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Abstract

The present paper deals with the Taylor-Couette flow of shear-thinning fluids. It focuses on

the first principles understanding the influence of the viscosity stratification and the nonlinear

variation of the effective viscosity µ with the shear rate γ̇ on the flow structure in the Taylor

vortex flow regime. A wide gap configuration (η = 0.4) is mainly considered. A weakly nonlinear

analysis, using the amplitude expansion method at high order is adopted as a first approach to

study nonlinear effects. For the numerical computation, the shear-thinning behavior is described

by the Carreau model. The rheological parameters are varied in a wide range. The results indicate

that the flow field undergoes a significant change as shear-thinning effects increase. First, vortices

are squeezed against the inner wall and the center of the patterns are shifted axially towards the

radial outflow boundaries (z = 0, z/λz = 1). This axial shift leads to increasing concentration of

vorticity at these positions. The outflow becomes more stronger than the inflow and the inflow

zone, where the vorticity is low, increases accordingly. Nevertheless, the strength of the vortices

relative to the velocity of the inner cylinder is weaker. Second, the pseudo-Nusselt number, ratio of

the torque to that obtained in the laminar flow, decreases. Third, higher harmonics become more

relevant and grow faster with Reynolds number. Finally, the modification of the viscosity field is

described.
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I. INTRODUCTION

Instabilities of Couette flow between two coaxial cylinders are considered as prototypes

for general studies in hydrodynamic instability and transition to turbulence. A survey of

the literature on the Taylor-Couette problem can be found in Koschmieder [1] and Tagg [2].

In the classical configuration, the inner cylinder is rotating and the outer one is fixed. The

basic state, a circular Couette-flow (CCF), is purely azimuthal with a balance between the

centrifugal force and the pressure gradient pointing inward. In this situation, the angular

momentum decreases with the radius. According to Rayleigh criterion [3], CCF is unstable

in the inviscid limit with respect to axisymmetric three-dimensional perturbation. Taylor

[4] determined theoretically and experimentally the influence of the fluid viscosity on the

stability boundary. The primary instability results in axisymmetric meridional rolls (Taylor

vortices) periodically spaced in the axial direction and separated by radial jets. When

the inner cylinder rotation rate is increased, a Hopf bifurcation to a rotating wave occurs,

i.e. the Taylor vortex flow (TVF) acquires a periodicity along the azimuthal direction θ.

The resulting state is the wavy vortex flow (WVF). The Reynolds number R for onset of

time-dependent wavy vortices was computed numerically by Jones [5]. It is shown that

for a radius ratio, η = R1/R2, close to 1, say η ≥ 0.85, the supercritical Reynolds number

regime in which the axisymmetric vortices are stationary is very small. As the radius ratio is

decreased, the wavy vortices set in at higher and higher Reynolds numbers. This result was

confirmed experimentally. For instance, in experiments performed by Snyder & Lambert

[6] with a gap of radius ratio R1/R2 = 0.5, the first appearance of significant azimuthal

waviness was reported at R ≈ 10Rc. Furthermore, they suggested that this was probably

due to end effects of the cylinders. For the same radius ratio, i.e. η = 0.5, Meincke & Egbers

[7] observed experimentally a transition to WVF at R ≈ 16Rc. Thus, from experimental

point of view, it is not clear at which Reynolds number the flow in a wide gap undergoes a

transition to wavy-mode. The disagreement between experimental results could be related

to the influence of the aspect ratio (AR = column length/gap width). Indeed in [6] AR ≈ 30,

whereas in [7], AR ≈ 4.

For moderate or small gap width (say η > 0.75), increasing further R, the system undergoes

a bifurcation from wavy-vortex-flow (WVF) to modulated wavy-vortex-flow (MWVF), char-

acterized by the presence of a second frequency modulating the rotating waves as described

by Andereck et al. [8]. Subsequent bifurcations lead generally to turbulence after few steps.
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This orderly progression of nonlinear flow states makes Taylor-Couette flow as an attractive

model for studying transition to turbulence.

