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SUMMARY

Crack nucleation has been the subject of important contributions in the two last decades. However, it seems that few
attention has been granted to the case of saturated porous media. This is the question adressed in the present paper
which is devoted to nucleation in traction mode. From a physical point of view, nucleation is a sudden phenomenon,
so that the material response is both adiabatic and undrained. In the spirit of the variational approach, the nucleated
crack is viewed as the final state of a region of space in which the material undergoes a full damage process. In
traction mode, the opening of a saturated crack in undrained condition induces a drop of fluid pressure. In case of low
fluid compressibility, the presence of the fluid delays the brittle failure usually associated with nucleation, as long
as the fluid pressure remains above the saturation vapour pressure. Nucleation is therefore possible only if a partial
vaporization of the fluid takes place. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the early works of Griffith [1], the presence of cracks in mechanical structures has been recognized as

a scientific challenge of paramount importance. It has focused the attention of very numerous researchers.

The fundamental aspects of the question, including strain and stress singularities and propagation are now

presented in many reference papers and books (e. g. [2], [8], [9]). The prediction of the effect of microcracks

on the linear elastic stiffness was also addressed in the context of length scale transition techniques based

on various mathematical crack models. This includes, on one hand, the Griffith crack model in which the

crack is a line in 2D or a surface in 3D (e.g. [10]) and, on the other hand, the elliptic or ellipsoidal crack

models (e.g. [11], [12]). These two model types yield consistent results as regards the prediction of effective

properties of cracked materials (see [3]). This result is extended to the rate of energy release at section 3.2.

More recently, the issue of the nucleation of cracks has received important contributions. By definition, the

nucleation is the transition from the sound material to the cracked material, when a critical loading level is

reached. By nature, it can be viewed as the propagation of a crack, starting from a length equal to 0, but in

a very short period of time. In the variational approach (e.g. [5], [6]), the crack is viewed as the final state

of some region of the structure in which the material has reached a full damage level. The determination

of the loading required for the crack nucleation and of the geometry of the nucleated crack is achieved by

a double variational principle concerning the displacement on the one hand and the damage on the other

hand. The energy function to which this variational procedure is applied comprises a term accounting for

damage gradient in the medium. This approach requires by nature to follow the evolution of the system in a

step-by-step procedure. In contrast, the double criterion first proposed in [14] does not go through the time

process leading to nucleation. The emphasis is put on the fact that the propagation that produces the crack

is not stable in the sense that the crack length increases under constant loading as long as it has not reached

the nucleation length, if the latter exists. Therefore, the idea is to deal with nucleation as a discontinuity
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2 L.DORMIEUX & AL.

with respect to time in the state of the system. It relies upon an energy balance between the initiation of the

nucleation and its end which includes a variation of the potential energy δEp, of the kinetic energy δK and

a dissipation GcδS proportional to the created crack area δS (Gc is the fracture energy). Observing that the

increment of the kinetic energy is necessarily a positive number if the initial state is at equilibrium, a very

simple necessary condition of nucleation is derived in the form of an energy criterion:

Rinc = −
δEp

δS
≥ Gc (1)

Although the expression in the lefthand side evokes the classical differential rate of energy release

Rdiff = −∂Ep/∂S

which appears in the issue of crack propagation, it is important to notice that the quantity at stake here is

an incremental rate and not a derivative. In [14], it is suggested that (1) must be combined with a stress

criterion to be fulfilled in the area where the crack is nucleated in order to determine the critical loading

level of nucleation as well as its extent. [15] recently proposed an alternative to this stress criterion.

Observing that the nucleation of a stable crack requires, by nature, that the loading level does not fulfill the

condition of propagation of the nucleated crack, it is argued that the geometry of the nucleated crack should

correspond to a maximum of the incremental rate of energy release viewed as a function of a characteristic

geometrical crack parameter (typically the length in plane strains, see figure 1). The critical loading level is

then determined from the condition that this maximum is equal to Gc, replacing in (1) the inequality by an

equality. In figure 1, the blue curve is above the red one as long as ℓ < ℓ∗, meaning that the condition of

propagation is fullfilled: no stable crack can be observed. In contrast, if ℓ > ℓ∗, the blue curve is below the

red one, meaning that no propagation can take place.

The variational approach as well as the energy criterion have been illustrated and provided valuable

results in a number of applications. Nevertheless, the issue of nucleation clearly remains a subject of

intensive research. As regards the possible implementation of these approaches in the case of multiphase

geomaterials, the poromechanical coupling appears as the first issue to be considered. More explicitely,

the question is the role of the fluid in the nucleation process. [15] argued that nucleation being by nature

a sudden phenomenon, the process should be considered in adiabatic (no heat flow) and undrained (no

fluid mass flow) conditions. In the framework of thermoporoelasticity, this implies to characterize the

constitutive behavior of the medium in which the nucleated crack is embedded by an adiabatic undrained

stiffness tensor, so that formally a linear relationship between (total) stress and strain is retrieved. However,

the question of the role of the fluid is by far not fully answered: it remains to clarify the essential issue of

the boundary conditions which have to be considered on the lips of the nucleated crack.

Gc

ℓ

Rdiff(ℓ)

Rinc(ℓ)

ℓ∗

Figure 1. Characterization of the nucleated crack length ℓ∗: differential and incremental rates of energy release.

At first sight, a straightforward extension for the nucleation of a Griffith crack in an undrained medium

could be to prescribe an undrained behavior of the constitutive material while keeping the same kind of

boundary conditions on the crack lips, as for a non porous medium. For instance, in traction mode, the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
Prepared using nagauth.cls DOI: 10.1002/nag



CRACK NUCLEATION IN SATURATED POROUS MEDIA 3

lips of the nucleated crack would be free of stress. Clearly enough, if this is adequate, the nucleation of

crack in saturated porous materials is not an issue at all, in so far as it strictly amounts to nucleation in non

porous media, with one exception, namely the use of the undrained stiffness tensor instead of the drained

one. In fact, such an extension is a bit hasty: The model confuses the physical nature of a crack with its

mathematical model as a surface (or a line in plane strains) which, by nature, has no volume and as such,

does not contain any material phase (neither solid nor fluid). In contrast, if the crack can be viewed as a

material system in full damage state, as highlighted in the damage gradient models, then the solid phase has

lost its stiffness but the presence of a fluid implies that a pressure is a priori acting at the boundary of the

crack, i.e. on the crack lips. The key question as regards the determination of the rate of energy release is

the value of this fluid pressure. This is, in short, the subject addressed in the present paper.

Section 2 briefly presents the thermodynamics of nucleation in adiabatic and undrained conditions. In the

line of [14] and [15], a criterion of nucleation based on the incremental rate of energy release is proposed.

In order to provide a reference in view of forthcoming comparison with the saturated porous case, the non

porous case is discussed first at section 3. Section 4 focuses on the poromechanical coupling.

2. CRITERION FOR NUCLEATION

Let Ω denote the mechanical system in which possible crack nucleation is considered. The geometry of the

crack is described by a formal parameter ℓ. This is for instance the length in 2D or the area in 3D. It controls

the energy Gcℓ that is dissipated during nucleation.

The created crack C(ℓ) is viewed as a material system since it is the residual state of a subdomain of Ω in

which the material undergoes a full damage process at the end of which it has lost its stiffness. As already

mentioned, this description is also underlying the variational approach (e.g. [5]). As compared to its length,

C(ℓ) possesses some non zero thickness, though the latter is infinitesimal. It is therefore relevant to define

its thermodynamical and mechanical variables and functions, such as strain, stress, stiffness tensors and

internal energy. From a mathematical point of view, the 2-dimensional description of C(ℓ) by a surface in

3D (resp. 1-dimensional in 2D) is of course the most convenient. It should however be kept in mind that

this is only a mathematical idealization. For instance, nucleation viewed as a full damage process removes

the elastic stiffness of the solid inside C(ℓ) but not the heat capacity, so that the material keeps its ability to

store internal energy. Besides, the fluid phase in C(ℓ) has a finite compressibility. In undrained conditions,

it therefore contributes to the spherical part of the undrained stiffness tensor, and this contribution is not

subjected to damage.

