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SUMMARY 

Advances in single cell RNA sequencing have allowed for the identification and            

characterization of cellular subtypes based on quantification of the number of           

transcripts in each cell. However, cells may differ not only in the number of mRNA               

transcripts that they exhibit, but also in their spatial and temporal distribution, intrinsic             

to the definition of their cellular state. Here we describe DypFISH, an approach to              

quantitatively investigate the spatial and temporal subcellular localization of RNA and           

protein, by combining micropatterning of cells with fluorescence microscopy at high           

resolution. ​We introduce a range of analytical techniques for quantitatively          

interrogating single molecule RNA FISH data in combination with protein          

immunolabeling over time. Strikingly, our results show that constraining cellular          

architecture reduces variation in subcellular mRNA and protein distributions, allowing          

the characterization of their localization and dynamics with high reproducibility. Many           

tissues contain cells that exist in similar constrained architectures. Thus DypFISH           

reveals reproducible patterns of clustering, strong correlative influences of         

mRNA-protein localization on MTOC orientation when they are present and          

interdependent dynamics globally and at specific subcellular locations which can be           

extended to physiological systems.  

 

 

 

 

 

  

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


INTRODUCTION 

The need to incorporate subcellular spatial information of central dogma molecules           

into traditional omics approaches has led to the call for spatially resolved omics of              

various kinds ​(​Crosetto ​et al., 2015 ​). This has become more urgent as projects such              

as the Human Cell Atlas begin to use technologies such as single cell RNA              

sequencing (scRNA seq) to characterize subtypes of cells based on their molecular            

signatures by counting the number of RNA transcripts. Although much progress has            

been made in spatially resolved transcriptomics (​reviewed in Crosetto et al., 2015,            

Medioni and Besse, 2018, Strell et al., 2018 ​) incorporating spatial information into            

omics approaches carries with it several difficulties, such as coping with biological            

heterogeneity and noise in the spatial domain and developing analytical approaches,           

which avoid the loss of spatial information. Many current models for the            

measurement of gene expression neglect spatial information (​Raj et al., 2006,           

Tanaguchi et al., 2010 ​) and are not directly applicable in contexts where expression             

is highly localized. Moreover, such localization may be highly indicative of cell state             

and not fully reflected in scRNA seq data. Indeed though scRNA seq has identified              

several new cell types, spatial position of RNA, which is highly influential to cell state               

remains unincorporated in such measurements. By revealing 3D positions of RNA,           

for example, cells states as defined by scRNA seq may be altered or redefined              

gaining higher resolution and information content. 

The importance of subcellular localization of mRNA transcripts as a means to            

spatially and temporally restrict translation has been demonstrated in a wide variety            

of cell types ​(​Bashirullah et al., 1998, Besse and Ephrussi, 2008, Jansen, 2001, Kloc              

et al., 2002, and Martin and Ephrussi, 2009, Zappulo et al., 2017 ​)​. ​Localizing specific              

mRNA transcripts to distinct subcellular localizations therefore serves as an important           

determinant of protein localization and is often highly influential to cell state (​Moor et              

al., 2017, Zappulo et al., 2017)​. Although the number of fully characterised localized             

mRNAs is currently small, ​emerging studies have demonstrated that the mRNA           

localization phenomenon is more widespread than previously assumed and may in           

fact be relevant for the majority of mRNA transcripts (​Bouvrette et al., 2017, La              
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Manno et al., 2018, Lecuyer et al., 2007, Moor et al., 2017, Sharp et al., 2011, Weis                 

et al., 2013,, Zappulo et al., 2017 ​). Indeed such evidence has extended to distinct              

subcellular localization patterns for cytoplasmic and nuclear localization of long          

noncoding RNAs (lncRNAs) has recently emerged (​Cabili et al., 2015 ​).  

Studies showing subcellular localization of numerous RNAs and proteins have          

been generally qualitative lacking detailed quantitative approaches to systematically         

describe the positions of RNAs and proteins. They have typically been constrained to             

a limited number of systems, in which spatial heterogeneity is controlled and            

subcellular partitions are easily defined. In developmental models, such as the           

Drosophila embryo and ​Xenopus oocyte, numerous mRNAs have been shown to           

localize to specific subcellular positions, which determine morphogen gradients and          

specify cell fates ​(​Macdonald and Struhl, 1988, Tautz and Pfeifle, 1989 ​). Similarly, a             

large number of mRNAs have been shown to be enriched in dendrites and synapses              

in neuronal systems, contributing to neuronal growth and establishing synaptic          

plasticity (​Batish et.al., 2012, Buxbaum et al., 2014, Tzingounis and Nicoll, 2006 ​).            

mRNA localization has also been shown in polarized cells of various kinds, such as              

budding yeast, and migrating fibroblasts (​Martin and Ephrussi 2009, Mili et al., 2008 ​),             

although typically only to coarsely defined regions, such as the leading edge of the              

cell. This is due to the diverse morphologies of such systems, as well as lack of                

methods to measure accurately specific subcellular domains.  

Many of these model systems in addition to heterogeneity at the           

morphological level, lack quantitative approaches to spatially resolved omics and          

confront the problem of pervasive stochasticity at the level of gene expression (​Raj             

et. al., 2006 ​). A number of studies suggest that some of this stochasticity may be               

functional, for instance through the importance of higher-order distribution in grouping           

transcripts functionally (​Battich et al., 2013 ​), or as a compensating mechanism for            

differences in cell size (​Padovan-Merhar et. al., 2015 ​). Such functional stochasticity           

and noise thus add another level of complexity to developing quantitative analytical            

approaches to spatially resolved omics, since they need to capture such stochasticity            

explicitly. ​Although detailed mechanistic insights into RNA spatial and temporal          

positioning are emerging (​Bouvrette et al., 2017, Moor et al., 2017, Zappulo et al.,              

2017, La Manno et al., 2018)​, ​a system that is able to capture and quantify dynamic                
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RNA subcellular positioning, complementary to scRNA seq is required. Such a           

system would allow for a deeper understanding of cell states and assist in further              

identification and characterization of different cell types and sub populations​. ​In sum,            

to unravel the mechanisms of RNA spatial and temporal distribution, quantitative           

tools that probe these relationships systematically need to be developed ​.  

Here, we describe DypFISH, a spatially resolved omics approach overcoming          

the limitations above by quantitatively measuring the spatial distribution of slow-scale           

dynamics of mRNA and protein distributions at fine-grained spatial resolution in           

single cells. DypFISH leverages micropatterning which has been shown to lead to            

reproducible spatial organization of organelles (​Schauer et al., 2010 ​) and ensure that            

the cell size is known ​a priori​, allowing the averaging of high number of cells. Thus                

this system deals with a number of significant sources of heterogeneity, which might             

interfere with the identification of spatial patterning and quantification. By selecting           

specific micropattern architectures, which mimic external constraints from a cellular          

environment, ​distinct patterns of subcellular localization of molecules of interest as           

well as spatial organization of organelles ​can be isolated and studied in detail (​Théry              

et al.​, 2005, Théry et al., 2006 ​). DypFISH builds upon the reproducibility of             

micropatterned cells to develop quantitative and testable models of RNA and           

positioning that can be extended to physiological contexts.  

DypFISH introduces analytical techniques that allow joint analysis of discrete          

point-based single molecule Fluorescence In Situ Hybridization (FISH) mRNA data          

and continuous intensity immunofluorescence (IF) protein data. The analytical         

techniques include a generalized approach to identifying clustering dynamics, an          

approach to identifying dependencies of mRNA and protein spatial distributions on           

organelle positioning and an approach to identifying interdependent dynamics         

between mRNA transcripts and their corresponding protein products globally and at           

specific subcellular locations. Implementing DypFISH we uncovered fine-grained and         

reproducible aspects of localization dynamics, pointing to novel biological         

phenomena while revealing dynamic subcellular repositioning of RNA and proteins.          

DypFISH probes the dependencies uncovered through perturbation studies, thus         

allowing one to test for possible mechanisms underlying the localization dynamics           

and by extension changes in cell state, which we demonstrate in this study. Although              
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we focused here on mRNA-protein subcellular localization, our approach is broadly           

applicable to spatially resolved omics of other molecular species, and scalable to            

incorporate high bandwidth such as MerFISH (​Moffitt and Zhuang, 2016 ​) where           

simultaneous assaying of subcellular localization of dozens of transcripts can be           

interrogated in a single cell. 

 

RESULTS 

Micropatterning of cells enhances reproducibility of mRNA subcellular        
distributions 

We were particularly interested in the ability to interrogate subcellular positioning of            

RNA and protein in the context of altered cellular states. Therefore, we selected an              

established fibroblast system that allows the investigation of RNA positioning in           

relation to its polarity state (​Mili et al., 2008 ​). As mRNA candidates we ​selected a               

subset of mRNAs ​within a group of RNAs ​that had previ ​ously been identified as              

enriched in ​lamellipodia of fibroblasts upon polarization and cell migration (​Hengst et            

al.​,​ 2009, Mili et al., 2008, ​Schmoranzer et al., 2009 ​, ​Mili et al., 2008 ​)​. 

Micropatterning has been shown to lead to stereotypical localization of          

organelles, such as the centrosome, early endosomes, lysosomes and the Golgi           

apparatus (​Schauer et al., 2010, Thery et al.​, 2005, Thery et al., 2006 ​). We were               

interested in establishing whether micropatterning can similarly reduce variation in          

mRNA spatial distributions and enable us to construct a quantitative framework for            

measuring reproducible subcellular spatial localization of RNA and protein. To this           

end cells were induced to polarize on micropatterns and fixed at different time points              

post induction. We grew mouse fibroblasts on crossbow shaped micropatterns, which           

have been shown to be suitable for the study of polarizing cells (​Schauer et al., 2010,                

Théry et al., 2006 ​). Each slide was custom microfabricated to contain multiple 12 by              

12 grids of crossbow-shaped micropatterns to which the cells adhered (​Figure S1A​).            

We developed an autonomous image acquisition and semi-automated image         

analysis pipeline (​Figure 1A​) able to scan each microfabricated slide and           
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autonomously acquire images of individual cells at high magnification. We used           

either standard wide-field fluorescent microscopy or spinning disk confocal         

microscopy at to acquire a three-dimensional stack of images for each cell.  

Single molecule FISH (​Raj et al.​, 2008 ​) and IF were performed to label             

mRNAs and corresponding proteins of interest respectively (​Figure 1B​). We also           

labeled the microtubule (MT) cytoskeleton, the nucleus and micropattern base.          

Representative images of the micropatterned base and ​single molecule FISH are           

shown in ​Figure 1C​. A complete list of the acquired images is shown in              

Supplementary Table 1. To extract information of interest from the microscopy           

images, we built a custom image analysis pipeline with (1) manual annotation of the              

MTOC position, (2) 2D automated segmentation of the cell and nucleus areas, (3)             

automated spot detection and (4) height-map construction across a stack of 2D            

cellular regions to define a 3D segmentation of the cell volume (​Figure 1A;             

Experimental Procedures for computational details for steps 3, 4 and 5 ​). 

To investigate the localization dynamics of mRNAs and proteins translated          

from these transcripts we followed specific mRNAs and their respective proteins at            

different time points (2, 3, 4 and 5 hours for mRNA, and 2, 3, 5 and 7 hours for                   

protein) post induction of polarization by serum. These time points were chosen as             

fibroblasts polarize over this time scale on crossbow micropatterns. In order to            

determine whether micropatterning leads to reduced heterogeneity in mRNA         

transcript and protein distributions, we compared fibroblasts grown in standard          

culture with those grown on micropatterns using the same experimental pipeline,           

analyzing only cells lying fully in the field of view. Representative images of standard              

cultured and micropatterned cells are shown for the ​Arhgdia mRNA, which was            

previously found to be enriched at the leading edge of polarized fibroblasts (​Mili et              

al., 2008 ​) (​Figure 1C​)​.  

