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Inference with a contrast-based posterior distribution and

application in spatial statistics

S. Soubeyrand∗†, F. Carpentier∗, N. Desassis‡ and J. Chadœuf∗

May 14, 2009

Abstract. The likelihood function is often used for parameter estimation. Its

use, however, may cause difficulties in specific situations. In order to circumvent

these difficulties, we propose a parameter estimation method based on the re-

placement of the likelihood in the formula of the Bayesian posterior distribution

by a function which depends on a contrast measuring the discrepancy between

observed data and a parametric model. The properties of the contrast-based

(CB) posterior distribution are studied to understand what the consequences

of incorporating a contrast in the Bayes formula are. We show that the CB–

posterior distribution can be used to make frequentist inference and to assess

the asymptotic variance matrix of the estimator with limited analytical calcula-

tions compared to the classical contrast approach. Even if the primary focus of

this paper is on frequentist estimation, it is shown that for specific contrasts the

CB–posterior distribution can be used to make inference in the Bayesian way.

The method was used to estimate the parameters of a variogram (simulated

data), a Markovian model (simulated data) and a cylinder-based autosimilar

model describing soil roughness (real data). Even if the method is presented in

the spatial statistics perspective, it can be applied to non-spatial data.

∗INRA, UR546 Biostatistique et Processus Spatiaux, F-84914 Avignon, France
†Corresponding author: samuel.soubeyrand@avignon.inra.fr
‡Ecole Nationale Supérieure des Mines de Paris, Centre de Géosciences, F-77300
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1 Introduction

In both the frequentist and the Bayesian viewpoints, the likelihood function

has become the major component of statistical inference under a parametric

model. Its use, however, has drawbacks in specific situations. First, it may

be impossible to write down the likelihood in a numerically tractable form; see

the cases of Boolean models (Van Lieshout and Van Zwet, 2001), Markov point

processes (Møller, 2003), Markov spatial processes (Guyon, 1985) and spatial gen-

eralized linear mixed models (spatial GLMM; Diggle et al., 1998) where multiple

integrals cannot be reduced due to spatial dependences. Second, the likelihood

may not be completely appropriate because of the associated assumptions. For

instance, the likelihood is built under an assumption on the distribution of data,

but such an assumption may be tricky to specify in the case of insufficient infor-

mation as in classical geostatistics (Chilès and Delfiner, 1999); see also McCullagh

and Nelder (1989, chap. 9). In the same vein, every data are assumed to have

the same weights in the likelihood, but the influence of outliers may be too large

according to the analyst (Markatou, 2000).

The difficulties encountered with the likelihood can be circumvented with the

existing Bayesian and frequentist procedures.

• There are procedures which use conditional simulations to numerically ap-

proximate the likelihood. For instance, Markov chain Monte Carlo algo-

rithms (MCMC; Robert and Casella, 1999) allow the approximation of the

posterior distribution for Markov point processes (Møller, 2003) and spa-

tial GLMMs (Diggle et al., 1998); Markov chain expectation maximization

algorithms (MCEM; Wei and Tanner, 1990) allow the maximization of the

likelihood for Boolean models (Van Lieshout and Van Zwet, 2001) and spa-

tial GLMMs (Zhang, 2002).

• There are procedures where the likelihood function is simplified or replaced.

For example, the likelihood can be replaced by a pseudo-likelihood which

2



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in : Statistical Methodology, 2009, DOI: 10.1016/j.stamet.2009.03.003 
 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 
only takes account of local dependence structures, like in Møller (2003) for

Markov point processes and Besag (1975) and Guyon (1985) for Markov

spatial processes. The generalized least squares estimation, which does

not rely on assumptions on the distribution of data, is used in geostatis-

tics for the estimation of variogram parameters; see Chilès and Delfiner

(1999, chap. 2-3) and Stein (1999, chap. 1). Other examples of procedures

where the likelihood function was replaced are: the weighted likelihood

maximization (Markatou, 2000), the method of moments, the M-estimation

(Serfling, 2002), the approximate Bayesian computation (ABC; Beaumont

et al., 2002), the pseudo-posterior approach of Walker and Hjort (2001),

the quasi-likelihood maximization (McCullagh and Nelder, 1989) and the

quasi-Bayesian likelihood method (Lin, 2006).

