involved, ranging from ball-particle contacts to particle size,
ball size, granular correlation lengths, and mill size. Hence, the amount of en-
ergy transmitted from the kinetic energy of the balls to the fracture of particles
depends in a complex manner on the material and operational parameters of
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the process, which is notoriously inefficient [3, 4]. It has been estimated that
in Australia, just in the mining sector, the grinding processes consume 36% of
the total energy consumed by this sector, corresponding to 1.3% of Australia’s
energy consumption [5]. For this reason, understanding the behavior of gran-
ular materials in ball mills is crucial for the improvement of the operational
conditions in view of the reduction of energy consumption.

Extensive studies have been reported on the performance of ball mills with
respect to the choice of operational parameters, material properties, and milling
conditions. Commonly, properties such as the particle size distribution, powder
specific surface, powder density, breakage rate, collision energy and collision fre-
quency are compared among different systems in order to evaluate the grinding
energy efficiency and the particle size reduction properties [6, 7, 8, 9]. However,
in many experimental studies of ball milling, the range of tested parameters is
limited, and therefore inconclusive results are found. This gap may be filled
by numerical simulations, which currently has its own challenge of reconciling
numerical performance with the realism of the underlying physical model.

The population balance model (PBM) is a natural strategy that has been
widely used for modeling the rate of change in the particle size distribution of
materials subjected to comminution processes [3, 10, 11, 12, 13]. The parti-
cle breakage probability, a mass transfer function, and the breakage function
or breakage rate are the three key components of this method. The breakage
function is often determined by means of single particle breakage tests in which
the load magnitude and the generated fragment size are linked [14, 15, 10]. The
linear PBM considers a first-order or constant breakage rate during the process
so that the breakage function depends only on the energy applied, particle size
and some material properties [16]. Recent work on non-linear PBM intended
to add a mechanistic effectiveness factor that takes into account the decrease
of the breakage rate as the fines proportion increases [17]. Additionally, simu-
lations of unbreakable spheres using the Discrete Element Method (DEM) have
been performed in order to characterize the load transfer events that determine
the breakage environments of the particles [18, 19, 20, 21]. Finally, the particle
size distribution obtained using the PBM is often compared with experimen-
tal results in order to adjust the involved functions. However, these functions
are material dependent and specific to a given set of operational conditions,
requiring thus a calibration for every specific case [12].

For simulations based on the Discrete Element Method (DEM), several mod-
els of particle breakage have been developed and compared in [22]. Some use
the Bonded Particle Method (BPM) in which the parent particle is composed
of smaller spheres agglomerated [23]. Inside the drum, these agglomerates can
break under load or due to collisions with unbreakable balls, walls, and other
agglomerates. In a similar approach sometimes used, each particle is replaced
by a collection of smaller spheres [24] or superquadrics [25] once a breakage cri-
terion is achieved. Even though this process uses a progeny distribution model
in which the particle volume is filled with smaller entities, a major drawback
of such methods is that the particle volume is not conserved. As a matter of
fact, the volume occupied by a dense agglomerate of mono-disperse spheres is

2



at least 40% larger than the sum of the volumes of its primary spheres [26].
The Bonded Cell Method (BCM) is an alternative approach in which the

particles have a polygonal shape (or polyhedral in 3D) and they are tessellated
into smaller polygonal cells [27, 28, 29]. Hence, there is no volume loss by body
fragmentation of the particles. Moreover, as the cells touch along their sides
(faces in 3D), the internal cohesion of the material can be accounted for in a
more straightforward manner. In both BPM and BCM, the large number of
fragments, treated within the DEM as regular particles, requires a compromise
between the number of crushable particles and the number of primary particles
or cells in each particle. But, as the internal stresses of the particles are correctly
(up to discretization effect) calculated, they yield physically correct estimates
of the evolution of size distributions if the debonding criterion is consistent with
the classical framework of fracture mechanics, as discussed in [29]. For example,
the effects of particle fracture on dilatancy and evolution of the distributions of
particle sizes and shapes under shearing, the shattering effect, the slow reduction
of the sizes of the largest particles as a result of cushioning effect (redistribution
of stresses by smaller fragments) and the power-law distribution of intermediate
fragments sizes are observed in the DEM-BCM simulations [30].

