
HAL Id: hal-02409033
https://hal.science/hal-02409033v1

Submitted on 20 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

ZiMM: a deep learning model for long term adverse
events with non-clinical claims data

Anastasiia Kabeshova, Yiyang Yu, Bertrand Lukacs, Emmanuel Bacry,
Stéphane Gaïffas

To cite this version:
Anastasiia Kabeshova, Yiyang Yu, Bertrand Lukacs, Emmanuel Bacry, Stéphane Gaïffas. ZiMM: a
deep learning model for long term adverse events with non-clinical claims data. Journal of Biomedical
Informatics, 2020, 110, pp.103531. �10.1016/j.jbi.2020.103531�. �hal-02409033�

https://hal.science/hal-02409033v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


ZiMM: a deep learning model for long term and blurry relapses

with non-clinical claims data

Anastasiia Kabeshova1, Yiyang Yu2, Bertrand Lukacs3, Emmanuel Bacry4, and Stéphane
Gaïffas2,5

1CMAP, École polytechnique, Palaiseau, France
2LPSM, Université de Paris, France

3Service d’Urologie - Hopital Tenon - APHP
4CEREMADE, Université Paris Dauphine, PSL, Paris, France

5DMA, Ecole normale supérieure, Paris, France

July 28, 2020

Abstract

This paper considers the problems of modeling and predicting a long-term and “blurry” relapse
that occurs after a medical act, such as a surgery. We do not consider a short-term complication
related to the act itself, but a long-term relapse that clinicians cannot explain easily, since it depends
on unknown sets or sequences of past events that occurred before the act. The relapse is observed
only indirectly, in a “blurry” fashion, through longitudinal prescriptions of drugs over a long period
of time after the medical act. We introduce a new model, called ZiMM (Zero-inflated Mixture
of Multinomial distributions) in order to capture long-term and blurry relapses. On top of it, we
build an end-to-end deep-learning architecture called ZiMM Encoder-Decoder (ZiMM ED) that can
learn from the complex, irregular, highly heterogeneous and sparse patterns of health events that are
observed through a claims-only database. ZiMM ED is applied on a “non-clinical” claims database,
that contains only timestamped reimbursement codes for drug purchases, medical procedures and
hospital diagnoses, the only available clinical feature being the age of the patient. This setting is more
challenging than a setting where bedside clinical signals are available. Our motivation for using such a
non-clinical claims database is its exhaustivity population-wise, compared to clinical electronic health
records coming from a single or a small set of hospitals. Indeed, we consider a dataset containing the
claims of almost all French citizens who had surgery for prostatic problems, with a history between
1.5 and 5 years. We consider a long-term (18 months) relapse (urination problems still occur despite
surgery), which is blurry since it is observed only through the reimbursement of a specific set of drugs
for urination problems. Our experiments show that ZiMM ED improves several baselines, including
non-deep learning and deep-learning approaches, and that it allows working on such a dataset with
minimal preprocessing work.

Equal contributions from A. Kabeshova and Y. Yu
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1 Introduction

The increasing volume of Electronic Health Records (EHR) systems of national medical organizations

in recent years allows to capture data from millions of individuals over many years. Each individual’s

EHR can link data from many sources and hence contain “concepts” such as diagnoses, interventions, lab

tests, clinical narratives, and more. This provides great opportunities for data scientists to collaborate on

different aspects of healthcare research by applying advanced analytics to these EHR clinical data [60].

There are several challenges in processing EHR data [14]: data quality, high-dimensionality, temporality

which refers to the sequential nature of clinical events, sparsity in both medical codes representation

and in timestamp representation, irregularly timed observations, biases such as systematic errors in

data collection, and mixed data types with missing data. Representation learning can overcome these

challenges [60] and the choice of data representation or feature representation plays a significant role in

the success of this approach.

1.1 Related works

Recently, much work has been done on developing compact and functional representations of medical

records, including the use of deep learning over EHR data [5, 63]. A notable attempt is stacked denoising

autoencoders [53]. Denoising autoencoders are also used in [9] to develop patient representation from

various binary clinical descriptors on synthetic data. Sums of word-level skip-gram embedded vectors of

clinical codes are used in [21] to create full-record representations. Word-level semantic embeddings for

diagnosis and intervention codes are constructed in [59], using pooling and concatenation to aggregate

embeddings into a vector representing a single admission, while [56] uses word-level embedding as

preprocessing for a CNN (Convolutional Neural Networks) architecture.

Only a few studies were made based on claims data due to its complexity and rare availability. Choi

et al. learned distributed representations of medical codes (e.g. diagnoses, medications, procedures) from

electronic health records (EHRs) and claims data using Skip-gram and applied them to predict future

clinical codes and risk groups [17]. Cui2vec is a recent study in learning clinical concept embeddings [8],

which applied word2vec [52] and Glove [58] on multiple medical resources such as structured claims

data, biomedical journal articles and unstructured clinical notes. Xiang et al. [71] proposed learning a

distributional representation of clinical concepts considering temporal dependencies along the longitudinal

sequence of a patient’s records based on claims data.

Other efforts have aimed at encoding temporal aspects of EHR data for predictive tasks. In [16],

time-stamped events are used as inputs to a particular type of RNNs (Recurrent Neural Networks) to

predict future disease diagnosis, while a graph-based attention model is used in [20] to learn concept

representations. Another interesting recent effort is [60], which maps raw EHR data to the FHIR

format (Fast Healthcare Interoperability Resources [10]) to encode EHR information for several different

sequence-oriented models.

RETAIN [18] and GRAM [19] are two state-of-the-art models using RNNs for predicting future

diagnoses. However, they cannot handle long sequences effectively. LSTM (Long Short-Term Memory)

or bidirectional RNNs [46] can be trained using all available input information in the past and future,
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and have been used to alleviate the effect of the long sequence problem and improve the predictive

performance. Lipton et al. [43] have been the first to successfully use LSTM to predict patients diagnosis,

for multi-label classification. BEHRT [40] is one of the most recent researches that provides the field

with an accurate predictive model for the prediction of next diseases based on the transformer-based

architecture in Natural Language Processing [28].

Although fixed timesteps are perfectly suitable for many RNN applications, EHRs often contain

event-driven and asynchronously sampled samples, in particular for the application considered in the

present paper. Recent works try to capture time irregularity using recurrent neural networks. Phased

LSTM [55] tries to model the time information by adding a time gate to LSTM, which controls the update

of the cell state, the hidden state and thus the final output. Another attempt is [73] where time gates are

added to the LSTM in order to model time intervals and specifically better capture both of short-term and

long-term sequential events. Time-aware LSTM [7] addresses time irregularity between two events in

an LSTM architecture by decomposing the memory of the previous timesteps into short-term memory

and long-term memory. Let us point out that, however, most of the works on EHR data cited above

either ignores subsequence-level irregularity by partitioning the data into regular time windows and by

aggregating the data within each window or handles this irregularity by simply adding the time-span as

one coordinate of the features vector, see [16] for instance.

1.2 Aim of this paper and contributions

This paper aims at the construction of a predictive model for long-term and “blurry” relapses that occur

after a medical act. We do not consider a short-term complication related to the act itself, but a long-term

relapse which is observed only indirectly. In the example considered here, the medical act is a precise

surgery, and the relapse is observed through longitudinal prescriptions of a specific set of drugs for urinary

problems, over a period of 18 months after surgery. We use all the data available in SNIIRAM (French

national health insurance information system, a huge database containing health reimbursements claims

of almost all French citizens since 2015, see Section 3.1 for details) for patients on which such a surgery

has been performed (TURP surgery, see Section 3.2).