First, we compared the reproducibility of ​Arhgdia mRNA distributions in          

standard cultured and micropatterned cells by spatially quantizing the transcript          

distributions across a grid of regular voxels. The absolute deviation of the quantized             

distribution of a randomly selected cell from a pooled average is reduced in             

micropatterned cells for all pool sizes up to ~40 cells (​Figure 1E​). The error profiles of                

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


these distribution descriptors for this transcript are concordant with a previous study,            

which estimated that ~20 micropatterned cells were necessary to establish          

reproducible organelle positions using the AMISE metric (​Schauer et al ​.​, 2010 ​). We            

further investigated the impact of micropatterning on the volume-corrected noise          

measure ​introduced in a previous study (​Padovan-Merhar et al., 2015 ​). mN           

Consistent with that study, we observed linear relationships between transcript          

number and cell size in both standard cultured and micropatterned cells, as            

demonstrated for ​Arhgdia mRNA (​Figure 1D​). However, the linear relationship is less            

stochastic in the micropatterned cells, leading to a lower ​value (​Figure 1D​).         mN     

Further comparison revealed a tighter distribution of cell and nuclear sizes in the             

micropatterned cells, consistent with a mechanism for cell size determination, which           

relies on low variability of nuclear size, as proposed previously (​Figure 1D​)            

(​Padovan-Merhar et al., 2015 ​).  

We further investigated the profiles over time of the for a series of mRNA         mN       

transcripts including ​Pkp4 and ​Rab13​, which are enriched at the leading edge in             

polarized fibroblasts (​Mili et al., 2008 ​), ​Pard3​, which translates into the Par3 protein             

that controls different aspects of polarity in various cell types and is enriched in              

developing axons (​Hengst et al., 2009, ​Schmoranzer et al., 2009 ​), ​β-Actin​, a well             

studied localized mRNA in various cell types and ​Gapdh​, which to the best of our               

knowledge is not known to localize to specific subcellular domains. We found for a              

number of transcripts a reduction in over time, up to the 4 h time point. (​Figure      mN            

S1C)​. These data strongly indicated that micropatterns conveyed important         

advantages amenable to quantitative analysis of RNA position over standard cell           

culture.  

A subset of mRNAs and corresponding proteins shows peripheral         
enrichment and correlated clustering dynamics 

We investigated the joint localization dynamics for mRNA and corresponding protein           

associated with four of the mRNA transcripts above (​Arhgdia​, ​Pard3​, ​β-Actin ​and            

Gapdh​) and the mRNA localization dynamics for the remaining two transcripts (​Pkp4            

and ​Rab13​). We developed a cell quantization method for local enrichment statistics            
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as well as a temporal interaction score to measure the interdependence between            

mRNA and protein dynamics. Initially, we characterized whether the mRNA and           

corresponding proteins are enriched in the periphery of the cells by calculating the             

fraction of cytoplasmic transcripts, which lie within a band at the boundary of the cell,               

whose width is a fixed proportion of the radial distance to the nucleus edge              

(​Experimental Procedures​). A subset of the transcripts, including ​Arhgdia and ​Pkp4​,           

which were previously shown to be enriched at the leading edge (​Figure 2A​) (​Mili et               

al., 2008 ​), as well as ​Pard3, whose localization in fibroblasts has not been             

characterized previously, are peripherally enriched for up to 30% of the radial            

distance (​Figure 2B​). Gapdh mRNA and protein characteristic distributions were used           

as a control as neither the mRNA nor protein were expected to show patterns of               

enrichment or strongly localized dynamics (​Mili et al., 2008 ​). 

We next analyzed the clustering behaviour of mRNAs and proteins using a            

generalization of the Ripley’s K analysis (​Lee et al., 2013, Ripley, 1977 ​) that we first               

introduced in ​(Warrell et al., 2016)​. Ripley’s K is a commonly used algorithm to              

describe the extent of clustering of points, such as mRNAs (​Figure 2C​). For each              

mRNA spot and each distance the number of transcripts lying within a sphere of     d           

radius is counted. Spatial clustering of mRNAs can then be calculated by d             

estimating the probability distribution of this function under a null hypothesis of            

complete spatial randomness ​(CSR) ​and comparing it with the function calculated           

from observed (spatially clustered) transcripts. We adjusted (​Experimental        

Procedures​) the algorithm based on the generalized Ripley’s K function for           

evaluating the extent of clustering of both mRNA (discrete) and protein (continuous)            

spatial distributions. This was done by computing the ​degree of clustering​, ​a unitless             

measure, that can be used to compare clustering between different molecules and            

conditions. We summed the area where the normalized Ripley’s K function deviates            

from the 95 % confidence interval of the random distribution ​(​Figure 2D​)​.  

We evaluated the degree of clustering of all transcripts and proteins across all             

time points, revealing high overall values for all proteins and vari ​ous values for the              

different mRNA transcripts ​(​Figure 2E​). We further calculated the degree of clustering            

at each individual time-point for ​Arhgdia​, ​Gapdh​, ​β-Actin ​and ​Pard3 mRNAs and            

corresponding proteins. By visualizing the mRNA and protein profiles, a relationship           

is suggested for the Arhgdia, β-Actin ​and Pard3 mRNAs and proteins, which show a              

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


peak in the mRNA profile followed by a peak in the proteins, strongly suggesting              

temporal causality (​Figure 2F​).  

We then calculated additional basic mRNA/protein distribution descriptors        

such as cytoplasmic total transcripts/intensity, peripheral fraction and cytoplasmic         

spread (​Figure S2A​, ​an ​d Experimental P​rocedures​). We compared the mRNA and          

protein profiles of these descriptors for all time points and found that many of these               

show related values for the same gene (corresponding pairs)  (​Figure S2B​). The            

observed differences between the comparisons of corresponding and        

n ​on-corresponding ​mRNA-protein pairs across all descriptors are shown in ​Figure 2G           

and are statistically significant. The analysis of basic distribution descriptors as well            

as clustering dynamics, for several of the mRNA-protein pairs, suggests they exhibit            

interdependent spatial positioning. Using the tools discussed above, we were thus           

able to extract significant subcellular spatial information for different mRNA and           

protein species. 

Localization of a subset of mRNAs and corresponding proteins shows strong           
correlative influence of MTOC position 

Several components of cellular architecture are known to change dynamically during           

polarization, including the cytoskeleton and the microtubule organizing center         

(MTOC). The MTOC marks the center of most eukaryotic cells and is associated with              

the position of the nucleus. In the maj ​ority of polarized cell systems and developing              

neurons, the MTOC is positioned between the nucleus and the leading edge prior to              

migration or local cell growth (​Gomes et al., 2005, Hale et al., 2011)​. We reasoned               

that if cells were to reliably and reproducibly position RNA or protein within the              

subcellular volume, then this process could be linked to an ability to sense the MTOC               

position. Whether mRNA and its corresponding proteins are subject to such           

reorientation is unknown. Having demonstrated that several mRNA transcripts and          

proteins exhibit significant and reproducible clustering dynamics, we sought to relate           

this behavior to key cellular structures and organelles. Initially we were interested in             

probing the subcellular spatial position of RNA and protein relative to the position of              

the MTOC. More specifically, we sought to determine whether the clustering           

dynamics we observed were dependent on MTOC positioning. For our analysis, we            

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


divided the cell into quadrants, which we used as regions over which we could              

estimate mRNA and protein local densities (​Figure 3A​) and we also determined the             

MTOC localization within these quadrants (​Figure 3B​). We observed higher          

enrichment of all cytoplasmic mRNA transcripts in the MTOC-containing quadrant          

(​Figure 3C​). Additionally, ​β-Actin​, ​Pard3​, ​Pkp4 and ​Rab13 transcripts were          

specifically enriched in the MTOC-containing quadrant when located in the leading           

edge of the cell. Similarly, all peripheral transcripts showed higher enrichment in the             

MTOC-containing quadrant, with this enrichment being more distinct compared to the           

cytoplasmic population. ​β-Actin​, ​Gapdh​, ​Pkp4 and ​Rab13 showed clear enrichment          

in the MTOC-containing quadrant when positioned in the leading edge of the cell.  

Based on the above observations, we were able to introduce an ​MTOC            

Polarity Index (MPI) to analyse MTOC dependent enrichment in both mRNA and            

protein distributions. This indicator lying between -1 and +1 is derived by normalizing             

the differences of signal concentration between the MTOC associated quadrant and           

the other quadrants. Positive MPI values imply MTOC dependent enrichment of RNA            

transcripts, negative values imply enrichment away from the MTOC, and a value of             

zero implies no detectable correlative influence (​Figure 3D​). ​The MPI can be            

calculated for both point based and continuous valued measurements, corresponding          

to mRNA and protein distributions respectively, and significant enrichment can be           

identified by a statistical test against CSR (​Experimental Procedures​).   

We calculated the MPI as above for all transcripts (​Figure 3D​) and proteins             

(​Figure S3D​), calculating values for both the whole cytoplasmic population, and the            

peripheral population at 10 % radial distance, using all time points. ​Pard3, Rab13 ​and              

Gapdh mRNAs show significant MPI scores in the cytoplasmic population, whereas           

all mRNAs, excluding ​Gapdh show significant MPI scores in the peripheral           

population, suggesting that the MTOC orientation affects the localization of these           

mRNAs as it changes during polarization (​Figure 3D​). Finally, we calculated MPI            

scores across time for all mRNA-protein pairs (​Figure 3E and ​Figure S3E​) and             

observed profiles suggesting a temporal correlative influence between mRNA, protein          

and MTOC orientation for Arhgdia and Pard3. 
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Dynamics of mRNA-protein distributions are consistent with MTOC-dependent        
patterns of localized translation 

As previously described, several mRNA-protein pairs appeared to show         

interdependent distributions for the basic descriptors, clustering indices and MPI. The           

interdependency could reflect spatially and temporally restricted translation (local         

translation) ​(​Besse and Ephrussi, 2008 ​) ​and/or separate localization pathways for          

mRNAs and proteins to common subcellular locations. ​To explore these          

interdependencies we derived a ​Temporal Interaction Score (TIS), which is a value            

between and , computed as the normalized rank-sum of the correlations between 0   1           

mRNA and later protein distribution pairs in a ranking across all pairs of time-points              

(​See for details in Experimental Procedures III.7 ​). A large TIS value for a pair of                

corresponding mRNAs and protein is consistent with interdependent dynamics, and          

may suggest local translation, although it does not rule out alternative mechanisms            

such as separate mRNA and protein localization pathways with delayed protein           

transport.  

A TIS can be calculated for any measure of correlation between mRNA and             

protein distributions, which allowed us to probe for interdependent dynamics with           

respect to specifically defined subcellular regions. We spatially quantized the cells (i)            

radially with the center at the nucleus centroid and (ii) circularly by computing isolines              

at different distances from the cell’s periphery (see ​Experimental Procedures section           

III.7 and Figure 4A(i)​). We thus obtained a fine grained quantization of each cell into               

segments, and were able to compute subcellular spatial distribution profiles of           

mRNAs and proteins, corresponding to concentration statistics in each segment          

(​Figure 4A(ii)​). ​The latter analysis was prompted by the observation that our            

peripheral MPI scores are relatively stronger for proteins than mRNAs. While both            

showed strong cytoplasmic MPI scores ​(​Figure 3D​)​, we may particularly expect           

interdependencies between cytoplasmic mRNAs and peripheral and/or cytoplasmic        

proteins in a common direction with respect to the MTOC. This could potentially             

reflect radial mRNA transport on the cytoskeleton in preferred directions leading to            

protein enrichment in those directions at the periphery due to local translation. We             

computed TIS values using (a) ​global correlations of all voxels/segments across the            

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


cytoplasmic area, and (b) ​local correlations across subsets of voxels/segments within           

peripheral regions (​Figure 4C​). ​We then calculated global TIS values for four            

corresponding mRNA-protein pairs (Arhgdia, Gapdh, β-Actin ​and Pard3) using for          

comparisons the ‘forward-leading’ time point pairs shown in (​Figure 4B​). Using the            

fine grained quantization scheme, we observed significant interdependent dynamics         

for all cytoplasmic mRNA-protein pairs (​Figure 4D​).  