In the pseudo-posterior approach of Walker and Hjort (2001), the likelihood is

replaced by its square-root in the posterior distribution. This has the consequence

of flattening the likelihood and leads to a robustifying posterior distribution. In

the quasi-Bayesian likelihood approach (Lin, 2006), the likelihood appearing in

the posterior distribution formula is replaced by a quasi-likelihood which does

not rely on distribution assumptions. Then, the posterior distribution which is

obtained is used to make inference as in classical Bayesian situations. In this

communication we propose to generalize these approaches: the likelihood in the

posterior distribution formula is replaced by a function of a contrast.

A contrast is a function of the model parameters and the observed data which

is minimized to estimate the parameters (Dacunha-Castelle and Duflo, 1982).

The minimum contrast approach is a generic estimation method which was de-

veloped in a frequentist perspective. The maximum likelihood estimation as well

as the maximum pseudo, weighted or quasi likelihood estimation, the diverse

least squares methods, the method of moments and the M-estimation can be

formulated as minimum contrast estimation problems.

The procedure which is proposed —replacing the likelihood by a function of

a contrast in the Bayesian formula— generalizes some of the existing approaches.

It indeed includes the classical Bayesian approach (here and thereafter “classical”

refers to “likelihood-based”), the pseudo-posterior approach of Walker and Hjort

3
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(2001) and the quasi-Bayesian approach of Lin (2006). This procedure provides a

contrast-based (CB) posterior distribution which does not coincide, in the general

case, with the classical posterior distribution. In this paper, we investigate what

are the posterior distribution and the MAP (maximum a posteriori) estimator

based on a contrast.

Under mild conditions on the prior distribution, we show that the CB–MAP

estimator inherits the asymptotic properties (consistency and asymptotic normal-

ity) of the minimum contrast estimator, as the classical MAP estimator inher-

its the asymptotic properties of the maximum likelihood estimator (Caillot and

Martin, 1972). The limit variance matrix of the normalized estimator is I−1
θ ΓθI

−1
θ

where Γθ is the limit variance of the gradient of the contrast and Iθ is the limit

Hessian matrix of the contrast.

Moreover, we show that the CB–posterior distribution is asymptotically equiv-

alent to a normal distribution whose variance matrix is I−1
θ . Therefore, when

building the contrast, particular attention must be paid to satisfy, if possible,

I−1
θ ΓθI

−1
θ = I−1

θ . Indeed, with such a contrast, inference can be made without

computing matrices Γθ and Iθ: the posterior distribution can either be used as

a limit distribution in a frequentist viewpoint or be used to make inference in

the Bayesian way. When building a contrast satisfying I−1
θ ΓθI

−1
θ = I−1

θ is not

possible, the CB–posterior distribution can nevertheless be used to estimate I−1
θ .

Thus, the computation of the limit Hessian matrix of the contrast is avoided.

The article is organized as follows. The method is presented in section 2, and

its properties are derived. Then, it is applied in sections 3 and 4 to simulated and

real cases in spatial statistics (estimation of the range parameter of a variogram;

estimation of the parameters of a Markovian spatial process; and estimation of

the parameters of a cylinder-based autosimilar model describing soil roughness).

The three cases illustrate the application of the method when the parameter has

one or several components and when I−1
θ ΓθI

−1
θ is equal to or different from I−1

θ .
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2 Incorporating a contrast in the Bayesian for-

mula

2.1 Minimum contrast estimation

Consider a family of parametric models {Pα : α ∈ Θ} and samples of increas-

ing sizes t ∈ T ⊂ N, drawn from the model Pθ with the true parameter θ. A

contrast for θ is a random function α 7→ Ut(α) defined over Θ, depending on

a sample of size t, and such that {Ut(α) : t ∈ T} converges in probability, as

t → ∞, to a function α 7→ K(α, θ) which has a strict minimum at α = θ. The

minimum contrast estimator is

θ̂t = argmin{Ut(α), α ∈ Θ}.

The maximum likelihood estimation, the maximum pseudo, weighted or quasi

likelihood estimation, the diverse least squares methods, the method of moments

and the M-estimation can be formulated as minimum contrast estimation prob-

lems. A detailed presentation of minimum contrast estimation can be found in

Dacunha-Castelle and Duflo (1982). Molchanov (1997) illustrates the use of min-

imum contrast estimation in spatial statistics.

2.2 Posterior distribution and MAP estimator based on

a contrast

Let (Xi)i≤t be a sample of size t with distribution Pα. Then, the posterior

distribution of α is

p(α | Xi, i ≤ t) =
Pα(Xi, i ≤ t)c(α)

∫

Θ
Pβ(Xi, i ≤ t)c(β)dβ

,

where Pα(Xi, i ≤ t) denotes the likelihood and c(·) is a prior distribution de-

fined over Θ. The contrast corresponding to the likelihood being U lik
t (α) =

−1
t
log Pα(Xi, i ≤ t) (Dacunha-Castelle and Duflo, 1982), the posterior distribu-

tion can be written by replacing Pα(Xi, i ≤ t) by exp(−tU lik
t (α)) in the previous

equation.