The ZiMM model. The first natural idea is to cast this problem as a classification problem for “relapse”

versus “no relapse” after the medical act. However, such a naive approach cannot work here. Indeed,

the definition of a binary label would require threshold choices, both about time and dosage: after how

many time and amount of drugs prescribed do we consider that there is a relapse? Such thresholds might

depend on various clinical practices, habits of the patient, and many other exogenous factors. In this

work, we propose to work directly on the data observed, by using all the “blurry” observations at once

to train an end-to-end architecture. For this purpose, we introduce a new methodological contribution,

namely the ZiMM model (Zero-inflated Multinomial Mixture) which is described in Section 2.1 below.

The ZiMM Encoder-Decoder (ZiMM ED). We introduce an end-to-end Encoder-Decoder architec-

ture trained with an objective, based on the negative log-likelihood of the ZiMM model. All available

patients’ claims before the medical act are first encoded into a single embedding vector by the Encoder.
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This Encoder combines embedding layers, self-attention layers and recurrent layers to output an embed-

ding vector of the full patient pathway prior to the medical act. This embedding is used as input to a

Decoder which is dedicated to the learning of the parameters of the ZiMM model. This architecture is

described in Sections 2.3 to 2.5 below.

Specifics of this work. The specificity of our approach lies in several points. First of all, it is performed

on non-clinical EHR data, and we consider long-term predictions (18 months ahead). Our end-to-end

architecture addresses several challenges, such as variable-size inputs, confounding interactions between

medical codes, long-term predictions. Finally, we do not inject any prior knowledge: the embeddings

of patient pathways are fully trained in an end-to-end fashion, we do not use any strong preprocessing

or simplifying aggregations, the data is used almost in its raw form. We keep the smallest granularity

possible both on the codes (we use the actual medical codes instead of encompassing categories) and on

time, namely we work on the original 1-day time scale.

Organization of the paper. The ZiMM model is described in Section 2.1 while the ZiMM ED archi-

tecture is described in Sections 2.3 to 2.5. Some details concerning data preprocessing are provided

in Section 2.2. Section 3 provides results and a comparison with strong baselines, together with some

variations of the architecture to fine-tune the final performance and we conclude in Section 4.

2 Proposed architecture

The ZiMM ED architecture has three main building blocks: the ZiMM (Zero-inflated Multinomial

Mixture) model (see Section 2.1), an Encoder (see Section 2.3) and a Decoder (see Section 2.4), and

is described in Figure 1 below. Given a patient i ∈ {1, . . . , n} (among n patients), with medical act of

interest occurring at time T i, the steps through this architecture are roughly as follows:

• All the medical codes (drugs, diagnosis, medical procedures) observed longitudinally in the life

of patient i before T i are embedded, then aggregated in a time window using a self-attention

mechanism. The time distance (in days) to T i of each day with a non-empty set of codes is

embedded as well, and we embed as well hospital stay durations. This sequence of vectors is then

fed to a (or several) recurrent layers. This corresponds to Steps 1,2 and 3 in Figure 1. This leads to

an embedding vector xi ∈ Rd of the full pathway of patient i prior to T i.

• The vector xi ∈ Rd is concatenated with other static features of the patient, and used as the input

of the Decoder, which is based on several recurrent layers, in order to produce the parameters of

the ZiMM model. This corresponds to Step 4 in Figure 1.

Precise descriptions of all steps are provided below, starting with the ZiMM model, followed by some

details concerning data preprocessing, and the Encoder-Decoder architecture.
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Figure 1: Architecture of the ZiMM Encoder-Decoder end-to-end architecture. A detailed graphical representation
of Steps 2-4 is shown in Figure 3 below.

2.1 ZiMM: Zero-inflated Multinomial Mixture model

Assume for now that we have an embedding vector xi ∈ Rd that encodes the full health pathway of patient

i ∈ {1, . . . , n} prior to T i. This vector is the output of the ZiMM-Encoder described in Section 2.3

below. Moreover, we observe a vector of labels yi = [yi,1, . . . , yi,B] ∈ NB , which corresponds to the

blurry observation of the relapse after T i. Here, B corresponds to the number of time intervals considered

after T i and yi,b ≥ 1 is the number of blurry relapses observed in time bucket b, so that yi,b = 0 means

that no blurry relapse is observed in time bucket b. In the example considered Section 3 below, B = 18

corresponds to a 18-months period and yi,b is the number of drugs (among a set of drugs for urinary

problems, see Section 3.3), purchased by patient i in time bucket b.

We introduce ni =
∑B

b=1 yi,b ∈ N, the overall number of blurry relapses of patient i. Let us point out

that a binary classification problem (ni > 0 versus ni = 0) may wrongly classify very different situations

corresponding to the same ni. Consider for instance two extreme situations where first, we have ni = 1

with yi,1 = 1 (and consequently yi,b = 0 for b = 2, . . . , B), and second, we have ni = 1 with yi,B = 1

(and consequently ni,b = 0 for b = 1, . . . , B − 1). The first case can be due to exogenous factors, such

as the patient simply kept buying the drug after the surgery just out of a pure habit (prescriptions can run

for a long period), while in the second example, there is no doubt that a relapse is occurring.

Therefore, we need to find a way to model the whole vector yi, so that ni is not fixed and includes
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zero-inflation, namely a parametrized likelihood for ni = 0. For that purpose, we introduce the following

ZiMM model, where we suppose that ni ∈ {0, 1, . . . , B} is distributed (conditionally to xi) as

P(ni = k|xi) = πk(xi) for k ∈ {0, . . . , B}, (1)

where πb(xi) are such that
∑B

b=0 πb(xi) = 1 and πb(xi) > 0 (coming out of a softmax activation for

instance). These parameters correspond to the categorical distribution specific to patient i, and are

constructed by the ZiMM-Decoder (see Section 2.4 below) from xi. Then, we assume that the distribution

of yi conditional to ni = b and xi follows either a Dirac distribution on vector (of size B) [0, . . . , 0]

whenever b = 0, or a multinomial distribution of parameters b and pb,1(xi), . . . , pb,B(xi), namely

yi|(xi, ni = b) ∼

δ[0,...,0] if b = 0,

Multinomial(b, pb,1(xi), . . . , pb,B(xi)) otherwise,
(2)

where pb,1(xi), . . . , pb,B(xi) are the parameters of a multinomial distribution whenever ni = b, for each

b = 1, . . . , B. Once again, these parameters are specific to patient i thanks to the embedding vector

xi ∈ Rd, and are constructed by the ZiMM-Decoder. These parameters must satisfy
∑B

b′=1 pb,b′(xi) = 1

for b = 1, . . . , B, and pb,b′(xi) > 0 for any b, b′ = 1, . . . , B, which is easily achieved with a softmax

activation applied row-wise. By combining (1) and (2), with end up with the following mixture distribution

for yi conditionally on xi:

yi|xi ∼ π0(xi)δ[0,...,0] +

B∑
b=1

πb(xi)Multinomial(b, pb,1(xi), . . . , pb,B(xi)). (3)

Zero-inflation corresponds to the case where ni = 0 and has likelihood measured by π0(xi). The ZiMM

model has two sets of parameters that are functions of the feature vector x, namely {πb(x)}b∈{1,...,B}
that parametrizes the distribution of the total number of blurry relapses and {pb,b′(x)}b,b′∈{1,...,B}2 that

parametrizes the dynamics of these relapses. As explained in Section 2.4 below, the dynamics of

{pb,b′(x)}b′∈{1,...,B} for each b are learned by dedicated recurrent layers in ZiMM-Decoder.