Perturbation of various cytoskeletal components disrupts characteristic       
mRNA-protein localization and interdependency patterns and hints at local         
translation 

We were generally interested in quantitatively measuring cell state by using mRNA            

copy number and incorporating dynamic changes to subcellular positions over time.           

In particular we wanted to include a measurement of mRNA-protein dynamics that            

could reveal interdependencies influencing their subcellular positions. 

Our analysis had already revealed interdependent mRNA-protein dynamics, which         

suggested local translation. However, as we could not rule out independent           

localization of mRNA and corresponding proteins, we introduced two perturbations to           

inhibit potential transport pathways of the different molecular species. First, we           

disrupted microtubule polymerization using nocodazole (​Figure 5A​), which we         

reasoned would lead to disruption of the MTOC dependencies of selected mRNA and             

proteins, as well as potentially loss of local translation. ​We selected Arhgdia and             

Pard3 ​mRNA-protein pairs to test this hypothesis and collected mRNA FISH and            

protein IF data at 3 hours and 5 hours post exposure to nocodazole and compared it                

with untreated data as above from the equivalent time points.     

We first calculated the effects of nocodazole treatment on the total mRNA count             

(​Supplementary Figure 3A​), the cytoplasmic spread of the transcript and the           

corresponding protein (​Figure 5B​) and the 10 % peripheral fraction (​Figure 5C​).            

Arhgdia cytoplasmic spread was not significantly altered upon treatment with          

nocodazole, whereas its peripheral fraction was decreased (​Figure 5B and 5C​).           

Rh ​oGDI’s ​(the protein translated from ​Arhgdia, ​t​o which, we refer as Arhgdia for             

simplicity​) cyt​oplasmic spread ​was slightly increased whereas the peripheral fraction          
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of the protein was not significantly affected (​Figure 5B and 5C​), suggesting that             

Arhgdia mRNA and protein do not make exclusive use of the microtubule network for              

transport. The cytoplasmic spread and peripheral fraction of ​Pard3 were n ​ot           

significantly changed upon treatment with nocodazole (​Figure 5B and 5C​). A slight            

reducti ​on was detected in the cyt​oplasmic spread of Pard3 protein in the presence ​of              

nocodazole ​(​Figure 5B​) and no significant change in the peripheral fraction of the             

protein (​Figure 5C​), suggesting that similarly to ​Arhgdia​, ​Pard3 and its corresponding            

protein do not make exclusive use of the microtubule network.  

Next, we probed the effects of the nocodazole treatment on the correlative            

influence of the polarization of the cell and the subcellular localization of the mRNA              

transcripts and their corresponding proteins (​Figure 5D and 5E​). The MTOC           

enrichment and MPI of ​Arhgdia in nocodazole-treated cells compared with control           

cells were significantly reduced (​Figure 5D and 5E​), indicating that the orientation of             

the mRNA subcellular localization was lost. This suggestested that though the prior            

calculation of cytoplasmic spread showed only modest effects of the drug, the            

influence of the MTOC had become decoupled from the subcellular positioning of            

Arhgdia RNA. Strikingly, the opposite effect was observed for ​Pard3​, where a            

significantly higher MTOC enrichment and MPI were observed for the mRNA in the             

nocodazole treated cells (​Figure 5D and 5E​), indicating that the perturbation to the             

MTOC had the effect of tightening the influence of MTOC position on RNA             

distribution.  

We then probed the effects on mRNA-protein interdependency by calculating          

local TIS maps for control and nocodazole treated cells on both mRNA-protein pairs,             

restricted to the 3-5 hours time points (​Figure 5F​). The interdependency for Arhgdia             

mRNA-protein pair was disturbed, possibly stemming from the decoupling of the           

MTOC influence on the subcellular distribution of the RNA and protein in            

nocodazole-treated cells. In contrast, nocodazole did not have a significant effect on            

the interdependency for the Pard3 mRNA-protein pair, which could correlate with a            

higher correlative influence of the MTOC on ​Pard3 mRNA localization observed in            

nocodazole-treated cells.  
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Other cytoskeletal networks could influence RNA subcellular positioning. T​o         

probe these, ​we next treated the cells with the actin polymerization inhibitor            

cytochalasin D (cytoD) for 1 hour before fixation of cells and compared FISH and IF               

data for the Arhgdia mRNA-protein pair. ​Similarly to the treatment with nocodazole,            

Arhgdia mRNA’s cytoplasmic spread remained unaffected (​Supplementary Figure        

3B​), ​whereas the concentration of the transcript was higher on the periphery of             

cytoD-treated cells as compared to control cells (​Supplementary Figure 3C​). Similarly           

to the mRNA, the cytoplasmic spread of Arhgdia was not significantly affected in the              

presence of cytoD (​Supplementary Figure 3B​) however, the peripheral concentration          

of the protein was decreased in the cytoD-treated cells (​Supplementary Figure 3C​).            

These data suggest that either local translation at the periphery of ​Arhgdia was             

affected by the drug, or that mechanisms anchoring Arhgdia to the periphery are lost              

in the presence of the drug.  

Sarcomeric mRNAs cluster in a striated pattern in differentiated myofibers 

In order to further validate Dyp-FISH, we sought a cellular model where RNA             

subcellular localization and potential local protein translation linked to dynamic          

changes in cells state could be interrogated. We focused on the unusually large             

multinucleated muscle cells termed myofibers. These large cells with tubular shape           

are formed by fusion of mononucleated cells and their main function is to generate              

mechanical force via contraction. Muscle contraction is achieved by the shortening of            

sarcomeres that are organized along the length of the myofiber. Each sarcomere is             

flanked by a Z-line, the site of anchoring of the actin filaments, thus resulting in the                

striation of the myofiber (​Franzini-Armstrong and Peachey, 1981 ​). We used skeletal           

muscle since the myofiber has an invariable tubular shape and a highly predictable             

cytoplasmic organization. The myonuclei in these cells are spaced at regular           

intervals, an important feature for muscle function (​Bruusgaard et al., 2003,           

Bruusgard et al., 2006; Manhar, 2018 ​). ​In vitro differentiation of myofibers allows for             

high resolution imaging throughout distinct developmental stages, including the         

formation of patterned sarcomeres with well defined z-line striations (​Falcone et al.,            

2014; Pimentel et al., 2017; Vilmont et al., 2016 ​) permitting the capture of dynamic              

changes in cell state reflected in RNA-protein subcellular localization. Thus, the size            

and regularity of myofiber architecture allied with a temporal component make them            
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an excellent candidate to compute spatial distribution profiles of mRNAs and           

proteins.  

With this aim, we analyzed the distribution of an mRNA that encodes a protein              

found at the z-lines, during muscle differentiation. We choose the ​actn2 mRNA, which             

encodes for α-actinin, the main component of z-lines relative to the sarcomeric            

Z-lines (​Figure 6A​). To our surprise, the majority of the ​actn2 mRNA was found in the                

vicinity of the Z-line in mature myofibers (​Figure 6B​). In order to understand if this               

clustering depends on the developmental stage of the myofiber we imaged immature            

myofibers in which the Z-lines are less organized. Additionally, we also probed the             

gapdh ​mRNA distribution as a non-sarcomeric control in both immature and mature            

myofibers. The degree of mRNA proximity was lower in both cases, suggesting that             

possibly ​actn2 mRNA localization precedes protein organization (​Figure 6B​) of the           

Z-line. To better address this question we quantized the images perpendicularly to            

cell axis, similarly to how sarcomeres are organized (​Figure 6C​). The highest degree             

of clustering was observed for ​actn2 mRNA in mature myofibers, when compared to             

the immature counterpart or to the ​gapdh ​mRNA. These quantitative data strongly            

suggest that the ​actn2 mRNA distribution specifically follows the respective protein           

organization, instead of preceding it (​Figure 6D​). These data shed light on a long              

standing question in the field and produce a basis of testable hypotheses for how              

actn2​ mRNA is directed to the Z-line. 

 

DISCUSSION 

A wide variety of methods have been proposed for studying RNA localization with             

subcellular accuracy, including microscopy-based methods, such as those based on          

FISH (​Battich et al., 2013, ​Chen et al., 2015, Lecuyer et al., 2007 ​) or padlock probes                

(​Larsson et al. 2010 ​), as well as non-microscopy based methods such as            

Transcriptome In Vivo Analysis (TIVA) (​Lovatt et al. 2014 ​) and RNA Tomography            

(​Junker et al. 2014 ​). While there has been much interest in identifying patterns of              

localization from such data, a number of factors limit the generality of the kinds of               

analysis employed. Although developmental systems can be straightforwardly        
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aligned in space and compared across time for comparison of expression patterns            

(​Junker et al. 2014, Lecuyer et al., 2007 ​), ​this is not always the case in other                

systems. In systems with greater heterogeneity, approaches to identify RNA spatial           

patterning have not generally attempted to take polarization or organelle          

arrangement into account (​Battich et al., 2013, Chen et al 2015 ​) and have not              

considered temporal patterning. Further, some of the most comprehensive         

approaches have relied on manual annotation of visual features to search for            

correlations between RNA patterns and RNA-protein patterns (​Lecuyer et al., 2007 ​)           

and hence lack a principled approach for the identification of correlations that may             

not be visually apparent. ​We set out to develop a quantitative method for             

investigating the spatial and temporal distribution of RNA and protein. To achieve            

this, we hypothesized that the use of micropatterning would reduce cellular           

heterogeneity and enhance the reproducibility of spatial distributions. We were able           

to achieve this in combination with automated high content imaging based on RNA             

FISH and IF labelling, and a range of specialized analytic techniques. We have used              

our approach to interrogate mRNA and protein spatial and temporal distribution in            

polarized fibroblasts and elucidate the methods by which particular mRNAs and           

proteins are localized, revealing a general dependence of mRNA-protein localization          

and dynamics on MTOC orientation ​. ​Through perturbation studies, we have          

demonstrated DypFISH’s ability to quantitatively detect changes in localization         

behaviour, confirming both the robustness of the approach and its ability to test             

mechanistic hypotheses. 

Shared RNA subcellular distribution patterns and the deterministic role of the           
MTOC 

The general dependence of different mRNA species on MTOC orientation and the            

similarities in localization and dynamics of those associated with the leading edge,            

indicate specific subcellular distribution patterns in accordance with broader         

processes, which are also responsible for controlling nucleus and MTOC relative           

orientation during polarization (​Kim et al., 2014, Razafsky et al., 2014 ​). We posed the              

question whether proteins translated from mRNAs that consistently localize to similar           

subcellular locations are translated in these locations. By revealing the existence of            
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mRNA-protein interdependencies, which are highly localized, many have a high          

c​orrelative influence with the ​MTOC orientation and can be impaired by applying            

various perturbations, with our results pointing to local translation. In addition to the             

above, our results have general implications for stochasticity of gene expression in            

morphologically constrained biological contexts. The pronounced reduction in the         

variability of distribution descriptors we were able to achieve using micropatterning           

suggests that tissues such as gut epithelia, skin and others of constrained but similar              

morphology, may have far less transcriptional heterogeneity than previously thought. 