5
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Here, we propose to substitute the contrast associated with the likelihood in

the Bayesian formula with any contrast Ut(α). This leads to a contrast-based

(CB) posterior distribution denoted by pt(α):

pt(α) =
exp(−tUt(α))c(α)

∫

Θ
exp(−tUt(β))c(β)dβ

. (1)

The CB–MAP estimator obtained by maximizing pt(·) is denoted by

θ̃t = argmax{pt(α), α ∈ Θ}.

θ̃t is at the minimum of α 7→ Ut(α) − (1/t) log c(α) and, in general, does not

coincide with the classical minimum contrast estimator θ̂t = argmin{Ut(α), α ∈
Θ}.

Remark: The CB-posterior distribution proposed in equation (1) is one out of

several possible alternatives to the classical posterior distribution. Indeed, other

link functions, say g, could be used instead of the exponential function. The

link g should be an increasing function and should satisfy regularity conditions

in order to inherit the properties of the contrast. The use of the exponential

link has two major advantages: (i) the classical Bayesian approach is included

in the method which is proposed and (ii) the exponential link is particularly

convenient for mathematical derivations allowing us to determine the properties

of the CB–MAP estimator and the CB–posterior distribution. These properties

are investigated below.

2.3 Consistency and asymptotic normality of the CB–

MAP estimator

We noted above that the CB–MAP estimator θ̃t is at the minimum of α 7→
Ut(α)− (1/t) log c(α). This function satisfies the definition of a contrast. Conse-

quently, convergence properties of θ̃t can be easily obtained by using the contrast

theory (Dacunha-Castelle and Duflo, 1982). Assume that the hypotheses required

for the convergence of the classical minimum contrast estimator (see Appendix A)

are satisfied. Let us assume in addition that the prior distribution c(·) is proper,

differentiable and strictly positive over Θ. It follows that, as t → ∞,

6
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• θ̃t converges in probability to θ and

•
√

t(θ̃t − θ) converges in law to the Gaussian distribution N
(

0, I−1
θ ΓθI

−1
θ

)

,

where Iθ and Γθ are matrices satisfying:

HUt(θ) → Iθ in probability as t → ∞
√

tgradUt(θ) → N (0, Γθ) in law.

Remark 1: The convergence results given above can also be obtained by noting

that the asymptotic deviation between the classical minimum contrast estimator

θ̂t and the CB–MAP estimator θ̃t is of order 1/t. More exactly, it is shown in

Appendix B that

θ̃t − θ̂t =
1 + oproba(1)

tc(θ)
I−1
θ gradc(θ). (2)

Remark 2: It would be interesting to study not only the asymptotics of the

CB–posterior maximum but also the asymptotics of the CB–posterior mean and

median which are commonly used in classical Bayesian estimation.

2.4 Convergence of the CB–posterior distribution

The CB–posterior distribution pt(·) is asymptotically equivalent to the density

function of the Gaussian distribution N
(

θ̃t, (tIθ)
−1
)

(see Appendix C):

pt(α) ∼
t→∞

1

(2π)p/2|(tIθ)−1|1/2
exp

(

−1

2
(α − θ̃t)

′(tIθ)(α − θ̃t)

)

. (3)

This result allows us to figure out what the CB–posterior distribution is and how

it can be used to make inference in the frequentist and Bayesian ways.

In the contrast theory, the distribution N
(

θ̃t, (tIθ)
−1ΓθI

−1
θ

)

is used to make

frequentist inference about θ: the point estimator is θ̃t, and confidence zones

are provided based on the this normal distribution. Consequently, if the con-

trast is such that I−1
θ ΓθI

−1
θ = I−1

θ , then the CB–posterior distribution pt(·) which

approximates the density of N
(

θ̃t, (tIθ)
−1
)

can be directly used to make fre-

quentist inference about θ: the mode of pt(·) is the point estimator, and con-

fidence zones can be directly determined from pt(·). This case is particularly

7
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interesting since the calculation of the limit matrices Iθ = limt→∞ HUt(θ) and

Γθ = limt→∞ Vθ(
√

tgradUt(θ)) is no more required.