In this paper, we apply the BCM in 2D to investigate the ball milling process.
The two-dimensional geometry of the system has the advantage of allowing us
to work with a relatively large number of particles and cells for a meaningful
statistics of fracture events and time evolution of the mixture in a rotating
drum. The focus of this work is on the effects of the ball size and number on the
fracture events in the granular material and the evolution of specific surface and
particle size distribution. In contrast to most simulations previously reported
on ball milling, we propose a systematic change of the parameters, allowing for
a better understanding of the processes involved. We first introduce the BCM
in the framework of the Contact Dynamics (CD) method. Then, we present the
results of two groups of numerical simulations which are analyzed to evidence the
effects of operational parameters on the evolution of particle size and specific
surface as a function of the number of drum rotations. Finally, the tracking
of particle breakage events and mass transfer between three size classes will
be presented in order to get a more detailed understanding of the particle size
reduction process. We conclude with salient results of this work and suggestions
for further work.

2. Numerical method and procedures

2.1. Bonded-Cell Method

In the BCM, each particle is modeled as an assembly of primary particles to
which we will refer below as ‘cells’. Thus, when a particle breaks, the fragments
generated are smaller particles each composed of cells. The smallest fragment
is a single cell (representing the lower bound on fragment size). In order to de-
fine the cells configuration, a Voronöı tessellation is performed on each particle.
The mean cell size dcell is fixed so that a parent particle of surface s consists
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of approximately s/d2
cell cells. A parameter κ accounts for the cell shape het-

erogeneity, taking the value of 1 for very similar cell shapes, and 0 for very
dissimilar cells. In previous work applying the BCM for particle breakage, it
was found that setting κ close to 1 leads to nearly crystallized cell configurations
with higher mechanical strength [28]. To avoid such effects, in this work κ is
set to 0.5. The generated cells are convex polygons that are in side-side con-
tact with their neighbors. Each parent particle is perfectly tessellated without
defects or voids. Fig. 1(a) displays an example of a collection of pentagonal par-
ticles partitioned into irregular cells. For geometrical consistency, the crushable
particles have a polygonal shape, too.

(a)

common line

(b)

Figure 1: (a) Voronöı tessellation applied to polygonal particles. Each cell is presented in a
different color; (b) Geometry of a side-side contact between two cells i and j. Two contact
points (1 and 2) and their respective projections on the two cells, are defined for this type of
contact.
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Since the cells have polygonal shapes, various contact types can be expected:
side-side, vertex-side, vertex-vertex. Initially, cohesive bonds are assigned to all
side-side interfaces. Each side-side contact is represented by two distinct points
belonging to their common contact line (point 1 and 2 with their respective
projections on the body i (i1, i2) and on the body j (j1, j2), as shown in Fig.
1(b)). Initially, the common lines coincide with the common sides between cells
as well as points 1 (i1, j1) and 2 (i2, j2). The common line also defines the
contact normal ~n.

Mechanically, an interface loses its cohesive status and becomes a fracture
line if a local criterion is fulfilled. According to the classical fracture mechanics,
this criterion should involve two ingredients: a stress threshold condition for
crack initiation and an energetic propagation condition. We introduce three
parameters: a normal stress threshold Cn, a tangential stress threshold Ct and
an energy threshold W. Since the cohesion acts at the side-side interfaces,
the normal and tangential force thresholds for debonding are the products `Cn
and `Ct, respectively, where ` is the interface length. The critical energy for
debonding can also be expressed in terms of a critical normal distance ∆n =
W/(`Cn) and a critical tangential distance ∆t = W/(`Ct). The two criteria
along the normal and tangential directions to the interface are assumed to be
independent. When a stress threshold is reached at a bond attributed to one
of the two representative points of the interface, the interface remains cohesive
but the two points are allowed to move during the next steps until the critical
distance along the normal or tangential direction is reached. Then, the bond
disappears irreversibly, corresponding to the propagation of a crack along the
interface. When this occurs, the contact is treated as a non-cohesive frictional
contact with friction coefficient µ. The above debonding model can be described
by the following inequalities:





εn = 0 ∧ un = 0 ⇒ fn ≥ −Cn`
0 < εn < ∆n ∧ un ≥ 0 ⇒ fn = −Cn`
εn > ∆n ⇒ fn = 0

(1)





εt = 0 ∧ ut = 0 ⇒ −Ct` ≤ ft ≤ Ct`
0 < εt < ∆t ∧ ut ≥ 0 ⇒ ft = Ct`
−∆t < εt < 0 ∧ ut < 0 ⇒ ft = −Ct`
|εt| > ∆t ⇒ frictional contact

(2)

where εn and εt are the normal and tangential distances between the represen-
tative points, and un and ut denote the relative velocities in the normal and
tangential directions, respectively.