In the case of non-Newtonian fluids (polymer solutions, suspensions, emulsions, ...), mech-

anisms of the instability and transition to turbulence may be modified by the nonlinearity

of the rheological behavior. Most non-Newtonian fluids have two common properties, vis-

coelasticity and shear-thinning. Polymer solutions, collöıdal suspensions as well as particu-

late dispersions display this behavior above a certain concentration threshold. There was a

significant interest in inertialess viscoelastic Taylor-Couette instability since the pioneering

work of Giesekus [9]. This instability was then analyzed by Muller et al. [10], Larson et

al. [11] and Shaqfeh et al. [12]. In the laminar state, the rotation produces a shear which

stretches the polymer molecule along the curved stream lines. This leads to a first normal

stress difference which acts against the centrifugal force. Groisman and Steinberg (1998)

[13] showed experimentally that elastic instability leads to a strong nonlinear flow transition

at vanishing inertia.

Hereafter, we focus on shear-thinning fluids, for which the elastic response can be neglected.

Typically, stiff polymer solutions, show significant nonlinear decrease of the viscosity with

the shear-rate, with almost negligible elastic effects [14]. The shear-thinning behavior, i.e.

a nonlinear decrease of the viscosity with the shear rate, arises from the reorganization of

the internal fluid structure to reduce the viscous dissipation. The characteristic time of the

reorganization of the flow structure is supposed much smaller than all characteristic times

of the problem. In other words, the fluid is assumed purely viscous and its response to an

applied shear-stress is instantaneous.

I.1. Brief Review on Taylor-Couette flow of shear-thinning fluids

Circular Couette flow of a shear-thinning fluid is mainly characterized by a viscosity

stratification in the annular space, which is more significant as the shear-thinning effects are

stronger and the annular space is wider. With increasing shear-thinning effects, the shear

rate increases at the inner wall and decreases at the outer one. Furthermore, the nonlinear

variation of the viscosity with the shear rate introduces at the linear level an anisotropy

in the deviatoric tensor associated to the perturbation. This latter point is discussed in

section II.4.
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The mechanism of instability of CCF of shear-thinning fluids is the same as for a Newto-

nian fluid and results in axisymmetric counter rotating vortices separated by radial inflow

and outflow jets of angular momentum emanating from the fluid layers adjacent to the

cylinders’ wall. However, the critical conditions are different because of the radial viscos-

ity stratification and the modification of the azimuthal velocity profile. In the case where

the inner cylinder is rotating and the outer one is at rest, the critical Reynolds and axial

wave numbers are given in the literature for power-law and Carreau fluids, for wide and

narrow annular spaces, see for instance Agbessi et al [15] and Alibenyahia et al [16] and the

references therein. When both the inner and the outer cylinders are rotating, the critical

conditions were determined by Agbessi et al [15] for a narrow and a wide annular space. It

is shown that when the Reynolds number is defined using the inner wall-shear viscosity, the

shear-thinning delays the appearance of Taylor vortices. It is explained that this delay is

due to the reduction of the energy exchange between the base flow and the perturbation. A

radically different conclusion may be reached if one uses the zero-shear viscosity of the fluid

as viscosity scale. In the narrow gap-limit and weakly shear-thinning behavior of the fluid,

Li & Khayat [17] found that the critical Reynolds number defined with the zero-shear vis-

cosity becomes lower as shear-thinning effects increase. Similar tendency is observed when

free (slip) boundary conditions are used [18–20]. Recently Masuda et al. [21] suggested to

use an average viscosity weighted by the strain-rate squared. They found that the critical

Reynolds number defined with this average viscosity is the same as for a Newtonian fluid.

However, this result is limited only to a narrow annular space with a radius ratio η > 0.7.

From experimental point of view, Escudier et al. [22] suggested to determine the critical

conditions by focusing on the development of the axial velocity component, near the inner

wall at a radial position r such (R2 − r)/(R2 −R1) = 0.8.