Let Ω(ℓ) = Ω \ C(ℓ) denote the complementary of the crack in Ω. By definition, as long as ℓ̇ = 0, Ω(ℓ)
undergoes reversible evolutions only.

Crack nucleation is regarded as a sudden phenomenon as compared to the characteristic times of fluid and

heat diffusion (see e.g. [16]). Fluid and heat flow are therefore neglected at the time scale of nucleation.

Apart from this point, the thermodynamics of nucleation follows a standard reasoning recalled hereafter

(see e.g. [3],[8]) and nucleation could be defined as an adiabatic undrained crack propagation from 0
to ℓ. However, adiabatic conditions lead to select the internal energy rather than the free energy for the

formulation of the thermodynamics principles.

The starting point is the first principle: In adiabatic conditions, it states that the mechanical energy provided

to the system Ω is transformed into internal energy U and kinetic energy K:

U̇ + K̇ = Pe (2)

For simplicity, we assume that the mechanical loading L is defined by body forces F , prescribed surface

forces λT (t)T
0 on ∂ΩT , prescribed displacements λξ(t)ξ

0 on ∂Ωξ, where λT (t) and λξ(t) are given scalar

time functions while the boundary of the material system is ∂Ω = ∂Ωξ ∪ ∂ΩT :

Pe =

∫

Ω

F · ξ̇ dV + λT (t)

∫

∂ΩT

T 0 · ξ̇ dS + λ̇ξ(t)

∫

∂Ωξ

T · ξ0 dS

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
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4 L.DORMIEUX & AL.

The velocity is the sum of the contribution of the crack nucleation (under steady loading conditions) and

that of the loading increment ξ̇|ℓ (under constant crack length):

ξ̇ =
∂ξ

∂ℓ |L
ℓ̇ + ξ̇|ℓ

Accordingly, the internal (resp. kinetic) energy is the sum of two terms, namely(∂U/∂ℓ)|Lℓ̇ (resp.

(∂K/∂ℓ)|Lℓ̇ and U̇|ℓ (resp. K̇|ℓ), which correspond to the contributions of crack nucleation and of the loading

increment:

U̇ =
∂U

∂ℓ |L
ℓ̇+ U̇|ℓ ; K̇ =

∂K

∂ℓ |L
ℓ̇+ K̇|ℓ

Similarly, the mechanical work is splitted into two terms Pe|L and Pe|ℓ. Under steady loading conditions,

the mechanical power is due to crack propagation only:

Pe|L =
∂Φ

∂ℓ |L
ℓ̇ with Φ =

∫

Ω

F · ξ dV + λT (t)

∫

∂ΩT

T 0 · ξ dS (3)

where Φ is the potential of the given loads. In turn, at constant crack length, the standard principle of virtual

work readily yields:

Pe|ℓ = K̇|ℓ +

∫

Ω

σ : ε̇|ℓ dV

where σ and ε denote the local stress and strain fields. Let u denote the volume density of internal energy.

By nature, it is a function of the strain and of the entropy density s. However, at constant crack length, the

evolution being reversible and adiabatic, it is also isentropic. The strain work σ : ε̇|ℓ is therefore equal to

u̇|ℓ and the corresponding mechanical work reads:

Pe|ℓ = K̇|ℓ + U̇|ℓ (4)

Eventually, the combination of (2) and (3) yields:

∂

∂ℓ |L
(U − Φ +K) = 0 (5)

To this stage, it is important to observe that U is the total internal energy of the material system. Let U and

UC respectively denote the internal energy of Ω(ℓ) and of C(ℓ). As an extensive quantity, the total internal

energy U is the sum U + UC . (5) now takes the form:

−
∂

∂ℓ |L
(U − Φ+K) =

∂UC

∂ℓ |L
(6)

It remains to integrate the above equation w.r.t. ℓ, under the constant loading L, over the process of

nucleation. Let Up denote the potential energy U − Φ. recalling that the initial state is an equilibrium (no

kinetic energy), one obtains:

Up(0)− Up(ℓ) = UFD +K(ℓ) (7)

where UFD = UC(ℓ)− UC(0) is the energy that was necessary for the nucleation. Due to adiabatic and

undrained conditions, it is stored in the crack at the end of nucleation. This highlights the difference between

the free and internal energies: the nucleated crack has no free energy but stores in adiabatic conditions the

heat dissipated by the full damage process. (7) appears as the adiabatic counterpart of the isothermal energy

balance derived in [14]. It states that the energy release of the bulk is the sum of the energy dissipated in the

nucleation and of kinetic energy. The latter being a positive quantity, a necessary condition for nucleation

reads:

Up(0)− Up(ℓ) ≥ UFD

If we assume that the energy necessary for nucleation is proportional to the created crack surface ℓ
(UFD = Gcℓ), the criterion for nucleation takes the form:

Up(0)− Up(ℓ)

ℓ
≥ Gc (8)

Again, the above criterion and that derived in [14] look very much alike (see (1)), the only difference being

that the internal energy has replaced the free energy. In the use of (8), one should keep in mind its status of

necessary condition for the nucleation of a crack with surface (resp. length) ℓ.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
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CRACK NUCLEATION IN SATURATED POROUS MEDIA 5

3. APPLICATION IN THE NON POROUS CASE

3.1. energy release rate for a spheroidal (resp. elliptic) crack

For the sake of simplicity and for comparative purposes, let us start with the case of a linear elastic non

porous material. The isothermal and adiabatic stiffness tensors are Cθ
0 and Cad

0 respectively. In this section,

we consider the possibility of the nucleation of a flat ellipsoidal (resp. elliptic in 2D) crack E . This means

that we examine a damage process at the end of which the material within the subdomain E is fully damaged.

Introducing a formal damage parameter d, the stiffness tensor Cad(d) therefore starts from Cad
0 and ends up

with 0. Accordingly, the stress state in E at the end of this process is 0. We shall prove at section 3.2 that

this crack model is entirely consistent with the prediction obtained with the Griffith crack model.

The nucleation takes place in an initial state under prescribed asymptotic boundary conditions on the

displacement field ξ. The natural state (stress equal to 0, uniform temperature) is taken as reference state:

ξ ∼
|z|→∞

E · z (9)

where E is a given symmetric strain tensor. It is assumed that the temperature is uniform and the same as in

the reference state. Accordingly, the initial stress state (i.e. prior to nucleation under uniform strain E) is:

σ0 = Cθ
0 : E

According to section 2, the energy release in this process is the relevant quantity. The elastic energy is not

bounded since the medium is infinite. This difficulty is avoided by considering the internal energy UR stored

in the subdomain BR defined by |z| ≤ R and z /∈ E , and by letting R → ∞. Note that the boundary of BR

comprises the sphere (resp. circle in 2D) SR and the boundary ∂E of E . The energy release rate is then the

limit:

lim
R→∞

UR(0)− UR(ℓ)

ℓ

In the above limit, UR(0) is the energy of the domain BR prior to nucleation and reads :

UR(0) =
|BR|

2
E : Cθ

0 : E

where |BR| is the measure (volume in 3D or area in 2D) of BR. In turn, UR(ℓ) is the internal energy stored

in BR after the nucleation process. In view of its derivation, let δε (resp. δξ) denote the perturbation of the

strain (resp. of the displacement) induced by nucleation. The total strain ε is therefore

ε = E + δε

The strain perturbation is related to the post-nucleation stress state σ by the adiabatic linear elastic stiffness

tensor :

σ = σ0 + Cad
0 : δε

We note that δε → 0 and δξ → 0 when |z| → ∞ since the strain and displacement at infinity are prescribed.

The strain field δε is defined outside E but can be smoothly extended into E by the solution δεE to the

Eshelby problem depicted at figure 2 (see Appendix 7.2). By application of (60) in which E is 0, τ E is 0,

CE is 0, C is Cad
0 and τ is σ0, it is found that:

δεE = (I − Pad
0 : Cad

0 )−1 : Pad
0 : σ0 (10)

where I is the fourth order identity tensor and Pad
0 is the Hill tensor of E embedded in the linear elastic

medium with stiffness Cad
0 and we have (energy change in adiabatic evolution with prestress):

UR(ℓ) = UR(0) +

∫

BR

σ0 : δε+
1

2
δε : Cad

0 : δε dV (11)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
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6 L.DORMIEUX & AL.

