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Dual optimization for convex constrained objectives
without the gradient-Lipschitz assumption

Martin Bompaire ∗ Stéphane Gaïffas † Emmanuel Bacry ∗ ‡

Abstract

The minimization of convex objectives coming from linear supervised learning problems,
such as penalized generalized linear models, can be formulated as finite sums of convex
functions. For such problems, a large set of stochastic first-order solvers based on the idea
of variance reduction are available and combine both computational efficiency and sound
theoretical guarantees (linear convergence rates) [19], [35], [36], [13]. Such rates are obtained
under both gradient-Lipschitz and strong convexity assumptions. Motivated by learning
problems that do not meet the gradient-Lipschitz assumption, such as linear Poisson regression,
we work under another smoothness assumption, and obtain a linear convergence rate for a
shifted version of Stochastic Dual Coordinate Ascent (SDCA) [36] that improves the current
state-of-the-art. Our motivation for considering a solver working on the Fenchel-dual problem
comes from the fact that such objectives include many linear constraints, that are easier to
deal with in the dual. Our approach and theoretical findings are validated on several datasets,
for Poisson regression and another objective coming from the negative log-likelihood of the
Hawkes process, which is a family of models which proves extremely useful for the modeling
of information propagation in social networks and causality inference [12], [14].

1 Introduction

In the recent years, much effort has been made to minimize strongly convex finite sums with
first order information. Recent developments, combining both numerical efficiency and sound
theoretical guarantees, such as linear convergence rates, include SVRG [19], SAG [35], SDCA [36]
or SAGA [13] to solve the following problem:

min
w∈Rd

1

n

n∑
i=1

ϕi(w) + λg(w), (1)

where the functions ϕi correspond to a loss computed at a sample i of the dataset, and g is a
(eventually non-smooth) penalization. However, theoretical guarantees about these algorithms, such
as linear rates guaranteeing a numerical complexity O(log(1/ε)) to obtain a solution ε-distant to
the minimum, require both strong convexity of 1

n

∑n
i=1 ϕi + λg and a gradient-Lipschitz property

on each ϕi, namely ‖ϕ′i(x) − ϕ′i(y)‖ ≤ Li‖x − y‖ for any x, y ∈ Rd, where ‖ · ‖ stands for the
Euclidean norm on Rd and Li > 0 is the Lipschitz constant. However, some problems, such as the
linear Poisson regression, which is of practical importance in statistical image reconstruction among
others (see [6] for more than a hundred references) do not meet such a smoothness assumption.
Indeed, we have in this example ϕi(w) = w>xi − yi log(w>xi) for i = 1, . . . , n where xi ∈ Rd
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are the features vectors and yi ∈ N are the labels, and where the model-weights must satisfy the
linear constraints w>xi > 0 for all i = 1, . . . , n.

Motivated by machine learning problems described in Section 4 below, that do not satisfy the
gradient-Lipschitz assumption, we consider a more specific task relying on a new smoothness
assumption. Given convex functions fi : Df → R with Df = (0,+∞) such that limt→0 fi(t) =
+∞, a vector ψ ∈ Rd, features vectors x1, . . . , xn ∈ Rd corresponding to the rows of a matrix X
we consider the objective

min
w∈Π(X)

P (w) where P (w) = ψ>w +
1

n

n∑
i=1

fi(w
>xi) + λg(w), (2)

where λ > 0, g : Rd → R is a 1-strongly convex function and Π(X) is the open polytope

Π(X) = {w ∈ Rd : ∀i ∈ {1, . . . , n}, w>xi > 0}, (3)

that we assume to be non-empty. Note that the linear term ψ>w can be included in the regularization
g but the problem stands clearer if it is kept out.

Definition 1. We say that a function f : Df ⊂ R → R is L-log smooth, where L > 0, if it is a
differentiable and strictly monotone convex function that satisfies

|f ′(x)− f ′(y)| ≤ 1

L
f ′(x)f ′(y)|x− y|

for all x, y ∈ Df .

We detail this property and its specificities in Section 2. All along the chapter, we assume
that the functions fi are Li-log smooth. Note also that the Poisson regression objective fits in this
setting, where fi(x) = −yi log x is yi-log smooth and ψ = 1

n

∑n
i=1 xi. See Section 4.1 below for

more details.

Related works. Standard first-order batch solvers (non stochastic) for composite convex objec-
tives are ISTA and its accelerated version FISTA [5] and first-order stochastic solvers are mostly
built on the idea of Stochastic Gradient Descent (SGD) [34]. Recently, stochastic solvers based on
a combination of SGD and the Monte-Carlo technique of variance reduction [35], [36], [19], [13]
turn out to be both very efficient numerically (each update has a complexity comparable to vanilla
SGD) and very sound theoretically, because of strong linear convergence guarantees, that match
or even improve the one of batch solvers. These algorithms involve gradient steps on the smooth
part of the objective and theoretical guarantees justify such steps under the gradient-Lipschitz
assumptions thanks to the descent lemma [7, Proposition A.24]. Without this assumption, such
theoretical guarantees fall apart. Also, stochastic algorithms loose their numerical efficiency if their
iterates are projected on the feasible set Π(X) at each iteration as Equation (2) requires. STORC
[18] can deal with constrained objectives without a full projection but is restricted to compact sets
of constraints which is not the case of Π(X). Then, a modified proximal gradient method from [40]
provides convergence bounds relying on self-concordance [26] rather than the gradient-Lipschitz
property. However, the convergence rate is guaranteed only once the iterates are close to the
optimal solution and we observed in practice that this algorithm is simply not working (since it
ends up using very small step-sizes) on the problems considered here. Recently, [21] has provided
new descent lemmas based on relative-smoothness that hold on a wider set of functions including
Poisson regression losses. This work is an extension of [4] that presented the same algorithm and
detailed its application to Poisson regression losses. While this is more generic than our work, they
only manage to reach sublinear convergence rates O(1/t) that applies only on positive solution
(namely w∗ ∈ [0,∞)d) while we reach linear rates for any solution w∗ ∈ Rd.
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Our contribution. The first difficulty with the objective (2) is to remain in the open polytope
Π(X). To deal with simpler constraints we rather perform optimization on the dual problem

max
α∈−Dn

f∗
D(α) where D(α) =

1

n

n∑
i=1

−f∗i (−αi)− λg∗
(

1

λn

n∑
i=1

αixi −
1

λ
ψ

)
, (4)

where for a function h, the Fenchel conjugate h∗ is given by h∗(v) = supu uv − h(u), and −Df∗
is the domain of the function x 7→

∑n
i=1 f

∗
i (−x). This strategy is the one used by Stochastic Dual

Coordinate Ascent (SDCA) [36]. The dual problem solutions are box-constrained to −Dnf∗ which
is much easier to maintain than the open polytope Π(X). Note that as all fi are strictly decreasing
(because they are strictly monotone on (0,+∞) with limt→0 fi(t) = +∞), their dual are defined
on Df∗ ⊂ (−∞, 0). By design, this approach keeps the dual constraints maintained all along
the iterations and the following proposition, proved in Section 7.1, ensures that the primal iterate
converges to a point of Π(X).

Proposition 1. Assume that the polytope Π(X) is non-empty, the functions fi are convex, differ-
entiable, with limt→0 fi(t) = +∞ for i = 1, . . . , n and that g is strongly convex. Then, strong
duality holds, namely P (w∗) = D(α∗) and the Karush-Kuhn-Tucker conditions relate the two
optima as

∀i ∈ {1, . . . , n}, α∗i = −f∗i
′(w∗>xi) and w∗ = ∇g∗

(
1

λn

n∑
i=1

αixi −
1

λ
ψ

)
,

where w∗ ∈ Π(X) is the minimizer of P and α∗ ∈ −Dnf∗ the maximizer of D.

In this chapter, we introduce the log smoothness property and its characteristics and then we
derive linear convergence rates for SDCA without the gradient-Lipschitz assumption, by replacing it
with log smoothness, see Definition 1. Our results provide a state-of-the-art optimization technique
for the considered problem (2), with sound theoretical guarantees (see Section 3) and very strong
empirical properties as illustrated on experiments conducted with several datasets for Poisson
regression and Hawkes processes likelihood (see Section 5). We study also SDCA with importance
sampling [42] under log smoothness and prove that it improves both theoretical guarantees and
convergence rates observed in practical situations, see Sections 3.2 and 5. We provide also a
heuristic initialization technique in Section 5.3 and a "mini-batch" [32] version of the algorithm in
Section 5.4 that allows to end up with a particularly efficient solver for the considered problems. We
motivate even further the problem considered in this chapter in Figure 1, where we consider a toy
Poisson regression problem (with 2 features and 3 data points), for which L-BFGS-B typically fails
while SDCA works. This illustrates the difficulty of the problem even on such an easy example.

Outline. We first introduce the log smoothness property in Section 2, relate it to self-concordance
in Proposition 2 and translate it in the Fenchel conjugate space in Proposition 3. Then, we present
the shifted SDCA algorithm in Section 3 and state its convergence guarantees in Theorem 4 under
the log smoothness assumption. We also provide theoretical guarantees for variants of the algorithm,
one using proximal operators [37] and the second using importance sampling [42] which leads
to better convergence guarantees in Theorem 5. In Section 4 we focus on two specific problems,
namely Poisson regression and Hawkes processes, and explain how they fit into the considered
setting. Section 5 contains experiments that illustrate the benefits of our approach compared to
baselines. This Section also proposes a very efficient heuristic initialization and numerical details
allowing to optimize over several indices at each iteration, which is a trick to accelerate even further
the algorithm.
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Figure 1: Iterates of SDCA and L-BFGS-B on a Poisson regression toy example with three samples
and two features. Left. Dataset and value of the objective. Right: Iterates of L-BFGS-B and SDCA
with two different starting points. The background represents the gradient norm and the arrows
the gradient direction. SDCA is very stable and converges quickly towards the optimum, while
L-BFGS-B easily converges out of the feasible space.

2 A tighter smoothness assumption

To have a better overview of what log smoothness is, we formulate the following proposition giving
an equivalent property for log smooth functions that are twice differentiable.

Proposition 2. Let f : Df ⊂ R → R be a convex strictly monotone and twice differentiable
function. Then,

f is L-log smooth ⇔ ∀x ∈ Df , f ′′(x) ≤ 1
Lf
′(x)2.

This proposition is proved in Section 7.4 and we easily derive from it that x 7→ −L log x on
(0,+∞), x 7→ Lx on R and x 7→ L exp(x) on [0,+∞) are L-log smooth. This proposition is
linked to the self-concordance property introduced by Nesterov [26] widely used to study losses
involving logarithms. For the sake of clarity, the results will be presented for functions whose
domain Df is a subset of R as this leads to lighter notations.

Definition 2. A convex function f : Df ⊂ R→ R is standard self-concordant if

∀x ∈ Df , |f ′′′(x)| ≤ 2f ′′(x)3/2.

