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Introduction

Propulsion and transportation systems (e.g., liquid rocket, gas turbine, and diesel engines) rely on high-pressure operating conditions to enhance performance. In these devices, the fuel or oxidizer are injected as a liquid into a highly turbulent gaseous environment for e cient mixing. At low pressure, this process induces classical atomization coupled with evaporation where the interface between the liquid and the gas has a thickness on the order of the molecular scale. At high pressure, the gas-liquid interactions can dramatically change. Molecules of the gas are packed tighter against the liquid interface and inter-molecular forces between "gas" and "liquid" phases are no longer negligible. This yields a diminution of the surface-tension and a thickening of the interface until it becomes di↵use and continuous [START_REF] Hirschfelder | Molecular theory of gases and liquids[END_REF][START_REF] Reid | The properties of liquids and gases[END_REF]. Mixing between dense and light fluids does not result in the creation of drops and ligaments. Instead, di↵usion dominated mixing occurs in presence of a large density gradient. A comprehensive review on the e↵ect of high-pressure nonlinearities in practical systems has been performed by Oschwald et al. [START_REF] Oschwald | Injection of fluids into supercritical environments[END_REF]. For a pure species, this change occurs when the pressure rises above the critical pressure. Thermodynamic conditions are then called supercritical with respect to pressure. In the case of a mixture, the change in the thermodynamics is more di cult to predict since the transition locus cannot be directly determined from the critical points of the species of the mixture. Dahms and Oefelein [START_REF] Dahms | On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures[END_REF] used linear gradient the-ory to investigate this process in propulsion applications. They showed that residual surface tension can still be measured above the critical points of the species in presence (also observed experimentally, for example by Woodward et al. [START_REF] Woodward | Raman imaging of transcritical cryogenic propellants[END_REF]), and that high-pressure di↵usion dominated mixing can be expected in real engineering systems. In these systems, the term transcritical mixing is often used to characterize the dynamics that occurs between two fluids, one at subcritical temperature and the other one at supercritical temperature, since conditions cross the pseudo-boiling line [START_REF] Oschwald | Injection of fluids into supercritical environments[END_REF].

The lack of a comprehensive understanding of mixing under supercritical conditions has stimulated significant modeling e↵orts to complement experimental and theoretical research. A major di culty, however, is the capability of numerical solvers to maintain accuracy and stability in regions of large gradients in density and thermodynamic quantities. This aspect is the focal point of the present work. Because of strong thermodynamic non-linearities in the vicinity of pseudo boiling line, small variations of density and/or energy may generate pressure oscillations. In high-Reynolds and high-pressure simulations, stabilization schemes are often required to handle strong field gradients. Density, energy and other transported quantities are then independently dissipated, and may become "thermodynamically misaligned". This means that due to nonlinearities in the equation of state, the reconstructed pressure P (⇢, ⇢e, ⇢Y k ) may di↵er from the real physical pressure (this issue is illustrated in Section 2) and may result in artificial pressure variations. These non-physical oscillations can deteriorate the predictions accuracy or lead to the divergence of the calculation. This has been previously reported by Hickey et al. [START_REF] Hickey | Large eddy simulation of shear coaxial rocket injector: Real fluid e↵ects[END_REF], Terashima and Koshi [START_REF] Terashima | Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central di↵erencing scheme[END_REF], Kawai et al. [START_REF] Kawai | A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state[END_REF] and Schmitt et al. [START_REF] Schmitt | Large-eddy simulation of supercritical-pressure round jets[END_REF]. In Reynolds Average Navier Stokes (RANS) simulations, gradients are di↵used and well resolved which minimizes the problem [START_REF] Cutrone | Modeling of high-pressure mixing and combustion in liquid rocket injectors[END_REF][START_REF] Pohl | Real gas CFD simulations of hydrogen/oxygen supercritical combustion[END_REF][START_REF] Demoulin | High-pressure supercritical turbulent cryogenic injection and combustion: A single-phase flow modeling proposal[END_REF][START_REF] Poschner | CFD-Simulation of the Injection and Combustion of LOX and H2 at Supercritical Pressures[END_REF][START_REF] Qiu | Simulation of supercritical fuel injection with condensation[END_REF][START_REF] Banuti | Supercritical Pseudo-Boiling and its Relevance for Transcritical Injection[END_REF][START_REF] Banuti | The absence of a dense potential core in supercritical injection: A thermal break-up mechanism[END_REF][START_REF] Banuti | An e cient multifluid-mixing model for real gas reacting flows in liquid propellant rocket engines[END_REF]. In Direct Numerical Simulations (DNS), grid resolution is selected to resolve all scales, which also circumvents the issue. For example, Bellan and co-workers have studied temporal mixing layers under supercritical conditions using sixth-to eighth-order accurate central finite di↵erences for spatial derivative along with a filtering step (eighth-to tenth-order) [START_REF] Bellan | Supercritical (and subcritical) fluid behavior and modeling : drops, streams, shear and mixing layers, jets and sprays[END_REF][START_REF] Miller | Direct numerical simulations of supercritical fluid mixing layers applied to heptane-nitrogen[END_REF][START_REF] Okong'o | Consistent boundary conditions for multicompoment real gas mixtures based on characteristic waves[END_REF][START_REF] Okong'o | Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. part 1. direct numerical simulation, formulation and a priori analysis[END_REF][START_REF] Bellan | Theory, modeling and analysis of turbulent supercritical mixing[END_REF][START_REF] Masi | Multi-species turbulent mixing under supercritical-pressure conditions: modelling, direct numerical simulation and analysis revealing species spinodal decomposition[END_REF]. Other researchers have employed similar approaches [START_REF] Foster | A priori analysis of subgrid mass di↵usion vectors in high pressure turbulent hydrogen/oxygen reacting shear layer flames[END_REF][START_REF] Da Silva | Transition in high velocity ratio coaxial jets analysed from direct numerical simulations[END_REF][START_REF] Tani | A numerical study on a temporal mixing layer under transcritical conditions[END_REF].

