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Carbon dioxide emissions impose a social cost on economies, owing to the damages they will cause in the future. In particular, emissions increase global temperature that may reach tipping points in the climate or economic system, triggering large economic shocks.

Tipping points are uncertain by nature, they induce higher expected damages but also dispersion of possible damages, that is risk. Both dimensions increase the Social Cost of Carbon (SCC). However, the respective contributions of higher expected damages and risk have not been disentangled. We develop a simple method to compare how much expected damages explain the SCC, compared to the risk induced by a stochastic tipping point. We nd that expected damages account for more than 90% of the SCC with productivity shocks lower than 10%, the high end of the range of damages commonly assumed in Integrated Assessment Models. It takes both high productivity shock and high risk aversion for risk to have a signicant eect. Our results also shed light on the observation that risk aversion plays a modest role in determining the SCC (the risk aversion puzzle): they suggest that too low levels of damages considered in previous studies could be responsible for the low inuence of risk aversion.

Introduction

There is a consensus that climate change will induce damages in the future, although the range of possible levels for these damages is uncertain. Some consider climate change to be worrysome because damages will be high, others because there is a small chance they could be catastrophic. In the former case, optimal climate policy arises from a simple intertemporal cost-benet analysis, while in the latter case, emissions reductions result from a precautionary approach as an insurance against the risk of disastrous impacts.

This tension between two potential sources for the harmfulness of climate change can be found in the categorization of the Reasons for Concerns (RFC) by the Intergovernmental Panel on Climate Change. How much do Aggregate impacts (RFC 4) play a role, compared to the Risk of large-scale singular events (RFC 5), such as the breakdown of the thermohaline circulation? The latest assessment of the severity of each Reason for Concern [START_REF] O'neill | IPCC reasons for concern regarding climate change risks[END_REF] shows that additional risk due to climate change jumps from moderate to high around the same temperature for both of these Reasons for Concern, suggesting that they contribute by the same magnitude to making climate change worrisome.

However, the balance between both Concerns is not a done deal among climate economists. For instance, [START_REF] Pindyck | The climate policy dilemma[END_REF] and [START_REF] Weitzman | On modeling and interpreting the economics of catastrophic climate change[END_REF] argue that catastrophic outcomes should be the primary driver of climate mitigation. [START_REF] Broome | The most important thing about climate change[END_REF], wondering whether the most important thing about climate change is the harm it is likely to cause or alternatively the utter catastrophe that it may possibly though very improbably cause, gave an opposing view. On the one hand, previous literature emphasizes the impact of the level of expected damages on optimal emissions [START_REF] Weitzman | GHG targets as insurance against catastrophic climate damages[END_REF][START_REF] Pizer | Climate change catastrophes. Resources for the Future[END_REF][START_REF] Dumas | An abrupt stochastic damage function to analyze climate policy benets[END_REF][START_REF] Ackerman | Climate risks and carbon prices: Revising the social cost of carbon[END_REF][START_REF] Wouter Botzen | How sensitive is Nordhaus to Weitzman? Climate policy in DICE with an alternative damage function[END_REF], with some arguing that damage estimates should be revised upward [START_REF] Dietz | Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions[END_REF][START_REF] Weitzman | GHG targets as insurance against catastrophic climate damages[END_REF]. Indeed, estimates of climate damages are subject to numerous uncertainties and limitations (see [START_REF] Diaz | Quantifying the economic risks of climate change[END_REF] for a recent review). On the other hand, other authors put forward this uncertainty as a reason to dismiss the use of deterministic damage functions to represent the impacts of climate change [START_REF] Pindyck | The climate policy dilemma[END_REF]. Thus, damage functions have been criticized both for the diculty to determine the best-guess expected damages, and that to model the risk of catastrophic outcomes. This question of level versus risk is particularly salient in the case of non-marginal or abrupt changes referred to as tipping points [START_REF] Lenton | Tipping elements in the Earth's climate system[END_REF][START_REF] Alley | Abrupt climate change[END_REF][START_REF] Steen | Trajectories of the Earth System in the Anthropocene[END_REF]. Examples of such phenomena include the shutdown of thermohaline circulation, the melting of the Arctic sea-ice or the die back of the Amazonian rainforest, but it could also come from the limited ability of social and economic systems to cope with climate conditions beyond some threshold. Tipping points have mostly been modeled in a stochastic framework [START_REF] Mastrandrea | Integrated assessment of abrupt climatic changes[END_REF][START_REF] Keller | Uncertain climate thresholds and optimal economic growth[END_REF][START_REF] Lemoine | Playing the climate dominoes: Tipping points and the cost of delaying policy[END_REF][START_REF] Lontzek | Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy[END_REF]. Studies found that introducing a tipping point has a signicant eect on optimal policy. Because they compare cases with and without tipping points, these studies report the full eect of tipping points. But this eect is composed of both an increase in expected damages and the risk induced by their stochastic nature. When integrating tipping points into a model, authors have not separated changes due to higher level of expected damages from those coming from the dispersion of damages, that is the risk introduced by the tipping point.