Once a contact loses its cohesive state, the above cohesive behavior is re-
placed by a purely frictional behavior described by the following inequalities:

{
un = 0 ⇒ fn > 0
un > 0 ⇒ fn = 0

(3)
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Figure 2: Purely frictional contact interactions: a) Relationship between normal force fn
and relative normal velocity un at a contact point; b) Coulomb friction law as a relationship
between the friction force ft and sliding velocity ut.





ut = 0 ⇒ −µfn ≤ ft ≤ µfn
ut > 0 ⇒ ft = µfn
ut < 0 ⇒ ft = −µfn

(4)

These inequalities are displayed as graphs in Fig. 2.

2.2. Contact Dynamics

The cohesive-frictional (eq. 1 and eq. 2) and purely frictional contact laws
(eq. 3, eq. 4, and Fig. 2) are devoid of elastic strains. They describe a
contact interaction independently of particle deformations. In this sense, they
differ from the usual force laws used in DEM simulations where the contact
strain is calculated from particle motions but is assumed to represent the elastic
deflection at the contact point as in Hertzian contacts. The cohesive-frictional
contact laws can be used with equations of motion in a time-stepping scheme,
called Contact Dynamics Method (CDM), to determine the forces and velocities
as in the more usual DEM [31, 32, 33]. The CDM belongs to the class of DEM
models, but it implements the cohesive-frictional contact interactions without
using elastic deflection at the contact points between particles. For this reason,
it has been suggested that they should be discerned as smooth DEM for the
usual DEM based on contact deflections, and nonsmooth DEM for CDM [34].
In contrast to smooth DEM, an implicit scheme based on an iterative Gauss-
Seidel algorithm is used in CDM. This leads to unconditional stability of the
time-stepping scheme, allowing therefore for larger time steps.

For the simulations we used a CDM-BCM algorithm implemented in the
in-house GDM-tk software (see https://www.cgp-gateway.org/Softwares/Gdm-
tk/). At each time step, the algorithm first performs a geometrical search for
potential contacts. First, a rough selection of the neighbors is done for a search
distance, followed by a narrower detection in which the positions of the geomet-
rical features of the two candidates for contact are compared. Then, through an
iterative process, the contact forces and particle velocities are simultaneously
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Table 1: Parameters of the breakage model and material properties of powder particles and
balls for all simulations

Variable Value
Cn (MPa) 1
Ct (MPa) 0.4
µ (-) 0.4

∆n (m) 5× 10−5

∆t (m) 5× 10−5

dcell (m) 5× 10−4

ρp (kg/m3) 2000
ρb (kg/m3) 11000

calculated for all the potential contacts. Finally, the positions are updated by
using the calculated velocities. The initialization of the contact forces at the
beginning of each time step with those found in the previous step reduces the
degree of indeterminacy arising from the contact laws and the perfectly rigid
nature of the particles, so that the variations between possible solutions are
generally below the numerical precision [33].

2.3. Samples and setup

A hollow cylinder of an internal diameter equal to 15 cm is filled with powder
(crushable particles) and balls. The ball density ρb, powder grains density ρp
and mean voronöı cell size dcell were fixed for all the tests. The density of the
powder corresponds to that of uranium powder. The value of ρb typically used in
the mining sector is ' 8000 Kg/m3 whereas for the manufacture of nuclear fuel
powders the values are higher. Table 1 contains all parameter values including
the breakage model parameters (Cn, Ct,∆n,∆t, µ). The values of Cn and ∆n

were chosen such that the energy thresholdW = `Cn∆n takes a value equal to 1
J/m2, often found for uranium dioxide [35, 36]. In all the simulations reported
in this paper, we also take a smaller value of Ct (Ct/Cn = 0.4), that favors
fracture of particles in mode II.