Large Eddy Simulation (LES) applied to high-pressure systems is more prone to this problem since the Reynolds numbers of simulated flows are usually greater than in DNS and coarser grids are employed. Di↵erent strategies have been tried to mitigate the stability issue. Many researchers have used dense grid resolution to limit discretization errors in gradient regions. This approach requires large computational resources and are usually applied to small scale computational domains such as splitter plates [START_REF] Oefelein | Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines[END_REF][START_REF] Zong | A flamelet approach for modeling of liquid oxygen (lox)/methane at supercritical pressures[END_REF], supercritical jets [START_REF] Petit | Large-eddy simulation of supercritical fluid injection[END_REF][START_REF] Lacaze | Analysis of high-pressure diesel fuel injection processes using LES with real-fluid thermodynamics and transport[END_REF], mixing layers [START_REF] Tramecourt | Large-eddy simulation of unsteady wall heat transfer in a high pressure combustion chamber[END_REF][START_REF] Petit | Lox/ch4 mixing and combustion under supercritical conditions[END_REF] and single rocket injectors [START_REF] Tramecourt | LES of supercritical combustion in a gas turbine engine[END_REF][START_REF] Matsuyama | Large eddy simulation of lox/gh2 shear-coaxial jet flame at supercritical pressure[END_REF][START_REF] Matsuyama | Correlation of optical emission and turbulent length scale in a coaxial jet di↵usion flame[END_REF]. Others have employed various dissipation techniques to di↵use gradients and attain su cient resolution in gradient zones. Dissipative convective schemes have been used, several of them derived from shock-capturing approaches. In the simulations of Oefelein et al. [START_REF] Oefelein | Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines[END_REF] and more recently in [START_REF] Oefelein | Thermophysical characteristics of shear-coaxial LOX-H2 flames at supercritical pressure[END_REF][START_REF] Oefelein | LES of Supercritical LOX-H2 Injection and Combustion in a Shear-Coaxial Uni-Element Rocket[END_REF][START_REF] Oefelein | Mixing and combustion of cryogenic oxygen-hydrogen shearcoaxial jet flames at supercritical pressure[END_REF][START_REF] Lacaze | Analysis of high-pressure diesel fuel injection processes using LES with real-fluid thermodynamics and transport[END_REF], spatial discretization is based on a high-order flux di↵erencing technique coupled with a total-variationdiminishing (TVD) scheme. Matsuyama et al. [START_REF] Matsuyama | A numerical investigation on shear coaxial lox/gh2 jet flame at supercritical pressure[END_REF][START_REF] Matsuyama | Large eddy simulation of lox/gh2 shear-coaxial jet flame at supercritical pressure[END_REF] used second-and thirdorder MUSCL schemes and Smith et al. [START_REF] Smith | Computational simulations of the e↵ect of backstep height on nonpremixed combustion instability[END_REF] stabilized their simulation with a second-order approximate Riemann solver. Hickey et al. [START_REF] Hickey | Large eddy simulation of shear coaxial rocket injector: Real fluid e↵ects[END_REF] used a second-order accurate Essentially Non-Oscillating (ENO) scheme which was switched to a first-order upwind scheme in gradient regions. Similar approach have been used by Park et al. [START_REF] Park | LES and RANS simulations of cryogenic liquid nitrogen jets[END_REF], Muller et al. [START_REF] Müller | Large-eddy simulation of coaxial LN2/GH2 injection at trans-and supercritical conditions[END_REF] and Matheis et al. [START_REF] Matheis | Volume translation methods for real-gas computational fluid dynamics simulations[END_REF]. Dissipation was also introduced via artificial di↵usion schemes. This latter approach has been employed by Meng and Yang [START_REF] Meng | A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[END_REF] and recently by Masquelet et al. [START_REF] Masquelet | Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine[END_REF], Yang et al. [START_REF] Wang | Supercritical mixing and combustion of liquidoxygen/kerosene bi-swirl injectors[END_REF][START_REF] Huo | Large-eddy simulation of supercritical combustion: Model validation against gaseous h2-o2 injector[END_REF]. More advanced artificial viscosity methods have also been derived by Terashima et al. [START_REF] Terashima | High-resolution numerical method for supercritical flows with large density variations[END_REF] and Zong et al. [START_REF] Zong | A numerical study of cryogenic fluid injection and mixing under supercritical conditions[END_REF][START_REF] Zong | A Numerical study of high-pressure oxygen/methane mixing and combustion of a shear coaxial injector[END_REF][START_REF] Zong | Cryogenic fluid jets and mixing layers in transcritical and supercritical environments[END_REF][START_REF] Zong | Near-field flow and flame dynamics of lox/methane shear-coaxial injector under supercritical conditions[END_REF][START_REF] Zong | A flamelet approach for modeling of liquid oxygen (lox)/methane at supercritical pressures[END_REF] which combines second and fourth order dissipation operators as well as bulk viscosity. Recently, Schmitt et al. [START_REF] Schmitt | Large-eddy simulation of supercritical-pressure round jets[END_REF][START_REF] Schmitt | Large-eddy simulation of oxygen/methane flames under transcritical conditions[END_REF][START_REF] Schmitt | Experiments and numerical simulation of mixing under supercritical conditions[END_REF] showed that to limit the creation of nonphysical oscillations, the thermodynamic balance between density, species momentum and energy must be preserved. To do so, they derived a non-conservative form that calculates the amount of dissipation needed on energy, given the dissipation on density and species mass-fraction to obtain P mechanical ⇡ P eos (⇢, ⇢e, ⇢Y k ), where P mechanical is the pressure used in the transport equations and P eos is the pressure derived from the thermodynamic scheme. This method has recently been used in multiple rocket-like configurations to investigate combustion and acoustic instabilities [START_REF] Schmitt | Large-eddy simulation of supercritical-pressure round jets[END_REF][START_REF] Selle | Large-eddy simulation of single-species flows under supercritical thermodynamic conditions[END_REF][START_REF] Hakim | Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation[END_REF][START_REF] Urbano | Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine[END_REF]. Ma et al. [START_REF] Ma | Supercritical and transcritical real-fluid mixing in diesel engine applications[END_REF] have extended the doubleflux method to real fluid thermodynamics by imposing the same heat capacity in adjacent cells when fluxes are constructed. This approach is no longer energy conservative but eliminates non-physical pressure oscillations when large gradients are present in the flow. Other groups have tabulated thermodynamic quantities and derivatives to eliminate errors created when thermodynamics parameters and Jacobians are estimated numerically.

This approach provides some improvements but does not totally alleviate the issue [START_REF] Petit | Large-eddy simulation of supercritical fluid injection[END_REF][START_REF] Rinaldi | Exact jacobians for implicit navierstokes simulations of equilibrium real gas flows[END_REF][START_REF] Kawai | A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state[END_REF]. Taşkinoglu and Bellan [START_REF] Taşkinoglu | Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure[END_REF] and Selle et al. [START_REF] Selle | Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study[END_REF] have conserved all terms usually neglected when the Navier-Stokes equation system is filtered to build the LES transport framework. They identified additional subgrid-scale terms to correct the error produced when pressure is evaluated from filtered quantities. However, they showed that the accuracy of the subgrid-scale models for pressure rapidly deteriorates when the mesh is coarsened compared to DNS. An e cient approach to eliminate the spurious pressure oscillations is to directly transport pressure through a quasi-conservative system. Karni [START_REF] Karni | Hybrid multifluid algorithms[END_REF] pioneered this research direction and successfully implemented a pressure-based (PB) solver for multicomponent gaseous flow. Terashima and Koshi [START_REF] Terashima | Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central di↵erencing scheme[END_REF][START_REF] Terashima | Unique characteristics of cryogenic nitrogen jets under supercritical pressures[END_REF] extended this approach to supercritical conditions. These developments have since then been used by other researchers [START_REF] Jarczyk | Large Eddy Simulation of Supercritical Nitrogen Jets[END_REF][START_REF] Matheis | Large Eddy Simulation of Cryogenic Coaxial LN2/GH2 Injection Under Supercritical Pressures[END_REF]. A recent energy conservative strategy for the Van Der Waals equation of state has been proposed by Pantano et al. [START_REF] Pantano | An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows[END_REF]. In this work a new variable that separates the evolution of the nonlinear part of the density in the equation of state is added to the flow model resulting in an oscillation free solution.

Despite the number of studies dedicated to suppressing nonphysical pressure oscillations at high-pressure conditions, a comprehensive comparison between conservative and non-conservative approaches still needs to be performed.

Terashima et al. [START_REF] Terashima | High-resolution numerical method for supercritical flows with large density variations[END_REF], Terashima and Koshi [START_REF] Terashima | Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central di↵erencing scheme[END_REF] and Kawai et al. [START_REF] Kawai | A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state[END_REF] only used pure advection tests to compare classical (conservative) and pressure-based approaches. Their conclusions were that less dissipation is needed with the latter since simulations were globally more stable. Matheis et al. [START_REF] Matheis | Large Eddy Simulation of Cryogenic Coaxial LN2/GH2 Injection Under Supercritical Pressures[END_REF] used a fully conservative approach and a pressure-based formulation to simulate a turbulent nitrogen jet, mixing into a quiescent gaseous hydrogen environment. Given the complexity of the configuration, only general observations were made. Less pressure fluctuations were observed when the pressure-based formulation was employed, along with a delay in the destabilization of the dense core. Significant temperature di↵erences were also detected but the origin was not identified.

The purpose of the present work is to perform a systematic comparison between three di↵erent approaches that di↵er by the set of transported quantities. Particular emphasis is placed on their impact on pressure and mixing temperature. The classical fully-conservative "energy-based" approach (EB) is considered as a reference where density, energy, momentum and species are transported. The second approach is a pressure-based approach (PB) where density, pressure, momentum and species are the transported quantities. Finally, a new approach is proposed, called enthalpy-based approach (HB), where two transport equations for pressure and total energy are combined to estimate the spatio-temporal evolution of enthalpy, along with equations on density, momentum and species. These three approaches are tested within the same solver using the same numerical methods and physical models. This is accomplished using a sequence of canonical cases that isolate specific aspects of numerics and turbulent mixing under high-Reynolds numbers and elevated pressures.

The paper is organized as follows. Section 2 provides an explanation of the numerical challenges present in high-pressure, high-density flow simulations. This is followed by Section 3 which describes the three approaches and provides details on their derivations.The same section presents the associated models and numerics of the flow solver. Finally, Section 4 presents comparisons of the three approaches on canonical, advection, one-dimensional shock, and vortex-interface test cases. The analysis concludes on a more realistic case of a Re = 500, 000 mixing layer mimicking flow conditions present at the exit of a rocket coaxial injector.

Thermodynamic non-linearities and numerical challenges

At elevated pressures intermolecular forces become significant, which modifies the relationship between pressure, density, and temperature. In order to capture these "real fluid" e↵ects, van der Waals was the first to try to incorporate the impact of intermolecular forces into the equation of state [START_REF] Reid | The properties of liquids and gases[END_REF]. Subsequently, other groups proposed corrections and improvements to generalize the approach.

Currently, cubic equations of state (EoS) are widely used in computational fluid dynamics due to their computational a↵ordability and acceptable accuracy. For the present study, the Peng-Robinson [START_REF] Peng | A new two-constant equation of state[END_REF] equation has been selected since it o↵ers satisfactory accuracy for the O 2 H 2 system. Figure 1 presents the thermodynamic scheme predictions of density, heat capacity at constant pressure and speed of sound compared to the reference database from NIST [START_REF] Linstrom | NIST Chemistry WebBook, NIST Standard Reference database[END_REF] for pure oxygen at P = 100bar, and over the temperature range [150K 300K]. A maximum error of 12% is observed on density, and 11% on speed of sound. Since the present study focuses more on the behavior of the equation of state than on the absolute precision, this level of accuracy is considered acceptable. Also, the same equation of state is used in all the approaches tested in this work. Note, however, that any other EoS could be used for the present analysis.