We propose to disentangle whether tipping points matter from a level or risk perspective. We will use the Social Cost of Carbonthe present social value of damage from an additional ton of CO 2 released in the atmosphereas the output on which the inuence of the tipping point will be evaluated. The relative importance of the level vs. risk eect also informs us on the modeling apt to compute the SCC in the presence of a tipping point. If tipping points have mostly a level eect, it means that a deterministic model using expected damages is a good proxy for calculations of the SCC. This was the intuition of [START_REF] Nordhaus | Managing the global commons: the economics of climate change[END_REF] when, in his initial calibration of the DICE model, he increased the mean damage estimates by 30% as a way to account for risk of catastrophic outcomes. If the risk eect is substantial, it means that a full-edged stochastic modelling is necessary.

Since the damage function is the least-grounded aspect of Integrated Assessment Models, and it has a strong impact on the SCC, it is essential to build rigorous methodologies that compare how dierent representations of damages aect the SCC [START_REF] Pottier | The comparative impact of integrated assessment models' structures on optimal mitigation policies[END_REF][START_REF] Guivarch | Climate Damage on Production or on Growth: What Impact on the Social Cost of Carbon?[END_REF]. Disentangling the risk vs. level eet of tipping points helps to compare two representations, either a change of the expected damage function, or explicit modelling.

In this article, we analyze the respective contribution of level (expected damages) and risk in the case of a stochastic tipping point triggering a productivity shock. We use an Integrated Assessment Model to calculate the SCC under two settings: one with a stochastic tipping point, and one with a deterministic damage function, tailored to capture the supplementary expected damages due to the tipping point. That way, we are able to highlight how much expected damages drive the SCC, and under which conditions deterministic approaches lead to underestimate the SCC. We analyze the inuence of preferences of the decision maker (i.e. risk aversion, elasticity of marginal utility) and the size of the shock triggered by the tipping point on our results.

We nd that explicit modeling of the tipping point and the approach relying on expected damages lead to similar values for the SCC, suggesting that expected damages explain most of the value for the SCC. This results holds as long as we stay within the range of productivity shocks usually considered in the literature. However, under both high productivity shocks and high risk aversion, precaution to avoid the tipping point drives abatement, so that using a deterministic method underestimates the SCC, and becomes ill-suited to compute its value.

Our ndings oer a possible explanation for the so-called risk aversion puzzle. Previous literature found that risk aversion played a modest role in IAMs like DICE, even when using Epstein-Zin preferences [START_REF] Ackerman | EpsteinZin utility in DICE: Is risk aversion irrelevant to climate policy?[END_REF], and in the case of nonlinear threshold [START_REF] Belaia | Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion[END_REF]. Our results suggest that too low levels of damages considered in these studies could be responsible for the low inuence of risk aversion.