2.2 Preprocessing of the data

After a preliminary preprocessing based on our SCALPEL3 library described in [4], the data considered

in this paper comes in the form of a table, where each row represents an event with the patient ID, the

type of event (drug, diagnosis or medical procedure), its corresponding code, the start date and the end

date of the event. Figure 2 provides an illustration of the sequence of claims observed for a single patient.

If an event is related to a hospital stay, the start date is the first day of hospitalization while the end is the

exit date from the hospital. Otherwise, the start and end dates are the same. The time delta is a day-long,

and no aggregation is performed to keep the data as raw as possible.

Multiple events can occur within the same day, and the precise ordering of such events does not carry

any information. Thus, we shuffle at random within-day events, to avoid any bias that could occur from

the data collection mechanism (a similar strategy can be found in [21]).

All the events observed through claims before T i are used as inputs to the Encoder described in

Section 2.3 below. The output of the Encoder is the embedding vector xi ∈ Rd of patient i. The blurry

relapses observed after T i are used to build the label vector yi ∈ NB of patient i.
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Figure 2: Illustration of the sequence of claims observed for a patient. This corresponds to the output of Step 1
from Figure 1. Through claims, we observe three types of events: drug purchases (blue), medical procedures (red)
and diagnosis (yellow) before the medical act (prostate surgery in the example) that happens at time T i for patient i.
All events are timestamped, and the time delta is a day long. Several events can occur the same day and some days
have no event: events are typically very irregularly sampled. All these events, observed before T i, are used to learn
the embedding vector xi ∈ Rd of patient i. After T i, we only keep the events corresponding to the blurry relapses
considered (drug purchases among a set of drugs for urinary problems). These blurry relapses are used to build the
label vector yi ∈ NB of patient i.

2.3 The ZiMM Encoder

The ZiMM Encoder corresponds to Steps (2) to (4) in Figure 1, a more detailed illustration is shown in

Figure 3. Let us provide now details about each step, following the flow of the data.

Medical codes and timestamps embeddings. The following is applied separately for each type of

event code (drugs, medical procedures and diagnoses). Codes are first tokenized, and each unique token

is individually mapped to an embedding vector in RdE which is learned during training, where dE is a

hyper-parameter to be tuned (see Section 3.7). We consider only tokens that occur at least 50 times in the

training dataset. To address time irregularity between two asynchronously timestamped events, we do the

following: for any event occurring at time t ≤ T i in the observation period of patient i, we compute the

"time horizon" as T i − t, namely the distance (in days) between the event and medical act. Moreover,

whenever it makes sense, we compute end− start, the duration of the event, which corresponds to the

duration of an hospital stay defined as the time between hospital admission and discharge. These two

integers (in number of days) are also tokenized and replaced by a learned embedding vector. This allows

the encoder to learn to put more or less emphasis on events that are close or far from T i, and to exploit

the duration of events as a proxy for severity of medical procedures and diagnoses. The patient age in

years at T i is also similarly bucketized and embedded. The embedding of medical codes corresponds

to Step (2) of both Figures 1 and 3. In our experiments, the default model uses dE = 64 for the three

types of codes and several regularization strategies are applied to avoid overfitting: weights decay (`2
regularization with strength 10−2), multiplicative Gaussian noise, and layer normalization [3]. Since we

observed empirically that these embeddings are prone to overfitting for the application considered in the

paper, a comparison of the different regularization strategies is provided in Section 3.7.

Embeddings aggregation through self-attention. Several events can occur at the same time (within

the same day), so that the number of codes observed within a day is highly heterogeneous. Moreover,

such codes are not likely to contribute equally to the vector representation of the day, and their order is

not informative. Therefore, we need to perform a trainable aggregation of these codes in order to produce
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self-attention inside a time window, where each gray block corresponds to one day (ti0, t

i
1, . . .), and T i is the day of

the medical act of interest; (4) concatenation of aggregated embedding vectors with embeddings for time horizon
and hospital length stay.

a representation of the patient history at each timestamp. An approach can consist of using a hierarchy

relationship between different diagnosis and treatment inside each patient visit [20]. However, in the

data considered here, diagnosis codes are not explicit each time there is treatment; in particular, drugs

purchases are almost never related to a diagnosis code (unless they are related to a hospitalization). Hence,

we use a self-attention mechanism [68, 42] using a bag-of-features approach to learn how to combine

embedding vectors within the same day, following previous successful applications of self-attention for

fusing disease embeddings [45].

Let C be a set of codes with cardinality |E| (for drugs, medical procedures or diagnoses) and let

EC ∈ RdE×|C| be the corresponding matrix of concatenated embedding vectors. The multi-headed

self-attention aggregation mechanism contains two layers, the first with K heads, each of which is a

self-attention function that generates a probability vector of size |E| from EC :

wk = softmax(α>k tanh(AkEC)), (4)

for k = 1, . . . ,K, where αk ∈ R1×dE and Ak ∈ RdE×dE are to be trained and the second layer outputs a

dE-dimensional vector given by

ECµC where µC = softmax(b> tanh(BW )), (5)

with W = concatenate(w1, . . . , wk) ∈ RK×|C| and b and B are trainable parameters. We use the

tanh squashing activation function following [42] and [45], since in these layers it is considered good
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practice [39] to produce centered activations that are bounded in [−1, 1], to help the back-propagation

process involved in the training of the model. This self-attention mechanism is trained and performed

separately for each type of code, as displayed in Step (3) of Figure 3. Note that this aggregation

approach is permutation-invariant for codes that occur within the same day. We use dropout, drop-

connect [69], Frobenius-norm weight penalization from [42] and weight-decay to regularize this self-

attention mechanism.

Health pathway encoder. The inputs of the health pathway encoder, at each timestamp, contains the

following embedding vectors, that are concatenated together:

• Medical code embedding computed by Equations (4) and (5);

• Time-horizon embedding (see above);

• Duration of event embedding (see above).

For each patient, this leads to a sequence of fixed-sized embedding vectors that encode both medical and

time information at each (non-empty) timestamp t ≤ T i, as displayed in Step (4) of Figures 1 and 3. Now,

this sequence of vectors is used as the input of a stack of layers, including recurrent layers (LSTM [33],

bi-directional LSTM (bi-LSTM) [62], GRU [15]) or convolutional layers, in a sequence-to-one network

architecture, since we want to output a single vector xi ∈ Rd that encodes the full pathway of a patient

before T i. The results obtained with different types of layers are shown in Section 3.7 below. We use

again dropout on the inputs and on the recurrent units to prevent overfitting. Finally, the output vector

of the encoder is concatenated with an embedding vector of the age of the patient, leading to the final

vector xi ∈ Rd that encodes the full pathway of patient i before T i. This vector is the input of the ZiMM

Decoder described in the next Section.