The Peng Robinson EoS has the form:

P = RT V B m A m V 2 + 2B m V B 2 m , ( 1 
)
where R is the ideal-gas constant, V the molar volume, T and P the temperature and the pressure, respectively. The coe cients A m and B m account for attraction and repulsion e↵ects among molecules. They are calculated using a set of nonlinear mixing-rules [START_REF] Reid | The properties of liquids and gases[END_REF]Chapter 4] given by where

A m = Ns X k=1 Ns X l=1 X k X l p A k A l k kl , B m = Ns X k=1 X k B k (2) a 
A k = 0.457236 (RT c,k ) 2 P c,k  1 + C k ✓ 1 q T /T c,k ◆ 2 , (3) 
B k = 0.077796 RT c,k /P c,k , (4) 
C k = 0.37464 + 1.54226 ! k 0.2699 ! 2 k . (5) 
In the expression above, X k is the molar fraction of species k, k kl is the 170 binary interaction parameter between species k and l and ! k is the acentric factor of species k. P c,k and T c,k are the critical pressure and temperature of species k, respectively.

A two step approach is used to determine the thermodynamic properties at relevant conditions. First, the mixture properties are evaluated at the tem-175 perature of interest and at a reference pressure, using the corresponding states methodology. Departure functions are then applied to obtain the mixture state at the desired pressure [START_REF] Reid | The properties of liquids and gases[END_REF]. These functions are exact relations derived from Maxwell's relations and make full use of the real mixture p-v-T path dependencies dictated by the equation of state. The sensible enthalpy h(T, ⇢) and heat capacity at constant pressure C p (T, ⇢) are estimated by

h(T, ⇢) h (T ) = Z P P " 1 ⇢ T ⇢ 2 ✓ @⇢ @T ◆ P,Y k # T dP (6) 
C p (T, ⇢) C p (T ) = Z ⇢ ⇢ " T ⇢ 2 ✓ @ 2 P @T 2 ◆ ⇢ # T d⇢ + T ⇢ 2 ⇣ @ 2 P @T 2 ⌘ ⇢ ⇣ @P @⇢ ⌘ T (7) 
where the superscript ( ) represents the reference state. Derivatives in Eq. 6 and 7

are evaluated analytically from the equation of state. Standard state properties are obtained using the databases developed by Gordon and McBride [START_REF] Gordon | Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations[END_REF] and Kee et al. [START_REF] Kee | Chemkin-ii: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[END_REF].

It is useful to establish the sensitivity of real fluid thermodynamics in the context of computational fluid dynamics. This is accomplished by investigating the sensitivity of the equation of state (Peng-Robinson) with respect to small perturbations of density and energy.

In thermodynamic space and for a pure species, the variation of pressure depends on the variations in density and sensible energy: dP = (@P/@⇢) ⇢e d(⇢) + (@P/@⇢e) ⇢ d(⇢e) .

The Jacobians (see Appendix A for the derivation) are:

(@P/@⇢e) ⇢ = ⇢ T ⇢C v ⇢ P , (9) 
(@P/@⇢) ⇢e = ⇢C p + h⇢ T ⇢C v ⇢ P , ( 10 
)
where C v and C p are the heat capacities at constant volume and constant pressure, respectively. h is the sensible enthalpy, ⇢ p and ⇢ T are the derivatives of density with respect to pressure and temperature. Note that in a flow, momentum also has an impact on pressure. By adding the contribution of kinetic energy (e c = 1/2(U i U i )) to Eq. 8, one can easily obtain:

dP = ⇢ T ⇢C v ⇢ P d(⇢e t ) +  ⇢C p + ⇢ T (h s e c ) ⇢C v ⇢ P d⇢ + ⇢ T ⇢C v ⇢ P U i d(⇢U i ), (11) 
Figure 2 presents the evolution of density and the two Jacobian terms described in Eq. 9 and 10 for pure oxygen over ranges of pressure and temperature of interest for rocket engines (i.e., above critical critical pressure of oxygen: P O2 c = 50.4bar). One can observe that in the vicinity of the pseudo boiling line (where density varies significantly) both Jacobian terms change dramatically. This means that small variations in density and energy may result in large changes in pressure.

The impact of these non-linearities can be illustrated by a simple numerical experiment. A temperature variation (hyperbolic tangent function) is used to generate gradients in density and energy for pure oxygen at a pressure of 150bar.

Asymptotic temperature values are initially set to 150K and 300K, respectively.

These values have been chosen to be on either side of the pseudo-boiling line at the considered pressure. For pure oxygen at 150 bar, the pseudo boiling point (maximum of heat capacity) is at T = 185K [START_REF] Banuti | An e cient multifluid-mixing model for real gas reacting flows in liquid propellant rocket engines[END_REF][START_REF] Banuti | The absence of a dense potential core in supercritical injection: A thermal break-up mechanism[END_REF] (note that the critical temperature of oxygen is T O2 c = 154.6K). This results in a high density di↵erence and positions the gradient in the high-Jacobian region in thermodynamic space. To simulate the alteration of transported quantities caused by numerical errors or stabilization methods, density (⇢) and energy (⇢e) are filtered using Gaussian filters of di↵erent kernel widths. Note that the same analysis could be conducted by adding noise to the data (in the gradient region). Subsequently, pressure and temperature are re-evaluated based on filtered density and energy: P = f (⇢, ⇢e) and T = g(⇢, ⇢e), where f and g are relationships representing the impact of the equation of state.

Figure 3 shows filtered density and energy fields, and the resultant pressure and temperature. Temperature is fairly insensitive to the filtering operation.

Pressure, however, is significantly impacted and presents a large non-physical decrease in the gradient region. This shows that in the context of an equation system based on density and energy, small variations of the transported quan- and (c) Jacobian term: (@P/@⇢e)⇢. tities introduced by the numerical approach may result in significant pressure oscillations. These variations can be introduced by an explicit filtering step No filter

∆ f = 2 ∆ x ∆ f = 4 ∆ x ∆ f = 8 ∆ x ∆ f = 16 ∆ x x [mm] -0.5 0 0.5 T = g(ρ, ρe) [K] 150 200 250 300 No filter ∆ f = 2 ∆ x ∆ f = 4 ∆ x ∆ f = 8 ∆ x ∆ f = 16 ∆ x x [mm]
-0.5 0 0.5 the dissipation of a stabilization method.
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This issue however is only significant close to the pseudo boiling line where the equation of state presents strong nonlinearities. If the same numerical experiment is replicated at the same pressure but in a temperature range where Jacobians have smaller values, the reconstructed pressure exhibits a di↵erent behavior. For example, Fig. 4 shows the same filtering test over the range 500K < T < 1000K at P = 150bar. In this region, the equation of state presents a quasi-linear behavior and the filtering procedure does not introduce large deviations in pressure.

This illustration shows why in the vicinity of the pseudo-boiling line, an approach based on the transport of density and energy is prone to spurious pressure oscillations if artificial stabilization is required in gradient regions.

To circumvent this issue, an e cient strategy is to replace the energy equation by a pressure equation. While this approach is not conservative with No filter
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ρe)
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No filter No filter respect to energy, it suppresses unphysical pressure oscillations [START_REF] Kawai | A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state[END_REF]. Another strategy, explored in this paper, is to combine energy-based and pressure-based approaches to retain energy conservation while avoiding spurious pressure oscillations due to the non-linearity of the equation of state. These methods are described in the next section. 
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∆ f = 2 ∆ x ∆ f = 4 ∆ x ∆ f = 8 ∆ x ∆ f = 16 ∆ x

Theoretical and numerical approaches

Three distinct approaches have been tested in the present investigation, The fully conservative Navier-Stokes system based on the transport of total energy is first introduced in Section 3.1. A pressure-based method is described in Section 3.2. As suggested by [START_REF] Terashima | Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central di↵erencing scheme[END_REF], this quasi-conservative method allows avoiding non-physical pressure disturbances under transcritical conditions when used with non-linear thermodynamics (in flows without shocks), but su↵ers from inaccuracy in the estimation of temperature and other thermodynamic variables.

To improve this aspect, one can employ a quasi-conservative enthalpy-based approach, presented here in Section 3.3. where h t is the total enthalpy and e s is the sensible energy The governing system is given by

@⇢ @t + r • (⇢U) = 0, (12) 
@ @t (⇢e t ) + r • ((⇢e t + P )U) = r • ( q e + ⌧ • U), (13) 
@ @t (⇢U) + r • [⇢U ⌦ U + P I] = r • ⌧ , (14) 
@ @t (⇢Y k ) + r • (⇢Y k U) = r • q k . ( 15 
)
In this system,

⌧ = µ  2 3 (r • U)I + rU + rU T . ( 16 
)
represents the viscous stress tensor, where µ is the dynamic viscosity and P is the pressure. q k represents the mass di↵usion fluxes of the k th species, and contains the velocity correction U corr (to ensure global mass conservation) resulting from the Hirschfelder and Curtiss approximation [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]:

q k = ⇢ ✓ D k W k W rX k Y k U corr ◆ , ( 17 
)
where X k , D k and W k are the molar fraction, the molar di↵usivity and the molar mass of the k th species, respectively. W is the molar mass of the mixture.