We begin by laying out the model and methodology we use to model catastrophes and build a deterministic equivalent (section 2). Results using dierent welfare specications are discussed in section 3. Section 4 concludes.

Methodology

We use a simple Integrated Assessment Model to calculate the Social Cost of Carbon. We present in section 2.1 the climate-economy interactions and in section 2.2 the two social preferences. We then explain our methodology to assess how expected damages and risk contribute to the SCC (section 2.3), and the values we explore for the parameters of the model (section 2.4).

The climate-economy model

An Integrated Assessment Model is meant to capture the main crossed interactions between the economy and the climate system. On the one hand, growth and technological choices drive the level of greenhouse gas emissions causing changes in the climate system, which aect back the economy. This allows to derive optimal emissions path from the point of view of a social planer balancing costs of mitigation and damages of climate change, and to calculate the marginal damages caused by emissions the SCC.

We use a classical DICE-like model, building on the Ramsey-Caas-Koopmans framework [START_REF] Guivarch | Climate Damage on Production or on Growth: What Impact on the Social Cost of Carbon?[END_REF]. The economy produces a single good in quantity Q t using two factors, capital K t and labour L t through a Cobb-Douglas function. The productivity is aected by climate change via a damage factor1 Ω t depending on temperature T t , so that nal production Q t writes:

Q t = Ω(T t )A t K α t L 1-α t (1)
The production induces emissions, which can be mitigated at a certain cost. The social planner trades o between consumption, mitigation costs (which represents a share Λ t of production), and investment in capital (share s t of production)

C t = Q t (1 -Λ t -s t )
(2)

Λ t = θ 1 (t)µ θ2 t (3) K t+1 -K t = -δ.K t + Q t .s t (4)
where δ is capital depreciation, and µ t the abatement rate. θ 1 (t) measures total mitigation costs and decreases exogenously due to technical progress.

The dierence with DICE equations concerns the climate system. There is growing evidence that temperature change depends linearly on cumulated emissions [START_REF] Allen | Warming caused by cumulative carbon emissions towards the trillionth tonne[END_REF][START_REF] Matthews | The proportionality of global warming to cumulative carbon emissions[END_REF][START_REF] Goodwin | Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake[END_REF], owing to the fact that eects from oceanic absorption of heat and carbon compensate. Modeling the temperature response to cumulated emissions with a linear function is common specication in the literature [START_REF] Dietz | High impact, low probability? An empirical analysis of risk in the economics of climate change[END_REF]Lemoine and Traeger, 2014a), and it reduces computational burden of dynamic programming.

T t = β.(CE 0 + t s=0 E s ) (5)
where T t is the global temperature increase at time t, CE 0 are cumulated emissions up to the rst period of the model and E s the emissions at time s.

E t = σ t (1 -µ t )Q t (6)
where σ t is the carbon content of production that decreases exogenously over time, and µ t the abatement rate.

Crossing the tipping point is a stochastic phenomenon leading to a productivity shock, in line with van der Ploeg and de Zeeuw (2013); [START_REF] Lontzek | Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy[END_REF], because our purpose is to remain as general as possible. Such a change in the damage function can potentially apply to a large range of tipping points inducing larger damages than expected. It can be direct impact on the economy either caused by melting of ice caps, leading to severe sealevel rise; a slowing down of thermohaline circulation; or a social tipping point beyond which adaptation is no longer possible. Some studies consider that the tipping point can also aect climate variables such as climate sensitivity or depreciation rate of atmospheric carbon dioxide to reect saturation of sinks (Lemoine and Traeger, 2014a). Before the tipping point, the damage factor is:

Ω 1 (T ) = 1 1 + πT 2 (7)
Once the tipping point has been crossed, damages write:

Ω 2 (T ) = 1 -J 1 + πT 2 (8)
J is the strength of the productivity shock, comprised between 0 and 1.

