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Abstract

The onset of flow in vibrated layer of viscoplastic fluid is investigated theoretically,
using a lubrication approximation. The rheological behavior of the fluid is described
by the Herschel-Bulkley model. The equation describing the evolution of the free
surface is derived. Four different regimes are found depending on the ratio χ of the
gravitational acceleration to the acceleration of vibration and the ratio of the yield
stress to the shear-stress at the vibrated wall. Furthermore, a necessary condition
for instability is derived. The different regimes are illustrated in the case of a 1D
problem.
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1 Introduction

When a horizontal fluid layer is subjected to vertical oscillations, its free sur-
face becomes unstable to standing waves beyond a certain threshold. This
phenomenon was first observed by Faraday [1]. He, noticed that the vibrating
frequency of the waves is half of that of the forcing. The onset of these waves
was first determined by Benjamin and Ursell [2] for an incompressible inviscid
fluid. Using linear stability analysis, they showed that for an inviscid infinite
layer of fluid, the onset problem reduces to analysis of Mathieu’s equation,
which allows harmonic and subharmonic responses. Kumar and Tuckerman
[3] extended the linear stability analysis of Benjamin and Ursell [2] to vis-
cous fluids. In the last few decades, several studies have been devoted to the
Faraday instability in Newtonian fluids and focused on pattern formation. Ac-
cording to the driving frequency and amplitude and the fluid viscosity, the free
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surface may exhibit stripes, squares, hexagons and quasi-crystalline patterns;
see e.g. [4–9].

Recently, interest has grown in the effect of vertical vibrations on a layer
of a complex fluid both theoretically and experimentally. Raynal et al. [10]
provided the first experimental data for polymer solutions. Their work con-
centrates on dilute polymer solutions where the influence of elasticity is small.
They found a slight shift of the critical accelerations; the critical wave num-
bers were not affected. Muller & Zimmermann [11] presented a linear stability
analysis for a Maxwell fluid. They found that when the inverse of the re-
laxation time compares to the driving frequency, a harmonic response of the
fluid surface might become unstable rather than the classical subharmonic
response. The signature of elasticity in the Faraday instability was demon-
strated by Ballesta & Manneville [12] using a wormlike micelle solution. They
observed that the critical accelerations and wavenumbers present oscillations
as a function of driving frequency and fluid height. For shear-thickening flu-
ids, an interesting phenomenon was discovered by Merkt et al. [13]. Using a
cornstarch and glass micro-sphere suspension, the authors found that holes
which were created by applying a finite amplitude perturbation to the fluid
layer were persistent in a certain range of frequency and acceleration. The sta-
bilizing mechanism of persistent holes is currently unknown. Merkt et al. [13]
argued that the increase of the viscosity with the applied shear stress is the key
factor. Deegan [14] suggested a different mechanism, independent of whether
the fluid is shear-thinning or shear-thickening, based on stress hysteresis. The
class of complex fluids that support persistent holes was widened to emulsions
by Falcon et al. [15]. Thus, it seems that shear-thickening is unnecessary for
these structures to form, contrary to initial claims [13].

Here we consider the case of viscoplastic fluids, i.e. fluids that exhibit yield
stress behaviour. A comprehensive review of the physics of yield stress materi-
als and how it is related to the microstructure was recently presented by Bonn
et al. [16] for a broad range of materials (emulsion, gels, colloidal suspensions,
...). Using a polymeric gel (ultrasound gel Dane-gel R1) with a significant yield
stress (146 ± 6 Pa), Shiba et al. [17] observed a new pattern which consists
in a pair of counter rotating vortices. Qualitatively, similar results were also
obtained using shaving gel or toothpaste. To characterize the onset of convec-
tion, Shiba et al. [17] introduced a non-dimensional parameter Σ, representing
the ratio of the stress exerted by the plate due to inertia of the material, di-
vided by the yield stress. The onset of convection occurred for Σ = O(1).
The convective rolls appear if the blob of gel is either placed directly on a
horizontal plate without sidebands, or within a vertical oscillating cylinder.
The list of complex fluids for which persistent holes can be observed, when
they are submitted to vertical mechanical vibration, increased further after
the experiments of Wolf et al. [18]. The authors used Carbopol gel (a high
molecular weight, hydrophilic, and crosslinked polyacrylic acid polymer) as a
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test fluid, reporting yield stresses in the range 34− 184 Pa (depending on the
measurement and fitting method).