2.4 The ZiMM Decoder

The decoder uses the input vector xi ∈ Rd of patient i to construct the parameters of the ZiMM

model, and the whole architecture is trained against the negative log-likelihood of the ZiMM model

from Section 2.1 computed at the label vector yi = [yi,1, . . . , yi,B] containing the blurry relapses. The

parameters {πb(xi)}b=1...,B and {pb,b′(xi)}b,b′∈{1,...,B}2 are highly dependent and are time-ordered, so

that a specific architecture is used to model these dependencies. The mixture probabilities are learned

through a fully connected feed-forward layer (FFN) that use as input xi, namely

π0(xi), . . . , πB(xi) = softmax(FFN(xi)), (6)

and another recurrent layer (RNN) uses as well xi in order to produce hidden states given by

ht = RNN(ht−1, xi) (7)

for t = 1, . . . , B. Then, we use different recurrent layers (RNNb) in parallel for each value ni = b ∈
{1, . . . , B} using

hbt = RNNb(h
b
t−1, ht) (8)
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for t = 1, . . . , B, since the multinomial distributions vary strongly conditionally on ni = b. Finally, a

softmax activation is applied on hbt along t = 1, . . . , B to produce the parameters pb,1(xi), . . . , pb,B(xi).

Details on the type of layers used and the tuning of hyperparameters is provided in Section 3 below.

2.5 Training

The full ZiMM Encoder-Decoder architecture is trained in an end-to-end fashion by minimizing the

average negative-log likelihood over all patients i = 1, . . . , n:

`i(Θ) = log(π0(xi))1ni=0+
B∑
b=1

[
log(πb(xi))+log

( b!

ΠB
b′=1yi,b′ !

)
+

B∑
b′=1

yi,b′ log(pb,b′(xi))
]
1ni=b, (9)

where Θ stands for the concatenation of all the trainable parameters involved in the layers described in

Sections 2.3 and 2.4. The choices of optimizer, learning rate schedule and other hyperparameters are

described in Section 3.

3 Application: prediction of post-surgical relapse of urinary problems

In this section, we apply the ZiMM ED architecture to predict the blurry relapse of urinary problems

after a TURP surgery for patients with benign prostatic hyperplasia (see Section 3.2 below) using a

cohort constructed from the French SNIIRAM database (see Section 3.1 below). Then, we explain in

details the way the labels are built (Section 3.3), the different steps involved in the cohort construction

(Section 3.4), the evaluation metric and implementation details (Section 3.5). Then, the remaining of this

section describes the baselines and a comparison with ZiMM ED, followed by an ablation study.

3.1 SNIIRAM: A non-clinical claims dataset

SNIIRAM (French national health insurance information system) contains health reimbursements claims

of almost all French citizens since 2015 (more than 65 million) and has been used for health research on

many topics, to cite but a few [61, 2, 31]. Since, in France, most health-cares are at least partially reim-

bursed by the administration, this database contains records corresponding to very various information

going from hospital stays to drug purchases in city pharmacies, all coded with different systems [67].

Absence of clinical information and “forced” normalization makes this data highly complex and het-

erogeneous. A consequence is that it requires a lot of domain expertise about the way healthcare is

reimbursed in France in order to prepare it as training data for machine learning algorithms. In this

paper, we exploit medication, procedure and diagnosis codes only. Diagnoses are primarily coded with

ICD-10, while procedures are coded with CCAM, a French medical classification of clinical procedures.

Medications codes use the French pharmaceutical categories CIP13 [11] that we map to the international

ATC (Anatomical Therapeutic Chemical Classification) classification system.

Let us stress that while this data is extremely rich and almost population-wide over France, it is

not clinical data, but only claims data, clinical information being only latent in the codes appearing in

reimbursement information. No vital bedside information, lab tests results or natural language notes from

clinicians is available. An important amount of data preprocessing and domain expertise is required for
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data extraction, in particular in order to clean existing inaccuracies in codes and timestamps. This is

achieved through our SCALPEL3 library [4], which is a separate topic of research that this paper builds

upon. Furthermore, the identification of a disease state (indication, concomitant disease or outcome) does

not rely only on a single source of information but on the convergence of information from different

sources. This might include, for instance, the presence of a chronic disease registration, hospital diagnoses,

tracer drugs, and procedures or lab tests [11], that are all observed in the data through claims.

We believe that these downsides are counter-balanced by the exhaustive nature of this data. It is

exhaustive both in terms of population (it includes nearly all the population living in France) and in terms

of healthcare events. Indeed, in France, almost all healthcare spendings are at least partially reimbursed

by the government, so almost each healthcare of each individual is associated to at least one event in the

database. This makes it a very rich and powerful database, with a relatively small bias, and many works

have already proved successful in improving population-level health [54, 61, 2, 31]. Though most EHR

studies are dealing with clinical EHR’s [23], it is clearly crucial to exploit such claims-only EHR, and

we hope that our work is a first step towards broader use, in healthcare and machine learning research

community, of non-clinical claims datasets.

Let us note that, since 2016, the access to this database, for public interest research, is possible

through the SNDS access pipeline [65]. It mainly offers access through the SAS software. An access

using classical open source big data and AI frameworks (e.g. R, Python, Spark) including the SCALPEL3

library will be possible, by the end of 2020, through the Health Data Hub [34], a 80m$-funded national

project which aims to be the national unique gateway to most French health data for operating public

interest research (operated by both public or private entities) on modern infrastructures.

3.2 Benign prostatic hyperplasia (BPH)

BPH is a common urological disease that affects aging men all over the world [64, 26]. It causes

urinary tract obstruction due to the unregulated growth of the prostate gland, causing lower urinary tract

symptoms (LUTS) [35]. The options for management of BPH include watchful waiting, pharmacotherapy,

transurethral resection of the prostate (TURP), and other minimally invasive surgical treatments (MISTs)

and open prostatectomy. Most studies consider TURP as the gold standard for surgical management

of BPH [32]. Patients suffering from prostatic hyperplasia regularly take drugs for urination problems.

Successful surgery should cure such problems so that patients should not need to continue their drugs for

urination problems. However, it is often observed that patients retake such drugs after surgery. In some

cases, it merely comes from a habit of taking routine drugs, but in many cases, it is related to a persisting

urination problem [47, 22].

An important problem, from a clinical point of view, is, therefore, to predict the outcome of such

a surgery, on a long-time period following it (18 months is considered here), to improve the decision

making of the clinicians, in particular, to help decide when surgery should be performed. Use of long-term

data after TURP surgery is very scarce in the literature, with only a few studies available [24]. A recent

analysis of 20 contemporary randomized clinical trials with a maximum follow-up of five years reports

that TURP resulted in a significant improvement of maximum flow-rate and quality of life [25, 44].

A second prostatic operation (re-TURP) has been reported at a constant annual rate of approximately

11



1-2%. A review analyzing 29 RCTs found a re-treatment rate of 2.6% after a mean follow-up of sixteen

months [25]. In a large-scale study of 20,671 men, the overall re-treatment rates (i.e., either re-TURP,

urethrotomy or bladder neck incision) were 5.8%, 12.3%, and 14.7%, respectively at one, five, and eight

years follow-up. More specifically, the respective incidence of re-TURP was 2.9%, 5.8% and 7.4% [48].

However, urology guidelines highlight the lack of extended follow-up after the surgery and no clear

evidence explaining re-treatment.

Building a model with the ability to predict the outcome of this surgery is of primary importance for

improving population-level health, especially since prostatic problems are a common condition for aging

men. In this section, we use ZiMM ED to train such a model using a cohort based on SNIIRAM. The

outcome of this surgery is evaluated by the distribution of the blurry relapses, observed through the use of

specific drugs related to urination problems.