To model the crossing of the tipping point as a stochastic event, we assume that the location of the tipping point is unknown. The initial prior is that the tipping point is uniformly distributed between T min and T max . At each time t -1 with temperature T t-1 , the decision maker learns whether the tipping point has been crossed or not. If it has not been crossed, this means that it is located above T t-1 so that the decision maker updates prior for the next period. Hence the probability to cross the tipping point at t conditional to non-crossing at t -1 is given by:

h t (T t , T t-1 ) =      0 if T t ≤ T t-1 or T t ≤ T min Tt-max(Tmin,Tt-1) Tmax-max(Tmin,Tt-1) if T t > T t-1 and T min ≤ T t ≤ T max 1 if T t > T t-1 and T t ≥ T max (9) 
The learning enables the decision maker to prevent the crossing from being unavoidable, unlike in other works (van der Ploeg and de Zeeuw, 2013; [START_REF] Lontzek | Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy[END_REF].

With learning, mitigation actions can avoid the tipping point, if temperatures stabilize.

In some other settings, mitigation actions only delay the expected time of crossing the tipping point, and there is no hedging strategy.

Our modelling is equivalent to a stochastic process with an endogenous hazard rate given by h t (T t , T t-1 ). • For classical expected utility preferences

U t = 1 - 1 1 + ρ u t + 1 1 + ρ E[U t+1 ] ( 10 
)
where ρ is the pure time preference rate, and utility at each time step is given by:

u t = L t (C t /L t ) 1-η 1 -η (11)
η is the elasticity of marginal utility.

So that we can dene Bellman functions as follows:

V t (x t ) = max yt u(x t , y t ) + 1 1 + ρ E[V t+1 (G(x t , y t ))] (12) 
where x t = (S t , K t ) are state variables, y t = (Λ, s t ) are control variables, and x t+1 = G(x t , y t ) is the transfer function.

• For Epstein Zin preferences: 2

U t = 1 - 1 1 + ρ u t + 1 1 + ρ E[U 1-γ t+1 ] 1-θ 1-γ 1 1-θ (13)
2 The formula holds for θ<1. Otherwise when θ > 1 utility function is negative, so that Ut =

-(-(1 -1 1+ρ )u + 1 1+ρ [Et(-U t+1 ) 1-γ ] 1-θ 1-γ ) 1 1-θ u t = L t (C t /L t ) 1-θ 1 -θ (14)
For the sake of clarity we use dierent notations in the Epstein-Zin case. We denote θ the inverse of the elasticity of intertemporal substitution, and γ the risk aversion parameter.

We can dene Bellman functions in order to solve this dynamic program:

V t = U 1-θ t 1-1 1+ρ . V t (x t ) = max yt [u(x t , y t ) + 1 1 + ρ f (V t+1 (G(x t , y t )))] (15) 
f accounts for the decision maker's attitude toward the risk of tipping.

3 . f (V t+1 ) = [E(V 1-γ 1-θ t+1 )] 1-θ 1-γ .
It is the same formula as for CRRA preferences, in which f = E.

Using dynamic programming, we rst approximate Bellman functions in the postthreshold world, and then in the pre-threshold world using expectations over the location of the tipping point. However, the expected value of the SCC given by the Monte-Carlo is not the same as the SCC for a planner that decides before the risk has been resolved, i.e. when, for the planner, the parameter remains unknown [START_REF] Crost | Optimal climate policy: uncertainty versus Monte Carlo[END_REF]. In our case of a tipping point of unknown location, it is the dierence between the SCC with a known tipping point, averaged over all possible locations and the SCC with an unknown tipping point. Following the literature on tipping points [START_REF] Mastrandrea | Integrated assessment of abrupt climatic changes[END_REF][START_REF] Keller | Uncertain climate thresholds and optimal economic growth[END_REF][START_REF] Lemoine | Playing the climate dominoes: Tipping points and the cost of delaying policy[END_REF][START_REF] Lontzek | Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy[END_REF], we take the second as representing the SCC for a stochastic tipping point. We therefore introduce risk in the decision framework and use dynamic programming, as explained above with the Bellman functions. If S is the stock of emissions (the * denotes that control variables y 0 are optimally chosen given x 0 .), the Social Cost of Carbon (at initial time) writes in this framework:

3 when 0 < ψ < 1, the recursive formula involves ut -1 1+ρ f (-V t+1 ) 0 
SCC = - 1 1 + ρ ∂ S E[V 1 ]| x1 ∂ C V 0 | (x0,y * 0 ) (16)
To construct the SCC with equivalent deterministic damages, we use a modied damage factor Ω d (T ). This modied damage factor represents the expected damage factor given the prior on the location of the tipping point. Let us note p(T ) the prior probability of having crossed the tipping point at temperature T . The expected damage factor writes:

Ω d (T ) = (1 -p(T ))Ω 1 (T ) + p(T )Ω 2 (T ) (17)
Damages at a given temperature are set at the expected level of damages given the prior knowledege on the location of the tipping point. Figure 1 shows the resulting damages for two levels of productivity shock (J = 10% and J = 50%). The sextic damage function proposed in [START_REF] Weitzman | GHG targets as insurance against catastrophic climate damages[END_REF] is also pictured for comparison.

The Social Cost Carbon computed with the damage factor Ω d is the SCC with equivalent deterministic damages, noted SCC d . For each computation of the SCC for a stochastic tipping SCC, we can compute its corresponding deterministic equivalent SCC d . The SCC in a stochastic setting represents the full eect of the tipping point whereas we take SCC d as representing the level eect of the tipping point. Indeed, in building the deterministic equivalent SCC d , we have kept the same level of expected damages and we have canceled the risk element. Comparing SCC and SCC d tells us how much of the SCC of a stochastic tipping point is explained by the level of expected damages versus by risk. More precisely, we take the ratio SCC d /SCC as being the part of the SCC that is explained by expected damages. The closer to one the ratio, the more expected damages explain the SCC. Its complement is of course the part of the SCC that is due to a pure risk eect.

Calibration of the parameters

We use typical range of possible values for parameters related to attitude toward risk and time. Pure rate of time preference (ρ) can take two values: 0.5% and 1.5%. In the CRRA case, elasticity of marginal utility (η) ranges from 0.5 to 3. For the Epstein-Zin case, concerning the intertemporal substitution (1/θ), θ is between 0.5 and 3, while γ ranges from 0.5 to as high as 20.

For the parameters describing the tipping point, we acknowledge that the impacts of such a phenomenon are very dicult to quantify and could be very large. We thus explore a large window for the productivity shock J, from 0 to 50%. The location of the tipping point is uncertain, and could be anywhere between current temperature and T max . We assume T max = 7 • C. Starting from an initial temperature increase of 0.8 • C compared to pre-industrial times, this means for instance that a 2

• C increase is associated with a 19% probability of triggering the tipping point. For robustess checks on this assumption, see Supplementary Information.

Results and discussion

In this section, we present the results rst when using CRRA preferences, then with Epstein-Zin preferences, where risk aversion and the inverse of the elasticity of intertemporal substitution dier.

With CRRA preferences

We compute the SCC for a stochastic tipping point for η, J in the range specied in section 2.4. We also compute the part of this SCC explained by expected damages, that is the ratio SCC d /SCC. of η, J resulting in the same level of SCC. We can see that SCC increases with the size of the shock J, as expected. The role of the elasticity of marginal utility η is a priori ambiguous. Indeed, CRRA preferences conate intermporal trade-os and risk aversion and η has opposing eects on the SCC. On the one hand, a higher η favors present consumption relative to future consumption of wealthier generations (intertemporal substitution), which decreases the SCC. On the other hand, it encourages mitigation of emissions to reduce the risk created by the tipping point (risk aversion), which increases the SCC.

We nd that the intertemporal substitution eect outweighs the risk aversion eect: for a given J, the SCC decreases when η increases.