There are two main contributions in [18]. Experimentally, the authors ob-
served the formation of persistent holes in a regular geometric pattern in the
surface of initially circular discs of Carbopol solutions, subjected to vertical
oscillations of varying frequency and amplitude. Here the hole patterns are
formed within an intermediate linearly increasing band of acceleration versus
frequency. Above this band, they report behaviour analogous to [17], although
not explored here, and below the band no flow occurred. Within the band, in-
creasing oscillation frequency produced an increasing number of modes in the
patterns which could be stably observed and which grew eventually into per-
sistent holes within the sample. In sense therefore, the study of [18] can be
thought of as a more in depth study of the transition of [17], which appears
not to be a sharp transition to the roll-structure, but instead has a rich inter-
mediate patterning structure.

It is hard to interpret the effects of the vertical vibration directly on the rheol-
ogy, in this type of experiment. Yield stress behaviours arise in many different
materials [16] and depend on the structure of the material. The application
of a vertical vibration to certain types of yield stress materials may modify
significantly the internal structure leading to a strong reduction of the yield
stress. This has been observed for concrete by Tattersall & Baker [19] and
for highly concentrated suspension of milk chocolate by Ouriev & Uriev [20].
Carbopol is not however a suspension and this type of multiphase mechanism
is probably not present. On the other hand, rheological properties of Carbopol
solutions are strongly dependent on the type of Carbopol used, its concentra-
tion and the preparation method. Elastic effects are certainly present at low
shear, although there is no suggestion that the onset in [18] is due to elasticity
in the same sense as [12]. Thixotropic hysteresis has also been observed for
some Carbopol solutions. If this provides a rheology reduction mechanism for
these experiments is less clear: many thixotropic models require a strain rate
or viscous dissipation to initiate destruction, i.e. flow is needed for destruction.
If however there is a reduction in yield stress, it is still noticeable that there
appears to be a yield-stress dependent onset threshold in the experiments of
[17,18], below which there is no motion. Thus, onset of motion for a fluid with
a yield stress is of interest.

The second part of [18] presents a form of lubrication flow analysis. The final
form of evolution equation for the surface is a parabolic equation in which an
acceleration dependent viscosity is made separable from the horizontal Lapla-
cian operator. This separable structure evidently leads to a modal solutions
and the authors are able to produce qualitatively similar patterns to their
experiments. Two aspects of [18] are however unsatisfactory in our opinion.
First, having studied a material that is clearly non-Newtonian the authors
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commence by assuming the fluid is Newtonian, but then later introduce an
unspecified dependency of the viscosity on the acceleration. Both points are
obscure. Second, the linearized equations appear to assume that the fluids are
always flowing, which means that the issue of onset in terms of how the yield
stress is overcome is not addressed, i.e. this is pattern formation in a yielded
fluid. Indeed the role of the yield stress is unclear in the model although the
experimental study reports significant regimes of no flow. While the pattern
formation aspects are of interest, this leaves the question of flow/no-flow un-
treated.

In this paper we develop a thin-film/lubrication approach and model only flow
onset in a Faraday setup. The thin-film approach is classical and results in a
model (different to that in [18]) in which the acceleration acts via the surface
gradients to induce horizontal motion in the flow, i.e. film spreading. We dis-
cuss the scaling under which this mode takes place, the different qualitative
behaviours that result and the potential onset of instability. The aim of this
short paper is simply to show what results from this style of analysis and the
assumptions of an ideal visco-plastic fluid model. The behaviours predicted
are somewhat different to the experiments of [17,18], although of course the
model situation is also different. We end the paper by discussing some of the
challenges to improving this.

2 Governing equations

We consider a layer of an incompressible yield stress fluid on a horizontal
plate which is subjected to a vertical sinusoidal oscillation of amplitude â and
a frequency f̂ . The mean depth of the fluid layer is denoted ĥ0. In the frame of
reference which moves with the oscillating plate, the gravitational acceleration
Ĝ is temporarily modulated,

Ĝ = −
(
ĝ − â cos ω̂t̂

)
ez. (1)

Here, ez is the unit-vector in the vertical z-direction, and ω̂ = 2πf̂ . The fluid
satisfies the continuity and momentum equations:

∇̂ · û=0, (2)