This property has been generalized [1, 38] but always consists in controlling the third order
derivative by the second order derivative, initially to bound the second order Taylor approximation
used in the Newton descent algorithm [26]. While right hand sides of both properties (f ′(x)2

and 2f ′′(x)3/2) might look arbitrarily chosen, in fact they reflect the motivating use case of the
logarithmic barriers where f : t 7→ − log(t) and for which the bound is reached. Hence, log
smoothness is the counterpart of self-concordance but to control the second order derivative with
the first order derivative. As it is similarly built, log smoothness shares the affine invariant property
with self-concordance. It means that if f1 is L log-smooth then f2 : x 7→ ax+ b with a, b ∈ R is
also L-log smooth with the same constant L. An extension to the multivariate case where Df ⊂ Rd
is likely feasible but is useless for our algorithm and hence beyond the scope of this paper. From the
log smoothness property of a function f , we derive several characteristics for its Fenchel conjugate
f∗ starting with the following proposition.

4



Proposition 3. Let f : Df ⊂ R→ R be a strictly monotone convex function and f∗ be its twice
differentiable Fenchel conjugate. Then,

f is L-log smooth ⇔ ∃L > 0; ∀x ∈ Df∗ , f∗′′(x) ≥ Lx−2.

This proposition is proved in Section 7.5 and is the first step towards a series of convex
inequalities for the Fenchel conjugate of log smooth functions. These inequalities, detailed in
Section 7.6, bounds the Bregman divergence of such functions and are compared to what can be
obtained with self-concordance or strong convexity (on a restricted set) in the canonical case where
f : t 7→ − log(t). It appears with log smoothness we obtain tighter bounds than what is achievable
with other assumptions and that all these bounds are reached (and hence cannot be improved) in the
canonical case (see Table 3).

3 The Shifted SDCA algorithm

The dual objective (4) cannot be written as a composite sum of convex functions as in the general
objective (1), which is required for stochastic algorithms such as SRVG [19] or SAGA [13]. It is
better to use a coordinate-wise approach to optimize this problem, which leads to SDCA [37], in
which the starting point has been shifted by 1

λψ. This shift is induced by the relation linking primal
and dual variables at the optimum: the second Karush-Kuhn-Tucker condition from Proposition 1,

w∗ = ∇g∗
(

1

λn

n∑
i=1

α∗i xi −
1

λ
ψ

)
. (5)

We first present the general algorithm (Algorithm 1), then its proximal alternative (Algorithm 2) and
finally how importance sampling leads to better theoretical results. We assume that we know bounds
(βi)1≤i≤n such that βi/α∗i ≥ 1 for any i = 1, . . . , n, such bounds can be explicitly computed from
the data in the particular cases considered in this chapter, see Section 4 for more details.

Algorithm 1 Shifted SDCA
Require: Bounds βi ∈ −Df∗ such that ∀i ∈ {1, . . . , n}, βi/α∗i ≥ 1,

α(0) ∈ −Dnf∗ dual starting point such that ∀i ∈ {1, . . . , n}, βi/αi ≥ 1

1: v(0) = 1
λn

∑n
i=1 α

(0)
i xi − 1

λψ
2: for t = 1, 2 . . . T do
3: Sample i uniformly at random in {1, . . . , n}
4: Find αi that maximizes − 1

nf
∗
i (−αi)− λg∗

(
v(t−1) + (λn)−1(αi − α(t−1)

i )xi
)

5: αi ← min(1, βi/αi)αi

6: ∆αi ← αi − α(t−1)
i

7: α(t) ← α(t−1) + ∆αiei
8: v(t) ← v(t−1) + (λn)−1∆αixi
9: w(t) ← ∇g∗(v(t))

10: end for

The next theorem provides a linear convergence rate for Algorithm 1 where we assume that
each fi is Li-log smooth (see Definition 1).

Theorem 4. Suppose that we known bounds βi ∈ −Df∗ such that Ri = βi
α∗i
≥ 1 for i = 1, . . . , n

and assume that all fi are Li-log smooth with differentiable Fenchel conjugates and g is 1-strongly
convex. Then, Algorithm 1 satisfies

E[D(α∗)−D(α(t))] ≤
(

1− mini σi
n

)t
(D(α∗)−D(α(0))), (6)

5



where

σi =

(
1 +
‖xi‖2α∗i

2

2λnLi

(Ri − 1)2

1
Ri

+ logRi − 1

)−1

. (7)

The proof of Theorem 4 is given in Section 7.7. It states that in the considered setting, SDCA
achieves a linear convergence rate for the dual objective. The bounds βi are provided in Section 4
below for two particular cases: Poisson regression and likelihood Hawkes processes. Equipped
with these bounds, we can compare the rate obtained in Theorem 4 with already known linear rates
for SDCA under the gradient-Lipschitz assumption [36]. Indeed, we can restrict the domain of
all f∗i to (−βi, 0) on which Proposition 3 states that all fi are Li/(α∗i

2R2
i )-strongly convex. Now,

following carefully the proof in [36] leads to the convergence rate given in Equation (6) but with

σi =

(
1 +
‖xi‖2α∗i

2

λnLi
R2
i

)−1

.

Since 2
(

1
R +logR−1

)
(R−1)−2 ≥ R−2 for any R ≥ 1, Theorem 4 provides a faster convergence

rate. The comparative gain depends on the values of (‖xi‖2α∗i
2)/(λnLi) and Ri but it increases

logarithmically with the value of Ri. Table 1 below compares the explicit values of these linear
rates on a dataset used in our experiments for Poisson regression.

Remark 1. Convergence rates for the primal objective are not provided since the primal iterate w(t)

typically belongs to Π(X) only when it is close enough to the optimum. This would make most of
the values of the primal objective P (w(t)) undefined and therefore not comparable to P (w∗).

3.1 Proximal algorithm

Algorithm 1 maximizes the dual over one coordinate at Line 4 whose solution might not be explicit
and requires inner steps to obtain α(t)

i . But, whenever g can be written as

g(w) = 1
2‖w‖

2 + h(w), (8)

where h is a convex, prox capable and possibly non-differentiable function, we use the same
technique as Prox-SDCA [37] with a proximal lower bound that leads to

α
(t)
i = arg max

ai∈−Df∗
−f∗i (−αi)−

λn

2

∥∥∥w(t−1) − (λn)−1(αi − α(t−1)
i )xi

∥∥∥2
,

with

w(t−1) = proxh

(
1

λn

n∑
i=1

α
(t−1)
i xi −

1

λ
ψ

)
,

see Section 7.2 for details. This leads to a proximal variant described in Algorithm 2 below, which
is able to handle various regularization techniques and which has the same convergence guarantees
as Algorithm 1 given in Theorem 4. Also, note that assuming that g can be written as (8) with a
prox-capable function h is rather unrestrictive, since one can always add a ridge penalization term
in the objective.

3.2 Importance sampling

Importance sampling consists in adapting the probabilities of choosing a sample i (which is by
default done uniformly at random, see Line 3 from Algorithm 1) using the improvement which is
expected by sampling it. Consider a distribution ρ on {1, . . . , n} with probabilities {ρ1, . . . , ρn}
such that ρi ≥ 0 for any i and

∑n
i=1 ρi = 1. The Shifted SDCA and Shifted Prox-SDCA with

6



Algorithm 2 Shifted Prox-SDCA
Require: Bounds βi ∈ −Df∗ such that ∀i ∈ {1, . . . , n}, βi/α∗i ≥ 1,

α(0) ∈ −Dnf∗ dual starting point such that ∀i ∈ {1, . . . , n}, βi/αi ≥ 1

1: v(0) = 1
λn

∑n
i=1 α

(0)
i xi − 1

λψ
2: for t = 1, 2 . . . T do
3: Sample i uniformly at random in {1, . . . , n}
4: Find αi that maximize − 1

nf
∗
i (−αi)− λ

2

∥∥∥w(t−1) + (λn)−1(αi − α(t−1)
i )xi

∥∥∥2

5: αi ← min(1, βi/αi)αi

6: ∆αi ← αi − α(t−1)
i

7: α(t) ← α(t−1) + ∆αiei
8: v(t) ← v(t−1) + (λn)−1∆αixi
9: w(t) ← proxh(v(t))

10: end for

importance sampling algorithms are simply obtained by modifying the way i is sampled in Line 3 of
Algorithms 1 and 2: instead of sampling uniformly at random, we sample using such a distribution ρ.
The optimal sampling probability ρ is obtained in the same way as [42] and it also leads under our
log smoothness assumption to a tighter convergence rate, as stated in Theorem 5 below.

Theorem 5. Suppose that we known bounds βi ∈ −Df∗ such that Ri = βi
α∗i
≥ 1 for i = 1, . . . , n

and assume that all fi are Li-log smooth with differentiable Fenchel conjugates and g is 1-strongly
convex. Consider σ defined by (7) and consider the distribution

ρi =
σ−1
i∑n

j=1 σ
−1
j

for i ∈ {1, . . . , n}. Then, Algorithm 1 and 2 where Line 3 is replaced by sampling i ∼ ρ satisfy

E[D(α∗)−D(α(t))] ≤
(

1− σ̄

n

)t
(D(α∗)−D(α(0)),

where σ̄ =
(

1
n

∑n
i=1 σ

−1
i

)−1.

The proof is given in Section 7.8. This convergence rate is stronger than the previous one
from Theorem 4 since ( 1

n

∑n
i=1 σ

−1
i )−1 ≥ mini σi. Table 1 below compares the explicit values of

these linear rates on a dataset used in our experiments for Poisson regression (facebook dataset).
We observe that the log smooth rate with importance sampling is orders of magnitude better than
the one obtained with the standard theory for SDCA which exploits only the Li/(α∗i

2R2
i ) strong

convexity of the functions f∗i .

4 Applications to Poisson regression and Hawkes processes

In this Section we describe two important models that fit into the setting of this chapter. We precisely
formulate them as in Equation (2) and give the explicit value of bounds βi such as α∗i ≤ βi, where
α∗ is the solution to the dual problem (4).