The term q e is the energy di↵usion flux expressed as:

q e = rT + Ns X k=1 q k h k , (18) 
where is the thermal conductivity of the mixture, T the temperature and h k the enthalpy of the k th species. Note that Soret and Dufour e↵ects are neglected.

At supercritical pressures, molecular transport properties are evaluated in a manner analogous to the thermodynamic properties previously presented in Section 2. Viscosity and thermal conductivity are obtained using the extended corresponding state methodologies developed by Ely and Hanley [START_REF] Ely | Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures[END_REF]. Mass and thermal di↵usion coe cients are obtained using the approach from Hirschfelder et al. [START_REF] Hirschfelder | Molecular theory of gases and liquids[END_REF] and Takahashi [START_REF] Takahashi | Preparation of a generalized chart for the di↵usion coe cients of gases at high pressures[END_REF]. The present framework can handle a wide range of pressure and temperature where multicomponent and/or preferential di↵usion processes are present. The mixture di↵usion coe cient for species k, D k is computed as a function of the matrix of binary di↵usion coe cients D ij , as obtained from kinetic theory [START_REF] Hirschfelder | Molecular theory of gases and liquids[END_REF][START_REF] Bird | Transport phenomena[END_REF]:

D k = 1 Y k P Ns j6 =k X j /D jk (19) 
Thermodynamic properties, pressure and temperature are evaluated thanks to a conventional Newton iterative procedure. First, pressure is calculated from the equation of state using the transported density and an initial guess on temperature. The thermodynamic energy is then computed, and compared to the transported energy. Temperature is updated using this di↵erence and the heat capacity at constant volume. This procedure is repeated until the error on energy drops below a threshold set by the user (set here at 10 10 , sensitivity analysis has shown no degradation of accuracy for values below 10 8 ). Once pressure and temperature are found, all other thermodynamic and transport quantities are calculated via the equation of state.

Pressure-based formulation (PB)

In this subsection, the derivation of the pressure evolution equation is presented. Only the main steps of the derivation are listed here for sake of brevity.

Additional details on the derivation are provided in Appendix B. The static pressure equation is derived from the Gibbs-Duhem equation [START_REF] Reid | The properties of liquids and gases[END_REF]:

DP Dt = ✓ @P @⇢ ◆ e,Y k D⇢ Dt + ✓ @P @e ◆ ⇢,Y k De Dt + Ns X k=1 ✓ @P @Y k ◆ e,⇢ DY k Dt , ( 20 
)
where e is sensible energy, with D /Dt = @ /@t + U • r the total derivative for any quantity . Using the transport equations previously introduced in Section 3.1, we obtain the transport equation for pressure:

@P @t + U • rP = ✓ @P @⇢ ◆ e,Y k + P ⇢ 2 ✓ @P @e ◆ ⇢,Y k ! ( ⇢r • U) + ✓ @P @e ◆ ⇢,Y k ✓ 1 ⇢ ( r • q e + ⌧ r • U) ◆ + Ns X k=1 ✓ @P @Y k ◆ e,⇢ ✓ 1 ⇢ ( r • q k ) ◆ , (21) 
Using the relation B.12 of Appendix B the derivatives introduced above can be 265 explicitly expressed:

✓ @P @⇢ ◆ e,Y k = c 2  1 + P ⇢ T C p ⇢ 2 (22) 
✓ @P @e ◆ ⇢,Y k = ⇢ T c 2 C p (23) 
✓ @P @Y k ◆ e,⇢ = c 2 C p [⇢ T h Y k C p ⇢ Y k ] (24) (25) 
where

⇢ T = ✓ @⇢ @T ◆ P,Y k , ⇢ P = ✓ @⇢ @P ◆ T,Y k , ⇢ Y k = ✓ @⇢ @Y k ◆ P,T , (26) 
h Y k = ✓ @h @Y k ◆ P,T
and,

c 2 = ✓ @P @⇢ ◆ s,Y k = ⇢ P . ( 27 
)
Note that the derivatives ⇢ T , ⇢ P , ⇢ Y k and h Y k are analytically evaluated from the equation of state and is the heat capacity ratio. Using these derivatives, Eq. 21 can be fully expanded and the system of governing of equations can be written as:

@⇢ @t + r • (⇢U) = 0, (28) 
@P @t + U • rP = ⇢c 2 r • U c 2 ⇢ T ⇢C p ( r • q e + ⌧ r • U) + Ns X k=1 c 2 ⇢C p (⇢ T h Y k ⇢ Y k C p )( r • q k ), (29) 
@ @t (⇢U) + r • [⇢U ⌦ U + P I] = r • ⌧ , (30) 
@ @t (⇢Y k ) + r • (⇢Y k U) = r • q k . ( 31 
)
Where q k and q e have been previously introduced in Eq. 17 and 18, respectively.

Note that equation ( 29) is consistent with the simplified transport equation derived by Terashima and Koshi [START_REF] Terashima | Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central di↵erencing scheme[END_REF] given that:

↵ P C v T ⇢ = ↵ P ⇢c 2 C v ⇢ = ↵ P c 2 C p = c 2 ⇢ T C P ⇢ , ( 32 
)
where C v is the heat capacity at constant volume, ↵ P = 1/V (@V /@T ) P is the thermal expansion coe cient, and T = 1/V (@V /@P ) T is the isothermal compressibility coe cient.
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Temperature, thermodynamic and transport quantities are evaluated using a similar Newton iteration method as in the EB approach. Here the method start from an initial guess on temperature, from which a thermodynamic density (⇢ eos ) is determined using the equation of state and the transported pressure.

This density is compared to the transported density (⇢ trans ) and the di↵erence is used to update temperature, using the increment:

dT = ⇢ trans ⇢ eos ⇢ T , ( 33 
)
where ⇢ T is the derivative of density with respect to temperature which is analytically estimated from the roots of the equation of state. This procedure is iteratively solved until the error on density falls below a threshold set by the user (10 10 in the present study). All other properties are then calculated from T and ⇢Y k .

Enthalpy-based formulation (HB)

This approach is based on the transport of enthalpy instead of energy. The temporal evolution of enthalpy is described as the sum of the evolutions in pressure and energy. The objective is to use the oscillation-free transported pressure P trans as the mechanical pressure (used in momentum and energy equations), and to compute thermodynamic variables from the transported enthalpy (obtained by combining transported pressure and energy). This formulation provides the dynamic stability of a pressure-based method while estimating thermodynamics with a similar accuracy than the energy-based approach. This approach conserves total energy by construction since it is a transported quantity. The equation for total energy is the same as in the energy-based approach, with no additional source or sink terms, and all flux terms (viscous, inviscid, and pressure) are uniquely defined at each cell face, which guaranties discrete conservation in the present finite-volume formalism. However, pressure is obtained from a non conservative transport equation, which makes the approach only quasi-conservative as enthalpy is not exactly conserved.

The transported quantities are density (⇢), momentum (⇢U), species mass fractions (⇢Y k ) and total enthalpy (h t ). The governing system of the HB approach reads:

@⇢ @t + r • (⇢U) = 0, (34) 
@⇢h t @t = @⇢e t @t + @P @t , [START_REF] Matsuyama | Correlation of optical emission and turbulent length scale in a coaxial jet di↵usion flame[END_REF] which can be expended to:

@⇢h t @t = r • ((⇢e t + P )U) + r • ( q e + ⌧ • U) U • rP ⇢c 2 r • U c 2 ⇢ T ⇢C p ( r • q e + ⌧ r • U) + Ns X k=1 c 2 ⇢C p (⇢ T h Y k ⇢ Y k C p )( r • q k ), ( 36 
)
where P is estimated using equation 29.

@ @t (⇢U) + r • [⇢U ⌦ U + P trans I] = r • ⌧ , (37) 
@ @t (⇢Y k ) + r • (⇢Y k U) = r • q k , (38) 
As classically done, the thermodynamic state is calculated using a Newton iterative procedure. Here, the inputs of the thermodynamic scheme are the transported enthalpy (h trans = [(⇢e) trans + P trans ]/⇢ trans ) and density (⇢ trans ).

The same relative threshold of 10 10 is used here, as in previous approaches.

The pressure used in the enthalpy-based systemis obtained via its own transport equation. This pressure is referred as mechanical pressure as it appears in momentum and energy equations. A thermodynamic pressure could also be estimated from density and enthalpy using the thermodynamic scheme. This pressure is not used since it su↵ers from non-physical oscillations in gradient regions due to the impact of numerical dissipation. In other regions of the flow, both pressures are identical.