ρ̂
D

Dt̂
û=−∇̂p̂+ ∇̂ · τ̂ + ρ̂Ĝ, (3)

where û denotes the velocity, p̂ is the pressure and τ̂ is the deviatoric stress
tensor, Throughout the paper we shall adopt the convention of denoting di-
mensional quantities and variables with the “hat” symbol, i.e. ·̂.
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We assume that the rheological behavior of the yield stress fluid is described
by the Herschel-Bulkley model:

τ̂ =

(
κ̂ˆ̇γ(û)n−1 +

τ̂y
ˆ̇γ(û)

)
ˆ̇γ(û), if τ̂ > τ̂y

ˆ̇γ(û) = 0 if τ̂ ≤ τ̂y

, (4)

where τ̂y, κ̂ and n are the yield stress, consistency and power-law index of the

fluid, respectively. The tensor ˆ̇γ(û) is the rate of strain tensor associated with
the velocity field û, defined component wise as

ˆ̇γij(û) :=
∂ûi

∂x̂j

+
∂ûj

∂x̂i

, (û, v̂, ŵ) = (û1, û2, û3), (x̂, ŷ, ẑ) = (x̂1, x̂2, x̂3). (5)

ˆ̇γ and τ̂ are norms of ˆ̇γ and τ̂ , defined as

ˆ̇γ =

√√√√1

2

∑
ij

ˆ̇γ2
ij and τ̂ =

√√√√1

2

∑
ij

τ̂ 2ij. (6)

For boundary conditions, on the plate surface the no-slip and no-penetration
boundary conditions take the form:

û=0 at ẑ = −ĥ0. (7)

The free surface of the fluid layer is at ẑ = ξ̂(x̂, ŷ, t̂), where ξ̂ has zero mean,
i.e. ĥ0 is the mean depth of the fluid layer. The motion of the free surface is
governed by the kinematic condition:

∂ξ̂

∂t̂
+ ûH · ∇̂H ξ̂= ŵ, (8)

where ûH and ∇̂H denote the horizontal components of the velocity and
divergence operator, respectively. At the interface between air and fluid, the
diference between stresses is balanced by surface tension:

[σ̂a − σ̂] · n= γ̂s[∇̂ · n]n, at ẑ = ξ̂, (9)

where σ̂a = −p̂aδ, p̂a is the atmospheric pressure, σ̂ = −p̂δ + τ̂ , and

n =

(
−∂ξ̂

∂x̂
,−∂ξ̂

∂ŷ
, 1

)
1 + (

∂ξ̂

∂x̂

)2

+

(
∂ξ̂

∂ŷ

)2
1/2

.
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Denoting by t any tengential vector perpendicular to n, the dot product of
(9) with t leads to

t · (τ̂ · n) = 0. (10)

In the following, we assume that the amplitude of the free-surface deformation
is much smaller than the characteristic length of the horizontal layer:

∣∣∣∣∣∣∇H ξ̂
∣∣∣∣∣∣ << 1. (11)

Combining (10) with (11) shows that the tangential stress components vanish,

τ̂xz = 0 and τ̂yz = 0 at ẑ = ξ̂. (12)

2.1 Stationary layers

Before proceeding, let us examine the stationary state that we expect to ex-
ist for sufficiently small oscillations. We assume that û = 0 and that ξ̂ is
independent of t̂. The momentum equations reduce to:

0=−∇̂p̂+ ∇̂ · τ̂ + ρ̂Ĝ, (13)

and for the moment lets assume that τ̂ = 0. Thus, the pressure is given by:

p̂= p̂a + γ̂s[∇̂ · n], at ẑ = ξ̂(x̂, ŷ), (14)

p̂(x̂, ŷ, ẑ)= p̂a + γ̂s[∇̂ · n] + ρ̂[ĝ − â cos ω̂t̂][ξ̂(x̂, ŷ)− ẑ] (15)

We observe that horizontal pressure gradients now exist within the fluid layer:

∇̂Hp(x̂, ŷ, ẑ) = ∇̂H

(
γ̂s[∇̂ · n] + ρ̂[ĝ − â cos ω̂t̂]ξ̂

)
, (16)

induced by horizontal gradients in elevation and surface curvature.