4.1 Linear Poisson regression

Poisson regression is widely used to model count data, namely when, in the dataset, each observation
xi ∈ Rd is associated an integer output yi ∈ N for i = 1, . . . , n. It aims to find a vector w ∈ Rd

7



strongly convex strongly convex with log smooth log smooth with
importance sampling importance sampling

(0.9999)t (0.9969)t (0.9984)t (0.9679)t

Table 1: Theoretical convergence rates obtained on the facebook dataset (see Section 5.1) in four
different settings: strongly convex (which is the rate obtained when all functions fi are considered
Li/(α

∗
i

2R2
i )-strongly convex) with and without importance sampling [36, 42] and the rate obtained

in the setting considered in the chapter, with and without importance sampling. In this experiment,
the maximum value for Ri is 9062 and its average value is 308. As expected, the best rate is
obtained by combining the log-smoothness property with importance sampling.

such that for a given function φ : Dφ ⊂ R→ (0,+∞)+, yi is the realization of a Poisson random
variable of intensity φ(w>xi). A convenient choice is to use exp for φ as it always guarantees
that φ(w>xi) > 0. However, using the exponential function assumes that the covariates have a
multiplicative effect that often cannot be justified. The tougher problem of linear Poisson regression,
where φ(t) = t and Dφ is the polytope Π(X), appears to model additive effects. For example, this
applies in image reconstruction. The original image is retrieved from photons counts yi distributed
as a Poisson distribution with intensity w>xi, that are received while observing the image with
different detectors represented by the vectors xi ∈ Rd. This application has been extensively
studied in the literature, see [16, 4, 40] and [6] for a review with a hundred references. Linear
Poisson regression is also used in various fields such as survival analysis with additive effects
[8] and web-marketing [9] where the intensity corresponds to an intensity of clicks on banners in
web-marketing. To formalize, we consider a training dataset (x1, y1), . . . , (xn0 , yn0) with xi ∈ Rd
and yi ∈ N and assume without loss of generality that yi > 0 for i ∈ {1, . . . , n} while yi = 0
for i ∈ {n + 1, . . . , n0} where n = #{i : yi > 0} ≤ n0 (this simply means that we put first
the samples corresponding to a label yi > 0). The negative log-likelihood of this model with a
penalization function g can be written as

P0(w) =
1

n0

n0∑
i=1

(w>xi − yi log(w>xi)) + λ0g(w)

where λ0 > 0 corresponds to the level of penalization, with the constraint that w>xi for i =
1, . . . , n. This corresponds to Equation (2) with fi(w) = −yi log(x>i w) for i = 1, . . . , n, which
are yi-log smooth functions, and with

ψ =
1

n

n0∑
i=1

xi and λ =
n0

n
λ0.

Note that the zero labeled observations can be safely removed from the sum and are fully encom-
passed in ψ. The algorithms and results proposed in Section 3 can therefore be applied for this
model.

4.2 Hawkes processes

Hawkes processes are used to study cross causality that might occur in one or several events
series. First, they were introduced to study earthquake propagation, the network across which the
aftershocks propagate can be recovered given all tremors timestamps [30]. Then, they have been
used in high frequency finance to describe market reactions to different types of orders [3]. In
the recent years Hawkes processes have found many new applications including crime prediction
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[23] or social network information propagation [22]. A Hawkes process [17] is a multivariate
point-process: it models timestamps {tik}i≥1 of nodes i = 1, . . . , I using a multivariate counting
process with a particular auto-regressive structure in its intensity. More precisely, we say that a
multivariate counting process Nt = [N1

t , . . . , N
I
t ] where N i

t =
∑

k≥1 1tik≤t
for t ≥ 0 is a Hawkes

process if the intensity of N i has the following structure:

λi(t) = µi +
I∑
j=1

∫
φij(t− s) dN j(s) = µi +

I∑
j=1

∑
k : tjk<t

φij(t− tjk).

The µi ≥ 0 are called baselines intensities, and correspond to the exogenous intensity of events
from node i, and the functions φij for 1 ≤ i, j ≤ I are called kernels. They quantify the influence
of past events from node j on the intensity of events from node i. The main parametric model for
the kernels is the so-called exponential kernel, in which we consider

φij(t) =
U∑
u=1

aiju bu exp(−but) (9)

with bu > 0. In this model the matrix A = [
∑U

u=1 a
ij
u ]1≤i,j≤d is understood as an adjacency matrix,

since entry Ai,j quantifies the impact of the activity of node j on the activity of node i, while
bu > 0 are memory parameters. We stack these parameters into a vector θ containing the baselines
µi and the self and cross-excitation parameters aiju . Note that in this model the memory parameters
bu are supposed to be given. The associated goodness-of-fit is the negative log-likelihood, which is
given by the general theory of point processes (see [11]) as

−`(θ) = −
I∑
i=1

`i(θ), with − `i(θ) =

∫ T

0
λiθ(t)dt−

∫ T

0
log(λiθ(t)) dN i(t).

Let us define the following weights for i, j = 1, . . . I and u = 1, . . . , U ,

gju(t) =
∑

k : tjk<t

bue
−bu(t−tjk), giju,k = gju(tik) and Gju =

∫ T

0
gju(t)dt (10)

that can be computed efficiently for exponential kernels thanks to recurrence formulas (the com-
plexity is linear with respect to the number of events of each node). Using the parametrization of
the kernels from Equation (9) we can rewrite each term of the negative log-likelihood as

−`i(µi, ai) =
I∑
i=1

[
µiT +

I∑
j=1

U∑
u=1

aijuG
j
u −

ni∑
k=1

log
(
µi +

I∑
j=1

U∑
u=1

aiju g
ij
u,k

)]
.

To rewrite `i in a vectorial form we define ni as the number of events of node i and the following
vectors for i = 1, . . . , I:

wi =
[
µi ai,11 · · · ai,1U · · · ai,I1 · · · ai,IU

]>
,

that are the model weights involved in `i, and

ψi =
1

ni

[
T G1

1 · · ·G1
U · · · GI1 · · · GIU

]>
,

9



which correspond to the vector involved in the linear part of the primal objective (2) and finally

xik =
[
1 gi,11,k · · · gi,1U,k · · · gi,I1,k · · · gi,IU,k

]>
,

for k = 1, . . . , ni which contains all the timestamps data computed in the weights computed in
Equation (10). With these notations the negative log-likelihood for node i can be written as

−`(w) = −
I∑
i=1

`i(w
i) with − 1

ni
`i(w

i) = (wi)>ψi − 1

ni

ni∑
k=1

log((wi)>xik).

First, it shows that the negative log-likelihood can be separated into I independent sub-problems
with goodness-of-fit −`i(wi) that corresponds to the intensity of node i with the weights xi,k
carrying data from the events of the other nodes j. Each subproblem is a particular case of
the primal objective (2), where all the labels yi are equal to 1. As a consequence, we can use
the algorithms and results from Section 3 to train penalized multivariate Hawkes processes very
efficiently.

4.3 Closed form solution and bounds on dual variables

In this Section with provide the explicit solution to Line 4 of Algorithm 2 when the objective
corresponds to the linear Poisson regression or the Hawkes process goodness-of-fit. In Proposition 6
below we provide the closed-form solution of the local maximization step corresponding to Line 4
of Algorithm 2.

Proposition 6. For Poisson regression and Hawkes processes, Line 4 of Algorithm 2 has a closed
form solution, namely

αti =
1

2

(√(
α

(t−1)
i − λn

‖xi‖2
x>i w

(t−1)
)2

+ 4λn
yi
‖xi‖2

+ α
(t−1)
i − λn

‖xi‖2
x>i w

(t−1)

)
.

This closed-form expression allows to derive a numerically very efficient training algorithm,
as illustrated in Section 5 below. For these two use cases, the dual loss is given by f∗i (−αi) =
−yi − yi log(αi

yi
) for any αi > 0 (with yi = 1 for the Hawkes processes). For this specific dual

loss, we can provide also upper bounds βi for all optimal dual variables α∗i , as stated in the next
Proposition.

Proposition 7. For Poisson regression and Hawkes processes, if g(w) = 1
2‖w‖

2 and if xi>xj ≥ 0
for all 1 ≤ i, j ≤ n, we have the following upper bounds on the dual variables at the optimum:

α∗i ≤ βi where βi =
1

2‖xi‖2

(
nψ>xi +

√
(nψ>xi)2 + 4λnyi‖xi‖2

)
for any i = 1, . . . , n.

The proofs of Propositions 6 and 7 are provided in Section 7.9. Note that the inner product
assumption xi>xj ≥ 0 from Proposition 7 is mild: it is always met for the Hawkes process with
kernels given by (9) and it it met for Poisson regression whenever one applies for instance a
min-max scaling on the features matrix.

Remark 2. The closed form solution from Proposition 6 is always lower than the generic bound βi,
as explained in Section 7.11. Hence, we actually do not need to manually bound α(t)

i at line 5 of
Algorithm 1 in this particular case.

10



5 Experiments

To evaluate efficiently Shifted SDCA we have compared it with other optimization algorithms that
can handle the primal problem (2) nicely, without the gradient-Lipschitz assumptions. We have
discarded the modified proximal gradient method from [40] since most of the time it was diverging
while computing the initial step with the Barzilai-Borwein method on the considered examples. We
consider the following algorithms.

NoLips. This is a first order batch algorithm that relies on relative-smoothness [21] instead of
the gradient Lipschitz assumption. Its application to linear Poisson regression has been detailed in
[4] and its analysis provides convergence guarantees with a sublinear convergence rate in O(1/n).
However, this method is by design limited to solutions with positive entries (namely w∗ ∈ [0,∞)d)
and provides guarantees only in this case. Its theoretical step-size decreases linearly with 1/n and
is too small in practice. Hence, we have tuned the step-size to get the best objective after 300
iterations.

SVRG. This is a stochastic gradient descent algorithm with variance reduction introduced in
[19, 41]. We used a variant introduced in [39], which uses Barzilai-Borwein in order to adapt
the step-size, since gradient-Lipschitz constants are unavailable in the considered setting. We
consider this version of variance reduction, since alternatives such as SAGA[13] and SAG [35] do
not propose variants with Barzilai-Borwein type of step-size selection.

L-BFGS-B. L-BFGS-B is a limited-memory quasi-Newton algorithm [28, 29]. It relies on an
estimation of the inverse of the Hessian based on gradients differences. This technique allows
L-BFGS-B to consider the curvature information leading to faster convergence than other batch
first order algorithms such as ISTA and FISTA [5].

Newton algorithm. This is the standard second-order Newton algorithm which computes at each
iteration the hessian of the objective to solve a linear system with it. In our experiments, the
considered objectives are both log-smooth and self-concordant [26]. The self-concordant property
bounds the third order derivative by the second order derivative, giving explicit control of the
second order Taylor expansion [1]. This ensures supra-linear convergence guarantees and keeps all
iterates in the open polytope (3) if the starting point is in it [27]. However, the computational cost
of the hessian inversion makes this algorithm scale very poorly with the number of dimensions d
(the size of the vectors xi).

SDCA. This is the Shifted-SDCA algorithm, see Algorithm 2, without importance sampling.
Indeed, the bounds given in Proposition 7 are not tight enough to improve convergence when used
for importance sampling in the practical situations considered in this Section (despite the fact that
the rates are theoretically better). A similar behavior was observed in [31].

SVRG and L-BFGS-B are almost always diverging in these experiments just like in the simple
example considered in Figure 1. Hence, the problems are tuned to avoid any violation of the open
polytope constraint (3), and to output comparable results between algorithms. Namely, to ensure
that w>xi > 0 for any iterate w, we scale the vectors xi so that they contain only non-negative
entries, and the iterates of SVRG and L-BFGS-B are projected onto [0,+∞)d. This highlights
two first drawbacks of these algorithms: they cannot deal with a generic feature matrix and their
solutions contain only non-negative coefficients. For each run, the simply take λ = x/n where
x = 1

n

∑n
i=1 ‖xi‖2. This simple choice seemed relevant for all the considered problems.
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Table 2: Poisson datasets details.
dataset wine 2 facebook 3 vegas 4 news 5 property 6 simulated 7

# lines 4898 500 2215 504 50099 100000
# features 11 41 102 160 194 100

0.00 0.02 0.04 0.06
10 13

10 8

10 3

102

wine n = 4898 d = 11

0.000 0.005 0.010 0.015

facebook n = 500 d = 41

0.0 0.5 1.0

news n = 39644 d = 59

0.00 0.01 0.02 0.03 0.04
time (s)

10 13

10 8

10 3

102

vegas n = 504 d = 160

0.0 2.5 5.0 7.5
time (s)

property n = 50999 d = 194

0.0 2.5 5.0 7.5
time (s)

simulated n = 100000 d = 100

SDCA L-BFGS-B SVRG NoLips Newton

Figure 2: Convergence over time of five algorithms SDCA, SVRG, NoLips, L-BFGS-B and Newton
on 6 datasets of Poisson regression. SDCA combines the best of both worlds: speed and scalability
of SVRG and L-BFGS-B with the precision of Newton’s solution.