Arhgdia ​ and ​Pard3​ localization  

We were able to reveal significant aspects of the spatial and temporal distribution of              

specific mRNA transcripts and proteins of interest, such as ​Arhgdia and its protein             

product RhoGDI, a key factor in the Rho/Rac/Cdc42 (Rho GTPases) pathway. The            

transcript and protein show MTOC-dependent interdependency patterns, possibly        

indicating MTOC-dependent local translation. The RhoGDI protein is a negative          

regulator of the Rho GTPases, which are involved in a range of important cellular              

processes such as polarization, regulation of cytoskeletal organization, cell growth          

control and many others ​(​Machacek et al., 2009, ​Sadok and Marshall, 2014,            

Schaefer et al., 2014, Zegers and Friedl, 2014 ​)​. ​We showed here that the majority of               

the ​Arhgdia mRNA population is both cytoplasmic and MTOC-dependent, mainly          

located in the perinuclear area corresponding with the ER (data not shown), with a              

small fraction being localized to the periphery. This latter fraction may reflect a             

population that is transported to the periphery which can then be quickly translated             

when needed in order to regulate the levels of active Rho GTPases locally and in a                

rapid manner at the leading edge of the cell. The peripheral MTOC-dependent TIS             

maps for ​Arhgdia​, as well as a decrease in the concentration of RhoGDI (Arhgdia) at               

the cell periphery despite minimal disruptions to the transport of both ​Arhgdia mRNA             

and RhoGDI protein ​suggest MTOC-dependent peripheral local translation, that may          

be required as part of the polarization process.  

Our analyses also revealed important aspects of Pard3 spatial and temporal           

distribution. The localization of both transcript and protein show significant          

interdependent dynamics, implying that mRNA localization and localized translation         
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may be factors which influence localization of the Pard3 protein during polarization. In             

contrast to ​Arhgdia​, there is an increase in the MPI of ​Pard3 ​mRNA ​upon disruption               

with nocodazole, indicating MTOC-MT influence on ​Pard3 transport and peripheral          

anchoring of ​Pard3​. Localization of the Pard3 protein in peripheral clusters at cell-cell             

adhesions was previously shown in fibroblasts when grown in culture (​Schmoranzer           

et al., ​2009 ​), which is concordant with the peripheral enrichment of ​Pard3 mRNA and              

protein in our system. Further, localization of the ​Pard3 mRNA has been shown in              

growing axons stimulated with NGF and netrin-1 (​Hengst et al., 2009 ​). However, to             

our knowledge ​Pard3 mRNA localization and MTOC correlative influence has not           

previously been demonstrated in fibroblasts as we do so here. Indeed our analytical             

approach was instrumental in revealing the presence of such enriched peripheral           

organization in polarized cells.  

Resolving spatial and temporal distribution of RNA and protein in a           
quantitative manner 

We have shown our approach to be particularly suitable for the ​de novo identification              

of patterns of RNA spatial and temporal distribution and RNA-protein interdependent           

localization in a system, which has greater variability in terms of spatial localization             

and dynamics than developmental systems (​Junker et al. 2014, Lecuyer et al., 2007 ​).             

In particular, our analysis has demonstrated that micropatterning can be a valuable            

tool in studying RNA distribution as it allows us to reduce heterogeneity and isolate              

important modes of operation. The analytic tools we provide to identify sites of local              

interdependency between RNAs and proteins based on their dynamic patterns are           

readily applicable to other kinds of system, without requiring extensive manual           

annotation of visual features ​(​Lecuyer et al., 2007 ​)​. ​While previous approaches have            

identified broad classes of subcellular patterning in RNAs ​de novo via hierarchical            

clustering (​Battich et al., 2013 ​), lack of alignment limited the possible types of pattern              

identified and lack of integration with dynamic protein data limited the potential for             

drawing mechanistic and functional hypotheses from the patterns observed. Similar          

observations can be made in comparison to methods that have attempted to identify             

RNA patterns at the intercellular level, for instance in the zebrafish embryo ​(​Junker et              

al. 2014 ​), where hierarchical clustering based on spatial patterning alone is able to             
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suggest similarity of function, but where integration of dynamic and other omics data             

is not attempted. 

This has deep implications for projects such as the Human Cell Atlas (HCA).             

As noted above, several aspects of our approach are suitable as a basis for diverse               

kinds of spatially resolved omics (​Crosetto et al., 2015 ​), a key aim of the HCA. The                

quantitative nature of the analytic techniques introduced, autonomous image         

acquisition and automated features of our data processing make such techniques           

highly scalable to high-throughput studies and demonstrably in mammalian tissues.          

Particularly, the sensitivity of the approach to changes in localization under           

perturbation make the techniques suitable for inferring spatially organized regulatory          

networks (​Crosetto et al., 2015 ​) and can be combined with multiplexing techniques            

(​Chen et al., 2015 ​) to reveal dynamic changes in cell state. As well as interdependent               

mRNA-protein localization, our generalized clustering algorithms can be used to          

detect interdependent clustering dynamics between RBPs and different kinds of          

RNAs (lncRNAs, mRNAs, miRNAs), or interdependent protein-protein clustering        

patterns. Equally, our approach can be used to test various causal hypotheses for             

interdependent dynamics, such as characterizing RBP localization patterns, which         

act as determinants of lncRNA or mRNA localization (​Lee et al., 2013 ​), or building              

networks containing both RNA to protein and protein to RNA localization           

determinants. We believe that techniques such as those presented here will help to             

make possible the future development of such integrated approaches and contribute           

immensely to the HCA.  
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EXPERIMENTAL PROCEDURES 

Cell culture and treatments 

 

NIH/3T3 cells were grown at 37 °C to 100% confluence in DMEM/F12 medium             

supplemented with 10% FBS in a humidified atmosphere containing 5% CO​2​. Prior to             

micropatterning cells were serum-starved for 16 hr in DMEM/F12. For disruption of            

microtubule polymerization, nocodazole (Sigma) was added to a final concentration          

of 50 ng/ml to the medium, post removal of unattached cells and incubated for 3 or 5                 

hours before fixation of cells. Cytochalasin D (Sigma) was added to a final             

concentration of 1 mg/ml to the medium post removal of unattached cells and             

incubated for 1 h before fixation of cells. 

 

Cell micropatterning 

 

Micropattern production was performed as previously described (​Azioune et al.,          

2009 ​). Briefly, glass coverslips were exposed to deep UV light using a UVO Cleaner              

(Jelight Company) for 5 mins. Cleaned coverslips were incubated with 0.1 mg/ml            

PLL-g-PEG (Surface Solutions) in 10 mM HEPES, pH 7.4 at RT for 1 hr. They were                

then rinsed once in PBS followed by one rinse in MilliQ water. The pegylated glass               

coverslips were then placed on a custom designed chromium photomask (Delta           

mask)(containing the desired micropatterns) and exposed to deep UV light for 5            

mins. The patterned glass coverslips were then incubated with a          

fibronectin/fibrinogen-Alexa Fluor488 mixture (Life Technologies) in 100 mM        

NaHCO​3​, pH 8.5, at RT for 1 hr. The coverslips were then rinsed in PBS and used                 

immediately for cell seeding. Serum-starved NIH/3T3 cells were seeded on the           

micropatterned surfaces at a density of 10,000 cells/cm​2​. After 30 mins, unattached            

cells were removed by gentle aspiration and replacement of the medium. Attached            

micropatterned cells were incubated at 37°C for 2 to 7 hours. 
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RNA probes and reagents 

 

Design and manufacture of RNA FISH probes for use in the single molecule FISH              

method were performed according to the protocol by (​Raj et al., 2008 ​). Multiple             

20-mer oligonucleotide probes targeting the following mRNAs: ​Gapdh​, ​Arhgdia​,         

β-Actin​, ​Rab13​, ​Pkp4 and ​Pard3 were purchased (Biosearch Technologies). Each          

20-mer contains a mdC(TEG-Amino) 3’ modification used to conjugate an NHS-ester           

ATTO-565 fluorescent dye (ATTO-TEC) to the probe. In brief, concentrated          

oligonucleotide probes were resuspended in 0.1 M Sodium tetraborate (Sigma) and           

mixed with resuspended 0.25 mg of the NHS-ester dye and incubated overnight at             

37°C. This was followed by ethanol precipitation of the probes and purification by             

reverse phase HPLC on a XBRIDGETM OST C18 column to enrich for dye             

conjugated probes.  

 

Immuno-RNA FISH staining 

 

For experiments utilizing the ​Gapdh​, ​Arhgdia​, ​β-Actin RNA probes: micropatterned          

NIH/3T3 cells were fixed in 3.7% formaldehyde for 10 min at 37°C followed by              

washes in PBS and overnight permeabilization in 70% ethanol at 4°C. For            

experiments utilizing the ​Rab13​, ​Pkp4​, ​Pard3 RNA probes: micropatterned NIH/3T3          

cells were fixed in pre-chilled methanol for 10 min, followed immediately by RNA             

FISH. The single molecule FISH method was modified from (​Raj et al., 2008 ​) to              

include immunofluorescence staining to detect the microtubule cytoskeleton. Cells         

were rehydrated in wash buffer (10% formaldehyde, 2X SSC) for 5 min. Hybridization             

was conducted overnight in a humidified chamber at 37°C in Hyb buffer (10% dextran              

sulfate, 1μg/μl E.coli tRNA, 2mM Vanadyl ribonucleoside complex, 0.02%         

RNAse-free BSA, 10% formamide, 2X SSC) combined with 50 ng of the desired RNA              

probe along with primary antibody - rat monoclonal anti-tubulin antibody (Abcam).           

Cells were then washed 2X (30 min at room temperature) with antibody wash buffer              
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(10% formaldehyde, 2X SSC, anti-rat secondary antibody conjugated to Alexa Fluor           

647 (Abcam)) followed by 1X wash with wash buffer. Cells were then incubated in              

equilibration buffer (0.4% glucose, 2X SSC) for 5 mins and counter stained with 1              

μg/ml DAPI (4’,6-diamidino-2-phenylindole; Life Technologies). Coverslips were       

mounted in imaging buffer (3.7 μg/μl glucose oxidase and 1U catalase in equilibration             

buffer) and imaged. 