Numerical approach

Calculations were performed using the numerical framework developed by Oefelein [START_REF] Oefelein | Thermophysical characteristics of shear-coaxial LOX-H2 flames at supercritical pressure[END_REF][START_REF] Oefelein | Mixing and combustion of cryogenic oxygen-hydrogen shearcoaxial jet flames at supercritical pressure[END_REF]. For all three approaches, the same explicit four-stage Runge-Kutta temporal scheme [START_REF] Jameson | Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes[END_REF][START_REF] Gaitonde | A dual-time method for two-dimensional unsteady incompressible flow calculations[END_REF] has been used with a time-step restriction based on the Courant-Friedrichs-Lewy condition: CF L max = 0.5. The governing systems are discretized on a staggered grid in generalized curvilinear coordinates in finite-volume form. Di↵usive fluxes are estimated with a second-order accurate centered di↵erence scheme. Convective fluxes are evaluated using a secondorder QUICK scheme (Quadratic Upstream Interpolation for Convective Kinematics) [START_REF] Leonard | A stable and accurate convective modelling procedure based on quadratic upstream interpolation[END_REF]. To ensure stability, the scheme transitions to a first-order upwind scheme [START_REF] Swanson | On central-di↵erence and upwind schemes[END_REF] in gradient regions if spatial resolution is insu cient. A detailed description of the stabilization approach is outlined in Appendix C. Note that in the case of the PB and HB formulations, the gradient terms in the pressure equation are evaluated with centered operators. The residual terms coming from the stabilization of the conserved quantities have not been incorporated.

These terms are described in Appendix D. In this manner, spurious pressure oscillations caused by the numerical stabilization scheme are avoided, which makes the PB and HB approaches dynamically more stable than the energybased method. However, because of this modification, the pressure equation is no longer conservative. This is why the present pressure-and enthalpy-based formulations are not conservative.

Results and discussion

Four benchmark tests of increasing complexity have been considered for the present analysis. All cases involved oxygen and hydrogen at the conditions previously studied by Oefelein [START_REF] Oefelein | Mixing and combustion of cryogenic oxygen-hydrogen shearcoaxial jet flames at supercritical pressure[END_REF] and Ruiz et al. First, pure advection of density profiles were conducted to mimic the Euler convection of a parcel of oxygen into gas-like hydrogen. Second, a onedimensional Sod shock was used to investigate conservativity. Then, a twodimensional vortex case was performed, to replicate the e↵ects of a turbulent eddy on a transcritical interface. And finally, a two-dimensional turbulent mixing layer was considered that reproduces the flow conditions at the exit of an a cryogenic rocket injector.

Advection test cases

In the following, Euler convection of profiles of density, temperature and mass-fraction are examined. These profiles are advected across a one-dimensional domain (10 times the characteristic size of the profile, with inlet and outlet on both ends). Note that a periodic system is not considered here, in order to have an open system where the mean pressure is imposed by an outlet. This ensures an accuracte comparison of the three approaches. In a closed system (tested but not shown), the PB and HB approaches yield a constant mean pressure in time while the EB formulation predicts a decreasing system pressure as numerical dissipation acts as a numerical "evaporation". wind convective scheme significantly impacts the pressure and velocity fields of the energy-based approach, while being una↵ected with the PB and HB methods. In the later methods, terms emanating from the stabilization scheme have been removed from the pressure equations preventing the spurious oscillations observed with the EB formulation. To compare the profiles in Fig. 6 (c), the temperature the energy-based approach is taken as reference since the methods is fully conservative. One can observed that the PB approach fails to recover the reference mixture temperature. This can be explained by the fact that density is dissipated while pressure remains constant. Maintaining pressure while dissipating density implies a local energy increase, reflected by a local increase in temperature as observed in Fig. 6 (c). Since no acoustic e↵ects are present to redistribute energy, the error on temperature remains confined to the gra-dient region where the artificial dissipation of density occurs. This is similar to a high-pressure phase change where the pressure is artificially kept constant.

Under transcritical conditions, if a dense parcel of fluid di↵uses into a lighter fluid, the dense fluid extracts energy from its gas-like ambient (comparably to a low pressure evaporation) [START_REF] Banuti | The absence of a dense potential core in supercritical injection: A thermal break-up mechanism[END_REF]. Under physical conditions, this process leads to small amplitude acoustic waves and velocity perturbations generated in the vicinity of the interface (permitting the redistribution of density). This is observed in the test case presented in Appendix B.1. However, if pressure is kept constant, energy is locally created by the thermodynamic scheme, (the system is non-conservative), and locally the temperature increases compared to an conservative approach. Matheis et al. [START_REF] Matheis | Large Eddy Simulation of Cryogenic Coaxial LN2/GH2 Injection Under Supercritical Pressures[END_REF] have observed a similar temperature behavior while computing the injection of a dense nitrogen jet into gaseous hydrogen at supercritical conditions. They noted a di↵erence in the temperature fields predicted by a fully conservative approach (equivalent to the present EB method) and a pressure-based formulation. In the case of the energy-based approach, the temperature decreased below the injection temperature in the mixing layer between the dense nitrogen and the gaseous hydrogen. This was not observed when the pressure-based method was employed. No explanation was provided in [START_REF] Matheis | Large Eddy Simulation of Cryogenic Coaxial LN2/GH2 Injection Under Supercritical Pressures[END_REF] on the the cause of the discrepancy.

On the contrary, the HB approach provides a mixing temperature comparable to the energy-based method. Here, the thermodynamic scheme is based on the transported enthalpy which is almost identical to the one of the EB formulation.

The small di↵erences observed in Fig. 6 (c) are attributed to the local pressure variations present in the EB prediction.

Taking the energy-based results as reference, the di↵erences on enthalpy and temperature can be explicitly formulated and measured. These errors read:

errorH P B = ✓ e eos (⇢ trans , P trans ) + P trans ⇢ trans H EB ◆ (39) 
and:

errorH HB = ✓ (⇢e) trans + P trans ⇢ trans H EB ◆ (40) 
The errors on T are calculated by dividing the errors on enthalpy by C p,eos .

These departures in mass-fraction space are presented in Fig. 7. One can verify that the mixture enthalpy calculated in the HB approach agrees well with the one of the energy-based method. Small di↵erences can be seen due to discrepancies in pressure fields. Significant errors are however measured for the 

Sod shock test

The present Sod shock test [START_REF] Sod | A survey of several finite di↵erence methods for systems of nonlinear hyperbolic conservation laws[END_REF] aims at distinguishing the di↵erent conservation properties of the three present approaches. The working fluid is pure oxygen. The left-hand-side state is defined by a pressure of 1bar and a density of 1kg/m 3 , while the right-hand-side state is set at a pressure of 0.1bar and a density of 0.1kg/m 3 . The initial jump is characterized by a hyperbolic tangent profile with a thickness of 30µm. The calculation is performed on a 2mm long one-dimensional domain, discretized by 200 cells ( x = 10µm). The Euler form of the transport system is used, and a first-order accurate upwind convective scheme is employed to ensure stability and enhance the impact of numerical dissipation.

Instantaneous profiles at t = 1ms are presented in Fig. 9, and close-ups on the shock region are provided in the sub-figures. Focusing first on the similarities, all three methods predict the same locations for the expansion fan, and for the contact discontinuity. Because all methods rely on a first-order upwind scheme, the contact discontinuity is significantly thickened. Note that more oscillations are present in the results of the PB and HB approaches, since the pressure equation has been written without flux terms, and all derivatives are based on a second-order centered operator.

More di↵erences can be observed in the shock region. One can observe that the energy-based approach predicts correctly the shock position and all thermodynamic quantities agree well with the analytical solution. As expected, the pressure-based approach fails to recover the correct shock speed since the approach is not conservative. Figure 9f shows that the sensible energy downstream of the shock does not agree with the analytical solution. Subsequently, all thermodynamic quantities such as temperature, sound speed, and heat capacity present discrepancies compared to the reference. Finally, since the energy is transported in the HB approach, the sensible energy is correctly predicted downstream of the shock, which leads to better predictions of all thermodynamic quantities such as temperature and sound speed. This results in a more accurate shock position (as the pressure equation directly depends on the speed of sound), but does not exactly recover the shock speed. The main reason is that despite conserving energy, the HB method does not conserve enthalpy since the pressure equation is not used in its conservative form. 

Two-dimensional vortex test cases

The objective of this section is to extend the previous comparisons to a more 445 practical case where scalar gradients are resolved on only a few grid points and where the flow dynamics accentuates the resolution limitation. These aspects can be considered in a two-dimensional test case where a vortex interacts with a transcritical gradient. A density gradient is imposed between hydrogen at 150K and oxygen at 100K at 100bar using a hyperbolic tangent profile. Five points are now used to described the density jump. A 1 mm ⇥ 1 mm two-dimensional domain is discretized by 200 points in each direction. A non-isentropic vortex is superimposed on the gradient to induce its deformation and compression. Note that in other vortex analysis (such as flame-vortex interaction) eddies are usually convected towards an interface to force their distortion. At present conditions, tests have shown that it was di cult to achieve su cient strain by convecting a vortex towards the interface as the large density gradient acts as a quasi-solid wall to the gaseous vortical structure. This is why it was chosen to directly position the vortex across the density gradient. The circulation of the vortex is selected to generate enough deformation and strain to reach the resolution limit and activate the stabilization method. As described in Section 3.4, a flux limiter is employed to continuously transition from a second-order accurate QUICK scheme in zones where the numerical solution is su ciently smooth to a first-order accurate upwind scheme in the gradient regions. No molecular di↵usion is considered to isolate the impact of the stabilization approach.