δξ → 0
at ∞

σ = 0

∂E

σ = σ0 + Cad
0 : δε

Figure 2. The post-nucleation mechanical problem in adiabatic conditions

which is more conveniently put in the form:

UR(ℓ) = UR(0) +

∫

BR

1

2
δε : σ0 dV +

∫

BR

1

2
δε : σ dV (12)

We now transform the integrals in (12) into boundary integrals. Observe that the stress vector σ · n is 0 on

the boundary of E , that is, on the internal boundary of BR. This yields:

∫

BR

1

2
δε : σ dV =

∫

SR

1

2
δξ · σ · n dS (13)

where n is the outwards (w.r.t. BR) unit normal at any point on SR. Similarly, we have:

∫

BR

1

2
δε : σ0 dV = −

|E|

2
δεE : σ0 +

∫

SR

1

2
δξ · σ0 · n dS (14)

The fact that δξ → 0 at infinity suggests that the limit at R → ∞ of the boundary integrals on SR is 0. This

point can be readily confirmed in plane strains by means of complex analysis [3]. In this case, it is therefore

concluded that the energy release is:

lim
R→∞

UR(0)− UR(ℓ) =
|E|

2
δεE : σ0

In other words, the energy release rate is:

U(0)− U(ℓ)

ℓ
=

|E|

2ℓ
δεE : σ0 (15)

The interest of (15) lies in the fact that a simple analytical expression can be derived when the aspect ratio

of the spheroidal (resp. elliptic) domain E tends to 0, as required in view of a crack model. Let start with

the flat spheroidal model, in which a is the radius and c the axial half-length. The aspect ratio is X = c/a.

In the 3D case, the geometrical parameter ℓ is the area of the crack: ℓ = πa2. The important feature is the

existence of the limit (see e.g. [3]):

Tad = lim
X→0

X(I− Pad
0 (X) : Cad

0 )−1

This means that the leading term in the expression (10) of δεE is O(1/X). The tensor Tad satisfies the minor

but not the major symmetry conditions. A simple analytical expression of its coefficients is available for

instance in the isotropic case (other coefficients are 0, e3 denotes the direction normal to the crack plane):

T ad
3311 =

4νad0 (1− νad0 )

π(1− 2νad
0
)

; T ad
3333 =

4(1− νad0 )2

π(1− 2νad
0
)

; T ad
2323 =

2(1− νad0 )

π(2− νad
0
)

(16)

T ad
3322 = T ad

3311 ; T ad
1313 = T ad

2323
(17)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
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CRACK NUCLEATION IN SATURATED POROUS MEDIA 7

where νad0 is the Poisson coefficient of the material with stiffness tensor Cad
0 . Introducing |E| = 4πa3X/3

and (10) into (15), the limit of the rate of energy release when X → 0 reads:

U(0)− U(ℓ)

ℓ
=

2a

3
σ0 : Tad : Pad

0 : σ0 (18)

For example, consider the isotropic loading case with σ0 = Σ0δ. The above expression reads:

U(0)− U(ℓ)

ℓ
=

2a

3π

Σ2
0

Mo

+O(X) where Mo =
3kad0 + µad

0

3kad
0

+ 4µad
0

µad
0 (19)

In turn, in the plane strain 2D case, the flat elliptic crack is characterized by the half-opening c, the half-

length a and the aspect ratio X = c/a. The definition of tensor Tad is identical. In the isotropic case, the

non-zero coefficients are (e2 denotes the direction normal to the crack plane):

T ad
2211 =

2νad0 (1− νad0 )

1− 2νad
0

; T ad
2222 =

2(1− νad0 )2

1− 2νad
0

; T ad
1212 =

1− νad0
2

(20)

Now, the geometrical parameter ℓ is the large axis length 2a and |E| = πa2X . It is found that:

U(0)− U(ℓ)

ℓ
=

πa

4
σ0 : Tad : Pad

0 : σ0 (21)

From a mathematical point of view, the fact that the limit when X → 0 of the rate of energy release is not 0

(while |E| → 0) is intrinsically related to the property δεE = O(1/X).
If the difference between the isothermal and adiabatic stiffness is disregarded, the superscript ad can be

omitted and the leading term in the quantity σ0 : T : Pad
0 : σ0 in (18) and (21) also reads:

σ0 : T : P0 : σ0 = E : C0 : T : E

This approximation is made in the two next sections 3.2 and 3.3.

3.2. Comparison with the Griffith crack model

Let consider plane strain conditions. The purpose of this section is to derive the energy release in the

nucleation of a rectilinear Griffith crack of length ℓ in mode I from Irwin’s formula:

−
∂U

∂ℓ
=

K2

I

Y0

(1− ν20) (22)

where KI is the stress intensity factor and Y0 the Young’s modulus. Clearly enough, the geometrical model

of the crack and the methodology are now completely different from the concept presented at section 3.1.

The aim is to retrieve the result (21) in order to show the consistency of the elliptic crack model with the

classical Griffith crack model as regards the prediction of nucleation.

To do so, an asymptotic stress state σ∞ compatible with plane strain conditions is applied at infinity:

σ∞ = σ∞ (e1 ⊗ e1 + e2 ⊗ e2 + 2ν0e3 ⊗ e3)

The associated strain at infinity is

E = (1 + ν0)(1− 2ν0)
σ∞

Y0

(e1 ⊗ e1 + e2 ⊗ e2) (23)

On the one hand, if the previous elliptic crack model is considered, the energy release rate is derived from

(21) in which (20) and (23) are introduced:

U(0)− U(ℓ)

ℓ
=

πℓσ2
∞

4Y0

(1 − ν20) (24)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
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8 L.DORMIEUX & AL.

On the other hand, let us consider the Griffith crack model and a rectilinear crack of length ℓ and normal e3.

The stress intensity factor KI is σ∞

√
πℓ/2, so that (22) yields:

−
∂U

∂ℓ
=

σ2
∞πℓ

2Y0

(1− ν20 )

It is readily seen that (24) is retrieved by integration of the above equation w.r.t. ℓ. This confirms the

consistency of the usual crack description (Griffith model) with a concept of full damage within a flat

elliptic domain. As far as energy balance is concerned, this result validates the description of nucleation as

the brutal transition from a sound to a fully damage state in a thin region of space which is going to become

the crack. It also motivates the extension of such an approach of nucleation to saturated porous media.

3.3. Stability analysis

3.3.1. Constitutive equations of damage theory

ξ → E · z
at ∞

σ = C(d) : ε

∂E

σ = C0 : ε

Figure 3. Damage process under prescribed asymptotic displacements

As a possible alternative to the reasoning based on the rate of energy release (15), we examine in this

section the possibility to simulate the damage process in E leading to the crack (see figure 3). To do so, one

first needs a damage model providing the stiffness tensor as a function C(d) decreasing from C0 to 0, as the

damage parameter d increases (for instance) from 0 to 1. Then, the damage criterion is written as a bound

on the thermodynamic force associated with damage (e.g. [3],[7]):

ḋ





= 0 if − 1

2
ε : C′(d) : ε < gc

≥ 0 if − 1

2
ε : C′(d) : ε = gc

(25)

in which gc is the critical energy density. Thus, the damage criterion provides a link between the local strain

and the corresponding damage parameter. Finally, the time derivative of this damage criterion relates the

strain and damage rates : (
1

2
ε : C′′(d) : ε

)
ḋ+ ε̇ : C′(d) : ε = 0 (26)

Introducing (26) into the time derivative of the constitutive equation σ = C(d) : ε provides the expression

of the tangent stiffness tensor which relates the stress and strain rates: σ̇ = Ct : ε̇. It depends on the damage

rate ḋ:

ḋ > 0 ⇒ Ct = C(d) − 2
(C′(d) : ε)⊗ (C′(d) : ε)

ε : C′′(d) : ε
(27)

ḋ = 0 ⇒ Ct = C(d) (28)

In the present case, uniform damage is assumed within the domain E , while d = 0 outside of E (C(0) = C0).