Moreover, when the contrast which is considered satisfies I−1
θ ΓθI

−1
θ = I−1

θ ,

we propose to use the CB–posterior distribution pt(·) to make inference in the

Bayesian way, i.e. to use pt(·) as a real posterior density. The motivation is based

on the following analogy: when the contrast corresponding to the likelihood is

employed (in this case, I−1
θ ΓθI

−1
θ = I−1

θ ), then pt(·) can be used (i) to make

frequentist inference since it is an approximation of the limit distribution of the

estimator (see above) and (ii) to make Bayesian inference since it is the classical

posterior density. It has to be noted that, in general, the CB–posterior density

pt(·) does not coincide with the classical posterior density. It is a posterior density

based on the information brought by the contrast under consideration.

If the contrast does not satisfy I−1
θ ΓθI

−1
θ = I−1

θ , then the CB–posterior dis-

tribution pt(·) cannot be used to approximate the limit distribution of θ̃t or to

make Bayesian inference. However, pt(·) can be used to estimate the matrix Iθ,

so avoiding the calculation of the second derivatives of the contrast. Indeed, one

can see from (3) that an estimate of Iθ is the matrix Ω−1/t where Ω is the vari-

ance matrix of the normal density function centered around θ̃t and fitted to pt(·)
(using a least square technique for example). If θ is real, Iθ can be more simply

estimated by 2πpt(θ̃t)
2/t since equation (3) yields pt(θ̃t) ∼

t→∞
(tIθ/2π)1/2. We have

not found an equivalent way to easily estimate Γθ without analytical calculation

of the second derivatives and without simulations.

3 Application in spatial statistics: simulated data

This section illustrates the properties of the CB–posterior distribution and

shows the possible discrepancy between this posterior and the limit distribution

of the CB-MAP.

3.1 Least-square estimation of a variogram range

This simulated case illustrates the application of the method for a real pa-

rameter. Here, the CB–posterior distribution cannot be directly used to make

8
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inference but can be used to estimate Iθ.

We built a data set by simulating a centered Gaussian random field whose

variogram at distance h is γθ(h) = 1 − exp(−θh) with θ = 1; θ is the inverse of

the range parameter. The field was simulated over a square grid {i = (i1, i2) :

0 ≤ i1, i2 ≤ n} with size t = n2 = 202 and inter-node distance one. Figure 1

(left) shows the simulated random field. The sample variogram γ̂(h) (Chilès and

Delfiner, 1999) was estimated for every possible inter-points distance h less than

the half diagonal of the grid; let H denote the set of these distances.

For the estimation of θ, we chose a uniform prior density over [0, 4] (horizontal

dotted line in Fig. 1, right) and we used the least-square contrast between the

sample variogram and the theoretical variogram

Un2(α) =
1

2

∑

h∈H

{γ̂(h) − γα(h)}2 . (4)

The CB–posterior density is shown in Figure 1 (right, dotted curve). The MAP

estimate is θ̃t = 1.34 (vertical line).

Estimation uncertainty was assessed by estimating the limit variance Γθ/(nIθ)
2

of θ̃t. The term Γθ = limt→∞ Vθ(
√

tgradUt(θ)) (here, t = n2) was estimated based

on Monte-Carlo simulations: 1000 Gaussian random fields were simulated under

θ̃t; for each simulation the sample variogram {γ̂(h) : h ∈ H} was computed, and

the first derivative of the contrast in θ̃t, i.e. −∑h∈H he−θ̃th{γ̂(h) − (1 − e−θ̃th)},
was calculated; the sample variance of the derivatives multiplied by n2 gave the

estimate 1.97 for Γθ.

The term Iθ = limt→∞ HUt(θ) was estimated in two ways: with the estimator

2πpt(θ̃t)
2/t as suggested in section 2.4 and with Monte-Carlo simulations. In

the former way, the estimate of Iθ is 0.20. The second way was carried out as

follows: for each of the 1000 simulated Gaussian fields mentioned above, the

second derivative of the contrast in θ̃t, i.e.
∑

h∈H h2e−θ̃th[e−θ̃th − {γ̂(h) − (1 −
e−θ̃th)}], was computed; then, the sample mean of these derivatives gave the

estimate 0.27 for Iθ.

Thus, the estimate of the limit variance Γθ/(nIθ)
2 of θ̃t is 0.07 when Iθ is

assessed by simulations and 0.12 when Iθ is computed from the CB–posterior

distribution. The density function of the limit distribution N (θ̃t, Γθ/(nIθ)
2) is

9
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drawn in Figure 1 (right). The continuous and dashed lines show this density

when the estimate of the limit variance is 0.07 and 0.12, respectively. The true

value θ = 1 belongs to the 95%-confidence interval whatever the estimate of the

limit variance is. We see how the two versions of the limit density are different

from the CB–posterior density.