The velocity field is described by [START_REF] Prosser | Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows. I. Inviscid flows[END_REF]:

U = y C v R 2 v exp ✓ x 2 + y 2 2R 2 v ◆ , ( 41 
) V = x C v R 2 v exp ✓ x 2 + y 2 2R 2 v ◆ , ( 42 
)
where R v = 0.2 mm is the radius of the vortex and C v = 2.0 10 5 m 2 /s is the vortex circulation. A schematics of the computational domain and initial conditions are shown in Fig. 10.

Figure 11 compares the fields of pressure, flux limiter, and temperature given by the three methods at t = 2µs. The vortex creates a strong deformation of the interface along with a significant compression of the density gradient. In the compression zone, the gradient increases due to high strain-rate, which leads to a local increase of the flux limiter magnitude to stabilize the calculation (Fig. 11 b). Note that its magnitude is comparable between the three approaches. As numerical dissipation is introduced, the energy-based approach is subject to pressure oscillations generated in the gradient region, while the pressure-and enthalpy-based methods exhibit smoother pressure fields (Fig. 11 a). The hydrodynamic e↵ects of the vortex on the pressure field is however captured by the three approaches since they are related to spatial variation of momentum.

A stability test shows that if the circulation of the vortex is increased, local pressure oscillations in the EB case result in very low pressure values, which locally drive the thermodynamic conditions inside the vapor dome. At these conditions, the dense fluid becomes a "classical" liquid, the continuum assumption is no longer valid and the equation of state becomes ill-conditioned. This leads to the divergence of the EB simulation while the PB and HB calculations remain stable.

The temperature field also shows some di↵erences between the three formulations. Figures 11 (c) and (d) show that the energy-based form presents more pronounced temperature overshoots (in the Y H2 ⇡ 1 region of Fig. 11 c). The three approaches also behave di↵erently in mass-fraction space. Figure 11 (d) shows that the pressure-based approach exhibits a local temperature increase (Y H2 ⇡ 0.05), contrary to the EB and HB formulations. This behavior is similar to what was previously observed in the advection test case in Section 4.1.

In this figure, the adiabatic mixing line has been added. Adiabatic mixing is based on the assumption that the enthalpy varies linearly with mass-fraction,

h (T,Y ) = h (T O 2 ,Y O 2 ) + Y H2 (h (T H 2 ,Y H 2 ) h (T O 2 ,Y O 2 )
). By construction, the adiabatic mixing line shows the thermodynamic state of the mixture if energy and species di↵use at the same rate, which is equivalent to assuming unity Lewis numbers for the considered species. For both the energy-and enthalpy-based approaches, the mixture temperature follows the adiabatic line since numerical dissipation impacts energy and density in a similar way. This is not the case for the PB method as only density is dissipated by the stabilization scheme. The reader is reminded that no physical di↵usion is used for this test case (Euler simulation). Note also that numerical dissipation has not yet reached steady state, and this is why many mixture points are still away from the adiabatic mixing line in Fig. 11 (d 

Turbulent mixing layer

The last test case of this study is a more realistic configuration representing the early destabilization of the mixing layer forming between a dense stream of oxygen and a fast gas-like hydrogen stream at 100bar. This type of mixing layer occurs in rocket engines downstream of coaxial injectors where e cient mixing is obtained by the high shear generated between two injected streams.

This case was also previously studied by other groups [START_REF] Oefelein | Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines[END_REF][START_REF] Oefelein | Thermophysical characteristics of shear-coaxial LOX-H2 flames at supercritical pressure[END_REF][START_REF] Zong | Cryogenic fluid jets and mixing layers in transcritical and supercritical environments[END_REF][START_REF] Zong | Near-field flow and flame dynamics of lox/methane shear-coaxial injector under supercritical conditions[END_REF][START_REF] Oefelein | Large eddy simulation of turbulent combustion processes in propulsion and power systems[END_REF][START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF] and detailed quantitative data are available for comparison. Note that for this final case molecular di↵usion is active and all aspects previously investigated are present in the flow (i.e., di↵usion, pure advection of dense elements, and turbulence-density gradient interactions).

This test case replicates the computation two-dimensional benchmark studied by Ruiz et al. [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF]. Their objective was to analyze the early destabilization of a LOX-GH2 mixing layer at rocket-like conditions using a near DNS grid resolution, and to provide a database for code comparison and validation. The dataset collected Ruiz et al. [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF] contains results from a conservative and nonconservative approach. Only data from the conservative approach were used here for the di↵erent statistical comparisons. In the present work, boundary conditions and computational domain are based on the description provided in [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF] and presented in Figs. 12 a) and b). Thermodynamic and injection con- As strain rate reaches high values in the mixing layer, gradients are locally significant and numerical stabilization is required. As in the previous case, stabilization is provided by the numerical approach described in Section 3.4, where a quasi non-dissipative QUICK scheme is used in smooth flow regions and a dissipative first-order accurate upwind scheme is applied in gradients. In the 540 present study, the grid is coarser than in [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF]: in the mixing zone( 3 < y/h < 3), the grid spacing is uniform ( x /h = y /h = 1/100) against x /h = 1/250 in [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF]. Outside the region of interest the grid is stretched at a rate of 0.1%. A total of 3.7 million cells was employed for this configuration. In the following, instantaneous fields and temporal statistics (mean and root-545 mean square) are used to compare the three methods. Following recommendations from Ruiz and coworkers, a long period of fourteen flow-through time (based on the oxygen stream) was used to flush initialization transient and reach steady state. Time average statistics were then recorded for twenty flowthrough times. Statistics were sampled along one-dimensional lines across the computational domain at the same locations as in [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF] (i.e., x/h = 1, x/h = 3,

x/h = 5 and x/h = 7).

Figure 13 presents the instantaneous flow fields of density and mass-fraction of hydrogen. Even if instantaneous fields appear di↵erent, the same dynamic mechanisms were observed in the three methods. Those processes have previously been detailed by Ruiz et al. [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF], thus only a brief summary is reported here.

Initial vortical structures are generated by a Kelvin-Helmoltz instability ini-tiated in the hydrogen stream downstream of the the backward-facing step. The subsequent vortical structures are convected against the density gradient at the oxygen interface. These impacts, coupled with baroclinic torque e↵ects, induce interfacial instabilities at the surface of the oxygen stream, which grow as the flow evolves downstream. A coalescence process leads to the creation of larger structures that participate in further destabilizing the mixing layer. These large vortical elements induce the rollup and elongation of dense structures from the oxygen.

The instantaneous snapshots presented in Fig. 13 were not chosen to topologically match each other. This explains why the mixing layer seems thicker in the EB approach than in the other cases as a large vortical structure is present in the EB image and absent in the PB and HB results. This type of large structure being infrequent, has a small impact on the temporal statistics. Figures 14 presents the temporal statistics (mean and rms) of mass-fraction, density and velocities between the three approaches. Small di↵erences can be detected in the U rms profiles. The lower amplitudes of streamwise fluctuations are attributed to a thicker outlet sponge-layer used in the present study compared to the reference simulations of Ruiz et al. [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF]. One important aspect that does not appear in these statistics is the presence of an acoustic oscillation in the oxygen stream for the EB case.

Figure 15 shows how the EB approach generates significant local pressure fluctuations compared to the other approaches. These fluctuations emanate from the density gradient region, where the stabilization method introduces most of the numerical dissipation. Figure 16 shows that the flux limiter is only active in the vicinity of the density gradient where the switch between numerical methods occurs. In contrast, no spurious pressure oscillations are observed in flow-fields of the pressure-based and enthalpy based methods. For these approaches, pressure fluctuations are only generated by hydrodynamic processes in the mixing zone. Figure 17 shows the statistics of pressure. Mean pressure profiles compare closely between the three methods with a 0.1 % shift for the PB approach compared to the EB and HB formalisms. Pressure diminishes slightly x/h=7
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Conclusions

This investigation focuses on understanding the stability and mixing temperature issues encountered in transcritical flow simulations. Transcritical conditions are met when two fluids mix with thermodynamic states initially set on di↵erent sides of the pseudo-boiling line, and when the mean pressure is above the critical pressure of the mixture. At these conditions, thermodynamics exhibits a strong nonlinear behavior which translates to large Jacobian values in the mixing zone. This means that small variations in density and energy yield large pressure changes. This thermodynamic "sensitivity" significantly impacts the stability of flow solvers based on the conservative form of the Navier-Stokes equations (transport of density, total energy, momentum and species massfractions). In such solvers, small variations in transported quantities caused by the numerical approach (e.g., numerical dissipation or explicit filtering) lead to non-physical pressure fluctuations that modify the flow dynamics and may result in erroneous predictions or even the divergence of the computation.

Many approaches have been proposed to solve this stability issue. The present work provides a comparison of three methods that di↵er by the form of the system of equations considered. The first approach (called energy-based) is a classical fully-conservative approach based on the transport of density, total energy, momentum and mass-fraction of species, and taken here as a reference.