Sinevic et al. [23] measured the torque acting on the inner cylinder for three shear-thinning

fluids described by a power-law model (np = 0.4, 0.45 and 0.57). They found that in the

Taylor-vortex flow region, the power number Po behaves as Po ∝ Re−0.7
w , where, Rew is the

Reynolds number defined with the inner wall shear-viscosity. Concerning the flow structure,

for a wide gap, it is shown theoretically [15, 16] and experimentally [22] that with increasing

shear-thinning effects, the vortex eye is shifted toward the inner cylinder, because of the

viscosity stratification: the viscosity increases from the inner cylinder to the outer one. Es-

cudier et al. [22] investigated the flow structure in a Taylor-Couette geometry with a radius

ratio of 0.5. Axial and tangential velocity measurements were made using Laser Doppler
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Anemometry for a 0.15% aquesous solution of xanthan gum, whose rheological behavior is

described by a power-law model with a shear-thinning index np ≈ 0.45. The results show

an axial shift of the vortices towards the radial outflow boundary slightly more pronounced

for a shear-thinning fluid than for a Newtonian fluid. Except for this issue dealing with the

position of the vortex, results are very sparse. For instance, there is no indication on the

influence of shear-thinning effects on the strength of the radial outflow and radial inflow, nor

on the azimuthal streaks in outflow and inflow regions, nor on the modification of the viscos-

ity field by Taylor vortices particularly in a wide annular space and strong shear-thinning

effects. It is clear that a more clear understanding and characterization of supercritical

Taylor vortex flow of a shear-thinning fluid is needed.

To our best knowledge, there are no theoretical nor numerical studies on shear-thinning

effects in Taylor vortex flow structure.

I.2. Objectives, methodology and outline of the paper

The objective of the present work is to examine the effects of the nonlinear relation be-

tween the viscosity and the shear rate on the flow structure, the viscosity field and the torque

applied on the inner cylinder. Actually, there is an interplay between nonlinear inertia terms

and nonlinear viscous terms. Based on the experimental results such the streamline patterns

in Taylor vortices represented by Escudier et al. [22] and the spatiotemporal plots reported

by Cagney and Balabani [24] for different shear-thinning fluids, the Taylor vortex flow ob-

served can be considered as periodic with a wavenumber k close to the critical value kc. Here

we take k = kc and we concentrate on solutions that consist of this mode plus modes that

can be generated from it through the nonlinearity. A weakly nonlinear analysis based on

the amplitude expansion method is used as a first approach to study nonlinear effects. This

method was pioneered by Watson [25] and Stuart [26] who used such expansion to describe

the subcritical modes in plane Poiseuille flow below the linear instability threshold. Herbert

[27] and Sen & Venkateswarlu [28] improved Watson’s expansion method by making a defini-

tion of the disturbance amplitude clear. An other alternative is the multiple scales method.

Fujimura [29] demonstrated the complete equivalence between these two methods. Here, we

focus on the case of a wide gap with η = 0.4, where shear-thinning are more pronounced.

The case of a narrow gap is briefly discussed in the last section.

The article is organized as follows. In § 2, we formulate the physical problem, state the
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governing equations and define the dimensionless parameters. The velocity and viscosity

profiles of the base state are discussed and the perturbation equations are derived. Subse-

quently, the linear stability analysis is presented in section 3. In § 4, the main steps of the

weakly nonlinear analysis are outlined. The results are presented and discussed in § 5. The

contribution of the nonlinear viscous terms on the saturated coefficient at cubic order in the

amplitude equation is analysed. Departing from the onset, the weakly nonlinear analysis is

carried out up to seventh-order in the amplitude equation. The influence of shear-thinning

effects on the flow structure, the viscosity field and the torque applied on the inner cylinder

is highlighted. Finally, § 6 is devoted to a concluding discussion.