Regarding the part of the SCC explained by expected damages, we plot contour lines for the ratio SCC d /SCC in the plane (η, J) (gure 2, top panel). The ratio decreases as J increases. It was expected, as a higher J means potential exposure to very high damages a higher risk. As we have discussed, SCC decreases with η. The deterministic equivalent SCC d also decreases with η as there is only the intertemporal substitution eect at play and not the countervailing risk aversion eect. As a consequence SCC d decreases faster with η than SCC: the ratio SCC d /SCC decreases as η increases, expected damages explain less the SCC when the elasticity of marginal utility increases.

We nd that it takes both high productivity shocks and high elasticity of marginal utility for the deterministic equivalent to signicantly underestimate SCC. In fact, expected damages explain more than 90% of the SCC, as long as the productivity shock is inferior to 10%, whatever the value for risk aversion in the range explored. Only with productivity shocks higher than 40% jointly with elasticity of marginal utility higher than 2 does risk contribute to half or more of the SCC. Though lower pure time preference rate (ρ) signicantly raises the level of the SCC, it does so with similar magnitudes in the stochastic case and its deterministic equivalent, so that the part of the SCC explained by expected damages is similar in the case of lower ρ (see graph 7 in Annex).

The conclusion that it takes both high productivity shocks and high elasticity of marginal utility for the deterministic equivalent to signicantly underestimate SCC is robust to changes in the value of time preference. Outside these cases, the eet of tipping point on SCC is mostly a level eect that can be captured in a deterministic setting.

It is important to separate the level eect from the risk eect to appreciate for what reason tipping points are important. For example, at η = 2, introducing a tipping point with a shock of J = 10% triples the SCC from 34 to 103 $/tCO 2 . However this increases is not related to risk but to the simple fact that expected damages have increased. Indeed, the deterministic equivalent SCC is 97 $/tCO 2 . A mere 6 percent of the SCC is due to a pure risk eect.

With Epstein-Zin preferences

We perform the same exercise when disentangling risk aversion and elasticity of intertemporal substitution, using Epstein-Zin preferences. We present our results in the plane of risk aversion parameter and damages due to the tipping point (γ, J) for θ = 1.5 and ρ = 1.5% in gure 3 (graphs for dierent values of θ and ρ can be found in Appendix as a sensitivity check).

Bottom panel of gure 3 plots contour lines for the SCC for a stochastic tipping point.

As expected, the SCC increases with the productivity shock J. For a given productivity shock, the SCC increases with the risk aversion γ, as expected since it has an intuitive inuence in a single direction.

The part of SCC explained by expected damages has a pattern similar to CRRA preferences. Figure 3, top panel plots the ratio SCC d /SCC in the plane γ, J. As expected, the ratio decreases with risk aversion γ and producticity shocks J. Values are somewhat similar to the CRRA preferences (with a correspondance η ∼ γ) but as we explore a much larger range in risk aversion, the part explained by expected damages for the whole range is much lower. For instance, for a productivity shock equal to 10%, 90% of the SCC is explained by expected damages up to a risk aversion of 4 (as in the CRRA case), but the part explained is only 60% when γ = 15. Productivity shocks higher than 25%, combined with risk aversion higher than 5, lead to the ratio SCC d /SCC being under 50%. Expected damages explain less than half of the SCC and the risk eect of the tipping point dominates. For a productivity shock equal to 40% and a risk aversion parameter equal to 5, the level eect makes only 20% of the SCC.

Graphs in Annex (8, 9, 10) show the same results for alternative values of the pure time preference rate (ρ = 0.5) and of the elasticity of intertemporal substitution (θ = 0.5, 1.5). A decrease in the elasticity of substitution (a higher θ) tends to decrease the 
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ρ=1.5%, θ=0.8 SCC, but it does not aect the part of the SCC explained by expected damages. Indeed, θ plays a similar role in both deterministic and stochastic setting, as it governs the trade-o between future and present consumption. This is a strong indication that our construction of the deterministic equivalent has correctly isolated the level eect of the tipping point. It is graphically conrmed with top panel of gure 4, where the iso-lines for the ratio SCC d /SCC are almost at in the θ direction. For the same reason, changes in pure time preference rate (ρ) do not aect much the shape or position of the contours of the ratio.