The second approach is a pressure-based method where the energy equation is replaced by an equation on pressure. In the last approach, the temporal evolution of enthalpy is obtained by combining two transport equations on pressure and energy. In this manner, energy is transported, thus conserved, and spurious pressure oscillations can be controlled via the pressure equation. This method is however not fully conservative (enthalpy is not strictly conserved) since the pressure equation is not used in its conservative form: the residual terms from numerical dissipation have been intentionally removed from the equation to ensure dynamic stability.

These three methods have been implemented within the same numerical framework to facilitate comparison. A series of tests cases of increasing complexity has been considered to expose their di↵erent properties. Pure di↵usion tests showed that all three methods behave identically. Pure advection tests revealed more marked di↵erences. It was observed that if numerical dissipation was used, nonphysical pressure oscillations appeared in the predictions of the energy-based method. The pressure-based method remained dynamically stable since pressure is directly estimated from its transport equation which is free of numerical dissipation terms. However, its mixture temperature prediction significantly departed from the reference taken from the energy-based method. This is due to fact that density and mass-fractions are dissipated by the stabilization scheme while pressure remains constant. Thermodynamically this is only possible if energy is locally generated, causing the temperature to locally increase. The enthalpy-based formulation also provided oscillation-free flow fields, as well as a good agreement for the mixture temperature in comparison with the reference temperature from the fully-conservative approach. This improvement in thermodynamic representation is attributed to the fact that the transported enthalpy and density are used as inputs to the thermodynamic scheme. This is not the case for the pressure-based method which uses transported pressure and density to reconstruct its thermodynamic state, with the pressure equation written in a nonconservative form. Conservation properties were also revealed in a shock test case where small errors in the shock positions

were measured with the pressure-and enthalpy-based approaches. Deviations were mitigated in the HB predictions thanks to the better representation of the thermodynamics state.

Similar behaviors were observed in two more complex configurations, a vortex-interface case and a mixing layer, both at rocket-like conditions. Results revealed that in the case of the energy-based method, non-physical pressure oscillations were generated in regions where numerical dissipation is introduced by the stabilization scheme. In the mixing layer case, these artificial pressure fluctuations triggered and fed an acoustic oscillation which had significant impact on flow statistics, whereas pressure-and enthalpy-based predictions remained una↵ected. A significant departure of the mixture temperature was however observed with the pressure-based approach, contrary to the enthalpybased method. In engineering applications, this erroneous thermodynamic state might impact predictions when slow chemical processes are key phenomena. This is the case in the estimation of the auto-ignition delay time of a diesel jet at elevated pressure, or the simulation of rocket pre-burner reacting flows under very rich or very lean mixture conditions.

Appendix

de = ✓ @e @T ◆ P dT + ✓ @e @P ◆ T dP (A.2)
For notation simplification we introduce for = ⇢ or e:

✓ @ @T ◆ P,Y k = T (A.3) ✓ @ @P ◆ T,Y k = P (A.4) ✓ @ @Y k ◆ T,P = k (A.5)
We also define:

e = h P ⇢ (A.6) de = C v dT +  T ✓ @P @T ◆ P P dV (A.7) dh = C p dT +  V T ✓ @V @T ◆ P dP (A.8)
From previous relations, Eq. A.2 can be recast as:

de = ✓ C p + P ⇢ 2 ⇢ T ◆ dT + 1 ⇢ 2 (P ⇢ P + T ⇢ T ) dP (A.9)
and by combining Eq. A.1 and A.9 one can obtain:

de = ✓ ⇢C p ⇢ T + h ◆ d⇢ ✓ ⇢C v ⇢ P ⇢ T ◆ dP (A.10)
Using the relation:

C p C v = T ⇢ 2 T /(⇢ P ⇢ 2 )
, and developing d⇢e = ed⇢ + ⇢de, equation A.10 leads to the expression of the two Jacobians (@P/@⇢) ⇢e and (@P/@⇢e) ⇢ : derivation are presented. Starting from the equation of Gibbs-Duhem [START_REF] Reid | The properties of liquids and gases[END_REF] for density ⇢ and energy e:

705 d⇢ = ✓ @⇢ @T ◆ P,Y k dT + ✓ @⇢ @P ◆ T,Y k dP + N X k=1 ✓ @⇢ @Y k ◆ P,T dY k (B.1) de = ✓ @e @T ◆ P,Y k dT + ✓ @e @P ◆ T,Y k dP + N X k=1 ✓ @e @Y k ◆ P,T dY k (B.2)
By introducing enthalpy: e = h P/⇢ and the heat capacities [START_REF] Reid | The properties of liquids and gases[END_REF]:

de = C v dT 1 ⇢ 2 " T ✓ @P @T ◆ ⇢ P # d⇢ (B.3) dh = C p dT +  1 ⇢ + T ⇢ 2 ✓ @⇢ @T ◆ P dP, (B.4) 
we obtain the following derivatives:

e T = C p + P ⇢ 2 ⇢ T (B.5) e P = 1 ⇢ 2 ⇢ P ✓ T @P @T P ◆ = 1 ⇢ 2 (P ⇢ P + T ⇢ T ) (B.6)
Finally the Gibbs-Duhem system can be recast as:

d⇢ = ⇢ T dT + ⇢ P dP + N X k=1 ⇢ k dY k (B.7) de =  C p + P ⇢ 2 ⇢ T dT + 1 ⇢ 2 [P ⇢ P + T ⇢ T ] dP + N X k=1  h k + P ⇢ 2 ⇢ k dY k (B.8)
By combining B.7 and B.8 one can extract the variations of temperature (dT ) and pressure (dP ) with respect to those of density (d⇢) energy (de) and species mass-fractions (dY k ):

de =  T ⇢ T ⇢ 2 ⇢ P ⇢ T C p dP +  C p ⇢ T + P ⇢ 2 d⇢ + N X k=1  h k C p ⇢ T ⇢ k dY k (B.9)
Using the relationship between the heat capacities [START_REF] Van Wylen | Fundamentals of classical thermodynamics[END_REF]:

T ⇢ 2 T ⇢ 2 ⇢ P = C p C v ,
equation B.9 can be recast as:

de =  ⇢ P ⇢ T C v dP +  C p ⇢ T + P ⇢ 2 d⇢ + N X k=1  h k C p ⇢ T ⇢ k dY k (B.10)
This leads to the variation of pressure:

dP = C P ⇢ 2 + P ⇢ T C v ⇢ P ⇢ 2 d⇢ ⇢ T ⇢ P C v de + N X k=1 ⇢ T ⇢ P C v  h k C p ⇢ T ⇢ k dY k (B.11)
and by introducing the speed of sound: c 2 = C p /(C v ⇢ P ), the pressure variation reads:

dP = c 2  1 + P ⇢ T C p ⇢ 2 d⇢ ⇢ T c 2 C p de + N X k=1 c 2 C p [⇢ T h k C p ⇢ k ] dY k (B .12) 
A similar relationship can be derived for dT by combining B.7 and B.8:

de = 1 ⇢ 2  P + ⇢ 2 ⇢ T (C p C v ) d⇢ + C v dT + N X k=1  h k T ⇢ T ⇢ k ⇢ 2 ⇢ P dY k (B.13)
which, by introducing = C p /C v leads to:

dT =  P ⇢ 2 C v + 1 ⇢ T d⇢ + 1 C v de + N X k=1  T ⇢ T ⇢ k ⇢ 2 ⇢ P C v h k C v dY k (B.14) Appendix B.1. Pure-di↵usion test case
The objective of this test case is to verify that all three methods provide similar results for pure di↵usion, when no artificial dissipation or filtering is employed under transcritical conditions. A one-dimensional gradient between pure oxygen at 100K and gaseous hydrogen at 150K, is initialized at a pressure 

Appendix C. Stabilization approach

The present stabilization method is based on the composition of a highorder scheme and a robust upwind scheme [START_REF] Swanson | On central-di↵erence and upwind schemes[END_REF]. Historically, such methods were developed to ensure stable solution of supersonic flows [START_REF] Roe | Approximate Riemann solvers, parameter vectors and di↵erence schemes[END_REF][START_REF] Van Leer | Towards the ultimate conservative di↵erence scheme IV. A new approach to numerical convection[END_REF]. In simplified notations, the inviscid flux F C on a given cell face can be expressed as:

F C = F high C + ⌫(F low C F high C
), where Practically, in the present solver, the convective flux (per unit area) for any convected quantity is evaluated using the following upwind approach:

F W C, = U W x L , if U W x > 0 , (C.1)
F W C, = U W x R , if U W x < 0 . (C.2)
The formulation for momentum terms is similar and thus not described here.

Note, however, that cross-terms for momentum fluxes require an additional interpolation step. where R dissip is the dissipation residual of the quantity produced by the 1st order accurate upwind scheme. When these terms are re-introduced in the pressure equation, the pressure-based recovers the behavior of the energybased approach and dynamic stability is disrupted by the apparition of spurious 780 pressure oscillations. These pressure source terms can be explicitly formulated as: In both the pressure-based and enthalpy-based approaches, these terms are intentionally removed from the pressure equation to avoid spurious oscillations.

dP dissip ⇢ = ✓ @P @⇢ ◆ ⇢e, ⇢U, ⇢Y k R dissip ⇢ (D.
785

Figure 1 :

 1 Figure 1: Thermodynamic predictions of the Peng-Robinson equation of state for pure oxygen at P = 100bar: (a) density, (b) heat capacity at constant pressure and (c) speed of sound. Predictions of the Peng-Robinson (PR) equation of state (line) are compared to the NIST database (symbols) [68].