The question is twofold: we have to relate the damage parameter to the loading history E(t) and to discuss

the stability of the response of the system. In fact, we shall see in the next section that the stability condition

is never achieved in the non porous case. This is consistent with a brittle failure at a critical loading level

usually associated with the concept of nucleation. In contrast, the saturated case will exhibit a different

behavior.
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CRACK NUCLEATION IN SATURATED POROUS MEDIA 9

3.3.2. Application of Hill’s criterion

The displacement, strain and damage fields being given everywhere in the structure, the question is to

determine whether this state of the structure is a stable equilibrium or not. Hill’s criterion of stability was

originally introduced in the framework of plasticity ([17]). This original formulation is readily adapted to the

framework of damage ([15]) and yields a formally identical criterion of stability. In the present problem, the

idea is to consider a virtual perturbation δ̂ξ of the displacement field, which vanishes at infinity (kin. adm.

with 0). If this perturbation could take place, it would be associated with a necessarily positive increment of

kinetic energy. This would imply ∫

Ω

δ̂σ : δ̂ε dV ≤ 0

Conversely, in order to ensure that the considered state is a stable equilibrium, a sufficient condition is that

δ̂ξ → 0
at ∞

δ̂σ = Ct : δ̂ε

∂E

δ̂σ = C0 : δ̂ε

Figure 4. Perturbation of the current state

the above inequality is never satisfied. In other words, Hill’s stability criterion thus reads:

(∀ δ̂ξ k.a. 0)

∫

Ω

δ̂σ : δ̂ε dV > 0 (29)

In (29), δ̂σ and δ̂ε are related by the state equation:

δ̂σ = Ct : δ̂ε

where the expression of Ct is given in (27) and (28), depending on the damage rate. The criterion

requires to consider all relevant perturbation fields. In practice, it seems reasonable to assume a uniform

perturbation strain δ̂εE inside the subdomain E . Up to a rigid body motion, the corresponding displacement

is δ̂ξ = δ̂εE · z. Outside of E , any smooth extension of the displacement meeting the boundary condition

δ̂ξ = δ̂εE · z on ∂E and vanishing at infinity (i.e. kin. adm. with δ̂εE) must be considered (see figure 4). (29)

now reads:

(∀δ̂εE 6= 0)(∀ δ̂ξ k.a. δ̂εE)

∫

Ω\E

δ̂ε : C0 : δ̂ε dV + |E|δ̂εE : Ct : δ̂εE > 0 (30)

At this stage, it is instructive to consider the solution ξel (resp. ǫel) of the auxiliary problem of elasticity

(see figure 5) defined on Ω \ E by the uniform stiffness tensor C0 and the boundary conditions ξel → 0 at

infinity and ξel = δ̂εE · z on ∂E . The principle of minimum potential energy states that:

(∀δ̂εE 6= 0)(∀ δ̂ξ k.a. δ̂εE)

∫

Ω\E

δ̂ε : C0 : δ̂ε dV ≥

∫

Ω\E

ǫel : C0 : ǫel dV (31)

The uniform stress δ̂σE acting on ∂E that induces the strain δ̂εE in the auxiliary problem is again derived

from (60):

δ̂εE = −(I − P0 : C0)
−1 : P0 : δ̂σE (32)

The principle of virtual work readily shows that:
∫

Ω\E

ǫel : C0 : ǫel dV =

∫

∂E

ξel · δ̂σE · n dS = −|E|δ̂σE : δ̂εE
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10 L.DORMIEUX & AL.

ξ → 0
at ∞

δ̂εE , δ̂σE

∂E

σ = C0 : ǫ

Figure 5. An auxiliary elasticity problem: elastic solution induced in Ω \ E by uniform strain δ̂εE or stress δ̂σE inside
E

Combining (31) and (32) with the above result yields:

(∀δ̂εE 6= 0)(∀ δ̂ξ k.a. δ̂εE)

∫

Ω\E

δ̂ε : C0 : δ̂ε dV ≥ |E|δ̂εE : (P−1

0
− C0) : δ̂εE

Eventually, one comes up with the following lower bound:

(∀δ̂εE 6= 0)(∀ δ̂ξ k.a. δ̂εE)

∫

Ω\E

δ̂ε : C0 : δ̂ε dV + |E|δ̂εE : Ct : δ̂εE ≥ |E|δ̂εE :
(
P−1

0
− C0 + Ct

)
: δ̂εE

(33)

the equality in (33) being reached for δ̂ξ = ξel. Comparing to (30), it is concluded that Hill’s criterion

reduces to the positive definiteness of the tensor P−1

0
− C0 + Ct:

(∀δ̂εE 6= 0) δ̂εE :
(
P−1

0
− C0 + Ct

)
: δ̂εE > 0 (34)

This conclusion can be made explicit in the case of an isotropic solid phase. We herein consider a class of

isotropic damage models in which C(d) = 3k(d)J + 2µ(d)K with:

k(d)

k0
=

µ(d)

µ0

= f(d) with f(d) =
1−Qd

1 +Q′d
(35)

with Q, Q′ > 0. Considering the Voigt matrix of P−1

0
− C0 + Ct (see section 7.1), a negative eigenvalue

associated with a strain mechanism of mode I is readily identified:

λI = −(k0 +
4

3
µ0)

Q

Q′
with eigenvector δ̂ε = e3 ⊗ e3

In the non porous case, this proves that mode I nucleation of crack cannot be modelled by a stable damage

process in a flat spheroid. We shall see that a different conclusion can be drawn in the saturated porous case.

4. THE SATURATED POROUS MEDIUM

For the sake of brevity and without loss of generality, we now consider the three-dimensional case only.

4.1. A first expression of the rate of energy release

Let us now adapt the developments of section 3.1 to the saturated case. The natural state (pore pressure and

stress field equal to 0) is taken as a reference. In the initial state prior nucleation, the strain field ε, the pore

pressure and the temperature (same as in the reference state) are uniform, respectively equal to E, p0 and

T0. The initial stress field is uniform as well:

σ0 = C
d,θ
0

: E − p0B
θ
0
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CRACK NUCLEATION IN SATURATED POROUS MEDIA 11

in which C
d,θ
0

(resp. Bθ
0 ) is the stiffness tensor in both drained and isothermal conditions (resp. the Biot

tensor in isothermal conditions). In turn, the strain perturbation is related to the post-nucleation stress state

σ by the adiabatic undrained linear elastic stiffness tensor C
u,ad
0

(see section 7.3.2):

σ = σ0 + C
u,ad
0

: δε

Note that the (undrained) nucleation induces a pore pressure change everywhere. In particular, the pore

pressure inside E varies from the initial value p0 to an a priori unknown value pE . The expression of the

internal energy (including the contribution of both the solid and fluid phases) is identical to (11) except for

the fact that Cad
0 is replaced by C

u,ad
0

(see (70)). Therefore, (12) is not modified. But the great difference

lies in the fact that the stress vector σ · n on the internal boundary of BR (which is ∂E) is not 0 but is equal

to −pEn. Indeed, since the fully damaged material that remains in the post-nucleation state has no stiffness

(by definition), the stress state inside E is the spherical stress tensor −pEδ. This first impacts the expression

of the rate of energy release: While (14) is still valid, (13) is now replaced by:

∫

BR

1

2
δε : σ dV =

|E|

2
δεE : (pEδ) +

∫

SR

1

2
δξ · σ · n dS (36)

Assuming as before that the limit when R → ∞ of the integral on the external boundary SR is 0, it appears

that (15) is replaced by
U(0)− U(ℓ)

ℓ
=

|E|

2ℓ
δεE :

(
σ0 − pEδ

)
(37)

Again, from a strictly mathematical point of view, the existence of a non zero rate of energy release

(remember that |E| → 0) requires the condition δεE = O(1/X).
We are now left with the determination of the two unknown quantities: the perturbation strain δεE on the

one hand, the post-nucleation pore pressure pE on the other hand, which are obviously strongly coupled to

one another.
δξ → 0

at ∞

−pEδ

∂E

σ = σ0 + C
u,ad
0

: δε

Figure 6. The post-nucleation mechanical problem in both undrained and adiabatic conditions

A first aspect of this coupling is rather mathematical: the perturbation strain δεE in E can be derived as the

solution to the Eshelby problem depicted at figure 6 as a function of σ0 and of the post-nucleation pore

pressure pE . The boundary conditions at infinity prescribe that the asymptotic perturbation displacement

is 0. As already stated, the stress state inside E is the spherical stress tensor −pEδ. It follows that δεE is

obtained from (60) in which E is 0, τ E is −pEδ, CE is 0, C is C
u,ad
0

and τ is σ0:

δεE = (I − P
u,ad
0

: C
u,ad
0

)−1 : P
u,ad
0

:
(
σ0 + pEδ

)
(38)

In the above equation, P
u,ad
0

is the Hill tensor of E embedded in the linear elastic medium with stiffness

C
u,ad
0

. The second mathematical equation between the two unknowns δεE and pE will now be provided by

the state equation of the fluid.