5.1 Poisson regression

For Poisson regression we have processed our feature matrices to obtain coefficients between 0
and 1. Numerical features are transformed with a min-max scaler and categorical features are one
hot encoded. We run our experiments on six datasets found on UCI dataset repository [20] and
Kaggle1 (see Table 2 for more details). These datasets are used to predict a number of interactions
for a social post (news and facebook), the rating of a wine or a hotel (wine and vegas) or the
number of hazards occurring in a property (property). The last one comes from simulated data
which follows a Poisson regression. In Figure 2 we present the convergence speed of the five
algorithms. As our algorithms follow quite different schemes, we measure this speed regarding
to the computational time. In all runs, NoLips, SVRG and L-BFGS-B cannot reach the optimal
solution as the problem minimizer contains negative values. This is illustrated in detail in Figure 3
for vegas dataset where it appears that all solvers obtain similar results for the positive values of
w∗ but only Newton and SDCA algorithms are able to estimate the negatives values of w∗. As
expected, the Newton algorithm becomes very slow as the number of features d increases. SDCA
is the only first order solver that reaches the optimal solution. It combines the best of both world,
the scalability of a first order solver and the ability to reach solutions with negative entries.

1https://www.kaggle.com/datasets
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NoLips, SVRG and L-BFGS-B solutions on vegas dataset

0 20 40 60 80 100 120 140 160

0.0

0.5

SDCA and Newton solutions on vegas dataset

Figure 3: Estimated minimizers w∗ on the vegas dataset (160 features). The positive entries are
roughly similarly recovered by all solvers but the negative entries are only retrieved by SDCA and
Newton algorithms.
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0.2

0.3

0.4
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Figure 4: Adjacency matrix A of a Hawkes process fitted on high-frequency financial data from
the Bund market. This reproduces an experiment run in [3] where Pu (resp. Pd) counts the number
of upward (resp. downward) mid-price moves and Ta (resp. Tb) counts the number of market orders
at the best ask (resp. best bid) that do not move the price. SDCA detects inhibitive behaviors while
L-BFGS-B cannot.

5.2 Hawkes processes

If the adjacency matrix A is forced to be entrywise positive, then no event type can have an
inhibitive effect on another. This ability to exhibit inhibitive effect has direct implications on real
life datasets especially in finance where these effects are common [2, 3, 33]. In Figure 4 we present
the aggregated influence of the kernels obtained after training a Hawkes process on a finance
dataset exploring market microstructure [3]. While L-BFGS-B (or SVRG, or NoLips) recovers
only excitation in the adjacency matrix, SDCA also retrieves inhibition that one event type might
have on another. It is expected that when stocks are sold (resp. bought) the price is unlikely to
go up (resp. down) but this is retrieved by SDCA only. On simulated data this is even clearer
and in Figure 5 we observe the same behavior when the ground truth contains inhibitive effects.
Our experiment consists in two simulated Hawkes processes with 10 nodes and sum-exponential
kernels with 3 decays. There are only excitation effects - all aiju are positive - in the first case and
we allow inhibitive effects in the second. Events are simulated according to these kernels that we
try to recover. While it would be standard to compare the performances in terms of log-likelihood
obtained on the a test sample, nothing ensures that the problem optimizer lies in the feasible set
of the test set. Hence the results are compared by looking at the estimation error (RMSE) of the
adjacency matrix A across iterations. Figure 5 shows that SDCA always converges faster towards
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Figure 5: Top: Adjacency matrix of the Hawkes processes used for simulation. Bottom: estimation
error of the adjacency matrix A across iterations. In both case SDCA is faster than L-BFGS-B and
reaches a better estimation error when there are inhibitive effects to recover (Right).

its solution in both cases and that when the adjacency matrix contains inhibitive effects, SDCA
obtains a better estimation error than L-BFGS-B.

5.3 Heuristic initialization

The default dual initialization in [37] (α(0) = 0n) is not a feasible dual point. Instead of setting
arbitrarily α(0) to 1n, we design, from three properties, a vector κ ∈ −Dnf∗ that is linearly linked
to α∗ and then rely on Proposition 9 to find a heuristic starting point α(0) from κ for Poisson
regression and Hawkes processes.

Property 1: link with ‖xi‖. Proposition 8 relates exactly α∗i to the inverse of the norm of xi.

Proposition 8. For Poisson regression and Hawkes processes, the value of the dual optimum α∗i is
linearly linked to the inverse of the norm of xi. Namely, if there is ci > 0 such that ξi = cixi for
any i ∈ {1, . . . n}, then ζ∗, the solution of the dual problem

arg max
ζ∈(0,+∞)n

1

n

n∑
i=1

yi + yi log

(
ζi
yi

)
− λg∗

(
1

λn

n∑
i=1

ζiξi −
1

λ
ψ

)
,

satisfies ζ∗i = α∗i /ci for all i = 1, . . . n.

This Proposition is proved in Section 7.12. It suggests to consider κi ∝ 1/‖xi‖ for all
i = 1, . . . n.

Property 2: link with yi. For Poisson regression and Hawkes processes where fi(x) = −yi log x,
the second Karush-Kuhn-Tucker Condition (14) (see Section 7.1 for more details) writes

α∗i =
yi

w∗>xi
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Figure 6: Value of α∗i given κi for i = 1, . . . , n. There is a linear link relating initial guess κi to
the dual optimum α∗i on Poisson datasets but the amplitude is not adjusted yet.

for i = 1, . . . , n. Hence, α∗ and y are correlated (a change in yi only leads to a minor change in
w∗), so we will consider κi ∝ yi/‖xi‖.

Property 3: link with the features matrix. The inner product w∗>xi is positive and at the
optimum, the Karush-Kuhn-Tucker Condition (5) (which links w∗ to xi through α∗i ) tells that α∗i is
likely to be large if xi is poorly correlated to other features, i.e. if x>i

∑n
j=1 xj is small. Finally,

the choice
κi =

yi

x>i
∑n

j=1 xj
(11)

for i = 1, . . . , n, takes these three properties into account.
Figure 6 plots the optimal dual variables α∗ from the Poisson regression experiments of

Section 5.1 against the the κ vector from Equation 11. We observe in these experiments a good
correlation between the two, but κ is only a good guess for initialization α(0) up to a multiplicative
factor that the following proposition aims to find.

Proposition 9. For Poisson regression and Hawkes processes and g(w) = 1
2‖w‖

2, if we constraint
the dual solution α∗ ∈ (0,+∞)n to be collinear with a given vector κ ∈ (0,+∞)n, i.e. α∗ = ᾱκ
for some ᾱ ∈ R, then the optimal value for ᾱ is given by

ᾱ =
ψ>χκ +

√
(ψ>χκ)2 + 4λ‖χκ‖2 1

n

∑n
i=1 yi

2‖χκ‖2
with χκ =

1

n

n∑
i=1

κixi.

Combined with the previous Properties, we suggest to consider

α
(0)
i = ᾱκi (12)

as an initial point, where κi is defined in Equation (11).

This Proposition is proved in Section 7.13. Figure 7 presents the values of α∗i given its initial
value α(0)

i for i = 1, . . . , n and shows that the rescaling has worked properly. We validate this
heuristic initialization by showing that it leads to a much faster convergence in Figure 8 below.
Indeed, we observe that SDCA initialized with Equation (12) reaches optimal objective much faster
than when initialization consists in setting all dual variables arbitrarily to 1.
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Figure 7: Value of α∗i given α(0)
i from Equation (12) for i = 1, . . . , n. These values are close an

correlated which makes α(0) a good initialization value.
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Figure 8: Convergence over time of SDCA with wise initialization from Equation (12) and SDCA
arbitrarily initialized with α(0) = 1.
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5.4 Using mini batches

At each step t, SDCA [36] maximizes the dual objective by picking one index it ∈ {1, . . . , n} and
maximizing the dual objective over the coordinate it of the dual vector α, and sets

αt+1
i = arg max

v∈−Df∗
D(αt1, . . . , α

t
it−1, v, α

t
it+1, . . . , αn).

In some cases this maximization has a closed-form solution, such as for Poisson regression (see
Proposition 6) or least-squares regression where fi(w) = (yi −w>xi)2 leads to the explicit update

αt+1
i = αti +

yi − w>xi − αti
1 + (λn)−1‖xi‖2

.

In some other cases, such as logistic regression, this closed form solution cannot be exhibited and we
must perform a Newton descent algorithm. Each Newton step consists in computing ∂D(α)/∂αi
and ∂2D(α)/∂α2

i , which are one dimensional operations given ‖xi‖2 and w>xi. Hence, in a large
dimensional setting, when the observations xi have many non zero entries, the main cost of the
steps resides mostly in computing ‖xi‖2 and w>xi. Since ‖xi‖2 and w>xi must also be computed
when using a closed-form solution, using Newton steps instead of the closed-form is eventually not
much more computationally expensive. So, in order to obtain a better trade-off between Newton
steps and inner-products computations, we can consider more than a single index on which we
maximize the dual objective. This is called the mini-batch approach, see Stochastic Dual Newton
Ascent (SDNA) [32]. It consists in selecting a set I ⊂ {1, . . . , n} of p indices at each iteration t.
The value of αt+1

i becomes in this case

αt+1
i = arg max

v∈(−Df∗ )p
D(b1, . . . , bn) where bi =

{
vj if i ∈ I and j is the position of i in I
αti otherwise.

The two extreme cases are p = 1, which is the standard SDCA algorithm, and p = n for which
we perform a full Newton algorithm. After computing the inner products w>xi and x>i xj for all
(i, j) ∈ I2 each iteration will simply performs up to 10 Newton steps in which the bottleneck is to
solve a p× p linear system. This allows to better exploit curvature and obtain better convergence
guarantees for gradient-Lipschitz losses [32].

We can apply this to Poisson regression and Hawkes processes where fi(x) = −yi log x. The
maximization steps of Line 4 in Algorithm 2 is now performed on a set of coordinates I ⊂ {1, . . . n}
and consists in finding

max
αi;i∈I

Dt
I(αI) where Dt

I(αI) =
1

n

∑
i∈I

(
yi + yi log αi

yi

)
− λ

2

∥∥∥wt +
1

λn

∑
i∈I

(αi − αti)xi
∥∥∥2
,

where we denote by αI the sub-vector of α of size p containing the values of all indices in I. We
initialize the vector α(0)

I ∈ (−Df∗)p to the corresponding values of the coordinates of αt in I and
then perform the Newton steps, i.e.