Discussion and Conclusion

Climate change is an issue in terms of inter-temporal distribution of welfare because of the damages it will impose on future generations. The diculty is compounded because these damages are uncertain. They climate policies through their expected level but also through the risk on welfare they induce. Disentangling these two eect has so far not been carried out for stochastic tipping points.

What makes these damages remarkable is that they are uncertain: is it their expected level or the uncertainty surrounding them that warrants undertaking mitigation actions? This question has been studied for many types of uncertainty, for instance regarding climate sensitivity or other critical aspects of the climate-economy system, but has not been applied to damage function and tipping points. Authors considering tipping points in Integrated Assessment Models have not studied how explicit modeling of these phenomena diered from standard treatment of uncertainty via expected damage.

In this article, we have developed a methodology to evaluate how expected damages versus dispersion of damages contribute to the Social Cost of Carbon. We compare a setting with explicit modeling of a stochastic tipping point to a deterministic setting using an equivalent damage function. This cancels out the eect of increased expected damages and dierence of SCC between the two methods can be attributed to the eect of risk.

Using conventional CRRA preferences, it takes high productivity shocks and risk aversion for a deterministic approach to underestimate SCC. Even when using Epstein-Zin preferences, the share of SCC attributable to risk aversion remains limited (less than 10%) under shocks aecting 10% of production and risk aversion of 10.

Productivity shock of 10% are in the range typically considered in the literature. For instance, in [START_REF] Lontzek | Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy[END_REF], with a similar framework, authors consider the case of J = 10%. Other modeling choices, in Lemoine and Traeger (2014a), make a tipping point induce a change from a quadratic to a sextic damage function, i.e. Weitzman's damage function that relies on an expert panel that explicitly considered physical tipping points.

At 4

• C, this corresponds to a change of damage factor from Ω 1 = 0.96 to Ω 2 = 0.91 (a loss of less than 10% of Gross World Product). This makes the productivity shock at J = 1 -Ω 2 /Ω 1 = 5.2%. Our results suggest that the increase of SCC found in these studies are mostly due to a raise in expected damages, and that tipping points are rather a 'level' than a 'risk' problem.

Finally, our work sheds some light on the risk aversion puzzle, found in previous work, that is that risk aversion had a surprisingly little eect in Integrated Assessment Models [START_REF] Ackerman | EpsteinZin utility in DICE: Is risk aversion irrelevant to climate policy?[END_REF], even in the case of tipping points [START_REF] Belaia | Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion[END_REF]. We show that risk aversion only plays a role when the tipping point triggers high productivity shock, with the risk of losing several tenths of production. Below these levels, an IAM is sensitive to expected damages, so that risk aversion plays a moderate role. Thus, we think that too low levels of possible damages considered in the literature explain the risk aversion puzzle. As a matter of comparison, [START_REF] Belaia | Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion[END_REF] only considers productivity shocks below 4.5% when thermohaline circulation collapses.

Deterministic approaches using best-guess expected damages (together with sensitivity analyzes) are currently used to set a value for the SCC for regulations evaluations, and they have lower computational burden than a full-edged stochastic model. Knowing when deterministic approaches can be used as a good proxy for computing SCC under risk can guide policy making. Our results show that the Social Cost of Carbon comes primarily from the expected level of damages, when the shock induced by a potential tipping point remains lower than 10% or so. In that case, eects of tipping points are well captured in a deterministic setting by updating the damage function to account for higher expected damages.

A very small number of studies explore the possibility of such large shocks, as large as 90 % of consumption [START_REF] Dietz | High impact, low probability? An empirical analysis of risk in the economics of climate change[END_REF], possible extinction [START_REF] Méjean | Intergenerational equity under catastrophic climate change[END_REF], though with very low probability. This article claried which approach is appropriate when the size of the shock is known. Further research is needed to delinate the plausible values of such shocks.