To assess the efficiency of the method, the coverage rate of the 95%-confidence

interval was measured by applying the estimation procedure to 1000 simulated

fields. The coverage rate was 94.6% when the estimate of Iθ is based on Monte-

Carlo simulations and 94.7% when the estimate of Iθ comes from the contrast-

based posterior density.

0 5 10 15 20

5
10

15
20

 

 

0 1 2 3 4

0
1

2
3

θ

D
en

si
ty

Figure 1: Left: realization of a centered Gaussian random field with exponential

variogram parameterized with θ = 1, over a 20×20 square-grid. Right: prior

density (horizontal dotted line), contrast-based posterior density (dotted curve),

density function of the limit distribution N (θ̃t, Γθ/(nIθ)
2) (continuous and dashed

lines when the estimate of the limit variance is based on simulations and when it

is based on the posterior distribution), and MAP estimator (vertical line).
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3.2 Pseudo-likelihood estimation of a Markovian spatial

model

This simulated case illustrates the application of the method for a bivariate

parameter. Here, the CB–posterior distribution is different from the limit distri-

bution of the estimator; it cannot be directly used to make inference but can be

used for estimating Iθ.

We built a data set by simulating a spatial Markov field X with two states,

0 and 1. The model is defined by the conditional probability of Xi given Xj,

j ∈ V (i) (V (i) is the set of the four nearest neighbors of i) satisfying (Guyon,

1985)

Pθ(Xi | Xj , j 6= i) =Pθ(Xi | Xj , j ∈ V (i))

=
exp

(

θ1Xi + θ2

∑

j∈V (i) XiXj

)

{

1 + exp
(

θ1 + θ2

∑

j∈V (i) Xj

)} .

The field was simulated on a n×n square grid I (here, t = n2 = 202); see Figure 2

(left).

The classical likelihood cannot be analytically calculated for this model. There-

fore, a pseudo-likelihood was proposed to make inference (Guyon, 1985). The

pseudo-likelihood is the product of the conditional probabilities
∏

i∈I Pθ(Xi |
Xj , j 6= i). To estimate θ1 and θ2, we applied the estimation method proposed

in this article by using a uniform prior density over [−1.5, 1.5]2 and the contrast

corresponding to the pseudo-likelihood:

Un2(α) = − 1

n2

∑

i∈I

log Pα(Xi | Xj , j ∈ V (i)). (5)

The CB–posterior density is shown in Figure 2 (center). The MAP estimate is

θ̃t = (−0.21, 0.38).

To give the limit distribution N (θ̃t, I
−1
θ ΓθI

−1
θ /n2) of the estimator, matrices

Γθ and Iθ must be estimated. We computed the gradient and the Hessian of the

contrast for N = 1000 Markov fields simulated under θ̃t, and we used the sample

variance of the gradients for estimating Γθ and the sample mean of the Hessians

11
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for estimating Iθ; see Appendix D. The estimate of the limit variance matrix

I−1
θ ΓθI

−1
θ /n2 was finally

(

0.14 −0.055

−0.055 0.022

)

.

Almost the same limit variance matrix was obtained when Iθ was estimated by

fitting a normal density to the CB–posterior density as suggested in section 2.4.

Figure 2 (right) shows the limit density function of the estimator together with

the 95%-confidence zone. We can see that the true parameter belongs to this

zone. Moreover, Figure 2 shows the limit density is quite close from the posterior

density. The pseudo-likelihood which takes account of short-distance interactions

certainly brings almost the same information than the likelihood brings. It has

however to be noted that this would not be the case if long-distance interactions

had been introduced in the spatial Markov model.

0 5 10 15 20

5
10

15
20

−1.5 −0.5 0.5 1.5−
1.

5
−

0.
5

0.
5
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5
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θ 2

−1.5 −0.5 0.5 1.5−
1.

5
−

0.
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0.
5
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5
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Figure 2: Left: realization of a Markovian spatial process with two states over

a 20×20 grid. Center: contrast-based posterior density. Right: limit density

N (θ̃t, I
−1
θ ΓθI

−1
θ /n2). On the center and right panels, the MAP estimate and the

true parameter are drawn with a black dot and a circle, respectively. On the right

panel, the continuous line circumscribes the 95%-confidence zone.