αk+1
I = αkI −∆αkI where ∆αkI is the solution of ∇2Dt

I(α
k
I)∆α

k
I = ∇Dt

I(α
k
I). (13)

The gradient∇Dt
I(α

k
I) and the hessian∇2Dt

I(α
k
I) have the following explicit formulas:

(∇Dt
I(α

k
I))i =

∂D(αkI)

∂αi
=

1

n

( yi
αki
− wt>xi −

1

λn

∑
j∈I

(αkj − αtj)x>j xi
)
,

17



0.00 0.05 0.10
10 12

10 9

10 6

10 3

100 wine n = 4898 d = 11

0.000 0.005 0.010

facebook n = 500 d = 41

0.0 0.5 1.0

news n = 39644 d = 59

0.000 0.005 0.010 0.015
time

10 12

10 9

10 6

10 3

100 vegas n = 504 d = 160

0 5 10
time

property n = 50999 d = 194

0 5 10
time

simulated n = 50000 d = 1000

SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10SDCA, p = 1 SDCA, p = 2 SDCA, p = 10

Figure 9: Convergence speed comparison when the number of indices optimized at each step
changes.

and (
∇2Dt

I(α
k
I )
)
i,j

=
∂2D(αkI )

∂αi∂αj
= − 1

n

( yi

αki
21i=j +

1

λn
x>i xj

)
.

Note thatDt
I is a concave function hence−∇2Dt

I(α
k
I ) will be positive semi-definite and the system

in Equation (13) can be solved very efficiently with BLAS and LAPACK libraries. Let us explicit
computations when p = 2. Suppose that I = {i, j} and put

δi = αi − α(t−1)
i , pi = x>i w

(t−1) and gij =
x>i xj
λn

.

The gradient and the Hessian inverse are then given by

∇D(αI) =
1

n

[
yi
αi
− pi − δigii − δjgij

yj
αj
− pj − δjgjj − δigij

]
,

and

∇2D(αI)
−1 =

n2

( yi
α2
i

+ gii)(
yi
α2
i

+ gii)− g2
ij

[
− yj
α2
j
− gjj gij

gij − yi
α2
i
− gii

]
.

This direct computation leads to even faster computations than using the dedicated libraries. We
plot in Figure 9 the convergence speed for three sizes of batches 1, 2 and 10. Note that in all cases
using a batch of size p = 2 is faster than standard SDCA. Also, in the last simulated experiment
where d has been set on purpose to 1000, the solver using batches of size p = 10 is the fastest one.
The bigger number of features d gets, the better are solvers using big batches.

5.5 About the pessimistic upper bounds

The generic upper bounds derived in Proposition 7 are general but pessimistic as they depend
linearly on n. In fact this dependence is also observed in the NoLips algorithm [4] where the rate
depends on a constant L =

∑n
i yi. Note that, for Nolips algorithms, L is involved in the step size

definition and leads to step too small to be used in practice but that in our algorithm, these bounds
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Figure 10: Evolution of maxi=1,...,n α
∗
i for an increasing value of n. We observe that maxi=1,...,n α

∗
i

is not increasing linearly with n as quick as the bound βi obtained in Proposition 7.

have little or even no impact in practice (see Remark 2) and are mainly necessary for convergence
guarantees. These bounds are derived by lower bounding x>i

∑
j 6=i α

∗
jxj by 0. This lower bound

is very conservative and can probably be tightened by setting specific hypotheses on the dataset,
for example on the Gram matrix ([G]i,j = x>i xj for i, j = 1, . . . , n). For Poisson regression, this
lower bound is reached in the extreme case where all observations are orthogonal (all entries of G
are zero except on the diagonal). Then ψ>xi = 1

n‖xi‖
2 and the upper bounds from Proposition 7

become

βi =
1

2
+

√
1

4
+
λnyi
‖xi‖2

for i = 1, . . . , n. In this extreme case, the bounds are O(
√
n) instead of O(n) as stated in

Proposition 7. Experimentally, we do not observe a dependence inO(n) either. Figure 10 shows the
evolution of the maximum optimal dual obtained (maxi=1,...,n α

∗
i ) for the six datasets considered

in Section 5.1 for Poisson regression, on an increasing fraction of the dataset. These values are
averaged over 20 samples and we provide the associated 95% confidence interval on this value.
We observe that maxi=1,...,n α

∗
i has a much lower dependence in n than the bounds given by

Proposition 7.

6 Conclusion

This work introduces the log-smoothness assumption in order to derive improved linear rates for
SDCA, for objectives that do not meet the gradient-Lipschitz assumption. This provides, to the best
of our knowledge, the first linear rates for a stochastic first order algorithm without the gradient-
Lipschitz assumption. The experimental results also prove the efficiency of SDCA to solve such
problems and its ability to deal with the open polytope constraints, improving the state-of-the-art.
Finally, this work also presents several variants of SDCA and experimental heuristics to make
the most of it on real world datasets. Future work could provide better linear rates under more
specialized assumptions on the Gram matrix, as observed on numerical experiments. Also, to extend
this work to more applications, we aim to find a generalization of the log smoothness assumption
such as what [38] has done for self-concordance.
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7 Proofs

We start this Section by providing extra details on the derivation of the dual problem and the
proximal version of SDCA. We then provides the proofs of all the results stated in the chapter,
namely Proposition 2, Proposition 3, Theorem 4, Theorem 5, Proposition 6, Proposition 7, Remark 2,
Proposition 8 and Proposition 9.

7.1 Duality and proof of Proposition 1

It is not straightforward to obtain strong duality for a convex problem with strict inequalities (such
as the ones enforced by the polytope Π(X) from Equation 3). To bypass this difficulty we consider
the same problem but constrained on a closed set and show how it relates to the original Problem (2).
But first we formulate the two following lemmas.

Lemma 10. It exists ε > 0 such that the following problem

min
w∈Π|ε(X)

P (w) where Π|ε(X) = {w ∈ Rd : ∀i ∈ {1, . . . , n}, w>xi ≥ ε}

has a solution w∗ that is also the solution of the original Problem (2).

Proof. First, notice that this problem has a unique solution which is unique as we minimize a
convex function on a closed convex set Π(X). Also, as the function w 7→ ψ>w+λg(w) is strongly
convex, since g is strongly convex, it is lower bounded. We denote by M ∈ R a lower bound of
this function. Then, we consider w0 ∈ Π(X), and choose ε sufficiently small such that for all
i = 1, . . . , n,

∀t < ε, fi(t) > nP (w0)− nM,

this value of ε always exists since by assumption limt→0 fi(t) = +∞ for all i = 1, . . . , n. For any
wε ∈ Π(X) \Πε(X) (so a wε is such that ∃i ∈ {1, . . . , n}, w>ε xi < ε), we thus have

P (wε) > ψ>wε + P (w0)−M + λg(wε) ≥ P (w0).

Hence, for such a value of ε, the solution to the original Problem (2) is necessarily in Πε(X) and
both the problems constrained on Πε(X) and Π(X) share the same solution w∗. �

Lemma 11. For all i = 1, . . . , n, if we define by

∀αi ∈ Df∗ , f∗i|ε(v) := max
u≥ε

uv − fi(u),

then f∗i|ε is equal to the Fenchel conjugate of fi, f∗i , on {v ; ∃u ≥ ε ; v = f ′i(u)}.

Proof. For all i = 1, . . . , n, the functions fi are convex and differentiable. Hence, by Fermat’s
rule if ∃u∗ ≥ ε; v = f ′i(u

∗) then f∗i|ε(v) = maxu≥ε uv − fi(u) = u∗f ′i(u
∗)− fi(u∗). Likewise,

the maximization step in the computation of f∗i would share the same maximizer and f∗i (v) =
u∗f ′i(u

∗)− fi(u∗) as well. Hence,

∀v such that ∃u ≥ ε ; v = f ′i(u); f∗i|ε(v) = f∗i (v).

�
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We form the dual of the problem constrained on Πε(X) where ε is such that Lemma 10
applies. We replace the inner products w>xi by the scalars ui for i = 1, . . . , n and their equality is
constrained to form the strictly equivalent problem:

min
w∈Rd,u∈[ε,+∞)n

∀i,ui=w>xi

ψ>w +
1

n

n∑
i=1

fi(ui) + λg(w).

We maximize the Lagrangian to include the constraints. This introduces the vector of dual variables
α ∈ Rn as following:

max
α∈Rn

min
w∈Rd

u∈[ε,+∞)n

ψ>w +
1

n

n∑
i=1

fi(ui) + λg(w) +
1

n

n∑
i=1

αi(ui − x>i w)

that leads to the corresponding dual problem:

max
α∈(−Df∗|ε

)n
D|ε(α), D|ε(α) =

1

n

n∑
i=1

−f∗i|ε(−αi)− λg
∗
(

1

λn

n∑
i=1

αixi −
1

λ
ψ

)
,

where −Df∗|ε is the domain of all f∗i|ε. The primal problem constrained on Πε(X) verifies the
Slater’s conditions so strong duality holds and the maximizer of D|ε, α∗|ε, is reached. As D|ε is
concave, α∗|ε is the only vector such that ∇D|ε(α∗|ε) = 0. Also, as strong duality holds, we can
relate α∗|ε to the primal optimum though the Karush-Kuhn-Tucker condition

α∗i|ε = −f∗i|ε
′(w∗>xi),

where w∗ is such that w∗>xi ≥ ε (see Lemma 10). Hence Lemma 11 applies and the dual
formulation of the original Problem (2) that writes

max
α∈(−Df∗ )n

D(α), D(α) =
1

n

n∑
i=1

−f∗i (−αi)− λg∗
(

1

λn

n∑
i=1

αixi −
1

λ
ψ

)
,

is such that∇D(α∗|ε) = ∇D|ε(α∗|ε) = 0. Since D(α) is concave, this means that α∗|ε = α∗ where
α∗ is the solution of the dual formulation of the original Problem (2). Thus, the Karush-Kuhn-
Tucker conditions that link the primal and dual optima of the problem constrained on Π|ε(X) also
links the primal and dual optima of the original Problem (2). The first one is given in Equation (5)
and the second one writes

α∗i = −f∗i
′(w∗>xi) (14)

for any i ∈ {1, . . . n}. From the first we can define two functions linking vector w ∈ Rd to
α ∈ (−Df∗)n and such that w(α∗) = w∗ and

v(α) =
1

λn

n∑
i=1

αixi −
1

λ
ψ and w(α) = ∇g∗

(
v(α)

)
. (15)

7.2 Proximal algorithm

Given that g∗ is smooth since its Fenchel conjugate is strongly convex, the gradient-Lipschitz
property from Definition 4 below entails g∗(v + ∆v) ≤ g∗(v) +∇g∗(v)>∆v + 1

2‖∆v‖
2. Hence,

maximization step of Algorithm 1, namely,

arg max
αi∈−Df∗

−f∗i (−αi)− λng∗
(
v(t−1) + (λn)−1(αi − α(t−1)

i )xi
)
,
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where v(t−1) = 1
λn

∑n
i=1 α

(t−1)
i xi − 1

λψ can be simplified by setting αti such that it maximizes the
lower bound

αti = arg max
αi∈−Df∗

−f∗i (−αi)−λn
(
g∗
(
v(t−1)

)
+
αi − α(t−1)

i

λn
x>i ∇g∗(v(t−1))+

1

2

(
αi − α(t−1)

i

λn

)2

‖xi‖2
)
.