Evidently, (13) cannot be satisfied in the absence of deviatoric stresses within
the layer, i.e. τ̂ ̸= 0. This does not invalidate the potential for a stationary
layer, but it is necessary that the deviatoric stresses lie below the yield stress
of the fluid layer, i.e. and consequently that there is a non-zero yield stress.
In general the stresses are indeterminate in this situation. The above analysis
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serves to indicate the magnitude of the deviatoric stresses induced by hori-
zontal gradients. As in all Faraday type problems the deviatoric stresses come
from gradients in ξ̂, both in the surface tension and spreading terms within
(16). With ∇̂H ξ̂ = 0, we should expect no motion at all in any ideal visco-
plastic fluid, i.e. regardless of |Ĝ|. Furthermore, for a given size of horizontal
surface gradient we can make a preliminary estimate of the required yield
stress to prevent motion.

2.2 Dimensionless setting

Let us suppose that the initial surface profile ξ̂ has maximal amplitude ξ̂0 and
varies over a horizontal length-scale L̂0. We shall make the assumption that
δ = ĥ0/L̂0 ≪ 1 and seek to develop a thin-film style of model. We assume
that lengths and velocities scale as:

(û, v̂, ŵ) = Û0(u, v, δw), (x̂, ŷ, ẑ) = L̂0(x, y, δz), t̂ =
L̂0

Û0

t,

and write ξ̂ = ĥ0ξ(x, y, t) and ξ̂0 = ĥ0ξ0.

The static layer analysis suggests that the pressure consists of 2 components:
a time varying (static) part and a component due to the surface profile. Ac-
cordingly define the dimensionless pressure p via:

p̂= p̂a − ρ̂[ĝ − â cos ω̂t̂]ẑ + ρ̂[ĝ + â]ξ̂0p. (17)

Here we have implicitly taken the buoyant component of pressure rather than
the surface tension as the dominant driving force. We observe that the maximal
horizontal pressure gradients should scale approximately like:

|∇̂Hp| ∼ O

(
ξ̂0ρ̂(ĝ + â)

L̂0

)[
1 +O

(
γ̂s

ρ̂(ĝ + â)L̂2
0

)]
.

Assuming a balance of the horizontal pressure gradients primarily through
shear stress gradients across the depth of the fluid layer, this suggests that
shear stresses imposed on the fluid layer should scale like:

|τ̂ | ∼ O

(
ĥ0ξ̂0ρ̂(ĝ + â)

L̂0

)[
1 +O

(
γ̂s

ρ̂(ĝ + â)L̂2
0

)]
.

These imposed stresses are opposed by the yield stress of the fluid and by
viscous stresses. We define the velocity scale Û0 by:
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Û0= ĥ0

(
ĥ0ξ̂0ρ̂(ĝ + â)

L̂0κ̂

)1/n

, (18)

and use this to define a typical viscous scale τ̂0:

τ̂0 ≡ κ̂

(
Û0

ĥ0

)n

=
ĥ0ξ̂0ρ̂(ĝ + â)

L̂0

. (19)

The Bingham number B is defined as:

B=
L̂0τ̂y

ĥ0ξ̂0ρ̂(ĝ + â)
=

τ̂y
τ̂0
, (20)

which is observed to be the ratio of yield stress to buoyancy stress, or alter-
natively yield to viscous stress. Although strictly speaking the stress scaling
is derived in order to balance the principal shear stresses, many studies have
shown that long-thin geometries of yield stress fluids are characterized by
pseudo-plug regions in which the extensional components of τ̂ have similar
magnitude to the shear components. Thus, we assume that

τ̂zx = τ̂xz ∼ τ̂0, τ̂zy = τ̂yz ∼ τ̂0, τ̂yx = τ̂xy ∼ δτ̂0,

τ̂xx ∼ τ̂0, τ̂yy ∼ τ̂0, τ̂zz ∼ τ̂0,

noting that in fully yielded fluid regions the extensional stresses would drop
to O(δ).

The scaled momentum equations are

δRe
D

Dt
(u, v)=−∇Hp+

∂

∂z
[τxz, τyz] +O(δ), (21)

δ3Re
D

Dt
w=−∂p

∂z
+O(δ), (22)

where the Reynolds number Re is defined by:

Re =
L̂2

0

ξ̂0(ĝ + â)

(
ĥ0ξ̂0ρ̂(ĝ + â)

L̂0κ̂

)2/n

, f =
L̂0ω̂0

2πÛ0

.