An important characteristic of our model is that all the elements have polyg-
onal shapes. The powder grains are pentagons while the balls are hexadecagons.
The BCM together polygonal particle shapes allow us to choose arbitrary ini-
tial particle shapes [37]. However, the computational time for contact detection
increases with the number of sides. For this reason, we used pentagonal shapes,
which have a low number of sides and behave nearly like hexagonal particles.
Lower number of sides (squares or triangles) are too specific and lead to patho-
logical local structures [30]. The choice of pentagonal particle shapes is not a
crucial parameter for milling since, as a result of particle breakage at the be-
ginning of milling, a variety of different particle shapes are soon generated and
therefore the evolution of grinding is mainly governed by a mixture of different
particle shapes.The use of polydisperse pentagons prevents also from the cre-
ation of local crystallized structures often found in mono-disperse packings of
hexagons and squares [37, 38, 39].
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In general, the size of a polygonal particle is defined by the diameter of
its circumscribed circle. The powder particles size are defined using a uniform
particle volume fraction from dmin = 0.002 m to dmax = 0.003 m. Thus, given
the cell size (dcell) adopted, the parent particles are composed of 16 to 36 cells.
Finally, the simulation is run by applying a constant speed of 50 rpm to the
cylinder for a total duration of 60 seconds. Fig. 3 shows several snapshots of a
typical simulation.

n=0 n=10 n=20

n=30 n=40 n=50

Figure 3: Snapshots of a ball mill system with ball size Db = 15 mm at different numbers n
of drum rotations. The powder grain colors range from bright green (intact) to black (highly
damaged).

The flow regime inside rotating drums is generally described in terms of the
Froude number:

Fr =
ω2R

g
(5)

where ω is rotation speed, R is drum’s radius and g is the gravity [40]. For
mixing applications, the rotating drums are operated under rolling or cascading
regimes while for grinding applications the cataracting regime has been found
more appropriate. In the cascading regime, the free surface of the flow exhibits a
kidney S-shape while in the cataracting regime the particles flow along ballistic
trajectories. In these two regimes, the flow is very rapid and the material
behaves like a gas in which collisional particle interactions are highly present
[41]. Because of the highly dynamic behavior, the transition between these two
regimes is difficult to identify. In our simulations we set Fr=0.21 for which the
flow is in the cascading-cataracting regime.

Two case studies are considered in this work. In the first case, the effect of
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Table 2: Geometrical characteristics of the two case studies
First case Second case

Db (mm) Ddrum/Db (-) Db/〈d0〉 (-) Nb (-) Filling degree (-) Vb/Vp (-)
5 30 2 10 21.43% 1.914
10 15 4 20 32.14% 2.829
15 10 6 25 39.29% 3.286
20 7.5 8 30 42.86% 3.743
25 6 10 50 67.86% 5.571

the ball diameter Db is investigated whereas in the second case the number of
balls Nb is varied. In the first case, five samples were built with a filling degree
of 0.6, defined as the ratio of the apparent volume of the powder-balls mixture
and drum’s total volume. The diameter Db is the same for all the balls in a
given sample and it takes values of 5, 10, 15, 20 and 25 mm. The samples of this
case are displayed in Fig. 2.3. Since the total volume Vb of the balls is constant,
the number of balls decreases when the ball size is increased. Identical powder
samples composed of 720 parent crushable particles are considered in all cases.

In the second case study, the ball size Db was set to 15 mm for all simulations.
As in the first case, the powder volume was kept constant and thus, the drums
filled with different numbers Nb of balls have different filling degrees and values
of the ratio Vb/Vp. In this case, the sample consists of 507 parent crushable
particles. Snapshots of these samples are displayed in Fig. 2.3. Table 2 presents
the geometrical properties of the two studied cases.

3. Effect of ball size

Figure 6(a) shows the mean powder grain size 〈d〉 normalized by the initial
mean size 〈d0〉 as a function of the number n of drum rotations for different
values of ball size Db. The filling degree, total ball volume Vb, and total powder
volume Vp keep the same values in all these simulations (see Fig. 2.3). Note
that the particle diameter d of each fragment, which may have different shapes,
is the equivalent diameter, i.e. the diameter of a disk having the same volume as
the fragment. We observe slow size reduction during the first drum rotations.
Then, the mean size 〈d〉 declines almost exponentially down to a value close to
cell size. The transient regime occurs more or less early depending on the ball
size.

Figure 6(b) displays the evolution of the total specific surface S normalized
by the initial specific surface S0 as a function of n. It increases nonlinearly with
n, and, interestingly, apart from the two extreme values Db = 5 and Db = 25,
the plots coincide for all other values Db. This behavior is consistent with the
data points of Fig. 6(a) in which the evolution of 〈d〉 for Db = 5 and Db = 25
is rather slow as compared to other diameters. We checked that the initial rise
of specific surface in Fig. 6(b) (for the first drum rotations) is essentially due
to damage caused by the creation of cracks inside the particles without causing
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(a) (b) (c)

(d) (e)

Figure 4: Snapshots of several simulations of systems with ball sizes Db of a) 5 mm, b) 10 mm,
c) 15 mm, d) 20 mm and e) 25 mm from left to right. The red line thickness is proportional
to normal force.

grain rupture. For this reason, the specific surface grows initially at much higher
rate than that of size reduction.