(16)
Setting w(t−1) = ∇g∗(v(t−1)) and discarding constants terms leads to the equivalent relation,

αti = arg max
αi∈−Df∗

−f∗i (−αi)−
λn

2

∥∥∥w(t−1) − (λn)−1(αi − α(t−1)
i )xi

∥∥∥2
.

While convergence speed is guaranteed for any 1-strongly convex g, to simplify the algorithm we
will consider that g is not only 1-strongly convex but that that it can also be decomposed as

g(w) = 1
2‖w‖

2 + h(w)

where h is a prox capable function. With Proposition 12 below the relation between wt and vt

becomes

wt = ∇g∗(vt) = arg sup
u∈Rd

(
u>vt − 1

2‖u‖
2 − h(u)

)
= arg inf

u∈Rd

(
1
2‖v

t − u‖2 + h(u)
)
,

which is the proximal operator stated in Definition 6 below: wt = proxh(v(αt)).

7.3 Preliminaries for the proofs

Let us first recall some definitions and basic properties.

Definition 3. Strong convexity. A differentiable convex function f : Df → R is γ-strongly convex
if

∀x, y ∈ Df , f(y) ≥ f(x) + f ′(x)>(y − x) +
γ

2
‖y − x‖2. (17)

This is equivalent to

∀x, y ∈ Df , (f ′(y)− f ′(x))(y − x) ≥ γ‖y − x‖2. (18)

Definition 4. Smoothness. A differentiable convex function f : Df → R is L-smooth or L-gradient
Lipschitz if

∀x, y ∈ Df , f(y) ≤ f(x) + f ′(x)(y − x) +
L

2
‖y − x‖2.

This is equivalent to

∀x, y ∈ Df , (f ′(y)− f ′(x))(y − x) ≤ L‖y − x‖2.

Definition 5. Fenchel conjugate. For a convex function f : Df → R we call Fenchel conjugate the
function f∗ defined by

f∗ : Df∗ → R, st. f∗(v) = sup
u∈Df

(
u>v − f(u)

)
. (19)

Proposition 12. For a convex differentiable function f , the gradient of its differentiable Fenchel
conjugate f∗ is the maximizing argument of (19):

f∗′(v) = arg sup
u∈Df

(
u>v − f(u)

)
.
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Proposition 13. For a convex differentiable function f and its differentiable Fenchel conjugate f∗

we have
∀u ∈ Df , f∗′(f ′(u)) = u and ∀v ∈ Df∗ , f ′(f∗′(v)) = v.

This leads to
∀u ∈ Df , ∀v ∈ Df∗ , f ′(u) = v ⇔ u = f∗′(v).

Note that if f is γ-strongly convex (respectively L-smooth), then its Fenchel conjugate f∗ is
1/γ smooth (respectively 1/L strongly convex). We also recall results from [27] on self-concordant
functions introduced in Definition 2. This concept is widely used to study losses involving
logarithms. For the sake of clarity, the results will be presented for functions whose domain Df is a
subset of R as this leads to lighter notations. Unlike smoothness and strong convexity, this property
is affine invariant. From this definition, some inequalities are derived in [27]. Two of them provide
lower bounds that are comparable to strong convexity inequalities:

∀x, y ∈ Df , f(y) ≥ f(x) + f ′(x)(y − x) + ω
(√

f ′′(x)|y − x|
)

(20)

where ω(t) = t− log(1 + t), and

∀x, y ∈ Df , (f ′(y)− f ′(x))>(y − x) ≥ f ′′(x)(y − x)2

1 +
√
f ′′(x)|y − x|

. (21)

Finally, we define the proximal operator used to apply the penalization g.

Definition 6. Proximal operator. For a convex function g : Dg → R, the proximal operator
associated to g is given by

proxg(y) = arg min
x∈Dg

(1

2
‖y − x‖2 + g(x)

)
.

The proximal operator always exists and is uniquely defined as the minimizer of a strongly
convex function. Before the proof of Theorem 4, we need to introduce new convex inequalities for
L-log smooth functions. This class of function includes x 7→ −L log x which is our function of
interest in the Poisson and in the Hawkes cases.

7.4 Proof of Proposition 2

First order implies second order We start by showing that if f is a L log-smooth function then
we can bound its second derivative by the square of its gradient. For any x ∈ Df , we set y = x+ h
in the Definition 1, which now writes

∀x ∈ Df , ∀h s.t. (x+ h) ∈ Df ,
∣∣∣f ′(x)− f ′(x+ h)

h

∣∣∣ ≤ 1

L
f ′(x)f ′(x+ h).

Taking the limit of the previous inequality when h tends towards 0 leads to the desired inequality,

∀x ∈ Df ,
∣∣f ′′(x)

∣∣ ≤ 1

L
f ′(x)2.

Second order implies first order We now prove that if f is convex strictly monotone, twice
differentiable and |f ′′(x)| ≤ 1

Lf
′(x)2 then f is L-log smooth. If for all x ∈ Df , we denote by

φ : x 7→ 1
f ′(x) , (note that ∀x ∈ Df , f ′(x) 6= 0 as f is strictly monotone), then

∀x ∈ Df , |φ′(x)| =
∣∣∣ f ′′(x)

f ′(x)2

∣∣∣ ≤ 1

L
.
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From this inequality, we limit the increasings of the function φ,

∀x, y ∈ Df , − 1
L |y − x| ≤ φ(y)− φ(x) ≤ 1

L |y − x|,

which rewrites

∀x, y ∈ Df , |φ(y)− φ(x)| ≤ 1
L |y − x| ⇔

∣∣∣f ′(x)− f ′(y)

f ′(x)f ′(y)

∣∣∣ ≤ 1

L
|x− y|,

that is the definition of a L-log smooth function for a convex strictly monotone function.

7.5 Proof of Proposition 3

We working by exhibiting several statements equivalent to log smoothness. First, we divide both
sides of the log smoothness definition by f ′(x)f ′(y) > 0 since f is strictly monotone,

f is L-log smooth ⇔ ∀x, y ∈ Df ,
∣∣∣∣ 1

f ′(y)
− 1

f ′(x)

∣∣∣∣ ≤ 1

L
|x− y|.

Then we rewrite the equation in the dual space using Proposition 13,

f is L-log smooth ⇔ ∀x, y ∈ Df∗ ,
∣∣∣∣1y − 1

x

∣∣∣∣ ≤ 1

L
|f∗′(x)− f∗′(y)|.

This can be rewritten into the following integrated form

f is L-log smooth ⇔ ∀x, y ∈ Df∗ ,
∣∣∣ ∫ x

y
t−2dt

∣∣∣ ≤ 1

L

∣∣∣ ∫ x

y
(f∗′′(t)dt

∣∣∣,
which becomes equivalent to the desired result with the fundamental theorem of calculus

f is L-log smooth ⇔ ∀x ∈ Df∗ , x−2 ≤ 1

L
f∗′′(x).

7.6 Inequalities for log-smooth functions

The proof of SDCA [36] relies on the smoothness of the functions fi which implies strong convexity
of their Fenchel conjugates f∗i . Indeed, a γ strongly convex function f∗ satisfies the following
inequality

sf∗(x) + (1− s)f∗(y) ≥ f∗(sx+ (1− s)y) +
γ

2
s(1− s)(y − x)2. (22)

This inequality is not satisfied for L-log smooth functions. However, we can derive for such
functions another inequality which can be compared to such inequalities based on self-concordance
and strongly convex properties.

Lemma 14. Let f : Df ⊂ R→ R be a strictly monotone convex function and f∗ be its differen-
tiable Fenchel conjugate. Then,

f is L-log smooth ⇔ ∀x, y ∈ Df∗ , (f∗′(x)− f∗′(y))(x− y) ≥ L(x− y)2

xy
.

This bound is an equality for f(x) = −L log x.
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Proof. From log smoothness definition, we obtain by multiplying both sides by |f ′(x) − f ′(y)|
and dividing by f ′(x)f ′(y) > 0 (since f is strictly monotone),

f is L-log smooth ⇔ ∀x, y ∈ Df ,
(
f ′(x)− f ′(y)

)2
f ′(x)f ′(y)

≤ 1

L
|x− y||f ′(x)− f ′(y)|

Since f is a convex function, (f ′(x)− f ′(y))(x− y) ≥ 0 and using Proposition 13, we can rewrite
the previous equivalence in the dual space:

f is L-log smooth ⇔ ∀x, y ∈ Df∗ ,
(x− y)2

xy
≤ 1

L
(f∗′(x)− f∗′(y))(x− y),

which concludes the proof. �

Lemma 15. Let f : Df ⊂ R→ R be a strictly monotone convex function and f∗ be its differen-
tiable Fenchel conjugate. Then,

f is L-log smooth ⇔ ∀x, y ∈ Df∗ , f∗(x)− f∗(y)− f∗′(y)(x− y) ≥ L
(x
y
− 1− log

x

y

)
.

This bound is an equality for f(x) = −L log x.

Proof. Let x, y ∈ Df∗ , we have the following on the one hand,

f∗(x)− f∗(y)− f∗′(y)(x− y) =

∫ x

y

(
f∗′(u)− f∗′(y)

)
du

On the other hand, applying Lemma 14 together with the fundamental theorem of calculus gives

f is L-log smooth ⇔ ∀x, y ∈ Df∗ ,
∫ x

y
(f∗′(u)− f∗′(y)) du ≥

∫ x

y
L
u− y
uy

du.

Finally, solving the integral leads to the desired result:

∀x, y ∈ Df∗ ,
∫ x

y
L
u− y
uy

du = L

∫ x

y

(
1

y
− 1

u

)
du = L

(
x− y
y
− log

x

y

)
.

�

Lemma 16. Assume that f is L-log smooth and f∗ is its differentiable Fenchel conjugate, then,

sf∗(x) + (1− s)f∗(y)− f∗(y + s(x− y)) ≥ L
(

log
(

1− s+ s
x

y

)
− s log

x

y

)
for any y, x ∈ Df∗ and s ∈ [0, 1]. This bound is an equality for f(x) = −L log x.