4 Application in spatial statistics: real data

This section presents a case where the CB–posterior distribution can be di-

rectly used to make inference in the frequentist and Bayesian ways (the estimation

12
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of the limit matrices Iθ and Γθ being not required). The method is applied to a

real data set dealing with soil roughness.

4.1 Cylinder-based autosimilar model

Soil roughness plays an important role in rain water absorption, pond and

streaming. It also modifies reflectance properties of soils used to estimate soil

moisture with remote detection for example. An experiment was carried out to

measure soil roughness at a small scale. Soil heights were measured every 2mm

along 1.18m-transects in a cultivated field (Bertuzzi et al., 1995). Figure 3 (top)

shows the distributions of heights for two among twelve sampled transects. The

mean height computed from the 12 transects is 7.6mm, the maximum is 22.9mm.

Object based models (Lantuéjoul, 2002, chap. 14) have been used to describe

soil surface (Bertuzzi et al., 1995; Goulard and Chadœuf, 1994). Here, we use a

cylinder-based autosimilar models defined as follows. For any x ∈ R
2 and r > 0,

let f(x, r) = r1{||x||<r} be the function describing the cylinder which is centered

in x and whose radius and height are equal to r (1{·} is the indicator function). In

addition, let (X, R) be a marked Poisson point process defined over R2×R
∗
+ with

intensity function µ(x, r) = α exp {−βr}. The random surface Y representing the

soil surface is defined by

YM =
∑

(x,r)∈(X,R)

f(x − M, r).

4.2 Parameter estimation using moments

For such a process, it is difficult to calculate the joint distribution of the

heights whereas the moments can easily be written. We propose to estimate

the bivariate parameter vector θ = (α, β) using the first two moments: µ̂A =

( 1
ν(A)

∫

A
YMdM, 1

ν(A)

∫

A
Y 2

MdM), where A is the set of the sampled transects and

ν(A) is its measure.

If border effects are neglected, the expected value of µ̂A is

E(µ̂A) =

(

6π
α

β4
, 36π2α2

β8
+ 24π

α

β5

)

.
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Moreover, the variance matrix of µ̂A satisfies

ν(A)var(µ̂A) → V,

where the components of V are

V11 = 5!
16

3

α

β6

V12 = 6!
16

3

α

β7
+ (5!)64π

α2

β10

V22 = 7!
16

3

α

β8
+ {(6!)128π + (10!)32κ} α2

β11
+ (3!)(5!)128π2 α3

β14
,

with κ =
∫ 1

0

∫ 1

0
(arccos(u) − u

√
1 − u2)(arccos(v) − v

√
1 − v2) (uv)5

(u+v)11
dudv.

The estimation method is applied by using a uniform prior over [1,100]×[1,5]

and a contrast based on the weighted least squares of the first two moments:

UA(θ) = (µ̂A − E(µ̂A))′V −1(µ̂A − E(µ̂A))/2.

For this contrast, the matrices Iθ and Γθ are equal and their component (i, j) is

∂E(µ̂A)′

∂θi

V −1∂E(µ̂A)

∂θj

.

Consequently, I−1
θ ΓθI

−1
θ = I−1

θ and the CB–posterior density can be used as an

approximation of the limit density of the MAP estimator θ̃A or as a posterior

distribution of the parameter θ (see section 2.4). Figure 3 (bottom) shows the

joint CB–posterior distribution and the marginals. The MAP estimate of θ is

θ̃A = (46.6, 3.28). Marginal 95%-confidence intervals of α and β are [36.1,58.5]

and [3.07,3.48], respectively.

5 Discussion

5.1 Summary

We have proposed an estimation method exploiting a contrast-based posterior

distribution (CBPD). This method includes the classical likelihood-based proce-

dures (MLE and Bayesian estimation), but has been mainly developed to cir-

cumvent difficulties encountered with the likelihood by generalizing the Bayesian

14



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in : Statistical Methodology, 2009, DOI: 10.1016/j.stamet.2009.03.003 
 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

0 200 400 600 800 1000 1200

0
5

10
15

20

Length (mm)

H
ei

gh
t (

m
m

)

35 40 45 50 55 603.
0

3.
1

3.
2

3.
3

3.
4

3.
5

α

β

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

α

D
en

si
ty

1 2 3 4 5

0
1

2
3

4
5

β

D
en

si
ty

Figure 3: Top: distribution of heights for two transects. Bottom left: contrast-

based posterior density for (α, β); the MAP estimate is at the black dot. Bottom

center and right: contrast-based posterior marginal densities for α et β (contin-

uous lines) and prior marginal densities (dashed lines).

formula of the posterior distribution, so extending the proposal of Lin (2006).