In the case of small ball size Db (Db/Dp = 2), the milling process is similar
to that of powder reduced by its own dynamics and without balls. Since the
breakage events are concentrated at the downstream of the free surface, as
observed in Fig. 7, the dominant breakage mechanism is the impact of particles
(both powder particles and balls). Slow grinding occurs in this case due to the
low inertia of the balls: smaller amounts of kinetic energy are carried by small
balls in comparison to big balls, and therefore the impact energy is transmitted
to the powder in small amounts. As noted by Erdem and Ergün [6], the small
balls are suitable for reducing the small powder particles rather than the big
ones, which are mainly broken by impacts of high collisional forces.

In contrast, with large ball size Db (Db/Dp = 10), fewer impacts of higher
magnitude occur [42]. As shown in Fig. 7, the high number of breakage events
close to the drum wall is a consequence of the crushing of grains between the
wall and a ball rolling down with a large amount of kinetic energy. This map
shows also that many breakage events occur in the space between the balls with
its signature as dense rings in the figure, which is a feature not observed for
Db = 5 mm. However, the large ball size implies a large number of powder
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(a) (b) (c)

(d) (e)

Figure 5: Snapshots of several simulations of systems with numbers of balls Nb = a) 10, b)
25, c) 30 d) 40 and e) 50, with Db = 15mm constant. The red line thickness is proportional
to normal force.

grains in the pore space between the balls. Many of these grains are floating
and do not ‘feel’ large stress chains. A similar observation was made in [6].

To characterize in more detail these features, it is useful to consider the
probability density function (pdf) of the interparticle forces. The pdf of forces
between powder particles and balls is shown in Fig. 8(a) whereas Fig. 8(b)
shows the pdf of the total force per ball at the beginning of grinding. The forces
are normalized by the force threshold Cn〈d〉 for cell-cell debonding. The range
of forces is quite broad, covering more than 10 decades. We observe two peaks,
corresponding respectively to a very weak force value (fn ' e−12Cn〈d〉) and
to a large force value (fn ' e−12Cn〈d〉). Only a few ‘critical’ forces are above
Cn〈d〉 and can lead to particle fracture. The whole distribution will shift to
larges forces if Cn is reduced. This will lead to the increase of the number of
critical forces. The small force peak corresponds to the forces induced by grain
weights whereas the large force peak reflects the dynamics of balls and ball-
powder impacts, which is responsible for grinding. The amplitude of the large
force peak decreases slightly as ball size increases as a result of the cushioning:
the impulsive forces due to impacts are redistributed over a larger of number
powder grains in contact with it. We see in Fig. 8(b) that the total normal force
on the balls considerably increases due to this increasing number of ball-powder
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Figure 6: Evolution with the number n of drum rotations of a) the mean particle size 〈d〉
normalized by the initial mean diameter, and b) the specific surface S normalized by its
initial value for different values of ball size Db. The filling degree, total balls volume Vb, and
powder volume Vp are constant. Each plot consists of 1000 data points.
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Figure 7: Spatial localization of breakage events in drums filled with balls of variable size Db:
5, 10, 15, 20, 25 mm from left to right. The dashed red line represents the ball size of each
case.
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contacts.
Apart from the extreme ball diameters, the grinding evolution for all other

ball diameters is nearly the same, with a slightly faster grinding for larger balls.
This is a consequence of the fact that the total volume of balls is kept constant.
As the kinetic energy is proportional to the volume, this almost independent
behavior from ball diameter suggests that the surface created by milling is pro-
portional to the kinetic energy. However, the breakage mechanisms that take
place inside the drum change gradually with ball size. As mentioned previously
and clearly observed in Fig. 7, the attrition of powder grains between grinding
balls becomes increasingly more important as compared to impacts at the free
surface when ball size increases.