A.2

Robustness checks

We perform a sensitivity analysis on several parameters of the model:

• The maximum temperature threshold for the tipping point T max . We look at T max = 10 instead of 7.

• Pure rate of time preference ρ. We run the model for lower ρ (0.5%)

• Elasticity of intertemporal substitution (1/θ) in the Epstein-Zin case. We consider θ = 0.5 and θ = 1.5.

The graphs show that the shapes of the curves are not aected by a change in these parameters, and our nding that most of the SCC is still explained by expected damages as long as the shock remain under 10%. 

2. 3 .

 3 Comparing SCC for a stochastic tipping point with its deterministic equivalentTo investigate how much the Social Cost of Carbon with a tipping point is explained by expected damages, we will compare SCC with stochastic damages due to tipping point with a SCC with equivalent deterministic damages. We rst present how we compute the SCC for an uncertain tipping point, then how we construct a deterministic equivalent for damages.A standard way to capture risk is what the literature called the Monte-Carlo approach. For example,[START_REF] Ackerman | Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE[END_REF] and[START_REF] Dietz | High impact, low probability? An empirical analysis of risk in the economics of climate change[END_REF] have performed exercises on the fat tail of climate sensitivity. They draw a value of climate sensitivity from a distribution, compute the SCC with climate sensitivity xed at that value and take the mean. As a result, they compare the expected value of SCC once the risk on climate sensitivity has been resolved with the SCC with climate sensitivity xed at its mean.
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 1 Figure 1: Comparison between dierent damage functions.
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 2 Figure 2 (bottom panel) plots contour lines for the SCC, in the plane of elasticity of marginal utility and shock due to tipping point. That is to say, a line in represents pairs

Figure 2 :

 2 Figure 2: CRRA preferences. Top panel: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).

Figure 3 :

 3 Figure 3: Epstein-Zin preference. Top panel: contour plot of the share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).
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Figure 5 :

 5 Figure 5: CRRA preferences. Sensitivity analysis for Tmax = 10 • C. Top panel: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).

Figure 6 :

 6 Figure 6: Epstein-Zin preferences. Sensitivity analysis for Tmax = 10 • C. Top panel: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).

Figure 7 :

 7 Figure 7: CRRA preferences. Sensitivity analysis for ρ = 0.5%. Top panel: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).

Figure 8 :

 8 Figure 8: Epstein-Zin preferences. Sensitivity analysis for ρ = 0.5%. Top panel: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).

Figure 10 :

 10 Figure 10: Epstein-Zin preferences. Sensitivity analysis for θ = 1.5. Top panel: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC stochastic). Bottom panel: SCC for stochastic runs (in US $2005).

  Note that the marginal hazard rate tends to increase (i.e. ∂ 2 ∂ 1 h t ≥ 0), as visited temperatures get warmer.2.2. The social welfare functionsThe model seeks the welfare-maximizing path for two state variables, capital and cumulated emissions, choosing the path for the two control variables, the saving rate s t and the abatement rate µ t . We study two social preferences: the classical expected utilitarianism with Constant Relative Risk Aversion (CRRA), and Epstein-Zin preferences. In the CRRA representation, time and risk preferences are embedded in a single parameter, which gives both resistance to intertemporal substitution and risk aversion. However,

both can induce opposing-directions eects in the presence of risks

[START_REF] Ha-Duong | Risk aversion, intergenerational equity and climate change[END_REF]

: while resistance to substitution favors the consumption of present generations, risk aversion encourages more abatement in the present to lower the risk of triggering the tipping point. For this reason, we also apply Epstein-Zin preferences, which is common in the literature, which allow to disentangle intertemporal substitution and risk aversion.

Welfare after time t, U t , is dened recursively:

For notational convenience, we use damage factor Ω instead of damage function D. The correspondance is simply Ω = 1 -D.