The CBPD can be used to make frequentist inference and, in specific situations,

Bayesian inference. In case of frequentist inference, the use of the CBPD allows

the reduction of analytical calculations usually required to compute the limit

variance matrix of the estimator. In this article, the method has been applied

to spatial data sets, but can be applied to other cases where likelihood-based

procedures are not appropriate.
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5.2 Frequentist and Bayesian inference

In the frequentist viewpoint, the CBPD can be used to provide a point es-

timator (the posterior mode) and the limit distribution of this estimator. The

limit distribution is directly approximated by the CBPD if the variance of the

gradient vector of the contrast is equal to the inverse of the limit Hessian matrix

of the contrast (i.e. I−1
θ ΓθI

−1
θ = I−1

θ ; see the third application). In this case, it is

not required to calculate and estimate the variance matrix of the estimator. In

other cases, the limit distribution is not directly available, but the Hessian ma-

trix of the contrast can be easily estimated from the CBPD and, consequently,

the calculation of the second derivatives of the contrast is avoided (see the first

two applications). It has to be noted that using Bayesian calculation to make

frequentist estimation has been proposed in the literature (Robert and Hwang,

1996; Robert and Titterington, 1998; Jacquier et al., 2007), but the proposals

were restricted to maximum likelihood estimation.

In the Bayesian viewpoint, the CBPD can be used as a classical posterior dis-

tribution when I−1
θ ΓθI

−1
θ = I−1

θ , as in the third application. However, the CBPD

does not coincide with the classical posterior distribution: It has to be viewed as

a posterior distribution based on the information brought by the contrast which

is used.

Regarding the reconciliation of the frequentist and the Bayesian approaches,

it has to be noted that the Bernstein–Von Mises (BVM) theorem, translated to

our context, does not hold in general. The classical BVM theorem asserts that,

under specific conditions, the posterior distribution converges to a Gaussian dis-

tribution with variance matrix equal to the asymptotic variance of the maximum

likelihood estimator (Freedman, 1999). In this paper we saw that the CBPD is

asymptotically equivalent to a Gaussian distribution with variance matrix I−1
θ

whereas the asymptotic variance matrix of the minimum contrast estimator is

I−1
θ ΓθI

−1
θ .
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5.3 Limits of the approach and perspectives

Even if the proposed procedure has advantages, it also faces two classical

limits: the choice of the prior distribution (or the penalization function in the

frequentist viewpoint) which can influence the posterior inference, and the choice

of the contrast. Regarding the former limit, we refer to Clarke and Gustafson

(1998) and Rootzén and Olsson (2006) for example. Regarding the choice of the

contrast, two comments arise.

The first comment concerns the possibility to build a contrast such that

I−1
θ ΓθI

−1
θ = I−1

θ (case where our method has favorable properties). Necessary and

sufficient conditions for obtaining this equation are not known to us. However,

sufficient conditions can be given. For example, using a coding technique (Besag,

1975) based on conditional independence between sets of data is a sufficient con-

dition. We could have applied such a technique instead of the pseudo-likelihood

method for the estimation of the parameters of the Markovian spatial model (sec-

ond simulated case-study). But, the use of the coding method would have induced

a loss of information (Guyon, 1985). It is also possible to obtain I−1
θ ΓθI

−1
θ = I−1

θ

for specific models by rescaling the contrast with a variance matrix. We applied

this approach in the real case-study because we could provide the analytical form

for the variance matrix of the sample moments. To apply the same approach for

the estimation of the range parameter of a variogram (first case-study), we should

have modeled the variance of the sample variogram. However, such a practice is

not common in geostatistics when the field is not assumed to be Gaussian (and

it may be cumbersome). It has to be noted that if an approximate likelihood is

used and its discrepancy from the true likelihood can be analytically quantified,

it may be possible to assess the discrepancy between I−1
θ ΓθI

−1
θ and I−1

θ , and to

correct the CBPD accordingly.