4. Effect of the number of balls

Figures 9 and 10(a)(a) show the evolution of the mean powder particle size
and specific surface, respectively, with the number of revolutions n for different
values of the number of balls Nb, but at constant ball size Db = 15 mm and total
powder volume Vp. The grinding curves change in an unmonotonic manner: it
is increasingly faster as the number of balls increases from 10 to 30, but for
larger numbers of balls the grinding becomes slower. The grinding rate Ṡ is
shown during the first 20 drum rotations is shown in Fig. 10(b), where we see
the unmonotonic dependence of Ṡ as a function of Nb. The largest rate occurs
for Nb = 30.

The nearly linear increase of the grinding rate with the number of balls
during the first drum rotations naturally reflects the linear increase of the total
volume of the grinding balls and thus their kinetic energy. However, as the total
number of balls increases, the frequency of their mutual collisions increases, and
thus an increasing amount of energy is dissipated by such inelastic collisions.
For large number of balls, they may even undergo multiple collisions, in which
case the stresses can be directly transmitted to the drum wall. An example
is shown in Fig. 11 for Nb = 50, where we observe such chains of impulsive
forces. Note also that in the other extreme case of Nb = 10, the kinetic energy
is not sufficient to reach the lowest fragment size as those obtained with larger
numbers of balls.

5. A ternary population balance model

A full description of the grinding process in a ball mill requires the rates of
volume transfer from each particle size class or population to all the classes of
smaller size. This rate matrix is, however, statistically too rich to be determined
from simulations with only a few thousand particles. For this reason, we consider
three size classes between the initially largest particle diameter dmax0 and the
smallest cell diameter dmincell . We divide this interval into three equal subintervals
to which we refer below as “big”, “medium”, and “small” particles or size classes.
These subintervals will be denoted by b, m, and s, respectively. We are interested
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Figure 8: Probability density function of normal forces fn between the balls and powder
grains (a), and the sum of the forces per ball (b), for different value of ball diameter Db and
normalized by the cohesion force CNdcell.
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Figure 9: Evolution of the normalized mean particle size with the number of drum rotations
for different numbers of balls Nb. The ball size Db and powder volume Vp are constant. Each
plot consists of 1000 data points.

in the evolution of the volumes Vb, Vm, and Vs of these classes. The total volume
of the particles

V = Vb + Vm + Vs (6)

is conserved but the volume of each class evolves as a result of particle breakage.
Since the breakage is irreversible, the transfer of volume can only occur from
each size to smaller sizes: b → m, b → s and m → s. Figs. 12(a) and 12(b)
show the time evolution of Vb, Vm and Vs for two different numbers of balls
together with fitting forms obtained from a simple model proposed below. At
each time step of the simulation, we calculated the volume transferred between
classes: τmb for volume transfer b→ m, τsb for volume transfer b→ s and τsm for
volume transfer m → s. The cumulative values of volume transfer are plotted
in Figs. 13(a) and 13(b).

At the beginning, nearly all particles belong to the class b. But in the
course of grinding Vb declines monotonously whereas Vs increases. The volume
Vm of the medium class has an nonmonotonic evolution. It begins to increase
due to the breakage of big particles into medium ones (τmb ). In parallel, Fig.
13(b)) shows that both τmb and τsm start increasing at a similar rate with a lag
between them, that is small for Db = 15 but slightly larger for Nb = 32. This
implies that the two volume transfers occur simultaneously and therefore Vm
gradually tends to its maximum value ' 0.2V before decreasing. Also at this
point Vb ' Vs = 0.4V . Another event occurs when τmb and τsm curves cross
each other and Vb ' 0.2V . From this point on, τmb levels off due to a lack of
big particles. The breakage rate τ̇sm of medium particles also decreases, but as
τ̇mb < τ̇sm, Vm starts to decrease. In Figs. 13(a) and 13(b) it is also remarkable
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that the generation of small particles directly from big ones, by shattering or
erosion, is less frequent than the two other volume transfers. When the mill
starts rotating, some breakage events take place at the core section in which
particles are mostly sheared. Once the granular flow is stabilized, the particles
tumble and their ballistic trajectories lead to high-energy impacts with the walls
and with other particles. Under such conditions the particles undergo mainly
body fragmentation by generating either small particles from medium ones or
medium particles from big ones.