The neglected terms in (21) & (22) correspond to the next largest deviatoric
stress terms. Thus, even with the assumed scaling of the extensional stresses
they still remain absent in the leading order problem, as δ → 0 at fixed Re:
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∇Hp=
∂

∂z
[τxz, τyz], (23)

∂p

∂z
=0. (24)

From (24) we see that the left-hand side of (23) is independent of z and hence
integrate (24) to give:

[τxz, τyz] = [z − ξ(x, y)]∇Hp (25)

In regions where the fluid is yielded the velocity scaling implies that the largest
strain rates are

γ̇xz ∼
∂u

∂z
+O(δ2), γ̇yz ∼

∂v

∂z
+O(δ2).

Therefore, the leading order constitutive laws are:

(τxz, τyz)=

[
γ̇n−1 +

B

γ̇

]
(γ̇xz, γ̇yz), ⇔ |(τxz, τyz)| > B, (26)

(γ̇xz, γ̇yz)= 0, ⇔ |(τxz, τyz)| ≤ B. (27)

Here note that:

γ̇ =

(∂u
∂z

)2

+

(
∂v

∂z

)2
1/2 .

We observe that [τxz, τyz] is a vector that locally points in the direction of
∇Hp, which is independent of z. By orienting a local coordinate system in the
direction of −∇Hp, say s, we see that the shear stress normal to s is zero and
hence also the velocity component. If the velocity component in the s-direction
is denoted υ, then we have the following 1D problem:

τsz = [ξ(x, y)− z]|∇Hp|, (28)

τsz =

∣∣∣∣∣∂υ∂z
∣∣∣∣∣
n−1

+
B∣∣∣∂υ
∂z

∣∣∣
 ∂υ

∂z
, ⇔ |τsz| > B, (29)

∂υ

∂z
=0, ⇔ |τsz| ≤ B. (30)

We solve for υ using the no-slip condition at z = 0, and integrate across the
fluid layer to find the areal flux:
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∫ ξ

−1
υ dz=

|∇Hp|1/n(1− θY )
1+1/n
+ (1 + ξ)2+1/n

2 + 1/n

(
1 + θY

1

1 + 1/n

)
, (31)

θY =
B

(1 + ξ)|∇Hp|
. (32)

Note that (1 − θY )+ = max{0, 1 − θY }, i.e. the positive part. Physically, θY
gives the ratio of yield stress to basal shear stress (at the bottom of the fluid
layer): if θY ≥ 1 then υ = 0.

Returning now to the two-dimensional problem with [τxz, τyz] in the direction
of ∇Hp, we find that:

∫ ξ

−1
(u, v) dz=−∇Hp

|∇Hp|1/n−1(1− θY )
1+1/n
+ (1 + ξ)2+1/n

2 + 1/n

(
1 +

θY
1 + 1/n

)
.

(33)

Combining the kinematic equation with the mass conservation equation gives:

∂ξ

∂t
=w − (u, v) ·∇Hξ = −∇H ·

∫ ξ

−1
(u, v) dz +

∫ ξ

−1
∇ · u dz, ⇒

0=
∂ξ

∂t
+∇H ·

∫ ξ

−1
(u, v) dz. (34)

Finally, we integrate the z-momentum equation to find the pressure from the
normal stress condition. In dimensionless form this is:

p = α(t)ξ − ∇2
Hξ

Ca
, (35)

where

α(t)=
[ĝ − â cosωt]

[ĝ + â]
, ω =

ω̂L̂0

Û0

, (36)

Ca=
ρ̂[ĝ + â]L̂2

0

γ̂s
=

1

ξ0δ2
τ̂0

γ̂sL̂0

(37)

with Ca denoting the capillary number. The plate oscillation is captured in
the term α(t). We observe that

∇Hp=α(t)∇Hξ −
∇3

Hξ

Ca
, (38)

which depends on ∇Hξ , ∇3
Hξ, α(t) and Ca. Therefore, we may write:
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∫ ξ

−1
(u, v) dz≡ q(ξ,∇Hξ,∇3

Hξ, B, n, α(t), Ca), (39)

defined by (33). Evolution of the surface is governed by solving:

∂ξ

∂t
+∇H · q(ξ,∇Hξ,∇3

Hξ, B, n, α(t), Ca) = 0. (40)

In comparison to the lubrication model in [18], we note that even neglecting the
surface tension term (Ca = ∞) these evolution equations are quite different.
Equation (40) can not be linearised about a fixed film thickness and result in
the separable non-conservative form given in [18]. In particular, whether the
fluid is flowing or not is governed by the term (1− θY )+ in (33) in which the
gradient of the layer thickness appears and not the layer thickness. Indeed this
feature is missing from [18] as the authors assume that their fluid is described
rheologically as through a time-dependent Newtonian viscosity.