4.2. The thermoporomechanical coupling

The nucleation of a crack modelled as a fully damaged zone is expected to induce temperature changes

as well as volume and fluid pressure changes. These are the various sides of the thermoporomechanical
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12 L.DORMIEUX & AL.

coupling at stake.

Let us begin with the thermomechanical coupling: If we consider the nucleation as an adiabatic

phenomenon, the heat produced by the damage process cannot diffuse in the medium at this time scale

and is stored in the fully damaged zone E in the form of internal energy. This implies a temperature increase

θ which is expected to increase the pressure in the fluid filling the pore space of E .

We now consider the poromechanical coupling: nucleation in traction mode a priori induces a crack opening

which is associated with a volume increase of the subdomain E . In undrained conditions, E behaves as a

closed system (no fluid mass exchange). We therefore expect that the volume increase will yield a decrease

of the fluid pressure.

We observe that the temperature change on the one hand, and the volume change on the other hand have

antagonist effects on the fluid pressure. In fact, temperature, volume and fluid pressure are related in the

first state equation of the fluid (see (65)). More precisely, let us consider the tangent behavior near the initial

state of the fluid (i.e. prior to nucleation). It relates the fluid pressure pE to the post-nucleation fluid volume

V f and the temperature change θ:

pE = p0 − kf

(
V f − V f

0

V f
0

− 3αfθ

)
(39)

In the above equation, V f
0

is the initial volume of the fluid in E , at initial fluid pressure p0, kf is the

isothermal fluid compression modulus and αf its thermal expansion coefficient. Vf is the current volume

of the same fluid mass. Since undrained conditions hold, Vf is also the current pore volume. The volume

change V f − V f
0

is therefore proportional to the Lagrangian porosity change (see section 7.3.1):

V f − V f
0

V f
0

=
φ− φ0

φ0

It is therefore concluded from a combination of (39) and of the last equation of (62) that:

pE = p0 −M
(
B : δεE + Lθ

)
(40)

where φ0 is the initial porosity and M is the Biot modulus (see section 7.3.2):

M =
kf/φ0

1 +
kf/φ0

N

In the framework of the assumption of stiff solid phase (see section 7.3.1), it is shown that B = δ and

L = −3α. (40) then reduces to

pE = p0 −M
(
tr δεE − 3αθ

)
(41)

4.3. A model neglecting the thermal effect

As a first attempt, it is assumed in the sequel that the effect of the temperature increase on the post-nucleation

pressure is negligible. This is, for instance, the case if the medium has a great thermal inertia (i.e. a large heat

capacity). In addition, the difference between adiabatic and isothermal stiffness tensors is also neglected and

the upper scripts “θ” or ”ad” are therefore omitted:

C
u,ad
0

≈ C
u,θ
0

≈ Cu
0 = Cdr

0 +Mδ ⊗ δ

A combination of (38) and (41) (with θ → 0) yields:

δεE = (I − Pu
0 : Cdr

0 )−1 : Pu
0 : (σ0 + p0δ) (42)

in which it is emphasized that the Hill tensor Pu
0 refers to the undrained stiffness Cu

0 and not to Cdr
0 . This

makes a very important difference as compared to (10). Indeed, we have previously related the existence of

a rate of energy release of order O(X0) to the property δεE = O(1/X). However, it is found that

(
(I − Pu

0 : Cdr
0 )−1 : Pu

0

)
3333

=
1

M
+O(X) ;

(
(I − Pu

0 : Cdr
0 )−1 : Pu

0

)
33ii

= O(X) (i = 1, 2) (43)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)
Prepared using nagauth.cls DOI: 10.1002/nag



CRACK NUCLEATION IN SATURATED POROUS MEDIA 13

We therefore draw an a priori surprising conclusion: at first sight, it seems that a traction in the direction e3
(mode I) is not expected to provide a rate of energy release meeting the necessary condition for nucleation.

Let us consider for simplicity a loading of the form E = Eδ associated with the spherical stress σ0 = Σ0δ

(Σ0 = 3kdr0 E − p0). In the nucleation process, the stress inside the subdomain E starts with the initial value

σ0 and ends up with −pEδ. However, introducing (42) into (41) (with θ → 0) yields:

pE = −Σ0 +O(X) ⇒ σ0 + pEδ = O(X) (44)

In other words, the stress state inside (as well as outside) E does not vary in the nucleation process, at the

leading order in X , i.e. O(X0). This is the reason why it induces neither large strain nor energy release.

More precisely, it is found that;

U(0)− U(ℓ)

ℓ
=

4aX

3M
Σ0(Σ0 + p0) +O(X2) (45)

which should be compared to (19). The order O(X) in the expression of σ0 + pEδ is governing the

perturbation strain δεE (see (38)):

δεE = 3E
kdr0
M

e3 ⊗ e3 +O(X) (46)

In this form, the perturbation strain is a priori of the order of E. In fact, the physical mechanism that

inhibits the nucleation is based on a stress transfer from the porous material to the fluid alone and relies on

the stiffness of the latter which is characterized by M . In contrast, if the fluid is very compressible, then

M ≪ kdr0 and the perturbation strain is not infinitesimal: in this case, the previous conclusion is no longer

valid and nucleation in mode I is expected to take place.

While this paper is devoted to mode I nucleation, let us briefly consider a shear loading

E = E(e1 ⊗ e3 + e3 ⊗ e1)

We therefore have σ0 + p0δ = 2µ0E. It is found that

(
(I − Pu

0 : Cdr
0 )−1 : Pu

0

)
1313

=
γ

X
+O(X0) with γ =

3ku0 + 4µ0

3πµ0(3ku0 + 2µ0)

and accordingly

δεE =
4µ0γE

X
(e1 ⊗ e3 + e3 ⊗ e1)

This kind of loading does not induce any pressure change in the subdomain E which reacts as if it were

empty. The condition δεE = O(1/X) for nucleation is fullfilled. This emphasizes the fact that the previously

stated conclusion was in fact strictly devoted to mode I. The latter will now be discussed into detail.

5. DISCUSSION

In this section, we discuss the conclusion drawn in the case of the isotropic loading E = Eδ. We keep in

mind that mode I is associated with E > 0 (see (46)) and Σ0 + p0 = 3kdr0 E > 0. The starting point is the

estimate (44) of the fluid pressure in the crack. Since E > 0, we first observe that the final pressure pE is

always smaller than the initial one p0, which is consistent with the idea of a fluid pressure decrease during

nucleation (figure 7).

First, assume that Σ0 < 0 (whereas Σ0 + p0 > 0). (45) then indicates that the energy release is not only

of the order of X (that is, vanishing when X → 0), but also is a negative quantity. Clearly enough, this

means that a brittle failure mechanism of nucleation in mode I (for some strain level E) is impossible in the

case of a negative confinement (σ0 = Σ0δ). This conclusion questions the use of an effective stress-based

nucleation criterion.

We now focus on the case Σ0 > 0. The estimate (44) of the fluid pressure in the crack would then be

negative (figure 7). However, such a scenario is not physically relevant. Indeed, in the case of full saturation,
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14 L.DORMIEUX & AL.

t

p

p0

−Σ0

Σ0 > 0

−Σ0

tf

Σ0 < 0

Figure 7. Evolution of the fluid pressure in the crack: possible scenarios

the sign of the liquid pressure is necessarily positive since it is lower bounded by the saturation vapour

pressure. Note that this would not be the case in the situation of partial saturation. Indeed, according to

Kelvin’s law, in the equilibrium of a liquid with its vapour, a negative liquid pressure can be encountered at a

given vapour pressure due to capillary tension effects and provided that the relative humidity be low enough.