The evolution of the three populations of big, medium and small particles
can be described by means of detailed balance equations. Hence, we introduce
the following rates: rate of change per unit volume λmb from b to m, rate of
change per unit volume λsb from b to s, and rate of change per unit volume λm
from m to s. We also set λb = λmb +λsb, the total rate of change per unit volume
of big particles. We have 




λsb =
τs
b

∆tVb

λmb =
τm
b

∆tVb

λm =
τs
m

∆tVm

(7)

The rate of change dVb/dt of the volume of big particles at time t is pro-
portional to their volume Vb(t). If we assume that λb is constant, we have
dVb/dt = −λbVb, which leads to an exponential decay of Vb. This trend is very
close to what we observe in Figs. 12(a) and 12(b) except for the beginning of
the curve. But even by ignoring the beginning of the curve, where the drum flow
is not yet fully stabilized, the evolution is not exactly exponential. Hence, the
rate is not constant and evolves during milling. Physically, we expect a gradual
decrease in the fragmentation rate of big particles as a result of the generation of
finer particles that tend to redistribute and hence reduce the forces acting on the
big particles. This phenomenon is known as the cushioning effect [43, 16, 44, 17]
or hydrostatic effect [45]. To account for this effect, we assume that the rate
declines as an exponential function eα1(1−Vb/V ) of the volume of finer particles
V − Vb. As Vb increases, this cushioning factor decreases. We apply the same
effect to the medium particles whose volume Vm changes by a gain of volume
as a result of the fragmentation of big particles and loss of volume by their own
fragmentation. Hence, the system of partial differential equations for the three
populations takes the following form:





dVb

dt = −λbVbeα1(1−Vb/V )

dVm

dt = λmb Vbe
−α2(1−Vb/V ) − λmVme−α3Vs/V

Vs = V − Vb − Vm
(8)

where α1, α2 and α3 are model parameters.
These equations provide an excellent fit of the three curves in Figs. 12(a) and

12(b) when their initial parts are excluded. The coefficients λmb , λsb, and λm were
obtained from the measurements of the volume transfers between populations
and equation 7. The values of the model parameters found for the two cases are
given in Table 3. Note that the low value of α1 indicates that the decay of Vb
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Table 3: Values of the model (eq. 8) parameters found for the two studied cases in this section.

Db = 15 Nb = 32
λmb 0.095 0.133
λsb 0.018 0.025

λb = λmb + λsb 0.113 0.158
λm 0.150 0.187
α1 0.038 0.038
α2 1.2 1.47
α3 1.2 0.87

is actually very close to a purely exponential decay.

6. Conclusions

In this paper, we applied the Contact Dynamics Method, as a variant of
DEM, together with a Bonded Cell Method for particle breakage with polygonal
particles in 2D to investigate the grinding process of granular materials in a
simulated ball mill geometry. The particle size reduction and evolution of the
specific surface were investigated in two series of simulations. In the first serie,
the ball size was varied with a constant total volume of balls. In the second
one, the number of balls was varied with a constant ball size. In both cases, the
number and sizes of powder particles was kept constant.

We showed that, when the total volume of grinding balls is kept constant,
changing the ball size has little effect on the evolution of grinding since the
total kinetic energy is proportional to the total volume and hence it has nearly
the same value in all simulations. For the extreme values of ball size (close to
the size of powder grains or too large compared to the total volume of powder)
correspond to special flow regimes that govern the grinding behavior and hence
the behavior is special. We also found that the grinding rate increases with the
number of balls of the same size, but this trend is counterbalanced by energy
dissipation due to inelastic collisions between balls for a large number of balls.
There is therefore an optimal number of grinding balls for which the grinding
rate has its largest value.

We also introduced a population balance model by dividing the particles
into three populations (big, medium and small) and evaluated its parameters
from the simulations. We found that the first breakage events that take place
in our systems are big particles turning into medium ones. Furthermore, the
breakage rate of big particles into medium ones was found to be nearly the same
as the breakage rate from medium into small sizes. At first order, the particle
volumes follow almost an exponential decay during grinding but the volume
change rates of big and medium particles are not exactly constant as a result
of the cushioning effect. By including the cushioning effect, a good agreement
was found with the simulation results in both case studies.
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In this work, we kept constant values of material parameters in order to
focus more specifically on the effects of the grinding media and the grinding
process itself. Further investigation is necessary to evaluate the scaling of the
grinding process with parameters such as fracture energy and stress as well as
the filling rate. For example, the low number of small fragments generated from
big particles reflects low erosion and shattering effects. It is thus interesting to
see how robust is this behavior with respect to the material parameters of the
process. In the same way, the effect of the ratio Ct/Cn needs to be investigated.
Previous simulations seem to indicate that the dynamic fracture of individual
particles by impact is only marginally affected by this parameter [29]. The
ternary model of population balance is obviously a rough description of the
evolution of particle volumes. But it can be extended to larger numbers of
populations although it will involve larger numbers of rates and parameters to
be determined.