 

Immunofluorescence staining 

 

Micropatterned cells were fixed in 3.7% formaldehyde for 10 min at 37°C, then             

washed with PBS followed by overnight incubation in 70% ethanol at 4°C. The cells              

were then washed with FBS followed by permeabilization for 10 min in 0.25%             

Triton-X at room temperature. Following this, the cells were washed thrice with PBS             

for 5 min each and incubated in blocking buffer (0.2 % BSA/PBS) for 30 min at room                 

temperature. The cells were then incubated in the desired primary antibody solution            

(diluted in PBS) along with rat monoclonal anti-tubulin antibody (Abcam) to detect the             

microtubule cytoskeleton for 1 hr at room temperature. RhoGDI, Par3, β-Actin and            

Gapdh proteins were detected using rabbit polyclonal anti-Arhgdia (Santa Cruz),          

rabbit polyclonal anti-Pard3 (Abcam), rabbit polyclonal β-Actin (Santa Cruz) and          

rabbit polyclonal anti-Gapdh (Santa Cruz) respectively. Cells were then washed 3X           

with PBS following incubation with corresponding anti-rabbit secondary antibody         

conjugated to ATTO 550 (Rockland) together with anti-rat secondary antibody          

conjugated to Alexa Fluor 647 (Abcam) for 1 hr at room temperature. A further 3X               

wash with PBS was conducted followed by incubation in equilibration buffer (0.4%            

glucose, 2X SSC) for 5 mins and counter stained with 1 μg/ml DAPI             

(4’,6-diamidino-2-phenylindole; Life Technologies). Coverslips were mounted in       

imaging buffer (3.7 μg/μl glucose oxidase and 1U catalase in equilibration buffer) and             

imaged. 
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Image acquisition 

 

Most samples were imaged on a custom built spinning disk confocal Revolution XD             

system (Andor) comprising of a Zeiss Axio Observer.Z1 microscope with a 63X            

Plan-Apochromat objective (numerical aperture 1.4) and a cooled EMCCD camera          

(Andor iXon 897). Z-dimension positioning and control was accomplished by a           

piezoelectric motor (NanoScanZ, Prior Scientific). Images were captured using a          

custom developed algorithm based on ICY and μManager that allowed autonomous           

image acquisition (​Figure S1A​). In brief, the position of the micropatterns on the             

micropatterned surface were determined autonomously using the grid detection,         

alignment and calibration algorithm. This was then followed by sequential          

autonomous stepping through the micropatterned grid to determine the presence of a            

cell on the micropattern. If a single cell was detected on the micropattern surface by               

the algorithm then a ​z​-dimension series of images was captured every 0.3 μm in four               

different fluorescence channels using emission filters for DAPI (DNA), Alexa Fluor           

488 (micropatterns), ATTO 565 (mRNA/protein) and Alexa Fluor 647 (tubulin) and           

exposure times of 10 ms, 350 ms, 1 s (mRNA) or 500 ms (protein) and 350 ms                 

respectively. A few samples being imaged on a custom built Nikon Ti Eclipse             

widefield TIRF microscope using a 100X N.A. 1.49 Nikon Apochromat TIRF oil            

immersion objective and equivalent fluorescent channels as above. After imaging, the           

data was processed using an automated background noise subtraction algorithm          

using ImageJ (​Abramoff et al., 2004 ​). 

 

Materials 
 
Images were acquired for ​Arhgdia​, ​Gapdh​, ​β-Actin​, ​Pard3​, ​Pkp4​, and ​Rab13 genes.            

Tables 1, 2 and 3 below recapitulates acquisition conditions, techniques and number            

of acquired images in each series of FISH and IF data.  

 

Gene  Molecular 
species 

Technique Stain Time point 
(number of 
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images) 

Arhgdia* mRNA FISH ATTO 565 3h (28) 

 

β-Actin 

mRNA FISH ATTO 565 2h (41) ; 3h (42) 

4h (28) ; 5h (30) 

protein IF ATTO 565 2h (9) ; 3h (21) 

5h (19) ; 7h (24) 

 

Gapdh 

mRNA FISH ATTO 565 2h (58) ; 3h (64) 

4h (51) ; 5h (47) 

protein IF ATTO 565 2h (27) ; 3h (33) 

5h (21) ; 7h (24) 

 

Pkp4 

mRNA FISH ATTO 565 2h (17) ; 3h (35) 

4h (14) ; 5h (29) 

Rab13 mRNA FISH ATTO 565 2h (18) ; 3h (14) 

4h (22) ; 5h (9) 

Table 1. Image acquisition series characteristics and numbers for mouse fibroblast           

cells grown in micropatterned and standard cultures (indicated by *).  

 

Gene 
(condition) 

Molecular 
species 

Technique Stain Time point 
(number of 
images) 

 

Arhgdia 

(control) 

mRNA FISH ATTO 565 2h (61) ; 3h (47) 

4h (52) ; 5h (50) 

protein IF ATTO 565 2h (31) ; 3h (18) 

5h (75) ; 7h (22) 

Arhgdia 

(nocodazole) 

mRNA FISH ATTO 565 3h (41) ; 5h (32) 
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protein IF ATTO 565 3h (20) ; 5h (20) 

 

Pard3 (control) 

mRNA FISH ATTO 565 2h (29) ; 3h (14) 

4h (16) ; 5h (14) 

protein IF ATTO 565 2h (25) ; 3h (20) 

5h (9) ; 7h (26) 

Pard3 

(nocodazole) 

mRNA FISH ATTO 565 3h (25) ; 5h (21) 

protein IF ATTO 565 3h (14) ; 5h (22) 

Arhgdia 

(Control) 

mRNA FISH ATTO 565 1h15 (8) 

protein IF ATTO 565 1h15 (18) 

Arhgdia (CytoD) mRNA FISH ATTO 565 1h15 (7) 

protein IF ATTO 565 1h15 (25) 

Pard3 (Control) protein IF ATTO 565 1h15 (22) 

Pard3 (CytoD) protein IF ATTO 565 1h15 (16) 

Table 2. Image acquisition series characteristics and numbers for mouse fibroblast           

cells grown in micropatterned cultures in control and drug-disrupted conditions.  

 

 

Myofibers were differentiated and fixed as previously described (pimentel et al +            

Roman et al NCB 2017).  

Images were acquired for Actn2 ​and ​Gapdh ​genes. Acquisition conditions,          

techniques and number of acquired images in each series are recapitulated in Table             

3.  

Gene Element Technique Stain Number of 
images 

 Phalloidin FISH / IF ATTO 565 12 
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Actn2  mature fibers 

Phalloidin 

immature fibers 

FISH / IF ATTO 565 8 

Gapdh Phalloidin 

mature fibers 

FISH / IF ATTO 565 14 

 

Table 3. Image acquisition series characteristics and numbers for muscle cells. 

 

For the purpose of image analysis we stained different cellular elements acquired at             

the same time as the FISH and IF signal, with differents staining as detailed in Table                

4.  

Feature Staining 

DNA  DAPI 

Micropatterns (only for 

micropatterned cells) 

Fibrinogen - Alexa Fluor 488 

Tubulin Alexa Fluor 647 

Table 4. Summary of cellular features features stained in parallel to the FISH and IF               

signals. 

 

Images were acquired in the TIFF format. Our image processing pipeline transformed            

images into an HDF5 file (downloadable from the website www.dypfish.org). 

 

Image processing and statistical analysis 

All computational analysis performed in the DypFISH project and described below           

were implemented in Python. Parameters for each of the algorithms that were used             

for each image acquisition series are available on the accompanying website           

(​www.dypfish.org ​). 
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I. Primary image descriptors 

Given the TIFF files, we first computed primary image descriptors for each image and 

stored them in an HDF5 file for each acquisition series.  

(1). MTOC and nucleus centroid 

FISH and IF images were manually annotated using the ​γ-​Tubulin signal in order to              

obtain the coordinates of the microtubule organizing center (MTOC). For the   x, )( y          

microtubule images the MTOCs were further annotated as being in the direction of             

the leading edge of the cell or not (​Figure 1 Panel B​). The nucleus centroid was                

computed as the geometric center of the nucleus mask (see below). 

(2). Cell, nucleus and cytoplasm masks 

Cell and nucleus masks were computed for all images (FISH and IF) using ​γ-​Tubulin              

and DAPI signals, respectively.  

For each image we obtained the maximum projection of the γ-Tubulin stained            

z-stack. A vignetting correction (​Piccinini, 2013 ​) is further applied to each resulting            

image individually by simply performing a pixel wise multiplication between each pixel            

value and the vignetting function. The detected cells being in the microscope’s focus,             

we assumed the optical center to be the center of the image and the intensity fall-off                

to be radially symmetric and the vignetting function is defined for each pixel as             ,x y  

where and and are the image’s width,  e−d / (w/2) (h/2)[ 2
*

2 ]    (x /3) y /2)d =  − w 2 + ( − h 2  w  h     

and height, respectively. In a second time we perform contrast enhancement.           

Specifically, we apply histogram stretching by applying a linear normalization in order            

to stretch the interval of the intensities of a given image by fitting it to an another the                  

interval.0, 255][    

First, we describe the procedure used for the detection of cell contours from the              

γ-​Tubulin channel. We started by applying a local entropy filter to each pixel as             i   

follows: , where is the proportion of pixels in the (i) log pe =  − ∑
 

j∈N i

pj 2 j   pj        
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neighborhood having the same intensity as pixel . The neighborhood size was N i       j      

chosen to be . For certain noisy image series we further applied a percentile   0 03 × 3            

thresholding tailored to each series of images on the resulting entropy histogram. As             

a last step, for all images we performed Canny edge detection, which detected edges              

by applying Sobel operators to the smoothed image, followed by hysteresis.           

However, the resulting edges were usually non-contiguous due to a weak ​γ-​Tubulin            

signal or a high rate of noise. Consequently, we successively applied some            

mathematical morphological operators, such as dilation and closing, followed by          

erosion conventionally used to fill small gaps. 

As the result of these steps we obtained a contiguous contour; small artificial white              

spots (artefact of the Canny filter) were eliminated by the previously used            

morphological operators. To this resulting image we applied the marching squares           

algorithm in order to obtain a 2D cellular segmentation mask, , which is 1          (x, )M cell y     

for the cellular region and 0 otherwise.  

For detecting nucleus masks , the procedure was very similar using the    (x, )M nucleus y         

DAPI signal, except that the local entropy filter was in most instances replaced by an               

Otsu filter, depending on the quality of the DAPI signal. Mathematical morphology            

algorithms were applied to neighborhoods ranging from to depending       6 61 × 1   0 02 × 2   

on the image acquisition characteristics (see for details on the www.dypfish.org). 

Binary cellular and nucleus masks above were used to define a binary cytoplasm 

mask of the cell, (x, ) M (x, )∧¬M (x, )M cytoplasm y =  cell y nucleus y  

(3). Zero level 

An acquired image stack might contain irrelevant slices because the focal field of the              

microscope is outside the cell (above or below). To determine which slice contains             

the bottom of the cell and should be considered as the first relevant slice of the stack,                 

we defined the ​zero level descriptor corresponding to the index of the slice having the               

maximum summed ​γ-​Tubulin intensity. This zero level reference -slice was used in        z     

further analysis such as e.g. the height-map computation or the degree of clustering. 
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(4). Height-map and cell volume 

The height-map was built by segmenting each -slice of a stacked image, which       z       

generated the 3D segmentation of the cell. It was performed for all FISH and IF               

images using the ​γ-​Tubulin signal. Given a -slice above the zero level we applied       z        

the cell mask detection procedure previously described, which defined a -slice          z  

mask with values corresponding to the height of the slice ( within the (x, ) M z y          )z    

mask and outside. This set of slice masks defined the 3D representation, called  0             

height-map and denoted where the value at each coordinate is the   (x, )h y       x, )( y    

maximum over all slice masks, .(M (x, ))maxz z y  

Based on the height-map we defined the cell volume as ​the sum of        (x, )V = ∑
n

z=1
M z y      

volumes of all pixels within the height-map, where for each pixel , its           (x, )p∈ M z y   

volume is , where is a size coefficient between (p) (1 .75µm)² 0.3µmv =  ÷ 9 ×    .75 µm9       

pixel in , and is the height of the slice .mµ .3 µm0  
1

(5). Protein intensities 

Protein signal was computed for each immunofluorescence (IF) image ​as the sum of             

intensities across all z-slices and denoted as .(x, )I y  

(6). mRNA spot detection  

To detect transcript positions from FISH data we used the ICY spot detector             

(​Olivo-Marin et al., 2002 ​). The detection was scripted so that for the images having              

we used the following parameters: 2D wavelets and sensitivity 70 atax(z) 2m ≤ 1             

pixel-scale 2; otherwise the parameters were set to: 1 pixel and 2 pixel length-scales              

with sensitivity 80. For cultured cells, as well as for CytoD micropatterned cell series,              

we have applied a custom-developed spot detection script (these images present a            

very high noise content preventing efficient use of ICY). First, we apply a background              

noise subtraction by using Sobel and Gaussian filters, successively. Second, we           

apply the white top-hat filter in order to enhance bright objects of interest (potential              

1 Specific constants are dependent on the microscope and camera settings. 
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mRNA spots) on a dark background. Finally, we use the Laplacian of Gaussians filter              

for mRNA spot detection. 