3.3 Surgery identification and labels construction

The identification of a TURP surgery in SNIIRAM is made through some specific CCAM codes provided

by clinicians1. However, it happens that two TURP surgeries can occur in a pretty small amount of

time. This is likely to correspond to a case where a surgery has clearly failed and that a second surgery

is required quickly, which is not the type of complication we are interested in. If the amount of time

between the two surgeries is small, it would be improper to say that it corresponds to a relapse. We thus

define, following clinicians recommendations, a six week period after the first surgery, as a single surgery

block. If another TURP surgery occurs inside the same block, we consider that it is part of the same

medical act. The timestamp of the event corresponds to the last surgery within the block, and provides

the value of T i for any patient i.

As far as the labels are concerned, a simple but efficient way to identify whether the urinary problems

have not ceased or reappeared after a while is to see if the patient, at some point after the surgery, needs

to take medications for these urination problems again2. For that purpose, we use a list (provided by

clinicians) of 136 CIP-13 drugs that are mainly related to urination problems. We choose to drive the

prediction on a 18-months period after T i. So, using the notation of Section 2.1, we chose the number of

buckets B = 18 and bucket size of 30 days (540 days total).

3.4 Cohort construction and exploration

The construction of the cohort follows the flowchart illustrated in Figure 4. We start by selecting all

SNIIRAM patients alive, with at least one medical event related to urination problem (observed through

medication or surgery codes) between 2010/01/01 and 2015/12/31. This selection gathers a little bit more

than 5 million patients. Then, we keep only male patients over 18 years old on 2014/12/31. This reduces

the size of the cohort by roughly 1 million patients. Keeping only patients with a TURP surgery between
1We considered that a TURP surgery corresponds to the CCAM codes JGFA005, JGFA009, JGFA015, JDPE002 or JGNE003.
2Following clinicians recommendations, we do not consider TURP surgeries that occur after the first surgery block, and

consider only drugs prescriptions as blurry relapses. Consequently, we remove patients with repeated surgeries that are not part
of the same block from the cohort construction, as explained in Section 3.4.
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2010/01/01 and 2013/06/30 and with at least 2 events (whatever the types) occurring in the follow-up

18-months period leads to a cohort containing 231 747 patients.

As explained in Section 3.3, we compute surgery blocks (any surgery that occurs within a six week

period after the first surgery is in the same block), that are considered as a single event of surgery. We

remove all the patients that have another surgery out of this first block. We choose a follow-up period

of 540 days, corresponding to 18 buckets of 30 days, so that the follow-up period is of the order of 18

months. Indeed, clinicians expect that such a relapse should occur not long after the first year following

surgery. As shown in Figure 4, the final cohort has 138 976 patients.

Patients covered by French universal
health insurance with at least one urina-
tion problem event (surgery or medica-

tion) between 2010/01/01 and 2014/12/31
(n = 5 136 308)

Excluded (n = 1 045 234):

1. Age < 18; and > 110 if death
date is missing (n = 39 300)

2. Women (n = 1 005 933)

3. Wrong hospital stays dates (n =
1)

Exported cohort
(n = 4 091 074)

Patients with surgery event be-
tween 2010/01/01 and 2013/06/30

(n = 231 747)

Excluded (n = 92 771):

1. More than 1 surgery bloc (n = 9
973)

2. Death before T + 18 months (n
= 14 617)

3. Less than 500 observation days
in the 18-months follow-up
period (n = 68 181)

Analysed cohort
(n = 138 976)

Figure 4: Flowchart leading to the final cohort considered in the experiments. The number n stands for the number
of patients remaining at each stage of preprocessing.

The numbers of medical codes, namely medications, procedures and diagnoses observed in the final

cohort, are displayed in Table 1. We count the number of unique codes, the number of codes observed

at least 50 times and the number of codes remaining when keeping only the ones prior to T i for each

patient i. The statistics reported in Table 1 below and in all figures from this section use the raw coding

scheme (that use CIP-13 for drugs), in order to better describe the statistics of the data, while for training

ZiMM ED we replace CIP-13 by ATC (for drugs) since, as illustrated in Section 3.7 below, it allows to

reduce the vocabulary size of drugs while keeping the same predictive performance. As for subsequent

encoding, we consider only tokens that occur at least 50 times in the training dataset, so that the encoder

will see a total of 9 271 medical codes.

On the left-hand side of Figure 5, we show, for this final cohort, the distribution of ni, namely the

number of patients with a given total number of drugs prescriptions (related to urinary problems) during
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Medications Medical procedures Diagnoses Total
#Unique 12 785 9 578 5 885 28 248

#Unique before T i 10 664 7 460 4 563 22 687
#Unique seen ≥ 50 times before T i 6 713 1 155 1 403 9 271

Table 1: Number of medical codes observed and remaining when applying the filters used in the cohort construction.
Bold values correspond to the vocabulary sizes of the medical codes used when training the ZiMM ED architecture.

the follow-up 18 months period. Namely, the y-axis of Figure 5 (left-hand side) displays #{i : ni = b}
where b = 1, . . . , B is given by the x-axis. We observe a sharp decrease for b = 1, . . . , 5 from the

mode b = 1, which corresponds to patients who continue to buy their drugs and just keep doing it (for

several months) after their surgery. However, we observe a second mode around b = 15 which certainly

corresponds to the relapse we are interested in. This plot shows that the considered problem is in a

“weak signal” setting, since the second mode is very small compared to the first (at b = 1), and that the

prediction of this relapse requires a dedicated methodology indeed. This observation is corroborated by

the right-hand side of Figure 5, which displays the number of patients having at least one drug prescription

(related to urinary problems) on a specified bucket, namely the y-axis displays #{i, yi,b ≥ 1} as a

function of b given by the x-axis. Once again, the function is decreasing from the mode b = 1 and

plateaus between b = 7 and b = 18, because of patients who continue to purchase the drug after the

surgery. We do not observe a second mode as we did in the left-hand side, since the relapse we are

interested in is blurry: the drug purchases that define this blurry relapse are heterogeneously distributed

among patients and end up flattened out when aggregated in the display of the right-hand side. This

motivates, once again, the dedicated methodology proposed by the ZiMM model.
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Figure 5: Left-hand side. Number of patients as a function of the overall number of drugs prescriptions related to
urinary problems during the follow-up 18 months period. The y-axis displays #{i : ni = b} where b = 1, . . . , B

is given by the x-axis. We observe a sharp decrease from the mode b = 1 followed by a second weak mode around
b = 15. The number of patients with ni = 0 is equal to 84 328 and is not displayed for readability of the plot.
Right-hand side. Number of patients having at least one drug prescription (related to urinary problems) in each
time bucket: the y-axis displays #{i, yi,b ≥ 1} as a function of b given by the x-axis. We observe a sharp decrease
from the mode b = 1 and a plateau between b = 7 and b = 18, since patients often continue to purchase the drug
after the surgery.