If we follow the pressure decrease in the phase diagram of the fluid (figure 8), a (partial) vaporization of the

liquid is expected to take place when the liquid pressure reaches the saturation vapour pressure. This change

of phase implies that the fluid looses its stiffness which was accounted for by the Biot modulus M . This

amounts to say that we are brought back to the non porous case studied at section 3.3. The conclusion of

section 3.3.2 (unstable damage) indicates that the partial vaporization triggers a brittle failure mechanism in

which the crack is nucleated. Still, nucleation in the saturated material cannot be termed a brittle mechanism

if the strain level E at which the vaporization takes place is higher than the elastic threshold at which damage

is initiated. The presence of the fluid in the pore space is therefore responsible for a ductile phase in the

nucleation mechanism. Two questions arise at that point.

T

p
liq.sol.

vap.

Figure 8. Phase diagram of water

- Is it possible to model the damage process from the elastic threshold until the vaporization ?

- What is the final thermodynamic state of the fluid at the end of the nucleation ?

5.1. Modeling the damage process

Let Eel denote the strain level at the onset of damage. During the damage process, the stress in the damaged

zone, the strain and the fluid pressure are related by a state equation:

σE = Cdr(d) : εE − pEδ

With respect to the first equation of (62) (with θ → 0), the Biot tensor B in the above equation is taken equal

to δ (see (64)). The damage thus affects the effective drained tensor Cdr(d) only. Rigorously speaking, note
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CRACK NUCLEATION IN SATURATED POROUS MEDIA 15

that this conclusion requires that the Biot tensor of the sound material be itself equal to δ which amounts to

the assumption of stiff solid phase |C−1
s : Cdr(0)| ≪ 1 (see section 7). During an undrained evolution, the

pressure change is controlled by the undrained constraint (66). The above state equation therefore yields:

σE = Cu(d) : εE + τ0 with τ0 = −p0δ −Mδ ⊗ δ : Eel (47)

in which the undrained stiffness tensor reads:

Cu(d) = Cdr(d) +Mδ ⊗ δ (48)

We herein consider a class of isotropic damage models in which Cdr(d) = 3kdr(d)J + 2µ(d)K with:

kdr(d)

kdr
0

=
µ(d)

µ0

= f(d) with f(d) =
1−Qd

1 +Q′d
(49)

with Q, Q′ > 0. This model is formally identical to (35), except that C is replaced by the drained stiffness

tensor Cdr. For practical applications and numerical simulations, f(d) will be chosen as the ratio kdr(d)/kdr0
predicted by the Ponte-Castaneda-Willis homogenization scheme [13] for an isotropic solid damaged by a

network of microcracks with isotropic distribution of orientations:

Q =
32

27
(1 + νdr0 ) ; Q′ =

16

27

(1 + νdr0 )2

1− 2νdr
0

The very important feature in (48) is that the undrained bulk modulus ku now comprises a component that

is not subjected to damage:

ku(d) = kdr(d) +M

Out of the domain E , the state equation involves the sound undrained stiffness tensor Cu
0 = Cu(0):

z ∈ Ω \ E : σ = Cu
0 : ε+ τ0 (50)

Since τ0 is a constant, (47) shows that the damage process in an undrained material is formally identical

to that of a non porous material. The two fundamental equations (25) and (26) which control the damage

process were already presented at section 3.3 where the non porous (or dry) case was considered. They are

still valid in an undrained evolution of a saturated porous material provided that C(d) is replaced by Cu(d).
At the strain level when the damage process is initiated, the strain field is still uniform so that the damage

criterion (25) reads

−
1

2
Eel : Cu′(d) : Eel = gc

which yields the elastic threshold E = Eel in the form:

Eel =
1

3

√
−

2gc
∂kdr/∂d(0)

with
∂kdr

∂d
(0) = −(Q+Q′)kdr0

Beyond the threshold Eel, we need to determine the 3 unknowns, namely the strain tensor εE , the damage

level d and the fluid pressure pE . The first equation is provided by the damage criterion:

−
1

2
εE : Cu′(d) : εE = gc

We then observe from (47) and (50) that εE is the solution of an Eshelby problem (see (60)):

εE = (I + Pu
0 : (Cu(d)− Cu

0 ))
−1

: E (51)

Eliminating εE , these two equations can be solved with respect to E and d. Finally, the fluid pressure is

derived from the undrained constraint (66):

p = p0 −Mδ :
(
εE −Eel

)
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E−Eeℓ

Eeℓ

d

d

0.5Mcr

0.5Mcr

Mcr

Mcr

pE

Y dr
0

Figure 9. Asymptotic strain E and crack fluid pressure pE as functions of the damage parameter d. gc/Y
dr
0 = 10−3,

νdr0 = 0.2, p0/Y
dr
0 = 10−2

The numerical simulations require numerical values for the ratios gc/Y
dr
0 and M/Y dr

0 (Y dr
0 is the drained

Young modulus of the sound material), and for its Poisson coefficient νdr0 . For further use, we introduce the

critical Biot modulus Mcr defined as:

Mcr = (kdr0 +
4

3
µdr
0 )

Q

Q′
= 2Y dr

0

(1− νdr0 )

(1 + νdr
0
)2

(52)

Typical results are presented at figure 9 for two values of M , respectively Mcr and 0.5Mcr. For M =
0.5Mcr, the asymptotic strain E is not a monotonic function of the damage parameter. This indicates that

the response of the system is not stable. In contrast, for M = Mcr, the asymptotic strain E is a strictly

increasing function of the damage parameter. This suggests that the response could be stable. If this is

confirmed, these plots can be used to determine the damage level at which the fluid pressure reaches the

saturation vapour pressure and the corresponding strain level, as indicated at figure 9. In order to clarify the

role of the Biot modulus on the stability of the damage process, we now apply Hill’s criterion which was

already presented at section 3.3. In the expressions (27)-(28) of the tangent stiffness tensor Cu
t in undrained

conditions, C(d) is replaced by Cu(d). In the non damaged zone, the tangent tensor Cu
t is therefore equal to

Cu
0 .

If shear modes are disregarded, the discussion concerning the positiveness of the tensor Pu
0

−1 − Cu
0 + Cu

t

amounts to the sign of the eigenvalue λI corresponding to mode I. At the leading order (X0), it is found that

(see section 7):

λI(ε, d) = M − 2
f ′2(d)

f ′′(d)

(ε : Cdr(0) : E3)
2

ε : Cdr(0) : ε
+ f(d)Cdr(0)

3333
+O(X) with E3 = e3 ⊗ e3

At a given damage level, the minimum of λI(ε, d) with respect to ε is reached at ε = E3 and proves to be

independant on d (see again section 7):

λImin = M − Cdr(0)
3333

Q

Q′

The unconditional positiveness of λI (which is the condition of stability provided by Hill’s criterion) thus

amounts to M > Mcr (see (52)).