3 1D and no surface tension

For simplicity, for the remainder of the paper we consider the 1D model with
no surface tension Ca = ∞:

0=
∂ξ

∂t
+

∂

∂x
q(ξ,∇Hξ, B, n, α(t)), (41)

q=−α(t)ξx
|α(t)ξx|1/n−1(1− θY )

1+1/n
+ (1 + ξ)2+1/n

2 + 1/n

(
1 +

θY
1 + 1/n

)
, (42)

θY =
B

|α(t)ξx|(1 + ξ)
. (43)

A similar analysis could be carried out for the 1D axisymmetric version of
(40) with broadly similar conclusions.

Discounting the α(t) in front, the divergence of −q is a quasilinear elliptic
operator. Thus, when α(t) > 0, (41) is a quasilinear parabolic equation, de-
scribing the (modified) gravitational spreading of the surface. This diffusive
spreading is enhanced by both larger α(t) > 0 and stronger gradients in the
liquid layer. We can see however that diffusive spreading approaches zero if
θY → 1−, which happens as either the gradients or the acceleration α(t)
weaken sufficiently, i.e. at a constant α(t) we expect that the interface evens
out such that θY → 1− and the spreading stops. On the other hand, for any
θY < 1, if α(t) < 0, the spreading is no longer diffusive but anti-diffusive,
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i.e. small wavelengths are amplified and the surface motion is expected to
become unstable. We now explore these regimes and where they occur.

3.1 Solutions and regimes

It helps to illustrate the motions by considering 3 example initial surface
profiles, as follows:

(1) Linear profile : ξ = 2ξ0
(
1
4
− |x|

)
(2) Cosine profile ξ = 1

2
ξ0 cos(2πx)

(3) Parabolic profile ξ = 4ξ0
[
x2 − 1

12

]
Note that each profile has zero mean and the parameter ξ0 has been chosen
to represent the amplitude of the surface variation, i.e. ξ0 = ξmax − ξmin. The
3 initial conditions are displayed in Fig. 1a.

3.1.1 Static layers

We first consider whether or not the initial surface flows at all. The dimen-
sionless acceleration α(t) is given by:

α(t) =
χ− cos(2πft)

χ+ 1
∈
[
χ− 1

χ+ 1
, 1

]
,

where χ = ĝ/â. Thus, the minimal value of θY is found when α(t) = 1 and at
the position where |ξx|(1 + ξ) is maximal. We denote:

A(ξ0) = max
x∈[−1/2,1/2]

{|ξx|(1 + ξ)},

which we find to be:

A(ξ0) = 2ξ0 (1 + ξ0/2) , for the linear profile, (44)

A(ξ0) = πξ0

(
1 +

ξ0
2
cos(2πx∗)

)
sin(2πx∗), for the cosine profile, (45)

A(ξ0) = 4ξ0

(
1 +

2

3
ξ0

)
, for the parabolic profile. (46)

Here x∗ is solution of

cos(2πx∗) +
ξ0
2
cos(4πx∗) = 0 (47)

12
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Fig. 1. (a) The 3 initial surface profiles: (1) Linear; (2) parabolic and (3) sinusoidal.
(b) The function A(ξ0) vs ξ0, that defines the minimal θY .

The functions A(ξ0) are plotted versus ξ0 in Figure 1b, from which we conclude
that the parabolic profile is most likely to move.

We observe from (43) that the minimal θY is given by θY,min = B/A(ξ0) and
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consequently the layer is static for

1 ≤ B

A(ξ0)
=

L̂0τ̂y

ĥ2
0ρ̂(ĝ + â)

1

ξ0A(ξ0)
(48)

This criterion can be understood physically as follows. The maximal inertial
stress per unit area is [ĥ0ρ̂(ĝ + â)]. Due to the assumed mechanism of a dom-
inant shear motion, this is scaled with a representative surface slope ξ0ĥ0/L̂0,
to give a scale for the maximal generated shear stresses (multiplying again by
A(ξ0)). This is compared now with the yield stress, which it needs to exceed
in order to flow.

3.1.2 Spreading regimes

Lets now assume that B/A(ξ0) < 1 so that there is some part of the oscillation
during which the minimal θY satisfies θY,min < 1 and there is at least some
part of the oscillation for which the layer yields. Given the range of α(t) we see
that as θY → 1−, we will have α(t) > 0, i.e. due to gravitational acceleration,
α(t) > 0 during more of each oscillation than it is negative. We see that if
χ ≥ 1 then α(t) ≥ 0 at all times and (41) remains parabolic. We call this
regime, strong spreading, given that the spreading motion is always diffusive.