In the left-hand side of Figure 6, we show the distribution of the observation period of each patient

before T i. We observe that it is highly heterogeneous: the maximum is reached at 1 274 days while the

average is 486 days, and some patients have a very short observation period. This variability is related to

the variability of the medical practice itself: some patients are treated for urological problems with drugs
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for a long time before the surgery, while other patients have surgery sooner. On the right-hand side of

Figure 6, we show the distribution of the durations of all hospitalizations before T i. We observe that most

hospitalizations are one-day short, and that the distribution is heavy-tailed, since these hospitalizations

can be related to a large set of possible health problems, leading to very heterogeneous durations. Let us

stress that we are considering all hospitalizations that occur before T i, and not only the ones related to a

surgery or a urological problem, since all the health events of a patient i are kept before T i.
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Figure 6: Left-hand side. Distribution of the observation period of each patient before T i. The strong variability of
the observation period displayed here is related to the variability of the medical practice itself: some patients are
treated for urological problems with drugs for a long time before the surgery, while other patients have surgery
sooner. Right-hand side. Distribution of the durations of all hospitalizations before T i. Most hospitalizations
are one-day short, and the distribution is heavy-tailed, since these hospitalizations can be related to a large set of
possible health problems.

In the left-hand side of Figure 7, we display the distribution of the number of unique events per

patient. We observe that the bulk of the distribution is between 5 and 200 unique events, with an average

of 10 unique events. The right-hand side of Figure 7 shows the number of days with at least one medical

code in the history of patients before T i. We observe that most patients have more than 10 days in their

history with medical codes. Both displays from Figure 7 show that the health pathways of most patients

before T i contain enough variability when assessed by the number of distinct codes, and the number of

distinct days with at least one medical code, corresponding to a sufficient amount of variability to carry

information for the prediction of the blurry relapse after T i.
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Figure 7: Left-hand side. Distribution of the number of events per patient before T i. The bulk of the distribution is
between 5 and 200 unique events, with an average of 117 events per patient. Right-hand side. Distribution of the
number of days with at least one medical code in the history of patients before T i. We observe that most patients
have more than 10 days in their history with medical codes. Both figures show that most patients have a significant
amount of medical code variability and time variability before T i.
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3.5 Implementation and evaluation metrics

Our models are implemented with TensorFlow 2 [1]. The ZiMM ED architecture is open-source in

GitHub3. All the models are trained on a machine equipped with 4 GeForce GTX 1080Ti GPUs and

another machine with 3 Tesla V100 GPUs. All the models are trained with the Nadam optimizer [36, 30]

with learning rate 0.001. The hyper-parameters of all the models are selected through an extensive random

grid search, whereas in order to reduce computation time, some hyper-parameters are fixed "by hand".

An ablation study showing the sensitivity to hyper-parameters is provided in Section 3.7 below.

Metrics: mean-AP, AUC-PR and AUC-ROC. In order to evaluate the quality of the prediction of

yi = [yi,1, . . . , yi,B] (when using ZiMM ED architecture or any other benchmark models) we use mean-

AP, defined as the average of the area under the precision-recall curve (AUC-PR), namely we compute

the average over the buckets b = 1, . . . , B of the AUC-PR for each bucket b, i.e., the AUC-PR of the

prediction of yi,b. Moreover, we report also the AUC-PR and the AUC-ROC (area under the ROC curve)

for the binary classification problem ni > 0 against ni = 0.

Train, validation and test sets. All our experiments use the same random data splitting into 70% of

patients for training, 15% of patients for validation and 15% for testing. We checked the stationarity

across the three splits of labels distribution and the main drugs, diagnoses and medical procedures. All

the models are trained on a train set and we tune hyper-parameters using the validation set, while the test

set is only used for the final evaluation. We report performances on both the validation and the test sets.

3.6 Baselines

The prediction performances of ZiMM-ED is compared with several baselines, involving several featuring

strategies and different predictive models, both for binary prediction (ni > 0 versus ni = 0) using

the AUC-PR and AUC-ROC metrics and for the prediction of yi = [yi,1, . . . , yi,B] (the mean-AP score

defined in Section 3.5). Results are reported in Table 2 below, where we observe that ZiMM ED improves

all the considered baselines, in particular for the prediction of yi, since the ZiMM model is dedicated to

this task. We consider the following baseline models, more details are provided below:

• LRl2: Logistic regression with `2 penalization using the scikit-learn library [57];

• GBDT: Gradient boosting using XGBoost [13];

• MLP: Multilayer Perceptron model with 128 hidden units;

• Word2vec: we first train embeddings of all medical codes following [52], and use these pre-trained

embeddings in a MLP with 128 units;

• LSTM: a single embedding layer and one forward LSTM layer with 128 hidden units;

• Patient2Vec [72].

We evaluated them using 3 types of input features described below.
3https://github.com/stephanegaiffas/zimm.git
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Static features (SF). This featuring is used for LRl2, GBDT and MLP models. Inputs correspond to

aggregated counts of grouped medical codes over the entire observation period of a patient. Number of

occurrences of each code is then multiplied by the corresponding one-hot encoding. Hence, the input

is a N -dimensional vector representing a patient’s medical history. One logistic regression (LRl2) and

one gradient boosting decision tree (GBDT) is trained for each bucket b. This input is also used for the

multi-layer perceptron (MLP).

Dynamic features (DF). This featuring is used for LRl2, GBDT and MLP models. We split the

sequence into subsequences of 60 days, on which we compute the same features as with SF, but within

each interval, in order to incorporate longitudinal information into LRl2, GBDT and MLP.

Irregularly-spaced sequence (ISS). This featuring is used for Word2vec, LSTM and Patient2Vec

models. In this case, we consider the original patient sequence. For both the Word2vec model and the

LSTM one, the events are just gathered in a sequence in which the time-stamps or duration of the events

are not used. In the Word2vec case, the codes embeddings are trained using Word2vec [52] and prediction

is performed with a MLP with 128 hidden nodes. In the LSTM case, an embedding layer and one forward

LSTM layer with 128 hidden units are trained in an end-to-end fashion and is applied to the sequence.

The Patient2vec uses the same input features as the ZIMM ED architecture (i.e., sequence, including

time-stamps and duration of events). It has been only used for the binary classification problem (i.e.,

ni > 0 versus ni = 0).

The predictive performance of all benchmarks and of ZiMM ED are presented in Table 2, where

we report mean-AP scores on the test set, as well as AUC-PR and AUC-ROC scores for the binary

classification problem (see Section 3.5 for definition of these scores). According to this table, GBDT-

based models on dynamic features (GBDT-DF) performs the best among all benchmark models, however

the ZIMM ED architecture outperforms all the benchmark models both for the multi-output yi prediction

and for the binary prediction.

Model mean-AP AUC-ROC AUC-PR
LRl2-SF 0.19 0.64 0.50
GBDT-SF 0.24 0.67 0.56
MLP-SF 0.18 0.64 0.49
LRl2-DF 0.21 0.65 0.53
GBDT-DF 0.25 0.68 0.57
MLP-DF 0.19 0.65 0.50
Word2vec-ISS 0.20 0.65 0.53
LSTM-ISS 0.21 0.67 0.54
Patient2Vec - 0.68 0.55
ZiMM ED (best model) 0.306 0.701 0.619

Table 2: Predictive performances (on test data) of benchmark models and ZiMM ED architecture. ZIMM ED
appears to perform the best among all models both for multi-output and binary prediction. mean-AP stands for
average of the area under the precision-recall curve (AUC-PR) over buckets b = 1, . . . , B.
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LRl2-SF GBDT-SF MLP-SF LRl2-DF GBDT-DF MLP-DF Word2vec-ISS LSTM-ISS
0.0 5.32e-07 0.0 0.0 3.65e-13 0.0 0.0 0.0

Table 3: p-values of pairwise Mann-Whitney U statistical tests for the null assumptions that the mean-AP scores of
ZiMM ED and each baseline are equal. All tests strongly reject this hypothesis. Note that zero p-values correspond
to situations where the mean-AP score of the baseline was much smaller than the one of ZiMM ED for each
boostrap sample.