The focus of this paper was on the parametric analysis of the effects of grind-
ing media on the reduction process with some insights from the local mechanisms
such as force chains appearing between balls when their volume fraction is high.
This analysis can be pursued by investigating in more detail the local mech-
anisms of breakage and its correlations with force chains for powder particles
[46]. Such an investigation requires, however, a spatio-temporal approach as
the flow is strongly inhomogeneous and the force chains have different lifetimes.
They also evolve in time with grinding. In a similar vein, the dominant modes
of particle breakage can be investigated in different parts of the flow.

Finally, the insights provided by our simulations call also for new experiments
in view of validating the simulation method employed in this work. In particular,
a systematic investigation of the influence of the number of balls on the grinding
process seems to be accessible to experiments. Such experiments do not need to
be long since the initial grinding rate provides a discriminating variable that can
be measured from either specific surface or mean particle size. The 2D nature
of our simulations does not allow for a strict comparison with experiments, but
it is important to keep the same values of drum diameter and Froude number,
which are important for the flow regime.

References

[1] L. G. Austin, P. Bagga, M. Celik, Breakage properties of some materials
in a laboratory ball mill, Powder Technology 28 (2) (1981) 235–243. doi:
10.1016/0032-5910(81)87049-0.

[2] S. Agrawala, R. Rajamani, P. Songfack, B. Mishra, Mechanics of media
motion in tumbling mills with 3d discrete element method, Minerals En-
gineering 10 (2) (1997) 215–227. doi:10.1016/S0892-6875(96)00147-1.

[3] D. W. Fuerstenau, A. Z. Abouzeid, The energy efficiency of ball milling in
comminution, International Journal of Mineral Processing 67 (1-4) (2002)
161–185. doi:10.1016/S0301-7516(02)00039-X.

19

https://doi.org/10.1016/0032-5910(81)87049-0
https://doi.org/10.1016/0032-5910(81)87049-0
https://doi.org/10.1016/S0892-6875(96)00147-1
https://doi.org/10.1016/S0301-7516(02)00039-X


[4] D. Tromans, Mineral comminution: Energy efficiency considerations, Min-
erals Engineering 21 (8) (2008) 613–620. doi:10.1016/j.mineng.2007.

12.003.

[5] G. R. Ballantyne, M. S. Powell, M. Tiang, Proportion of energy at-
tributable to comminution, Proceedings of the 11th Australasian Institute
of Mining and Metallurgy Mill Operator’s Conference (October) (2012)
25–30.

[6] A. S. Erdem, S. L. Ergün, The effect of ball size on breakage rate parameter
in a pilot scale ball mill, Minerals Engineering 22 (7-8) (2009) 660–664.
doi:10.1016/j.mineng.2009.01.015.
URL http://dx.doi.org/10.1016/j.mineng.2009.01.015

[7] M. J. Metzger, S. P. Desai, D. Glasser, D. Hildebrandt, B. J. Glasser,
Using the attainable region analysis to determine the effect of process
parameters on breakage in a ball mill, AIChE Journal 58 (9) (2012) 2665–
2673. doi:10.1002/aic.12792.
URL http://doi.wiley.com/10.1002/aic.12792

[8] D. M. Francioli, Effect of operational variables on ball milling, Ph.D.
thesis, UFRJ/ Escola Politécnica (2015).
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Figure 10: a) Evolution of the normalized specific surface as a function of the number of drum
rotations for different numbers of balls Nb, and b) Grinding rate Ṡ normalized by the initial
value S0 of specific surface during the first 20 drum rotations as a function of the number of
balls.
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Figure 11: A snapshot of force chains in a simulation with Nb = 50 grinding balls. Red line
thickness is proportional to normal force. We observe both binary collisions and chains of
impulsive (short-lived) forces.
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Figure 12: Time evolution of the volume of each size population normalized by the total
volume V for a) Db = 15 and b) Nb = 32. The dashed lines are analytical fits obtained from
the system of equations 8.
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Figure 13: Cumulative volume transfers: from big to small (τsb ), from big to medium (τmb ),
and from medium to small (τsm), for a) Db = 15 and b) Nb = 32.
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