Proof. Let x, y ∈ Df∗ and define for any s ∈ [0, 1], u(s) = sx+ (1− s)y. We apply Lemma 15
twice for x, u(s) and y, u(s):

f∗(x)− f∗(u(s))− f∗′(u(s))(x− u(s)) ≥ L
( x

u(s)
− 1− log

x

u(s)

)
, (23)

f∗(y)− f∗(u(s))− f∗′(u(s))(y − u(s)) ≥ L
( y

u(s)
− 1− log

y

u(s)

)
. (24)
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Combining s(23) and (1− s)(24) leads to

sf∗(x) + (1− s)f∗(y)− f∗(u(s)) ≥ −sL log
x

u(s)
− (1− s)L log

y

u(s)

+ L

(
s
x

u(s)
+ (1− s) y

u(s)
− 1

)
= sL log

u(s)

x
+ (1− s)L log

u(s)

y

= sL log
u(s)

y
+ sL log

y

x
+ (1− s)L log

u(s)

y

= L log
(

1− s+ s
x

y

)
+ sL log

y

x
. �

This Lemma which implies the barycenter u(s) = y + s(x − y) for s ∈ [0, 1] is the lower
bound that we actually use in proof of Theorem 4. To compare this result with strong convexity
and self-concordance assumptions, we will suppose that f∗ is twice differentiable and hence that
Proposition 3 applies.

Comparison with self-concordant functions Instead of building our lower bounds on log
smoothness, we rather exhibit what can be obtained with self-concordance combined with the lower
bound f∗′′(y) ≥ Ly−2 from Proposition 3. In this paragraph, we consider that 1

Lf
∗ is standard self-

concordant, such an hypothesis is verified for f : t 7→ − 1
L log(t). Hence, using lower bound (21)

on 1
Lf and then Proposition 3, we obtain

∀x, y ∈ Df∗ , (f∗′(x)− f∗′(y))(x− y) ≥ f∗′′(y)(x− y)2

1 +
√

1
Lf
∗′′(y)|x− y|

≥ L (x− y)2

y2 + |y(x− y)|
.

Since ∀x, y ∈ Df∗ , xy > 0, this lower bound is equivalent to Lemma 14 if |x| ≥ |y| but not as
good otherwise. Lemma 15 can also be compared to what can be obtained applying Inequality (20)
on 1

Lf . Since ω : t 7→ t− log(1 + t) is an increasing function, it leads to

∀x, y ∈ Df∗ , f∗(x)− f∗(y)− f∗′(y)(x− y) ≥ L ω
(√

1
Lf
∗′′(y) |x− y|

)
≥ L ω

(∣∣x
y − 1

∣∣).
Again, this lower bound the same as Lemma 15 if |x| ≥ |y| but not as good otherwise. Finally, a
bound equivalent to Lemma 16 for self-concordant functions is not easy to explicit in a clear form.
However, it is numerically smaller than the lower bound stated in Lemma 16 for any s ∈ [0, 1] and
any x, y ∈ Df∗ .

Comparison with strongly convex functions We cannot directly assume that f∗ is strongly
convex as it would mean that f is gradient-Lipschitz. But, for fixed values of x and y ∈ Df∗ , we
define on {u ∈ Df∗ , |u| < max(|x|, |y|)} the function f∗{x,y} : u 7→ f∗(u) as the restriction of
f∗ on this interval. The lower bound f∗′′(y) ≥ Ly−2 from Proposition 3 implies that f∗{x,y} is
L/max(x2, y2) strongly-convex on its domain to which x and y belong. Equation (18) leads to the
following inequality, valid for f∗{x,y} and thus for f∗,

∀x, y ∈ Df∗ , (f∗′(x)− f∗′(y))(x− y) ≥ L (x− y)2

max(x2, y2)
.

As soon as x 6= y, this lower bound is not as good as the one provided by Lemma 14. Following
the same logic, we exhibit the two following lower bounds. The first one corresponds to Lemma 15
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strongly convex self-concordant log smoothness

Lemma 14 (x−y)2
max(x2,y2)

(x−y)2
y2+|y(x−y)|

(x−y)2
xy

Lemma 15 (x−y)2
2max(x2,y2)

∣∣x
y − 1

∣∣− log
(
1 +

∣∣x
y − 1

∣∣) x
y − 1− log

(
x
y

)
Lemma 16 s(1− s) (x−y)2

2max(x2,y2) − log
(
1− s+ sxy

)
+ s log y

x

Reached for f = − log 7 7 3

Table 3: Comparison of lower bounds obtained with different hypotheses. These lower bounds
come from Lemmas 14, 15 and 16. It shows that both the strongly-convex and self-concordant
hypotheses are not enough to reach the inequality obtained under log smoothness. The inequality
coming from Lemma 16 is missing as it cannot be easily exhibited for self-concordant functions.

and is entailed by Equation (17),

∀x, y ∈ Df∗ , f∗(x)− f∗(y)− f∗′(y)(x− y) ≥ L

2

(x− y)2

max(x2, y2)
, (25)

and the second to Lemma 16 and is entailed by Equation (22)

∀x, y ∈ Df∗ , ∀s ∈ [0, 1], sf∗(x) + (1− s)f∗(y)− f∗(y+ s(x− y)) ≥ s(1− s)L
2

(x− y)2

max(x2, y2)
.

In both cases the reached lower bounds are not as tight as the ones stood in Lemmas 15 and 16. All
these bounds are reported in Table 3 for an easy comparison.

Finally, two lemmas to lower bound Lemma 16 are needed as well.

Lemma 17. The function f defined by

f(s, z) =
log
(
(1− s) + s

z

)
+ s log z

(1− z)2

for all z ∈ R++ and s ∈ [0, 1] is a decreasing function in z.

Lemma 18. We have

log
(

(1− s) +
s

z

)
+ s log z ≥ s(1− s)

(1

z
− 1 + log z

)
for all z ≥ 1 and s ∈ [0, 1].

The analytical proof of these lemmas are very technical and not much informative. Thus, we
rather illustrate them with the two following figures

7.7 Proof of Theorem 4

This proof is very similar to SDCA’s proof [37] but it uses the new convex inequality on the Fenchel
conjugate of log smooth functions from Lemma 16 to get a tighter inequality. We first prove the
following lemma which is an equivalent of Lemma 6 from [37] but with convex functions fi that
are Li-log smooth instead of being Li-gradient Lipschitz.
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Figure 11: Illustration of Lemma 18 showing that for any z ≥ 1, log
(
(1 − s) + s

z

)
+ s log z ≥

s(1− s)
(

1
z − 1 + log z

)
.

Lemma 19. Suppose that we known bounds βi ∈ −Df∗ such thatRi = βi/α
∗
i ≥ 1 for i = 1, . . . , n

and assume that all fi are Li-log smooth with differentiable Fenchel conjugates and that g is 1-
strongly convex. Then, if α(t,i) is the value of α(t) when i is sampled at iteration t for Algorithms 1
and 2, we have

n∑
i=1

s−1
i

(
D(α(t,i))−D(α(t−1))

)
≥ D(α∗)−D(α(t−1)) +G(si, α

(t−1)
i , α∗i ) (26)

for any s1, . . . , sn ∈ [0, 1], where

G(s, α(t−1), α∗) =
1

n

n∑
i=1

(
Liγ(si, α

(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2

)
and

γ(si, α
(t−1)
i , α∗i ) =

1

si
log
(

1− si + si
α∗i

α
(t−1)
i

)
− log

α∗i

α
(t−1)
i

.

Proof. At iteration t, if the dual vector is set to α(t) (and v(t) = v(α(t)), see Equation (15)) the
dual gain is

n(D(α(t))−D(α(t−1))) =
(
− f∗i (−αti)− λng∗(v(t))

)︸ ︷︷ ︸
Ai

−
(
− f∗i (−α(t−1)

i )− λng∗(v(t−1))
)︸ ︷︷ ︸

Bi

where i is the index sampled at iteration t (see Line 3). For Algorithm 1, by the definition of α(t)
i

given on Lines 4 and 5 we have

Ai = max
αi∈−Df∗

s.t. βi/αi≥1

−f∗i (−αi)− λng∗
( 1

λn
(αi − α(t−1)

i )xi +
1

λn

n∑
j=1

α
(t−1)
j xj −

1

λ
ψ
)
.

Using the smoothness inequality on g∗ which is 1-smooth as g is 1-strongly convex,

g∗(v(t−1) + ∆v) ≤ h(v(t−1),∆v)

where h(v(t−1),∆v) = g∗(v(t−1)) +∇g∗(v(t−1))>∆v +
1

2
‖∆v‖2.
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Hence setting ∆v to (λn)−1(αi − α(t−1)
i )xi , we can lower bound Ai with

Ai ≥ max
αi∈−Df∗

s.t. βi/αi≥1

−f∗i (−αi)− λnh
(
v(t−1), (λn)−1(αi − α(t−1)

i )xi
)
.

For Algorithm 2, by definition of α(t)
i stated at Lines 4 and 5 combined with the modified argmax

relation (16),

Ai = max
αi∈−Df∗

s.t. βi/αi≥1

−f∗i (−αi)− λnh
(
v(t−1), (λn)−1(αi − α(t−1)

i )xi
)
.

As both α
(t−1)
i and α∗i belong to {αi ∈ −Df∗ , βi/αi ≥ 1}, for any si ∈ [0, 1], the convex

combination αi = (1− si)α(t−1)
i + siα

∗
i belongs to it as well. Hence, for both algorithms, Ai is

higher than the previous quantity evaluated at this specific αi. Namely,

Ai ≥ −f∗i
(
−
(
(1− si)α(t−1)

i + siα
∗
i

))
− λnh

(
v(t−1), (λn)−1si(α

∗
i − α

(t−1)
i )xi

)
.

We then use Lemma 16, in which −α∗i ∈ Df∗ stands for x and −α(t−1)
i ∈ Df∗ for y:

(1− si)f∗i (−α(t−1)
i ) + sif

∗
i (−α∗i )− f∗i (−(1− si)α(t−1)

i − siα∗i ) ≥ siLiγ(si, α
(t−1)
i , α∗i )

where
γ(si, α

(t−1)
i , α∗i ) =

1

si
log
(

1− si + si
α∗i

α
(t−1)
i

)
− log

α∗i

α
(t−1)
i

.

This inequality is used instead of the strong convex inequality of the classic SDCA analysis [37]. If
we plug this inequality into Ai we obtain

Ai ≥ −sif∗(−α∗i )− (1− si)f∗(−α(t−1)
i ) + siLiγ(si, α

(t−1)
i , α∗i )

− λng∗(v(t−1))− si(α∗i − α
(t−1)
i )x>i ∇g∗(v(t−1))−

s2
i (α
∗
i − α

(t−1)
i )2

2λn
‖xi‖2

= −si(f∗(−α∗i )− f∗(−α
(t−1)
i ))− f∗(−α(t−1)

i )− λng∗(v(t−1))

− si(α∗i − α
(t−1)
i )x>i ∇g∗(v(t−1)) + si

(
Liγ(si, α

(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2

)
.

Hence, we retrieve Bi and rewrite the previous inequality as

s−1
i (Ai −Bi) ≥ −

(
f∗(−α∗i )− f∗(−α

(t−1)
i )

)
− (α∗i − α

(t−1)
i )x>i ∇g∗(v(t−1))

+ Liγ(si, α
(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2.