Additionally, following suggestions in [49, 6], we also report, in Figure 8 below, boxplots for the

mean-AP score computed on 1000 bootstraped samples based on the test set, together with, in Table 3,

the p-values of pairwise Mann-Whitney U statistical tests for the null assumption that the mean-AP score

of ZiMM ED and each baseline are equal. We observe, both in Figure 8 and Table 3, that ZiMM ED

significantly improve the mean-AP scores of all the considered baselines: all the tests strongly reject the

null hypothesis (the largest p-value is < 10−6) and the boxplot of ZiMM ED exhibits a distribution which

is significantly shifted towards higher mean-AP scores.
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LRl2-DF

GBDT-DF
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Word2vec-ISS
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ZiMM ED

Figure 8: Boxplots of the mean-AP scores computed on 1000 bootstraped samples based on the test set of all
baseline models and ZiMM ED. The boxplot of ZiMM ED exhibits a distribution which is significantly shifted
towards higher mean-AP scores.

3.7 Ablation study: performances of our model and variations around it

The performance reported in Table 2 for the ZiMM ED architecture relies on a careful tuning of sev-

eral hyper-parameters. This corresponds to the so-called ZiMM ED default architecture, where the

hyperparameters used are described in Table 4 below.

The hyper-parameters described in Table 4 have been selected using an extensive random search

for the best mean-AP metric on the validation set. In Figure 9 below, we illustrate the value of this

metric (y-axis) for some models that were evaluated during the random search. Each point corresponds

to a single model with fixed hyper-parameters, and the set of models is the same on all four displays

of Figure 9. In each of these displays we “align” all the models that share a specific hyper-parameter,

namely, respectively from left to right: the number of heads used in the self-attention layer, the number of

hidden units used in the recurrent layer of the ZiMM Encoder, the number of stacked recurrent layers

in ZiMM Encoder and finally the number of hidden units used in the ZiMM Decoder. The red point on
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Hyper-parameter Value

D
at

a
pr

ep
ro

ce
ss

in
g Maximum #days observed in patients’ sequence before T i 50

Maximum #medical events within the same day 24
Vocabulary size for medications coded with ATC 1036
Vocabulary size for diagnoses coded with ICD-10 1391
Vocabulary size for medical procedures coded with CCAM 1146

E
m

be
dd

in
g

of
m

ed
ic

al
co

de
s

an
d

tim
e

Embedding dimension of medical codes 64
L2 penalization rate for medical codes embedding 0.005
Gaussian dropout rate 0.3
Embedding dimension for time horizon and hospitalization duration 4
L2 penalization rate for time embedding 0.01
Batch normalization epsilon 1e-06

E
m

be
dd

in
gs

ag
gr

eg
at

io
n

Aggregation mode self-attention
Number of heads 3
Weight drop-connect rate 0.3
Dropout rate 0.2
L2 penalization rate 0.01

Z
iM

M
E

nc
od

er

Recurrent layer type LSTM
#hidden units per layer 64
#layers 1
Dropout rate 0.3
Recurrent dropout rate 0.2

Z
iM

M
D

ec
od

er

Recurrent layer type GRU
#hidden units per layer 32
#RNN layers used in parallel for each value ni = b 1
#common RNN layers 1
Gaussian dropout rate 0.3
Recurrent dropout rate 0.2

Tr
ai

ni
ng Optimizer type Nadam

Learning rate 0.001
Batch size 256

Table 4: ZiMM-ED default parameters.

all four Figures corresponds to the best model overall, that leads to the ZiMM ED default architecture

described in Table 4. Finally, note that the random search included many other hyper-parameters, such

as several learning-rate scheduling strategies, dropout rates, types of dropout regularization including

input, output, embedding, cell-state and multiplicative Gaussian, that we do not report for the sake of

conciseness.

The remaining of this section proposes an ablation study: we modify some hyper-parameters or

change some components of ZiMM ED default, and report the impacts on performances in Table 5 below,

where the first line reports the performances of ZiMM ED default. A discussion around these ablations is

given below.
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Figure 9: Validation mean-AP (y-axis) of some models evaluated during random search, where each point
corresponds to a single model. The set of models is the same on all four displays and the best one (ZiMM ED
default) is indicated by a red point. Each display aligns all the models that share a specific hyper-parameter, being,
respectively from left to right, the number of heads used in the self-attention layer, the number of hidden units used
in the recurrent layer of the ZiMM Encoder, the number of stacked recurrent layers in ZiMM Encoder and finally
the number of hidden units used in the ZiMM Decoder.

Data preprocessing. The first part (PP) of Table 5 shows results obtained with variations of the

maximum sequence lengths and the classification system used for drugs encoding. The ZiMM ED default

uses ATC encoding instead of the raw CIP-13 encoding, which allows to reduce the vocabulary size

from 10 664 for CIP-13 to 1 105 for ATC. As observed in Table 5, using CIP-13 (which is a much

larger vocabulary for drugs) instead of ATC actually hurts strongly the performances. We observe also

that considering longer sequences (100 days) instead of what we do in ZiMM ED default (50 days)

deteriorates the performances as well.

Embedding of medical codes and time. Variations around the way embeddings are produced for

medical codes and time are reported in the second part (Embedding) of Table 5. We observe that

increasing the embedding dimensions does not offer performance increase (using Edim = 128 instead of

the default Edim = 64), as well as using the same embedding space for all medical codes. In the ZiMM

ED default model, tokenized durations and distance to T i (see Section 2.3 above) are embedded with

trainable embedding vectors. We observe in Table 5 that without these time embeddings, the model

performance deteriorates. Also, we find that using trigonometric functions for “positional encoding” as
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proposed in [68] instead of learned embeddings does not help in our setting.

Embeddings aggregation. Results obtained through different embeddings aggregation techniques are

presented in the third part (Aggregation) of Table 5. We applied penalization and dropout on attention

weights as proposed in [42], as well as DropConnect [69] for regularizing weights in large fully-connected

layers. As explained in [68], multi-head attention allows the model to jointly attend information from

different representation subspaces at different positions, however in our setting, increasing SA Nheads

(self-attention number of heads) in the self-attention layer does not clearly improve the performance. We

tested Nheads = 8, as reported in [45], but the best performance in our case was achieved with Nheads = 3.

ZiMM Encoder. We report in the fourth part (Encoder) of Table 5 the results of extensive experiments

performed in order to identify the best combination of hyper-parameters for both recurrent and convolu-

tional layers (CNN): number of hidden units, types of recurrent layers and different dropout rates used

in the recurrent layers. Only the best results for each type of layer are reported in Table 5. We observe

that GRU layers perform generally as well as LSTM layers. Increasing the number of hidden units in

recurrent layers to Nunits = 128 instead of the default choice Nunits = 64 does not significantly improve

performance, as well as using two stacked LSTM layers Nlayers = 2 instead of the default Nlayers = 1.

We observed also that in our setting, CNN layers badly under-perform compared to the other types of

layers. Finally, we tested “Multi-head transformer” which corresponds to the transformer encoder [68]

which takes as input all patient sequence of events. Clinical codes are embedded in the same way as for

ZiMM model, which is then passed to the encoder block with a 4-head self-attention mechanism through

the entire patient sequence.