 
 
II. Secondary image descriptors 
 

Based on the primary image descriptors we computed secondary descriptors that           

corresponded to per image statistics. 

(1). Cytoplasmic total counts 

Let us denote the set of all mRNA spots for a given FISH image, . The   M             M| | = N   

cytoplasmic total mRNA descriptor was calculated as the number of transcripts within            

that is . ​The cytoplasmic total IF,M cytoplasm     TmRNA = m  | M (x, ) 1|
|
|{ ∈ M cytoplasm y =  }|

|
|

     

intensity is the summed IF intensity across the region for protein images:        M cytoplasm     

. T IF = ∑
 

 
I | M (x, ){ (x, )y  cytoplasm y = 1}  

(2). Peripheral distance map 

 
For a given image, the peripheral distance map corresponds to a collection of             

peripheral masks based on , where the width of the periphery varies as    (x, )M cytoplasm y          

a proportion of the cytoplasmic radial distance. We segmented into         (x, )M cytoplasm y   

100 isolines from the nucleus contour to the periphery by projecting a ray from the               

nucleus centroid to the cell border, which was then segmented in 100 equidistant             

points. The 100 isolines were then built by constructing polygons that connect 360             

points (one ray per degree). These isolines define a symbolic distance map ,            D  

where is the isobar value for corresponding to the “distance” from the (x, )D y       x, )( y        

nucleus, with 100 at the nucleus and 0 at the cell edge. Given a fixed percent                p  

between 0 and 100, the mask is 1 for and 0 otherwise.      (x, , )M periphery y p     (x, )D y < p     

Hence, the periphery mask for a given contains a strip at the cell edge whose       p          

width is a fixed proportion of the radial distance. 
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III. Statistical analysis 

 
Primary and secondary image descriptors were used to compute statistics for image            

acquisition series and to compare them. 

(1). Peripheral fraction and enrichment 

Based on the cell masks, we calculated the peripheral fraction of mRNA and proteins              

at a given percent of the radial distance. This fraction is defined as the ratio of the    p               

transcript counts (respectively, summed IF intensities) across the        (x, , )M periphery y p  

and regions.M cell   

Each mRNA spot located at ​has its corresponding peripheral distance, defined     x, )( y        

by the value of the distance map a ​t the same coordinate, which provides a       (x, )D y        

mapping . This defines a vector containing the counts of d : M → D       (n , ..C =  1 . )n100     

mRNAs at distances from the cell edge normalized by the total    0, .., 00]i ∈ [ . 1          

number of mRNAs, that is . The mRNA fractions for      Nni = {m  | d(m) i}| ∈ M =  | /      

each gene and for each isobar were defined as vector ) of means           n , ..C = ( 1 . n 100    

over all FISH images for this gene over all time points. The peripheral fraction of               

mRNA for a given gene and given  was then computed as .p n  ∑
 

i≤p
 i   

(2). Volume corrected noise measure 

In order to measure gene expression noise while accounting for cell volume, we             

computed the volume corrected noise measure for micropatterned and      mN     

standardly cultured cells. It was calculated following the approach of a previous study             

(Padovan-Merhar et. al. 2015): 

 

m  N =  σN
E(N ) − ( b×E(V )

a+b×E(V ))( Cov(m,V )
E(m) E(V ))  

 

where is the total mRNA count, is the cell volume, ​are the offset and slope N      V     , ba        

of the least-squares best-fit linear regression of ​on , and and ​are       (N )E   V   , Eσ    ovC   

the notations for standard deviation, expectation and covariance, respectively.  
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(3). Cytoplasmic spread 

Cytoplasmic spread is a statistics that measures how evenly a molecule is spread             

across the cell. For the mRNAs it corresponds to the average distance from the              

nucleus centroid of cytoplasmic mRNAs normalized by the total cytoplasmic cell           

spread. For the protein intensities it is the expected distance from the nucleus             

centroid according to the protein cytoplasmic intensity distribution, normalized by the           

cell spread. In both cases the statistics takes value when the molecules are evenly         1       

distributed across the cytoplasm. 

 

First we defined the cytoplasmic cellular spread as the average distance of a       S        

cytoplasmic voxel from the nucleus centroid in the  plane:x − y  

                                        S =  V

(x,y) d(x,y)∑
 

(x,y) ∈ C
h

 
 

where is the set of all coordinates for which is , is the  C        x, )( y    (x, )M cytoplasm y   1  h   

previously defined height map, the 2D euclidean distance of pixel from    (x, ) d y       x, )( y   

the nucleus centroid, and is the cell volume.V    

The mRNA cytoplasmic spread is then defined as , where m is the mean         / SM = m       

3D distance of all cytoplasmic transcripts, that is those where          (x, ) ,M cytoplasm y = 1  

from the nucleus centroid. 

The protein cytoplasmic spread is defined as: 

                                           P   =   T  · SIF

(x,y) d(x,y)∑
 

(x,y) ∈ C
I

 

 

where is the summed IF signal intensity at a given coordinate and is (x, )I y            x, )( y   T IF   

the cytoplasmic total count of the IF signal intensities. 

(4). Cell quantization 

In order to compute localisation statistics over multiple micropatterned images          

compatibility of these images is required. We have chosen the MTOC position to be              

the reference point for the 2D cell geometry.  
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(A) 2D quantization: quadrants and per quadrant statistics 

 
As shown on the schematic in ​Figure 3, panels A and B​, given a cell mask ,                (x, )M cell y  

we generate the tessellation of the image by centering ​two orthogonal axes at the              

nucleus centroid and rotating them over 360 degrees, each position of these axes             

defining a partition of the cell mask into four quadrants, one of them containing the               

MTOC, . We retained the orientation that yields the maximum mRNA count  Q M            

within a quadrant containing the MTOC, that is        

. Theax d 0, 59]  m d T( mRNA = m  | M (x, ) 1 Q (x, )|
|
|{ ∈ M cytoplasm y =  ⋀  M y = 1}|

|
|) ,  ∈ [ 3   

resulting fours quadrants are numbered so that always   , Q , Q , QQ1  2  3  4      Q1   

corresponds to and the the remaining three quadrants are numbered in the   Q M           

clockwise fashion. 

 

For protein intensities, quadrants are defined in the similar fashion using .           T IF  

Definition of cell mask partitioning in quadrants enables cell’s       , q , q , qq  2  3  4    

quantization in 2D in terms of per quadrant statistics of mRNA and protein signal.              

Quadrants’ respective areas are denoted by . We denoted by the total      , , ,a1 a2 a3 a4     ti    

number of mRNA spots falling in in the case of FISH data, or the summed      qi           

intensity across  in the case of IF data.qi   

Then the local mRNA density was computed as the relative concentration  ofci  

mRNA in quadrant  and is defined ​ ​to be , ​where  is the cell mask area.i ci = t /ai i
T /AmRNA

A  

In the case of protein signal we replaced by .TmRNA T IF   

(B) Fine-grained quantization 

In the same fashion as for the peripheral distance map we defined an additional              

subdivision of the cellular mask in isolines, their number being defined by the percent              

. Given the previously defined quadrants, we further subdivided each of them in 2,p               

yielding the tessellation in 8 parts that divide the circle in 45 degree sectors. Using               

the isolines and the 8 sectors we quantized the cell masks into segments             8 × p   

organized in a concentric fashion starting from the nucleus towards the cell periphery             
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(see the schematic in Figure 4, panel A). Quantization for thus obtained segments             

was computed in the same fashion as for quadrants, resulting in a vector of             8 × p    

per segment signal concentration statistics for each cell, that we denoted .c )C = ( i  

(C) 3D quantization 

Cell mask’s tessellation into quadrants as defined in III.4.A (axes position) is            

projected onto each -slice, thus yielding the cell’s partition into four 3D quadrants   z           

, their respective volumes being denoted by . ​The volume, Q , Q , QQ1  2  3  4        , , ,v1 v2 v3 v4    

of each quadrant is calculated as the sum of volumes of pixels within it using the                

same coefficients as for the cell volume. 

We denoted by the total number of mRNA spots falling in in the case of FISH   ti          Qi       

data, or the summed intensity across  in the case of IF data.Qi   

Then the relative concentration  of mRNA in quadrant  is defined ​ ​to beci Qi  

 ​In the case of protein signal we replaced by ..ci = t /vi i
T /VmRNA

TmRNA T IF   

 

(5). MTOC polarity index 

We defined a polarity index , called the ​MTOC polarity index​, that     I − , ]P M ∈ [ 1 1        

measures the enrichment of mRNA or protein signal for a given image acquisition             

series in the vicinity of the MTOC location.  

For the set of images from an acquisition series under study, we denoted by   S             

and the sets of all MTOC containing quadrants andSM = {S }i    S¬M = S{ j}          

quadrants that do not contain the MTOC, respectively. Intuitively, the MTOC polarity            

index measures how frequently the concentration within the MTOC quadrants is           

higher than in the non-MTOC quadrants. Formally it is defined as follows: 

,PIM =  S | |
2 { S | c > m }| i i | − 1  

where  is the median of signal concentrations  for all quadrants in .m cj S¬M   
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Positive values of imply MTOC correlated enrichment of RNA transcripts or   IP M          

proteins, negative values imply enrichment away from the MTOC and a value of zero              

implies no detectable correlation. 

Statistical relevance of is measured using the null hypothesis that ,   PIM        i, c∀  i = m  

which corresponds to the complete spatial randomness. Under this hypothesis the           

population value of is . However, we have shown in (​Warrell et al., 2016 ​) that   PIM  0            

the empirical distribution of follows the binomial distribution asymptotically.    PIM      

Thus, the binomial test was used to evaluate the statistical relevance of for a            PIM   

given set of images. 

(6). mRNA / protein distribution profile  

In order to define a spatial distribution profile of mRNAs and proteins for images              

acquired at a given time point, we used the fine-grained quantization of the cells (see               

paragraph IV.4.B). A single vector was computed at each time point by averaging             

across the pool of acquired images, hence estimating its expected value at that time              

point. Recall, that for each cell we computed a vector of per segment signal          c )C = ( i      

(mRNA or protein) concentration statistics. Then for a given time point we computed             

a mean spatial profile representative of this time point by averaging all for this    C          C i    

acquisition series. 

(7). Temporal interaction score 

The goal of this analysis is to measure the interdependence between the mRNA and              

protein dynamics. To do this, we defined the ​Temporal Interaction Score (TIS) as a              

correlation between mRNA and protein spatial distributions for image acquisitions at           

several time points. TIS for a given mRNA-protein pair is calculated based on mRNA              

and protein distribution descriptor vectors an .CmRNA CP  

 

TIS can be calculated for any measure of correlation between mRNA and protein             

distributions, which allowed us to examine the interdependence of molecule’s          

dynamics within specifically defined subcellular regions. 
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More formally, we supposed a 2-measure discrete time process , containing         Φ   
observations and at time points and , respectively. ϕ )( ti

  ψ )( tj
   t }T 1 = { i   t }T 2 = { j   

Then, the (empirical) temporal interaction score, is defined for pairs of data      (S)Ĵγ        
at time points and using a similarity function in the(ϕ ) ψ )}S = { ti

× ( tj
   T 1   T 2       γ   

following way: 
 

,(S)Ĵγ = B −A
α − A   

where is the rank-sum , is the rank of the tuple α    ((ϕ , )),  tα = ∑
 

t , t1 2

rγ′ t1
ψt2

 1 <  t2  rγ        

where the order is given by the function, function is the similarity between pairs       γ   γ        

of observations is computed as . Constants     ((t t ))  γ′ 1, 2 → γ E( ˆ σ(ϕ )[ t1 ] , Ê σ(ψ )[ t2 ])   A  

and ensure that lies between 0 and 1 and are defined using the notion of B    Ĵ              
‘forward-leading’ time point pairs.  
 