In contrast, if B/A(ξ0) < 1 and χ < 1 then for part of the oscillation we have
α(t) < 0. We expect negative diffusion during this period if also θY < 1, and
label such flows unstable. To avoid the unstable regime we need to ensure that
θY ≥ 1 while α(t) < 0. The marginal condition is found to be when:

B

A(ξ0)
≥ 1− χ

χ+ 1
. (49)

Surfaces and parameters satisfying (49), for which also χ < 1 and B < A(ξ0),
we classify as weak spreading. This has the physical meaning that although
the net acceleration is upwards for a portion of the oscillation, the stresses
generated during that part of the oscillation are insufficient to yield the fluid.

3.1.3 Example numerical solutions

To illustrate the spreading behaviours, we solve (41) numerically. For this we
use a simple explicit finite difference method:

ξn+1
j = ξnj +

∆t

∆x

(
qnj−1/2 − qnj+1/2

)
, (50)

where ξnj is the height of the free surface at time tn = n×∆t and axial position
xj = j × ∆x. The timestep ∆t ∝ ∆x2 is selected to maintain stability, by
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estimating the maximum diffusivity in (41).

Our examples below all take the parabolic initial profile (2), which we saw was
the most mobile, and fix ξ0 = 0.5. First we show in Fig. 2 the results for fre-
quency f = 1, for both a strong (χ = ĝ/â = 2) and weak (χ = 0.8) spreading
regime. We mark the initial surface and that at t = 1/f , as well as selected
intermediate profiles. The weak spreading profile has a slower evolution at the
start and finish of the cycle (due to smaller α), but similar evolution in the
minimum of the cycle as α(t) ≈ 1 in both cases. Although the initial states are
identical and the states at t = 1/f are different (on close inspection), although
they may be evolving to the same final state. The nonlinear nature of (41) is
also evident, i.e. not all the surface spreads initially and the diffusivity is very
local. For example, near the lowest parts of the surface the surface remains
stationary until the (near linear) part of the profile propagates in from the
outside, yielding the flow.

Figure 3 shows the same examples, except now for a higher frequency (f = 10).
Again we see the slower evolution of the weak spreading case, particularly at
start and finish of the oscillation, and the stationary surface at the lowest
part. The main effect of increasing the frequency is a shortening of the time
for evolution of the surface.

3.2 Summary of flow regimes

To summarise the flow regimes, we have identified the following:

(1) Static layer: if θY ≥ 1, ∀t .
(2) Strong spreading: if α(t) ≥ 0 ∀t (found when χ ≥ 1), and θY < 1 for

part of the oscillation.
(3) Weak spreading: if α(t) < 0 for part of the oscillation, but only when

θY ≥ 1.
(4) Unstable: otherwise.

These regimes are illustrated in Fig. 4, plotted in the (χ,B/A(ξ0))-plane.

Working from the most stable regime to least stable, the regime boundaries
are a little conservative in that the temporal aspect is not included explicitly.
To clarify, α(t) = [χ − cos(2πft)]/[χ + 1] is initially minimal so might not
move, whereas with a shift of time by half a period the spreading regimes will
be driven by the maximal acceleration initially.
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Fig. 2. Time evolution of the free surface in strong and weak spreading regimes at
f = 1: a) strong spreading at χ = 2; b) weak spreading at χ = 2. For both we have
B = 0.2A(ξ0) and have marked curves (1) and (2), which are the surface profiles at
t = 0 and t = 1/f , respectively.

3.2.1 Final states

A different temporal aspect is to note that all our stable spreading regimes
appear to evolve towards a final regime that is static. Depending on the initial
condition, it could be that some parts of the surface simply do not evolve at
all, e.g. as the lower parts of the surface in Fig. 3 (although these may evolve
at longer t than that shown). Discounting this possibility and assuming that
all parts of the surface move, we might return to (41) and examine when the
spreading stops. It would appear to be as θY → 1−. As the spreading occurs
whenever θY < 1, the final interval of spreading occurs when α(t) = 1, from
which we see that

|ξx|(1 + ξ) = B,
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Fig. 3. Time evolution of the free surface in strong and weak spreading regimes at
f = 10: a) strong spreading at χ = 2; b) weak spreading at χ = 2. For both we have
B = 0.2A(ξ0) and have marked curves (1) and (2), which are the surface profiles at
t = 0 and t = 1/f , respectively.
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0.5