ZiMM Decoder. Finally, we consider some variations around the ZiMM Decoder, and report the results

in the fifth part (Decoder) of Table 5. While the ZiMM Decoder described in Section 2.4 uses a single

feed-forward layer to predict the mixture probabilities, a GRU layer to learn hidden states and GRU

layers to predict the parameters of each multinomial distributions, one could use instead fully-connected

layers to predict all the parameters of the ZiMM distribution, or alternatively simple RNN layers or

LSTM layers. The fully-connected layers deteriorates the most the performance, while replacing the

GRU layers by RNN or LSTM layers only deteriorates it mildly. We also report the performance obtained

with two stacked GRU Nlayers = 2 instead of the default one Nlayers = 1 to produce the hidden states (see

Equation (7)) and with a smaller hidden size Nunits = 18 instead of Nunits = 32.

3.8 Visualization of the embeddings produced for diagnoses and drugs codes

We explore the embeddings produced for diagnoses and drugs as a by-product of the ZiMM ED architec-

ture (see Section 2.3 about the embeddings of medical codes). We use UMAP [50] in order to reduce

the dimension from 64 to 2. The resulted projections are shown in Figure 10. The UMAP algorithm

requires four hyper-parameters: the number of neighbors to consider when approximating the local

metric (n-neighbors), the desired separation between close points in the embedding space (min-dist),

the number of training epochs (n-epochs) and finally the projection dimension (d). We fixed d=2 and
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Architecture modification
# params val set test set
×105 mean-AP mean-AP AUC-ROC AUC-PR

ZiMM ED default 3.5 0.292 0.304 0.704 0.619
PP

* CIP-13 drugs encoding 7.1 0.279 0.286 0.690 0.604
100-days sequence 3.5 0.291 0.300 0.701 0.616

E
m

be
dd

in
g Common embedding space 13.9 0.292 0.298 0.698 0.613

Without ∆t embedding 3.5 0.293 0.300 0.702 0.617
Positional encoding 3.5 0.292 0.302 0.702 0.620
Edim = 128 7.4 0.291 0.300 0.701 0.615

A
gg

re
ga

tio
n

SA Nheads = 1 3.2 0.293 0.303 0.701 0.619
SA Nheads = 5 3.7 0.290 0.300 0.704 0.620
SA Nheads = 8 4.1 0.292 0.300 0.701 0.616
mean 3.1 0.287 0.297 0.696 0.612

En
co

de
r

Nunits = 128 4.6 0.293 0.301 0.701 0.618
Nlayers = 2 3.8 0.290 0.306 0.701 0.619
bi-LSTM 4.2 0.290 0.300 0.700 0.617
GRU 3.3 0.294 0.300 0.702 0.614
Conv1D 3.2 0.231 0.234 0.649 0.536
Multi-head transformer 6.2 0.279 0.287 0.694 0.607

D
ec

od
er

FC layer 3.3 0.290 0.300 0.691 0.617
LSTM 3.5 0.291 0.301 0.703 0.619
basic RNN 3.4 0.292 0.301 0.701 0.619
Nunits = 18 3.4 0.292 0.298 0.702 0.619
Nlayers = 2 3.5 0.288 0.297 0.699 0.615

Table 5: Performances of some variations around the ZiMM ED default architecture, for which all hyper-parameters
are given in Table 4 above. *PP stands for “preprocessing”. SA Nheads stands for number of self-attention heads;
bi-LSTM stands for bidirectional LSTM; mean-AP stands for average of the area under the precision-recall curve
(AUC-PR) over the buckets b = 1, . . . , B; AUC-ROC stands for area rnder the Receiver operating characteristics
curve.

n-epochs = 500. ICD10 disease codes are mapped in PheWAS phenotypes [29] and drugs codes are

mapped to the first level of the ATC classification (main anatomical group consisting of a single letter),

leading to the color scheme used in Figure 10.

On the left-hand side of Figure 10, we can observe the UMAP projections of the embedding vectors of

each ICD10 code, colored by the corresponding PheWAS phenotype. The hyper-parameters used here for

UMAP are n-neighbors=20 and min-dist=0.1. Many points share the same color since many

ICD10 codes have the same PheWAS. We observe here that diagnoses that are known to co-occur and

belong to the same clinical groups are projected close to each other. The red-orange-highlighted points

are the phenotypes the most related to the urogenital system such as Hyperplasia of prostate, Retention of

urine, Benign neoplasm of male genital organs, and Cancer of prostate. We can also observe a visually

strong association of these phenotypes with Essential hypertension. This is confirmed by [51], where the

association of hypertension and symptoms of benign prostatic hyperplasia is well-studied and understood.

Other clinical concepts that are projected close to each other are Hearing loss and Chemotherapy, Urinary
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Figure 10: UMAP projections of the embeddings of medical codes. Left-hand side. Each point is the projection
of the embedding vector of an ICD code, colored with its corresponding PheWAS phenotypes. Note that many
points share the same color since many ICD10 codes have the same PheWAS. The legend provides only the most
common diagnoses. Right-hand side. UMAP projections of the drugs embeddings, colored by the first level of the
ATC classification (one letter).

tract infection and Hematuria (blue-highlighted points), which is also confirmed by [66, 41], where it is

shown that renal dialysis is associated with a higher risk of cancer.

On the right-hand side of Figure 10, we observe the UMAP projections of drugs embeddings, colored

by the first level of the ATC classification (first letter). The UMAP hyper-parameters used here are

n-neighbors=50 and min-dist=0.2. The dark blue points correspond to Various ATC class (V),

that mainly correspond to contrast agents for MRI. We observe that these points do not form any cluster

but are dispersed over the whole space. This can be explained by the fact that the considered cohort

contain only men with BPH (see Section 3.4), that often have an MRI of the prostate. Furthermore, we

observe that the drugs from the class Genito-urinary system and sex hormones (G), that include drugs for

urination problems, form one cluster with other age-related medications from the class Nervous system

(N), namely analgesics, anti-thrombotics, psycholeptics, psychotropic, and anti-parkinsonian drugs.

4 Conclusion and future works

In this work, we propose ZiMM Encoder Decoder (ZiMM ED), an end-to-end deep learning model

trained against the negative log-likelihood of the new ZiMM (Zero-inflated Mixture of Multinomial)

model, for the modeling of long-term and blurry relapses. This deep learning model is trained on a cohort

based on a large electronic health record database, that contains only claims and no clinical data, from the

whole French population.

We show that our model improves the performances of a large number of baselines, including the

state-of-the-art, for the considered predictive task. ZiMM ED allows to represent the full health pathways

of patients, using all available information, with minimal preprocessing. Therefore, this end-to-end

architecture can be used for other tasks as well, through transfer learning or fine tuning of the model.

Future works will consider a multi-task version of ZiMM ED (several types of relapses, or other types of

events), and other improvements using alternative architectures for attention modeling [37, 27, 38, 70].
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The considered dataset and the introduced methodology was developped for non-clinical claims data,

which is fundamentally different from clinical datasets. A future effort will be done with the aim of

adding a clinical and genomic data to th cohort. In this case a lot of additions analysis can be done ([12]).

This work addresses the problem of predicting the blurry relapses of the TURP surgery, which is

the first step towards an evidence-based approach using machine-learning to help the clinical decision.

The next step is to exploit these predictions to help to decide the timing of the surgery: given the current

health pathway of the patient, what is his probability of a relapse, so that it can help the clinician to decide

when to perform the surgery, or to consider alternative treatments.
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