We can sum over all possible sampled i and weight each entry with s−1
i to obtain

n∑
i=1

s−1
i (Ai −Bi) ≥ −

n∑
i=1

(
f∗(−α∗i )− f∗(−α

(t−1)
i )

)
−
〈
∇g∗(v(t−1))

∣∣∣ n∑
i=1

(α∗i − α
(t−1)
i )xi

〉

+

n∑
i=1

(
Liγ(si, α

(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2

)
. (27)

Then since g∗ is convex, we obtain〈
∇g∗(v(t−1))

∣∣∣ n∑
i=1

(α∗i − α
(t−1)
i )xi

〉
=
〈
∇g∗(v(t−1)) | λn(v(α∗)− v(t−1))

〉
≤ λn

(
g∗(v(α∗))− g∗(v(t−1))

)
,
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which can be injected in Equation (27) leading to
n∑
i=1

s−1
i (Ai −Bi) ≥ −

n∑
i=1

(
f∗(−α∗i )− f∗(−α

(t−1)
i )

)
+ λng∗(v(α∗))− λng∗(v(t−1))

+
n∑
i=1

(
Liγ(si, α

(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2

)
.

Finally, since Ai −Bi = n(D(α(t,i))−D(α(t−1))), we obtain

n∑
i=1

s−1
i

(
D(α(t,i))−D(α(t−1))

)
≥ D(α∗)−D(α(t−1)) +

1

n

n∑
i=1

(
Liγ(si, α

(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2

)
.

This concludes the proof of Lemma 19. �

From Lemma 19, we obtain a contraction speed as soon asG(s, α(t−1), α∗) ≥ 0. If α(t−1)
i 6= α∗i

this is obtained if

∀i ∈ {1, . . . , n}, Liγ(si, α
(t−1)
i , α∗i )−

si
2λn
‖xi‖2(α∗i − α

(t−1)
i )2 ≥ 0 (28)

⇔ ∀i ∈ {1, . . . , n},
γ(si, α

(t−1)
i , α∗i )(

1− α
(t−1)
i
α∗i

)2
− si
‖xi‖2α∗i

2

2λnLi
≥ 0.

By definition of γ we have

γ(si, α
(t−1)
i , α∗i )(

1− α
(t−1)
i
α∗i

)2
=

log
(

1− si + si
α∗i

α
(t−1)
i

)
− si log

α∗i
α
(t−1)
i

si

(
1− α

(t−1)
i
α∗i

)2
.

As α(t−1)
i /α∗i is bounded by βi/α∗i , we apply Lemma 17 to obtain

γ(si, α
(t−1)
i , α∗i )(

1− α
(t−1)
i
α∗i

)2
≥

log
(

1− si + si
α∗i
βi

)
− si log

α∗i
βi

si

(
1− βi

α∗i

)2 ,

and as βi/α∗i ≥ 1, we can apply Lemma 18 leading to

γ(si, α
(t−1)
i , α∗i )(

1− α
(t−1)
i
α∗i

)2
≥

(
1− si

)(α∗i
βi
− 1 + log βi

α∗i

)
(

1− βi
α∗i

)2 .

Finally the convergence condition from Equation (28) is satisfied when

∀i ∈ {1, . . . , n},
(
1− si

)(α∗i
βi
− 1 + log

βi
α∗i

)
− si
‖xi‖2α∗i

2

2λnLi

(
1− βi

α∗i

)2

≥ 0

which is true for any si ∈ [0, σi] where

σi =

1 +
‖xi‖2α∗i

2

2λnLi

(
1− βi

α∗i

)2

α∗i
βi

+ log βi
α∗i
− 1


−1

.

30



Theorem 4 is obtained by sampling uniformly i, meaning haing all si equal. Hence, to fulfill
Equation (28), we set

si = min
j∈{1,...,n}

σj (29)

for all i ∈ {1, . . . , n}. We then lower bound the expectation of D(α(t)) − D(α(t−1)) over all
possible sampled i and obtain

E[D(α(t))−D(α(t−1))] =
1

n

n∑
i=1

D(α(t,i))−D(α(t−1)) ≥ minj σj
n

(D(α∗)−D(α(t−1))),

by multiplying Equation (26) with minj∈{1,...,n} σj/n and removing the quantity G(t−1) ≥ 0. This
leads to the following convergence speed after t iterations,

E[D(α∗)−D(α(t))] ≤
(

1− minj σj
n

)t
(D(α∗)−D(α(0))),

which concludes the proof of Theorem 4. �

7.8 Proof of Theorem 5

Instead of taking all si equal as in the uniform sampling setting (see Equation (29)), we rather
parametrize si by σ̄

ρin
where ρi is the probability of sampling i. Then, we obtain the following

expectation under ρ,

Eρ[D(α(t))−D(α(t−1))] =
n∑
i=1

ρiD(α(t,i))−D(α(t−1)).

Since we have ρi = n
σ̄s
−1
i we obtain the following inequality using Lemma 19:

Eρ[D(α(t))−D(α(t−1))] ≥ σ̄

n

(
D(α∗)−D(α(t−1)) +G

(
σ̄(ρn)−1, α(t−1), α∗

))
. (30)

To ensure that G
(
σ̄(ρn)−1, α(t−1), α∗

)
≥ 0 while keeping the biggest gain, we must satisfy the

constraint from Equation (28) and find feasible ρ and σ̄ that maximize the following problem:

max
σ̄

σ̄ subject to
σ̄

ρin
∈ [0, σi], ρi ≥ 0,

n∑
i=1

ρi = 1.

This problem is solved by Proposition 1 of [42] and leads to the following choices:

ρi =
σ−1
i∑n

j=1 σ
−1
j

and σ̄ =
( 1

n

n∑
i=1

σ−1
i

)−1
. (31)

This choice for ρ and σ̄ ensures G(σ̄(ρn)−1, α(t−1), α∗) ≥ 0 hence Equation (30) without
G
(
σ̄(ρn)−1, α(t−1), α∗

)
leads to

Eρ[D(α(t))−D(α(t−1))] ≥ σ̄

n
(D(α∗)−D(α(t−1))),

and finally, after t iterations, we have

E[D(α∗)−D(α(t))] ≤
(

1− σ̄

n

)t
(D(α∗)−D(α(0))),

which concludes the proof of Theorem 5. �
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7.9 Proof of Proposition 6

With f∗i (−αi) = −yi − yi log αi
yi

, let

φ(αi) = yi + yi log
αi
yi
− λn

2

∥∥∥w(t−1) + (λn)−1(αi − α(t−1)
i )xi

∥∥∥2

be the function to optimize. Note that φ is a concave function from −Df∗ to R and hence it reaches
its minimum if its gradient is zero:

φ′(αi) =
yi
αi
− x>i w(t−1) − ‖xi‖

2

λn
(αi − α(t−1)

i ) = 0.

This second order equation in αi has a unique positive solution, the one stated in Proposition 6.

7.10 Proof of Proposition 7

Given that we are using Ridge regularization, the values of f∗i and g∗ are

f∗i (v) = −yi − yi log
(−v
yi

)
and g∗(w) = g(w) =

1

2
‖w‖2.

Hence the conditions at optimum (5) and (14) become

w∗ =
1

λn

n∑
i=1

α∗i xi −
1

λ
ψ and ∀i ∈ {1, . . . n}, α∗i =

yi

w∗>xi
. (32)

By combining both equations with Equation (32), we have

∀i ∈ {1, . . . n}, α∗i =
λnyi∑n

j=1 α
∗
jx
>
j xi − nψ>xi

. (33)

Since the inner products x>i xj and αi are non-negative, we can remove the terms
∑

j 6=i α
∗
jx
>
j xi

and upper bound the dual variable with

∀i ∈ {1, . . . n}, α∗i ≤
λnyi

α∗i ‖xi‖2 − nψ>xi
.

By solving this second order inequality, we can derive the following upper bound for all α∗i :

α∗i ≤
1

2‖xi‖2
(
nψ>xi +

√
(nψ>xi)2 + 4λnyi‖xi‖2

)
,

which concludes the proof. �

7.11 Proof of Remark 2

At each iteration the closed form solution is given by Proposition 6:

αti =
1

2

(√(
α

(t−1)
i − λn

‖xi‖2
x>i w

(t−1)
)2

+ 4λn
yi
‖xi‖2

+ α
(t−1)
i − λn

‖xi‖2
x>i w

(t−1)

)
.

Since the inner products x>i xj are non-negative, we obtain

α
(t−1)
i − λn

‖xi‖2
x>i w

(t−1) = n
ψ>xi
‖xi‖2

−
∑
j 6=i

α
(t−1)
j

x>j xi

‖xi‖2
≤ nψ

>xi
‖xi‖2
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and since αti is increasing with (α
(t−1)
i − λn

‖xi‖2x
>
i w

(t−1)), we obtain

αti ≤
1

2

(√
n
ψ>x2

i

‖xi‖4
+ 4λn

yi
‖xi‖2

+ n
ψ>xi
‖xi‖2

)
= βi,

which concludes the proof. �

7.12 Proof of Proposition 8

This proposition easily follows from the following computation

ζ∗ = arg max
ζ∈(0,+∞)n

1

n

n∑
i=1

−yi − yi log
ζi
yi
− λg∗

(
1

λn

n∑
i=1

ζiξi −
1

λ
ψ

)

= arg max
ζ∈(0,+∞)n

1

n

n∑
i=1

−yi − yi log
ζi
yi

+ yi log(ci)− λg∗
(

1

λn

n∑
i=1

ciζixi −
1

λ
ψ

)
= arg max

ζ∈(0,+∞)n
D(c · ζ),

where D is the original dual problem and c · ζ is the element wise product of the vectors c and ζ.
Then, since

arg max
x
{x 7→ f(cx)} =

1

c
arg max{x 7→ f(x)},

which remains valid in the multivariate case, we obtain ζ∗i = α∗i /ci for any i = 1, . . . , n. �

7.13 Proof of Proposition 9

Using α∗ = ᾱκ the dual problem becomes one dimensional

D(ᾱ) =
1

n

n∑
i=1

yi + yi log κiᾱ
yi
− λ

2

∥∥∥∥ 1

λn

n∑
i=1

κiᾱxi −
1

λ
ψ

∥∥∥∥2

.

This problem is concave in ᾱ and the optimal ᾱ is obtained by setting the derivative to zero:

D′(ᾱ) =
1

n

n∑
i=1

yi
ᾱ
−
〈

1

λn
ᾱ

n∑
i=1

κixi −
1

λ
ψ
∣∣∣ 1

n

n∑
i=1

κixi

〉
= 0.

This leads to the following second order equation∥∥∥∥ 1

n

n∑
i=1

κixi

∥∥∥∥2

ᾱ2 −
〈
ψ
∣∣∣ 1

n

n∑
i=1

κixi

〉
ᾱ− λ

n

n∑
i=1

yi = 0,

which has a unique positive solution

ᾱ =
1

2
∥∥ 1
n

∑n
i=1 κixi

∥∥2

〈ψ ∣∣∣ 1

n

n∑
i=1

κixi

〉
+

√√√√〈ψ ∣∣∣ 1

n

n∑
i=1

κixi

〉2

+ 4
λ

n

n∑
i=1

yi

∥∥∥∥ 1

n

n∑
i=1

κixi

∥∥∥∥2
 ,

and concludes the proof. �
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