1

1.5
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Fig. 4. The 4 different regimes identified.
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in this limit. Integrating this expression we find the final shape of the surface,
say ξ∞(x):

ξ∞(x) =
√
2B|x|+ (ξ∞(0) + 1)2 − 1. (51)

The constant ξ∞(0) > −1 is to be found from the condition that the mean
interface position is zero. As B → 0 we find that ξ∞(x) = 0. For small B we
find the approximation:

ξ∞(x) ∼ B(|x| − 1/4) +O(B2). (52)

We note the linear profile of the last computed shape in Fig. 2. The above
analysis suggests that these may evolve to the same (approximately linear)
final profile. Regardless of the small B approximation, it is notable that ξ∞(0)
and hence ξ∞(x) should depend only on B.

The above analysis is reminiscent of slump flow approximations and other
predictions of final shapes: they are all conservative in the sense that they rely
on surface motion continuing until the final shape is filled out, i.e. requiring
that the fluid keeps moving until the final shape is achieved. At the same time
in such problems, it is not hard to construct initial shapes that have segments
where the slope is too shallow and that will remain stationary.

3.2.2 Unstable flows

Lastly we have some comments to make regarding the unstable flows. Princi-
pally, we wish to emphasize that the transition to unstable flows in Fig. 4 is
not independent of the temporal features of the oscillation and represents only
necessary conditions for instability. As we cross marginally into the unstable
regime, the short period for which α(t) < 0 is balanced by a longer period
for which α(t) > 0. It is possible that the diffusive spreading occurring during
the period of positive α is sufficient to increase θY ≥ 1. We have explored this
feature numerically using different frequencies f and different phase shifts of
the oscillation, all close under the curve B/A(ξ0) = (1 − χ)/(ξ + 1). We are
able to find the above phenomenon marginally below this line, but the surface
instability when it occurs is extreme and our simple explicit scheme is itself
susceptible to numerical instabilities in these regimes. This makes numeri-
cal simulation the wrong tool for investigating further. An interesting avenue
here could be to reintroduce the surface tension terms to stabilize the short
wavelengths.
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4 Discussion

In this paper we have outlined a lubrication analysis of the typical Faraday
instability scenario for a yield stress fluid layer. Our focus has been to work
form the perspective of the stable static layer, understanding how yielding
works and how stability is potentially restored during the spreading regimes.
It is notable that the weak and strong spreading regimes that we have studied
numerically evolve in one direction only: towards more stable and eventu-
ally static configurations. We have also derived the necessary conditions for
instability at the limit of these spreading regimes.

Considering the experimental studies of [17,18] we feel that our analysis and
model may partly relate to the static layer states observed. We note however
that in neither study is there any detail on control of the initial layer uniformity
(critical here in our analysis), the aspect ratio of height to diameter is not
typically asymptotically small and the discs/blobs placed on the oscillating
plates have edges, where the surface gradients are necessarily large. However,
new experiments could be performed in which the initial surface shape was
explicitly molded.

Another difference here is with the lubrication model in [18], which does pro-
duce qualitatively reasonable pattern shapes. The model presented in [18]
assumes a Newtonian viscosity for the gel, with a time dependency related to
the acceleration. We feel this simplification misses some key features of the
rheology, but so of course does an ideal visco-plastic fluid (as here). The type
of separable model derived in [18] might conceivably result from a constitu-
tive model of the sub-yield (low shear) behaviour as either a very viscous fluid
or perhaps as a linear viscoelastic gel, although this is also not obvious to
us. The model does not represent any generalised Newtonian fluid. In recent
years there have been many constitutive models advanced to better explain
the behaviour of hydrogels such as those in [17,18], within these regimes. Ev-
idently, the Faraday instability is a setup in which sub-yield behaviour could
be critical in determining onset.

Our analysis simply sets the scene for what happens in the ideal case of a
Hershel-Bulkley fluid. An interesting challenge is to better model the sub-yield
rheological behaviour and/or to consider a different scaling for the dominant
strain rates in a thin film model, i.e. compression/extension. We are consid-
ering this type of model as the next step. However, we feel that the analysis
presented should be valid for suitably thin layers.
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