The ‘forward-leading’ set is defined as , and its   S1     S1 = {(t , )  | t }1 t2 ∈ T 1 × T 2 1 < t2    
complement contains all pairs of time such that . We define constants S2         t1 ≥ t2     A  
and as and . Thus, B   A |S |/2)(|S |  ) = ( 1 1 + 1   |S ||S |/2) (|S ||S | )(|S |/2)(|S | )B = ( 1 2 1 2 + 1 2 2 + 1   

can be understood as the rank-sum of the similarities across allĴ          (t t )γ′ 1, 2   
‘forward-leading’ time point pairs normalized by  and  to lie between 0 and 1.A B  
 
Consequently, observations from  are ranked in the ascending order according toΦ  
the value of the similarity of some statistics  between and .σ  ϕ ψ   
 

In practice, for the analysis of mRNA / protein interactions, we considered computing             

the TIS for a 2-measure discrete time processes in which is a point process        Φ      ϕ     

and a general random measure (representing mRNA locations and protein  ψ          

concentrations respectively), and (the discrete time  T 1 = {2, , , }3 4 5   T 2 = {2, , , }3 5 7    

points representing time in hours), is the normalized histogram over a fixed finite     (.)σ          

set of voxels as described in the section III.6, and is the Pearson Correlation          γ      

Coefficient between two histograms. We note that can represent a histogram       (.)σ      

based on a particular quantization of cells and the histogram can cover the whole cell               

(forming a global TIS). 

 

Moreover, we evaluated whether there is a deterministic influence of the mRNA            

distributions on the protein distributions of late time points against a null hypothesis             
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of dynamic equilibrium. We used the empirical temporal interaction score to          Ĵ   

identify non-stationary dynamics given pairs of mRNA and protein data , and we          S    

tested whether the null hypothesis (that is in a dynamic equilibrium) can be      Φ         

rejected. 

 

In (​Warrell et al., 2016 ​) we have shown that under the null hypothesis         .5  E J[ˆ] = 0      

that the process is at steady-state, and further that its distribution can be   Φ            

characterized up to a dependence on the ranking function. From the rank-sum of the              

similarities across defined previously, an exact permutation test can be ((t , ))γ′ 1 t2   S1          

derived to calculate significance levels for a given value of and a steady-state null          Ĵ      

hypothesis. 

(8). Degree of clustering (Ripley-K) 

The degree of clustering statistic has been previously introduced based on the            

framework of point processes by (​Lee et al., 2013 ​). It is ​a unitless measure that can                

be used to compare clustering between different molecules and conditions. In           

(​Warrell et al., 2016 ​) we generalized this definition to the framework of continuous             

random measures, which allows us to calculate the degree of clustering for both             

FISH and IF data, the former being modelled as point processes, and the latter              

modelled as a continuous-valued random measure. Our generalized algorithm for          

calculating the degree of clustering is summarized below. For theoretical          

considerations please see (​Warrell et al., 2016 ​). 

 

A classical tool for the point process analysis is the Ripley’s K function defined as the                

mean number of events that occurred inside a ball of radius around a randomly           r     

selected event normalized by , the number of events per unit area (​Ripley, B. D.    λ            

1977 ​). A classical estimator of the Ripley’s K function can be defined as in (​Chui et                

al., 2013, Ripley 1977 ​):  

(r)  (r)K̂ = 1
λ ν(w)2 ∑

n

i=1
N i  
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where is the number of event points (mRNA transcripts) in a ball of radius N i               r  

centered on , is the density, is the volume or area (in 3D and in 2D,  i  λ     ν            

respectively) of the observed region , and  is the number of points.w n  

 

We normalized under a homogeneous Poisson process, which is commonly  K ˆ         

known as Ripley’s H function where is equal     (r) , d 2, }  Ĥ =  √d (3 K(r))/(4π)ˆ − r  ∈ { 3   d    

to 3 in the case of volume-based computation and 2 in the case of 2D. 

 

This in turn makes it possible to define the clustering index as an estimator of           H*      

by comparing the Ripley’s H function calculated empirically to its distribution(r)Ĥ             

under complete spatial randomness (CSR):  

  (r)H*ˆ =  H (r)/H (r)  if  H (r)≥0ˆ ˆ
95

ˆ

−H (r)/H (r) otherwiseˆ ˆ
5

 

where  and  are the 95th and 5th percentiles respectively of .(r)Ĥ95 (r)Ĥ5 (r)Ĥ  

 

CSR is modeled using random permutations of actual data points (100 times in our              

study), which enabled us to compute the 95% and 5% confidence bounds of CSR.              

Spatial clustering is considered to be significant at radius if the computed is         r     (r)K̂   

over the upper (95%) or lower (5%) bounds of the random distribution.  

 

In (​Warrell et al., 2016 ​) we have introduced a convolution-based estimator based          H*ˆ    

on the exact permutation-test. This estimator normalizes so that only       (r)Ĥ    H (r)|
|

*ˆ |
| > 1   

when falls outside the 95% confidence interval for a homogeneous Poisson (r)Ĥ            

Process. Moreover, we have shown that our permutation test using the           

convolution-based estimator reduced to the clustering index estimator used by (Lee           

et. al. 2013) for the point process case. This enabled the implementation of a              

common consistent computational framework for both point and continuous         

processes. The degree of clustering is then defined as the area of above ,     (r)δ̂         Ĥ*   1  

that is .(r) ax(H(x) , )dxδ̂ = ∫
 

x∈(0,r)
m ˆ − 1 0  
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Within this unified framework we can use the same computational approach for            

mRNA data as in (Lee et al., 2013) to compute the degree of clustering. Below we                

define the specific procedure for its computation in the case of protein data.  

 

Cells are quantized into voxels ,..., where each voxel t the value of the     V 1  V n          

observed quantity in the case of 3D analysis (or into pixels in the  (V ), .., ϕ(V )  ϕ 1 .  n            

case of 2D). We denoted by an array in which each element corresponded to the      I           

intensity value for each voxel. 

 

The convolution-based estimator  can be computed using the following formula:Kcˆ  

(r) I )(x)dx Kcˆ =  1
λ V2 ∫

 

 
x r [| | ≤  ] ( * I

′ − 1
λ  

 

where ​is an estimate of average intensity per unit volume, is the indicator λ           .] [    

function that is for a true statement and otherwise, , is the   1       0   (x) (− )I ′ = I x  *    

convolution operator, and ​is the volume of the window over which the cell is   V             

observed. In practice, given the fact that the cell thickness is quite low, we can               

approximate the 3D convolution by a 2D convolution. 

Thus we have a common computational framework to evaluate the presence or            

absence of clustering for both mRNA and protein data. 

 

 

IV. Additional methods for muscle data analysis 
 

In this section we report adaptations of the methods presented in sections I, II and IV 

to the case of muscle cells (see Table 3). 

(1). Cell and nucleus masks, nucleus centroid 

Cell and nucleus masks were computed for all muscle images, using ​γ-​Tubulin and             

DAPI signals, respectively, using the same general principles as in section II.2. As             

these acquisition series benefit from a better segmentation, only Otsu threshold           

method was necessary to obtain the binarized images. 
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After these steps, we obtained a contiguous contour with small white spots due to ​the               

noise in the images. We applied mathematical morphological operators such as           

dilatation and closing to get a full mask of the muscle cell . The nucleus            (x, )M cell y    

mask detection followed the exact same steps and parameters as for (x, )M nucleus y            

the micropatterned images - the nucleus centroid was computed as the geometric            

center of the nucleus mask. 

(2). mRNA and protein signal detection 

mRNA spots detection was done using ICY spot detector (​Olivo-Marin 2002 ​) to find             

transcript positions, the parameters were set to: 1 pixel and 2 pixel length-scales with              

a fixed sensitivity of 80. 

(3). z-lines’ masks  

The main component of z-lines is the Alpha actinin protein. To facilitate the analysis,              

we have defined an additional secondary descriptor computed from the Phalloidin           

signal, called z-lines mask .(x, )M z−lines y  

For each -slice of each image we performed the contour detection for the z-lines.  z             

First, we applied a vertical Sobel operator, which detected the vertical edges of an              

image, followed by a Gaussian kernel to smooth artifacts of the Sobel filtering and              

reinforce the z-line signal. An Otsu binarization was then processed. As a result we              

obtained a set of z-lines masks  (​Figure 6 ​). M z−lines = M (x, ){ z
z−lines y }   

For further analysis we restricted the cell to -slices containing more than mRNA        z     52   

spots (to avoid false positives due to high noise). Notice that the spots falling in the                

eliminated slices were also excluded from the analysis.  

We defined an additional descriptor called z-line spacing that represented the        Z      

median spacing between 2 lines. For each -slice at each coordinate we       z    y    

computed all the distances where and were 2 consecutive    ((x , ), (x , ))d i y  j y   xi   xj     
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z-lines contours. was defined as the median of all for all acquired cells. For our  Z         d        

data pixels.Z 5= 1   

(4). z-line mRNA distance profile 

In order to evaluate the mRNA clustering in the vicinity of z-lines, we computed the               

average 2D euclidean distance of mRNA spots to their nearest z-line for mature and              

immature cells. 

Using the masks, we computed for each mRNA spot positioned  (x, )M z−lines y        m∈ M   

at the minimal 2D Euclidean distance to a z-line falling within a disk of x, , )( y zm               

radius . This computation was performed within the z-mask such that Z        (x, )M z
z−lines y     

. If fall within , then the minimal distance was set to . Thus forz = zm   m    (x, )M z
z−lines y         0    

each image we obtained a the set of all minimal distances between     D = {d} ,  D| | = N         

mRNA and z-lines. In turn this allowed us to define for each image a count vector                

of size where is the number of mRNA spots at each distanceδ )δ = ( i    Z   δi           

 normalized by ., dd = i  ≤ Z N   

For a given image acquisition we defined its z-line mRNA distance profile to be              

, where  is the median of all  (F​igure 6, panel B​).δ )δ = ( i δi δi  

(5). Cell quantization 

Given that muscle cells contained more than one nucleus, each cell mask was             

restricted to be between two consecutive nuclei centroids as shown on the schematic             

in Figure 6 (panel C). Given a cell mask , ​definition of cell mask tessellation         (x, )M cell y       

in vertical segments enables cells quantization in 2D in terms of per n    ... qqi n           

segment statistics of mRNA concentrations. Quantization was performed with         

 and  , see results in Figure 6 (panel C). 20n =   80n =   

 

(6). mRNA spatial distribution 

To estimate mRNA clustering along muscle cells, we computed local mRNA density            

for each cell using the cell quantization introduced in section V.5. We denote by              ti  

the total number of mRNA spots falling in a given . Then the local mRNA density is          qi        
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computed in the same way as for fibroblast cells (see section III.1) as the relative               

concentration of mRNA in and is defined ​to be , ​where is the cell ci     qi       ci = t /ai i
T /AmRNA

  A     

mask area. We produced distribution plot and heatmap representing mRNA local           

density between two nuclei (​Figure 6 panel C​). 
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FIGURE LEGENDS 
 

Figure 1 | Reproducibility of mRNA and protein distributions in micropatterned cells.            