Figure 2 :

 2 Figure 2: Thermodynamic sensitivity at elevated pressure for pure oxygen in pressuretemperature space ([60-150] bar and [60-300] K ): (a) density, (b) Jacobian term: (@P/@⇢)⇢e

Figure 3 :

 3 Figure 3: Impact of filtering on the estimation of pressure and temperature in a transcritical case (pure oxygen, 150K < T < 300K and P = 150bar). f is the filter size in grid spacing unit x.

Figure 4 :

 4 Figure4: Impact of filtering on the estimation of pressure and temperature in a temperature range where non-linear e↵ects are not significant (pure oxygen, 500K < T < 1000K and P = 150bar). f is the filter size in grid spacing unit x.
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 31 Energy-based formulation (EB)The energy-based (EB) formulation involves the classical Navier-Stokes system of equations used to transport the conservative variables of density (⇢), momentum (⇢U = ⇢(U x , U y , U z ) T ), species mass fractions (⇢Y k , where k is the index of k th species of the mixture) and total energy (e t = h t p/⇢ = e s +1/2U•U,

  [START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF]. These cases are performed at a pressure of P = 100bar, which is above the critical pressures of oxygen and hydrogen (P O2 c = 50.4bar and P H2 c = 13.0bar). Transcritical conditions are reached by setting the oxygen stream temperature at 100K (below its critical temperature: T O2 c = 154.6K), and the temperature of the hydrogen stream at 150K (above T H2 c = 33.1K). Note that before comparing these approaches, it was verified that they result in the same perditions when no artificial dissipation is necessary for stabilization (Appendix B.1).
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 566 Figure 5: Schematics of the one-dimensional advection test.

Figure 7 :Figure 8 :

 78 Figure 7: Measure in mass-fraction space of (a) error on enthalpy, (b) enthalpy, (c) error in temperature, and (d) temperature taking the EB approach as a reference. Profiles are based on the same dataset presented in Fig. 6, i.e. at t = 20µs.

Figure 9 :

 9 Figure 9: Sod shock in pure oxygen with a pressure ratio of ten-to-one: the sub-figure is a zoom on the shock region. Profiles captured at t = 1ms.

Figure 10 :

 10 Figure 10: Schematics and initial conditions of the vortex-density gradient test case.

  ). More scatter is also observed for the energy-based case due to compressibility e↵ects and the presence of spurious pressure fluctuations.

Figure 11 :

 11 Figure 11: Vortex -density gradient interaction: impact of the EB, PB and HB methods on the instantaneous (t = 2µs) a) pressure, b) flux limiter (limiter = 0: QUICK scheme, limiter = 1: 1st order upwind scheme) and c) temperature fields, with scatter plots of temperature versus mass-fraction of hydrogen presented in d). In figures a) and c), the line is the ⇢ = 500 kg/m 3 isoline.

  ditions are realistic compared to actual devices. The Reynolds number based on the splitter height (h = 0.5 mm) is on the order of 500, 000. No velocity fluctuations are imposed on inlet planes and velocity profiles follow a 1/7 th power law. The splitter is represented by an adiabatic wall condition. Pressure is imposed at the outlet. A sponge layer is employed downstream of x = 20h to eliminate pressure oscillations potentially generated at the outlet. Top and bottom boundaries are symmetries.

Figure 12 :

 12 Figure 12: Mixing layer configuration and computational domain. a) Typical coaxial injector of a liquid rocket engine (the grey frame represents the two-dimensional simulation domain). b) Computational domain dimensions and boundary conditions (h = 0.5 mm).

Figure 13 :

 13 Figure 13: Comparison of density and hydrogen mass-fraction instantaneous fields computed with the three methods once flow dynamics reached steady state.

Figure 14 :Figure 15 :

 1415 Figure 14: Statistical comparisons along one-dimensional transverse segments for oxygen massfraction,density, axial and transverse velocities. Symbols: database from Ruiz et al. [79]. Note: no reference data available for density.

Figure 16 :

 16 Figure16: instantaneous field of limiter intensity used in the stabilization scheme. Only the EB case is reported here as all three methods are using the same limiter.

Figure 17 :Figure 18 :

 1718 Figure 17: Comparisons of pressure mean and rms between the three approaches at di↵erent axial locations.

Figure 19 :

 19 Figure19: Comparisons of temperature mean and rms between the three approaches at different axial locations. Symbols: database from Ruiz et al.[START_REF] Ruiz | Numerical benchmark for high-reynolds-number supercritical flows with large density gradients[END_REF] 

Figure B. 20 :

 20 Figure B.20: Schematics of the one-dimensional di↵usion test.

Figure B. 21 Figure B. 21 :

 2121 Figure B.21 shows the the evolution of keys quantities during the early diffusion transients predicted by the three methods. One can first observe that the three approaches are in good agreement with each other. Slight di↵erences can be detected in the instantaneous pressure profiles. Pressure is evaluated by very di↵erent procedures between the three approaches, and the thermodynamics being very non-linear, these pressure di↵erences are attributed to small numerical deviations. The drift in mean pressure can be explained by the relaxation of energy between the two sides of the gradient (Fig. B.21 (d)). The system being closed and adiabatic, the total energy is conserved as well as mass. An equilibrium analysis shows that at the present conditions, a system containing one percent of hydrogen in volume has an asymptotic pressure of 44bar and an asymptotic temperature of 98K. Present conditions also lead to a fast relaxation of the thermodynamic conditions, which results in significant instantaneous pressure and velocity variations (Fig. B.21 (e)). In Figure B.21 (f), the adiabatic mixing line has been added. Adiabatic mixing is based on the assumption that the enthalpy varies linearly with massfraction, h (T,Y ) = h (T O 2 ,Y O 2 ) +Y H2 (h (T H 2 ,Y H 2 ) h (T O 2 ,Y O 2 ) ). By construction, the adiabatic mixing line shows the thermodynamic state of the mixture if energy and species di↵use at the same rate, which is equivalent to assuming unity Lewis numbers for the considered species. By adding this line to Fig. B.21 (f), one can

Figure C. 22 :

 22 Figure C.22: Data storage in the present staggered formulation in a simplified two-dimensional example.is the vector of transported scalars, Ux and Uy are the velocities in the x-and y-curvilinear directions, respectively.

  method) applied to the other conserved quantities (⇢, ⇢e, ⇢U, and ⇢Y k ) in the pressure equation. The stabilization strategy used in the present work relies on upwinding the convective fluxes in gradient regions (see description in Appendix C). For a given transported quantity , the residual of the convective term can be decomposed into a centered term and a dissipation term. For example, in the case of a one-dimensional configuration with a left-to-right flow, a first order upwind residual (upwinded towards the left) would be written in delta form (for the cell of index i) as:R 1st O = dt V i i (SU ) i+1/2 i 1 (SU ) i 1/2 , (D.1)with dt the time step, V i the volume of the cell of index i, S i+1/2 the surface of the left cell face and U i+1/2 the flow velocity normal to the left surface. This residual can be re-written as:R 1st O = R centered + R dissip ,

such as those used to remove high-frequency oscillations, numerical errors or
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Appendix A. Thermodynamics Jacobians

This appendix is dedicated to deriving the Jacobian terms (@P/@⇢) ⇢e and (@P/@⇢e) ⇢ in the case of a single species mixture.

Starting from the equations of Gibbs-Duhem [START_REF] Reid | The properties of liquids and gases[END_REF] for density ⇢ and energy e for a single species system:

Appendix B. Derivative relationships

This appendix brings details necessary for the derivation of the pressurebased approach presented in Section 3.2. Here, the key derivatives used in the

The flux limiter is incorporated in the definition of L and R , defined here in an one-dimensional context:

One can observe that when ⌫ i 1/2 ( ) = 0 (in smooth regions of the flow), the QU ICK formulation is recovered:

and in gradient zones, ⌫ i 1/2 ( ) = 1, a stable first-order accurate upwind scheme is used:

In practice, switch values are estimated at cell centroids and then interpolated at cell faces:

In the context of supercritical flows with large density gradients, the main challenge is to define an optimal switch ⌫ that detects under-resolved region of the flow. Jorgenson and Turkel have compared the di↵erent existing switching approaches and have proposed a modified formulation of the van-Leer and van-Albada switches that present the best properties for hyperbolic problems [START_REF] Jorgenson | Central Di↵erence TVD Schemes for Time Dependent and Steady State Problems[END_REF].

Lacaze et al. [START_REF] Lacaze | Modeling high-density-gradient flows at su-1060 percritical pressures[END_REF] recently proposed a new sensor maintaining better symmetry properties. This switch is used in the present study.

Appendix D. Residual terms of the stabilization scheme in the pressure equation

In the PB and HB approaches, pressure oscillations are eliminated by removing the terms resulting from the artificial dissipation (from the stabilization