5.2. Thermodynamical analysis of the post nucleation fluid state

As stated before, nucleation in the case M > Mcr requires a partial vaporization of the fluid that fills the

domain E (total fluid mass m). The thermodynamical state of the fluid after nucleation is characterized by

the mass fraction xv of the vapour (resp. xℓ = 1− xv of the liquid) in the fluid mixture and its temperature

T ∗ which is a priori different from the temperature T0 at the initiation of the vaporization (see figure 10).
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p

v

vℓ vv

T0

psatv (T0)

T ∗1 − xℓ xℓ

Figure 10. Change of physical state: representation in the (v, p) plane

Let sℓ (resp. sv) denote the entropy of the mass unit of liquid (resp. vapour). The conservation of entropy

during the vaporization under adiabatic condition provides a first equation between the two unknowns xℓ

and T ∗:

m
(
sℓ(T

∗)xℓ + sv(T
∗)(1 − xℓ)

)
= msℓ(T0) (53)

where m is the fluid mass in the initial volume V 0
cr of the crack, that is m = ρℓφ0V

0
cr. A second one accounts

for the undrained constraint. It expresses that the post-nucleation volume Vcr of the nucleated crack is filled

with the (fully damaged) solid, the liquid and the vapour. In practice, the specific volume vv of the vapour

is at least 3 orders of magnitude larger:

Vcr = Vsol +m(vℓ(T
∗)xℓ + vv(T

∗)(1 − xℓ)) ≈ mvv(T
∗)(1 − xℓ) (54)

In the above equation, Vcr is still an unknown. The crack volume change δVcr is the sum of the respective

contributions of the stable damage process (p > psatv (T0)) and of the brittle failure following the partial

vaporization of the fluid. During the whole process, the asymptotic strain E increases from Eel to E∗

while the stress state in the crack simultaneously drops from σ0 to −psatv (T ∗)δ (see figure 11). In view of

determining an order of magnitude of the vapour mass fraction xv and of the temperature change, it seems

reasonable to make the approximation Eel ≈ E∗ and to focus on the effect of the stress state change in the

crack. A new application of (60) then yields:

δVcr

V 0
cr

=
1

X0

δ : Qu
0 :
(
σ0 + pv(T

∗)δ
)

with Qu
0 = lim

X→0

X(I − Pu
0 : Cu

0 ) : Pu
0 (55)

where X0 is the initial aspect ratio, that is, prior to nucleation. The three above equations provide the

framework for the determination of the physical post-nucleation state (see also section 7.4). In practice,

(53)-(54) can be solved with respect to xℓ and T ∗ provided that δVcr/V
0
cr is given. For X0 of the order of

10−5, and using typical material constants of argilite, xv and (T ∗ − T0)/T0 are found to be of the order

of several % while δVcr/V
0
cr is of several hundreds. Despite the fact that the vaporized mass fraction is

infinitesimal, the large strain induced by nucleation is accomodated by the vapour due to its very large

specific volume.

E

0 E
el E

∗

elastic

behavior

stable

damage

vaporization

brittle failure

Figure 11. Delayed brittle response in the case M > Mcr
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6. CONCLUDING REMARKS

The central role of the Biot modulus in the discussion on the stability of the damage process deserves that

its micromechanical interpretation be recalled (see section 7.3.2). In the assumption of stiff solid phase:

1

M
=

1− φ0

ks
+

φ0

kf

where ks is the compression modulus of the solid at the microcopic scale and kf that of the fluid. In water

saturated rocks, the property ks ≫ kf allows to approximate M by the ratio kf/φ0, so that the numerical

value of M is related to the fluid compressibility. As already mentioned, in the case of a partial vaporization,

the liquid is replaced by the much more compressible fluid mixture and the Biot modulus dramatically drops.

Mcr M

low compr.high compr. low compr.

negligible

fluid effect

delayed

brittleness

Figure 12. The role of M on the stability of the damage process

The conclusions of the discussion presented in section 5 can be summarized by the scheme of figure

12. If M < Mcr (high fluid compressibility), a non stable damage process (modelled according to the

principles of the damage theory of section 3.3.1) is obtained. This strongly suggests that a brittle failure

mechanism akin to the non porous case takes place at or shortly after the initiation of damage (E = Eel).

In this case, the fluid role is negligible. In contrast, if M > Mcr, the damage process is stable as long as

the condition for vaporization is not reached, that is as long as the liquid pressure p is greater than the

saturation vapour pressure psatv . The condition for physical phase change p = psatv corresponds to a second

threshold E∗ > Eel. At this instant, a brittle failure mechanism is possible due to the dramatic increase

of fluid compressibility. Nevertheless, the existence of a stable loading interval E ∈ [Eel, E∗] represents a

delay in the material brittleness (see figure 11).

7. APPENDIX

7.1. Eigenvalues of Pu
0

−1 − Cu
0 + Cu

t

We herein consider a class of isotropic damage models in which Cu(d) = 3(kdr(d) +M)J + 2µ(d)K with:

k(d)

k0
=

µ(d)

µ0

= f(d) with f(d) =
1−Qd

1 +Q′d
(56)

In the non porous case, we have M = 0 (and then Pu
0 ≡ P0, Cu

0 ≡ C0). In the undrained saturated case, M
is the (constant) Biot modulus while k0 = kdr0 . In the latter case, M does not depend on d.

We now consider a flat spheroid with symmetry axis along e3 (aspect ratio X) and the Hill’s tensor Pu
0

associated with the stiffness tensor C(0) +Mδ ⊗ δ of the isotropic sound material (bulk and shear moduli

ku0 = k0 +M and µ0). Pu
0

−1 − Cu
0 is a transverse isotropic tensor w.r.t. the symmetry axis along e3. The

6× 6 Voigt matrix V of such a transverse isotropic 4-order tensor V reads:

V =


 A 0

0 B


 (57)

where A and B are 3× 3 matrices. By definition (other coefficients are equal to 0):

Aij = Viijj ; B11 = 2V2323 ; B22 = 2V1313 ; B33 = 2V1212
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The eigenvalues of V are the Bii (i = 1, 2, 3) as well as the eigenvalues of A. At the leading order w.r.t. X ,

the matrix A corresponding to Pu
0

−1 − Cu
0 reads:

A0 =




µ0a0

X
µ0b0
X

c0

µ0b0
X

µ0a0

X
c0

c0 c0 e0X




where µ0 is the shear modulus while a0, b0, c0 and e0 are the following functions of k0, M and µ0

(ku0 = k0 +M ):

a0 =
4(15ku0 + 29µ0)(3k

u
0 + 4µ0)

3π(3ku
0
+ 7µ0)(3ku0 + 5µ0)

; b0 =
4(3ku0 + µ0)(3k

u
0 + 4µ0)

3π(3ku
0
+ 7µ0)(3ku0 + 5µ0)

; c0 =
6µ2

0

3ku
0
+ 7µ0

; e0 =
πµ0(3k

u
0 + 4µ0)

3ku
0
+ 7µ0

We now consider the tangent stiffness tensor. Recalling (56), (27) yields:

Cu
t = f(d)C(0) +Mδ ⊗ δ − 2

f ′2(d)

f ′′(d)

(C(0) : ε)⊗ (C(0) : ε)

ε : C(0) : ε

Since we focus on instability in mode I (crack opening in the direction of e3), it is assumed in the following

that εE belongs to the vector space generated by ei ⊗ ei (i = 1, 2, 3). C(0) being an isotropic tensor, this

implies that the Voigt matrix of Ct has the structure of (57). The same property also holds for the Voigt

matrix of Pu
0

−1 − Cu
0 + Cu

t . At the leading order w.r.t. X , the block A of the latter reads:

A =




µ0a0

X
µ0b0
X

c

µ0b0
X

µ0a0

X
c

c c e




where e = Cu
t 3333

. Only the third line (resp. column) has been modified at the leading order. The discussion

on the instability in mode I amounts to the determination of the eigenvalues of the above matrix A and their

signs. They are the roots λ of the characteristic polynom:

χA(λ) = (Cu
t 3333

− λ)

(
(µ0

a0 − b0
X

− λ)2 + 2
µ0b0
λ

(µ0

a0 − b0
X

− λ)

)
− 2c2(µ0

a0 − b0
X

− λ)

The asymptotic analysis yields 3 distinct roots. At the leading order w.r.t. X , they read:

λ1 = Cu
t 3333

; λ2 = µ0

a0 − b0
X

; λ3 = µ0

a0 + b0
X

Since a0 > b0 > 0, it appears that 0 < λ2 < λ3. The stability condition provided by Hill’s criterion thus

reads Cu
t 3333

> 0 which takes the form of a condition on the Biot modulus:

M > 2
f ′2(d)

f ′′(d)

(ε : C(0) : E3)
2

ε : C(0) : ε
− f(d)C(0)

3333
(58)

where E3 = e3 ⊗ e3. It appears that this condition seemingly depends on the strain state ε and on the

damage state d. Still, let us introduce the scalar product on the vector space S2 of symmetric second order

tensors, defined as:

(a|b) = a : C(0) : b

A direct application of Cauchy-Schwarz inequality yields:

max
ε∈S2

(ε : C(0) : E3)
2

ε : C(0) : ε
= E3 : C(0) : E3 = C(0)

3333
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Besides, the rational function f(d) has the following property:

2
f ′2(d)

f ′′(d)
− f(d) =

Q

Q′

Eventually, Hill’s criterion provides a very simple (sufficient) stability condition on the Biot modulus, which

is independant of the current state (d, ε):

M > C(0)
3333

Q

Q′
(59)

7.2. The generalized Eshelby problem

ξ → E · z
at ∞

CE , τ E

∂E

C, τ

Figure 13. The generalized Eshelby problem

Consider an infinite homogeneous linear elastic medium with stiffness tensor C in which the constitutive

equation reads:

σ = C : ǫ+ τ

The tensor τ represents some uniform initial stress in the reference state. An ellipsoidal (resp. elliptic in

plane strain conditions) domain E is embedded in this medium. The constitutive equation in E reads (uniform

initial stress τ E ):

σ = CE : ǫ+ τ E

Under application of an asymptotic uniform strain E at infinity (figure 13), the strain induced in the domain

E is uniform and reads (e.g. [3]):

ǫE =
(
I + P : (CE − C)

)−1

:
(
E − P :

(
τ E − τ

))
(60)

where P is the Hill’s tensor of E embedded in the homogenous medium with stiffness tensor C.

7.3. Fundamentals of thermoporoelasticity

The state equations of thermoporoelasticity are derived either from an appropriate macroscopic

thermodynamic framework (e.g. [16]) or from a micromechanics reasoning ((e.g. [4]). The second way

is briefly recalled hereafter. In this section, the physical quantities at the microscopic (resp. macroscopic)

scale are denoted by lower case (resp. upper case) letters. The subscript 0 refers to the initial configuration.

7.3.1. State equations Consider a representative elementary volume Ω (r.e.v.) of a porous material, made up

of a solid phase Ωs and a fluid phase Ωf . For any field a(z) at the microscopic field, the following averages

will be used:

a =
1

|Ω0|

∫

Ω

a(z) dV ; aα =
1

|Ωα,0|

∫

Ωα

a(z) dV

At the microscopic scale, the solid material (subscript s) is linear thermoelastic:

σ = σ0 + Cs : ε− κsθ

ss = s0s + csθ + κs : ε
(61)
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where σ and ε are the stress and strain fields while ss is the volume density of entropy in the solid phase

Ωs. The temperature change θ is uniform at the scale of the r.e.v. and the fluid pressure p is also uniform

throughout the pore space Ωf . Besides, Hashin boundary conditions on the microscopic displacement field

ξ hold at any point z on the boundary ∂Ω of the r.e.v.: ξ(z) = E · z where E is the macroscopic strain

tensor applied to the r.e.v., related to the strain field by the average rule E = ε.

Let Ss = (1− φ0)ss
s and Σ = σ respectively denote the macroscopic density of entropy of the solid the

macroscopic stress tensor. Let φ denote the Lagrangian porosity, defined as the pore volume normalized by

|Ω0|; the normalized pore volume change is φ− φ0 = φ0tr ε
f

. The macroscopic state equations are derived

from the microscopic state equations (61) with the average rules:

Σ = Σ0 + Cdr,θ : E −B(p− p0)−Kθ

Ss = S0
s +K : E + Ls(p− p0) + Csθ

φ− φ0 = B : E +
p− p0
N

+ Lsθ

(62)

Cdr,θ is the homogenized stiffness tensor in both drained and isothermal conditions. The scalar and tensorial

coefficients appearing in these equations are related to Cdr,θ and to the microscopic coefficients by the

following relationships:

B = δ : (I − C−1
s : Cdr,θ)

K = κs : C−1
s : Cdr,θ

Ls = −κs : C−1
s : (B − φ0δ)

1/N = δ : C−1
s : (B − φ0δ)

Cs = (1− φ0)cs + κs : C−1
s :

(
(1− φ0)Cs − Cdr,θ

)
: C−1

s : κs

(63)

If the solid is much stiffer than the porous material, i.e. if |C−1
s : Cdr,θ| ≪ 1, the above relationships reduce

to:

B = δ

K = κs : C−1
s : Cdr,θ

Ls = −3(1− φ0)αs with αs = κs : C−1
s : δ/3

1

N
=

1− φ0

ks
with

1

ks
= δ : C−1

s : δ

Cs = (1− φ0)
(
cs + κs : C−1

s : κs

)

(64)

The assumption |C−1
s : Cdr,θ| ≪ 1 is made in this paper.

7.3.2. Undrained and adiabatic constraints The state equations of the fluid relate the density ρf and the

mass density of entropy sm,f to pressure and temperature:

1

ρf
= 1

ρf,0
− p−p0

ρf,0kf
+

3αf

ρf,0
θ

sm,f = sm,f,0 −
3αf

ρf,0
(p− p0) + cm,fθ

(65)

In undrained conditions, the mass of the fluid in the pore space is a constant, that is ρfφ = ρf,0φ0, which

also reads:
φ− φ0

ρf,0
= φ0

(
1

ρf
−

1

ρf,0

)

Combining (62) and (65), one obtains the undrained constraint between strain, pressure and temperature:

0 = B : E +
p− p0
M

+ Lθ (66)
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where B = δ, L = −3α and M−1 = k−1 if |C−1
s : Cdr,θ| ≪ 1.

In undrained conditions, the volume density Sf of entropy of the fluid at the macroscopic scale derived from

Sf = ρf,0φ0sm, and (65) reads:

Sf = Sf,0 − 3αfφ0(p− p0) + Cfθ (67)

where Cf = cfρf,0φ0. The volume density S = Ss + Sf of entropy of the porous medium therefore reads:

S = S0 +K : E + L(p− p0) + Cθ (68)

where C = c+ (1− φ0)κs : C−1
s : κs if |C−1

s : Cdr,θ| ≪ 1.

In a reversible adiabatic evolution of the porous material, the entropy is constant. The following adiabatic

constraint between strain, pressure and temperature therefore holds in undrained conditions:

0 = K : E + L(p− p0) + Cθ (69)

Eventually, in a reversible undrained adiabatic evolution of the porous medium, it is possible to derive the

pore pressure and temperature changes as functions of the strain tensor E. It suffices to solve the system of

constraints (66) and (69) with respect to p− p0 and θ. Introducing the result into the first equation of (62)

yields a formally standard linear relationship Σ = Cu,ad : E between strain and stress macroscopic tensors,

in which the undrained adiabatic stiffness tensor reads:

Cu,ad = Cdr,θ +MB ⊗B +
1

C −ML2
(K −MLB)⊗ (K −MLB)

From an energy point of view, a very useful property of Cu,ad is that it provides a simple expression of the

overall internal energy of the porous material (solid and fluid) in the form:

U = U0 +Σ0 : E +
1

2
E : Cu,ad : E (70)

7.4. Fundamentals of the thermodynamics of physical state change

Let sℓ(T ) (resp. sv(T )) denote the entropy of the unit mass of liquid (rep. vapour). These quantities are

related to the enthalpy of vaporization ∆Hℓ→v(T ):

T (sv(T )− sℓ(T )) = ∆Hℓ→v(T )

The liquid being a condensed phase, the entropy change is controled by the temperature change:

sℓ(T2)− sℓ(T1) = Cℓ log
T2

T1

where Cℓ is the thermal capacity of the unit mass of liquid. The conservation of fluid entropy in the reversible

adiabatic partial vaporization (53) then also reads:

Cℓ log
T ∗

T0

+ (1 − xℓ)
∆Hℓ→v(T

∗)

T ∗
= 0

Let vv denote the volume of the unit mass of vapour. In the case of a liquid-vapour equilibrium, the gaz

pressure is equal to the saturation vapour pressure psatv (T ) and vv then only depends on temperature and can

be related to psatv (T ) by the perfect gaz law:

vv =
RT

Mmpsatv (T )

where Mm is the molar mass of the fluid.

For water, the saturation vapour pressure psatv (T ) can be approximated by the Rankine formula (pressure in

bars, temperature in Kelvin):

psatv (T ) = exp(13.7−
5120

T
)
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