(A) Mouse fibroblasts were plated on fibronectin-coated micropatterns and induced to           

polarize by addition of serum. Cells were fixed and single molecule FISH was             

performed to target mRNAs of interest. (B) Outline of the image processing pipeline.             

(C) ​Arhgdia mRNA was visualized using single molecule FISH (grey) in standard and             

crossbow-shaped micropatterned mouse fibroblasts, micropatterns were visualized       

by coating with labeled fibrinogen (cyan) and DNA was stained with Hoechst (blue),             

scale bar 10 μM. (D) Comparison of the relationship between cell size and Arhgdia              

transcript copy number in standard cultured and micropatterned cells. Solid lines in            

(D) upper graphs show the least squares fit. Lower graphs compare cell and nucleus              

size in the two conditions. (E) Absolute deviation of Arhgdia mRNA distribution of a              

randomly selected cell from a pooled average of up to ~40 cells for cultured and               

micropatterned cells. 

 

Figure 2 | Peripheral enrichment and clustering dynamics of mRNA-protein pairs. (A)            

A subset of transcripts were previously shown to be enriched in the leading edge of               

mouse fibroblasts upon treatment with LPA/serum (Mili ​et al​., 2008). (B) Comparison            

of the enrichment of 5 mRNAs with respect to the ​Gapdh mRNA in a peripheral               

cellular region whose width varies from 0-100% of the radial distance from the             

plasma membrane to the nucleus (left), and the distributions of absolute fractional            

values at 10% and 30% (right). (C) Clustering is characterized by comparing            

observed transcript and protein distributions to complete spatial randomness. For          

mRNAs, the Ripley’s K function is estimated for an observed distribution and samples             

from a homogeneous Poisson process by counting the number of pairs of points lying              

within a radius of each event. (D) To compute the degree of clustering, we first   r              
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defined an estimator of the Ripley's K function, called clustering index, by normalizing             

the observed Ripley’s K function to the 95th and 5th percentiles under the Poisson              

process. Statistically significant clustering of mRNAs or proteins is found at radius r             

where the estimator function is over the 95th percent confidence interval calculated            

based on the CSR assumption. Values below the 95th percent confidence interval            

indicate the dispersion of the molecules. The degree of clustering is the area under              

the estimator's curve that is above the 95th percentile of the random distribution. (E)              

Comparison of degree of clustering for mRNAs and proteins (all time-points, log            

values shown after scaling by log(0.5) and log(0.01) for mRNAs and proteins            

respectively). (F) Comparison of clustering dynamics for four mRNA-protein pairs          

using degree of clustering. Zero values indicate distribution at a given time-point is             

not distinguishable from randomness. (G) Correlations between temporal profiles for          

corresponding and non-corresponding mRNA-protein pairs (Pearson Correlation       

Coefficient used). Correlations are between median values at 2, 3 and 5 h time points               

for degree of clustering, peripheral fraction, cytoplasmic total and spread descriptors.           

Bar graphs in (B) and (E) show median with .25 and .75 quantile error bars, and                

graphs in (F) show median surrounded by envelope indicating .25 and .75 quantiles             

fitted to cubic splines. See also Figure S2. 

 

Figure 3 | C​orrelative influence ​of cyt​oplasmic ​mRNA and protein distributions and            

MTOC position. (A) Schematic of the MTOC c​orrelative influence analysis. MTOC           

position is annotated in projected 3D Tubulin IF images (iii). (B) Schematic of the              

analysis to determine the MPI value. The MTOC polarity index (MPI) is defined by              

normalizing the differences of signal concentration between the MTOC associated          

quadrant and the other quadrants. It takes values between -1 and +1, with positive              

values indicating enriched mRNA or protein concentration in the MTOC quadrant,           

negative values indicating enrichment away from the MTOC quadrant, and values           

close to 0 indicating no c​orrelative enrichment. (C) The cytoplasmic mRNA           

enrichment in non-MTOC containing quadrants, MTOC-containing quadrants and        

MTOC-containing quadrants when this quadrant coincides with the leading edge. The           

concentration of cytoplasmic ​β-Actin​, ​Pad3​, ​Pkp4 and ​Rab13 transcripts and Arhgdia           

and β-Actin proteins is enriched in the MTOC-containing quadrant when it is in the              

leading edge. (D) Comparison of MPI values for mRNAs and proteins in cytoplasmic             
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populations (all time points). (E) Comparison of MPI dynamics for Arhgdia and Pard3             

mRNA-protein pairs. Bar graphs in (D) show median and .25 and .75 quantile error              

bars for 11 bootstrapped MPI estimates. Graphs in (E) show median surrounded by             

envelope indicating .25 and .75 quantiles of 11 bootstrapped estimates fitted to cubic             

splines. 

 

Figure 4 | Interdependency of localization dynamics for corresponding mRNAs and           

proteins. (A) The Temporal Interaction Score (TIS) as a correlation between mRNA            

and protein spatial distributions for image acquisitions at several time points.           

Distributions were spatially quantized radially with the center at the nucleus centroid            

and circularly by computing isolines at different distances from the cell’s periphery.            

The subcellular distribution profiles of mRNA and proteins corresponding to          

concentration statistics in each segment was computed. (B) Forward leading time           

point pairs, defined as , were used for calculating TIS values. (C) TIS values    t1 < t2           

were computed using global correlations of all voxels/segments across the          

cytoplasmic area, and local correlations across subsets of voxels/segments within          

peripheral regions. (D) Significant interdependent dynamics for all cyt​oplasmic         

mRNA-protein pairs was observed using the fine grained quantization scheme.  

 

Figure 5 | Effects of cytoskeleton disturbance on mRNA-protein localization and           

interdependent dynamics. (A) Nocodazole was added to cells seeded on          

micropatterns, inducing inhibition of microtubules polymerization (Tubulin IF image         

shown), scale bar 10 μM. (B) Cytoplasmic spread of Arhgdia and Pard3 transcripts             

and proteins (at 3 and 5 h combined) is defined as a statistics measuring the               

evenness of a molecule spread across the cell, with the value 1 for even distribution.               

No significant effects in cytoplasmic spread are observed for these two genes in the              

presence of nocodazole; (C) The peripheral fraction of Arhgdia and Pard3 transcripts            

and proteins (at 3 and 5 h combined) were calculated similarly to Figure 2B. ​Arhgdia               

peripheral fraction was increased in the presence of nocodazole. (D) mRNA MTOC            

enrichment profiles for ​Arhgdia and ​Pard3 shown for nocodazole-treated and control           

cells at 3 and 5 h combined. A reduction in MTOC enrichment for ​Arhgdia and an                

increase in MTOC enrichment for ​Pard3 are observed in the presence of nocodazole.             

(E) MPI scores shown for control and nocodazole treated cells for ​Arhgdia and ​Pard3              
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transcripts at 3 and 5 h combined. Nocodazole treatment disrupts characteristic           

dependency between MTOC orientation and localization, resulting in lower MPI          

values than in the untreated conditions for ​Arhgdia and higher MPI values compared             

to untreated conditions for ​Pard3​. (F) The interdependent dynamics for Arhgdia and            

Par3 were disrupted in the presence of nocodazole.  

 

Figure 6 | Sarcomeric mRNAs cluster in a striated pattern in differentiated myofibers.             

(A) Typical epifluorescent images of immature and mature muscle fibers. The DNA            

was stained with DAPI (blue), F-actin was visualized using immunofluorescence          

(green) and ​Actn2/Gapdh were visualized using single molecule FISH (red). Z-line           

and RNA spot detection masks were extracted using immunofluorescence and single           

molecule data respectively. (B) mRNA distance profiles. For each mRNA we           

computed its distance to the closest Z-lines, which allowed us to count the number of               

mRNAs having a certain distance to Z-lines. Normalized median counts are           

represented on the y axis. A higher number of ​actn2 immature mR​NA falls inside or               

close to Z-lines compared to mature fibers, suggesting greater clustering of mRNA            

between Z-lines for mature ​actn2​. (C) The mRNA local density was computed            

between two nuclei. Each cell was quantized in vertical quadrants and relative            

concentration of mRNA in each quadrant was computed by normalizing the counts by             

the relevant surface. A wave-like clustering is observed for ​actn2 in mature compared             

to immature fibers. No clustering is observed for ​Gapdh​. (D) Model describing ​actn2             

mRNA distribution in immature and mature fibers.  

  

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1  

 

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2 

 

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3 

 

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4  

 

 

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 5 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6 

 

 

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/536383doi: bioRxiv preprint first posted online Jan. 31, 2019; 

http://dx.doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/


 

SUPPLEMENTARY FIGURE LEGENDS 
 

Figure S1, related to Figure 1 | Automated image acquisition and effects of             

micropatterning on noise. (A) Each coverslip was micro-fabricated to contain multiple           

12 by 12 grids of micropatterns to which the cells adhered facilitating the             

development of an algorithm to automate the process of image acquisition. The            

algorithm initially performed grid calibration in which the location of the upper-left            

micropattern was automatically detected, followed by grid orientation and grid step           

size determination (left). Images were then collected at each grid position across the             

full 12 by 12 grid. A 2-class support vector machine was trained to classify cells               

which have grown normally on the micropatterns versus micropatterns containing no           

cells, multiple cells, or cells which have failed to fill the micropattern, allowing the              

automatic rejection of grid positions which cannot be used (right). (B) Comparing the             

volume-corrected noise measure (Padovan-Merhar et al., 2015) across time for 6           

mRNAs. Cubic splines are fitted to the values measured at 2, 3, 4 and 5h time-points.                

© ​The stochasticity which remains after correcting for the linear relationship between            

cell-size and transcript number using the volume-corrected noise measure         

(Padovan-Merhar et. al. 2015).  

 

Figure S2, related to Figure 3 | C​orrelative influence ​of peripheral mRNA and             

protein distributions and MTOC position. (A) The peripheral mRNA enrichment in           

non-MTOC containing quadrants, MTOC-containing quadrants and MTOC-containing       

quadrants when this quadrant coincides with the leading edge. The concentration of            

cytoplasmic ​β-Actin​, ​GAPDH and ​Rab13 transcripts and Arhgdia protein is enriched           

in the MTOC-containing quadrant when it is in the leading edge. (B) Comparison of              

MPI values for mRNAs and proteins in peripheral populations (all time points). (E)             

Comparison of MPI dynamics for β-Actin and GAPDH mRNA-protein pairs. Bar           

graphs in (B) show median and .25 and .75 quantile error bars for 11 bootstrapped               

MPI estimates. 
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Figure S3, related to Figure 5 | Effects of cytoskeleton disturbance on            

mRNA-protein cytoplasmic spread, counts and peripheral fraction. (A) + (B) ​Effects            

of Nocodazole and CytoD treatment on cytoplasmic total and cytoplasmic spread           

descriptors for Arhgdia and Pard3 mRNAs and proteins at 3-5 h time-points. Bar             

graphs show median with .25 and .75 quantile error bars. (C) The peripheral fraction              

of Arhgdia transcript and protein (at 3 and 5 h combined) were calculated similarly to               

Figure 5C.  

 

Figure S4, related to Figure 6 | Sarcomeric mRNAs cluster in a striated pattern in               

differentiated myofibers. (A) + (B) The mRNA local density was computed between            

two nuclei. Each cell was quantized in vertical quadrants and relative concentration of             

mRNA in each quadrant was computed by normalizing the counts by the relevant             

surface. A wave-like clustering is observed for ​actn2 in mature compared to immature             

fibers. No clustering is observed for ​Gapdh​.  
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Figure S1, related t​o Figure 1 
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Figure S2, related to Figure 3 
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Figure S3, related to Figure 5 
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Figure S4, related to Figure 6 
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