Our second comment concerns the information brought by contrasts. We see

that in the real case-study the two estimators are strongly correlated. We could

have tried to use another contrast to avoid correlation. For example, together

with the sample mean, we could have used the covariance at a given distance in-

stead of the variance to get two moments which are less correlated. However, the

calculation of the expected value and the variance-covariance of these moments

17
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is much more tricky. Thus, to be able to derive analytical expressions and apply

the method as it is presented, the choice of the contrast is limited. Neverthe-

less, simulations could be used to circumvent this difficulty. This could be an

interesting extension of the estimation method proposed in this paper.
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A Hypotheses for minimum contrast estimation

H1 : Θ ⊂ R
p, p < ∞, is compact and θ is in the interior of Θ,

H2 : α 7→ K(α, θ) has a strict minimum at θ,

H3 : α 7→ Ut(α) is C2 (it has two continuous derivatives) over Θ,

H4 : the normalized gradient vector
√

tgradUt(θ) (first derivatives of Ut(θ) with

respect to θ) converges in law to the normal distribution N (0, Γθ):

√
tgradUt(θ) → N (0, Γθ) in law as t → ∞,
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H5 : the Hessian matrix HUt(θ) (second derivatives of Ut(θ) with respect to θ)

converges in probability to an invertible matrix Iθ:

HUt(θ) → Iθ in probability as t → ∞,

H6 : sup
||β||<ǫ

|HklUt(θ + β) − HklUt(θ)| → 0 in probability, where ǫ > 0 and Hkl is

the component (k, l), 1 ≤ k, l ≤ p, of the Hessian operator.

Under these assumptions, the minimum contrast estimator is consistent and

asymptotically normal (Dacunha-Castelle and Duflo, 1982): as t → ∞,

• θ̂t converges in probability to θ and

•
√

t(θ̂t − θ) converges in law to the Gaussian distribution N
(

0, I−1
θ ΓθI

−1
θ

)

.

B Proof of equation (2)

Since θ̃t satisfies gradpt(θ̃t) = 0,

0 = −tc(θ̃t)gradUt(θ̃t) + gradc(θ̃t).

Then, applying a first order Taylor’s expansion for gradUt(θ̃t) around θ̂t yields

0 = −tc(θ̃t){gradUt(θ̂t) + (HUt(θ̂t))(θ̃t − θ̂t)}(1 + oproba(1)) + gradc(θ̃t).

In this equation, gradUt(θ̂t) = 0 because θ̂t is the maximizer of Ut(·). Moreover,

applying zero order Taylor’s expansions for c(θ̃t), HUt(θ̂t) and gradc(θ̃t) around

θ yields

0 = − tc(θ)(HUt(θ))(θ̃t − θ̂t)(1 + oproba(1)) + gradc(θ)

= − tc(θ)Iθ(θ̃t − θ̂t)(1 + oproba(1)) + gradc(θ),

since limt→∞HUt(θ) = Iθ in probability. Then equation (2) follows.
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C Proof of equation (3)

Let δ > 0. For any a such that sup1≤i≤p |ai| < tδ, a third order Taylor’s

expansion yields

log pt(θ̃t + a/
√

t) − log pt(θ̃t) = −
√

ta′gradUt(θ̃t) −
1

2
a′Iθa + oproba(t

2δ + t3δ−1/2).

Given that gradUt(θ̂t) = 0 (definition of the classical minimum contrast estimator

θ̂t) and that θ̃t − θ̂t = oproba(t
−1+δ)1p where 1p is the unit vector of size p, the

dimension of Θ (see eq. (2)), the previous equation becomes

log pt(θ̃t + a/
√

t) − log pt(θ̃t) = −1

2
a′Iθa + oproba(t

2δ + t3δ−1/2).

Ensuring that δ < 1/2 (and not only δ > 0), then

log pt(θ̃t + a/
√

t) − log pt(θ̃t) = −1

2
a′Iθa + oproba(t

2δ)

= −1

2
a′Iθa {1 + oproba(1)}.

Let us introduce gt : a 7→ t−p/2pt(θ̃t + a/
√

t) defined over R
p. This density

function satisfies, from the previous result,

gt(a) ∼
t→∞

t−p/2pt(θ̃t) exp

(

−1

2
a′Iθa

)

.

Since gt(·) is a density function and given the form of the right-hand-side term of

this equation, gt(·) is equivalent to the density function of the normal law with

variance matrix I−1
θ . Equation (3) is then obtained with the change of variable

α = θ̃t + a/
√

t.

D Spatial Markovian model: Limit matrices

Iθ and Γθ satisfy Iθ = var(Z0) and Γθ = M0 + 4
∑

0≤i1,i2≤2 Mi where Mi =

cov(Z0, Zi), i ∈ I, and

Zi =



Xi −
exp

(

θ1 + θ2

∑

j∈V (i) Xj

)

1 + exp
(

θ1 + θ2

∑

j∈V (i) Xj

)





(

1
∑

j∈V (i) Xj

)

.
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