II. PHYSICAL AND MATHEMATICAL MODEL

II.1. Basic formulation

We consider the flow of an incompressible shear-thinning fluid between two coaxial cylin-

ders of inner and outer radii R̂1 and R̂2 respectively. The radius ratio is η = R̂1/R̂2. The

outer cylinder is at rest and the inner cylinder rotates with an angular velocity Ω̂1. The

cylinders are assumed to be infinite. The incompressibility condition and the momentum

equations read

divU = 0 (1)

∂tU +R (∇U) ·U = −∇P + div (τ ) , (2)

where U = Uer + V eθ +Wez is the velocity vector in cylindrical coordinates (r, θ, z), P a

generalized pressure which includes the effect of gravity, τ̂ the deviatoric extra-stress tensor,

and R is the Reynolds number:

R = ρ̂ Ω̂1R̂1d̂/µ̂0 . (3)

The quantities defined with a hat (̂.) are dimensional, while quantities without (̂.) are di-

mensionless. To scale these equations, we have followed Chossat & Iooss [30], with the aim

of maintaining some compatibility between the notations used here and those found in the

literature for Newtonian fluids. Lengths are scaled with the annular gap d̂ = R̂2 − R̂1.

Velocities are scaled with R̂1Ω̂1. Time is scaled with a viscous diffusion time ρ̂ d̂2/µ̂0, where

ρ̂ and µ̂0 are the density a characteristic viscosity of the fluid. The pressure and the devi-

atoric stress are scaled with µ̂0R̂1Ω̂1/d̂. To the previous equations, we add the no-slip and
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impermeability conditions at the walls,

U = W = 0, V = 1 at r = R1, (4)

U = V = W = 0 at r = R2, (5)

where R1 = η/(1− η) and R2 = 1/(1− η). The fluid is assumed to be purely viscous. The

constitutive equation reads:

τ = µ(R,Γ)γ̇ with γ̇ = ∇U + (∇U)T , (6)

where the second invariant of the strain-rate tensor is expressed as

Γ =
1

2
γ̇ : γ̇ =

1

2
γ̇ijγ̇ij . (7)

In Equation 7, the Einstein’s summation convention for repeated indices is used.

II.2. Carreau model

Although the equations derived here are valid for any nonlinear purely viscous fluid, for

numerical applications, a rheological model has to be chosen to describe the shear-thinning

behavior. We have chosen the Carreau model [31] because it has a sound theoretical basis

and is C∞ with respect to Γ, unlike the power-law model or Carreau-Yasuda model which

are singular at Γ = 0. The Carreau’s law reads [32]

µ̂− µ̂∞

µ̂0 − µ̂∞

=
(

1 + λ̂2Γ̂
)(nc−1)/2

, (8)

where µ̂0 and µ̂∞ are the dynamic viscosity at low and high shear rate, nc < 1 the shear-

thinning index and λ̂ the characteristic time of the fluid. The location of the transition from

the Newtonian plateau to the shear-thinning regime is determined by λ̂ since 1/λ̂ defines the

characteristic shear rate for the onset of shear-thinning. Increasing λ̂ reduces the Newtonian

plateau to lower shear rates. The infinite shear viscosity µ̂∞ is generally associated with

the breakdown of the fluid and is frequently significantly smaller, (103 − 104) times smaller

than µ̂0 see Bird et al [32] and Tanner [33]. The ratio µ̂∞/µ̂0 will be thus neglected in

the following. This leaves three rheological parameters: µ̂0, λ̂ and nc. The Newtonian

behavior, µ̂ = µ̂0 is recovered by setting nc = 1 or λ̂ = 0. It is interesting to note that

when the characteristic time λ̂ of the fluid is larger than the advection time
(

d̂/R̂1

)

Ω̂−1
1 ,

the Carreau model tends towards the power-law model µ̂ = K̂Γ̂(nc−1)/2 with a consistency
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K̂ = µ̂0λ̂
(nc−1)/2. Examples of the values of the Carreau parameters can be found in the

literature, particularly for solutions of xanthan gum, stiff-rode-like polymer [21, 34, 35].

Typically, the characteristic time of the fluid λ̂ is of order of seconds or tens of seconds and

the zero shear viscosity is of order 0.1 Pa.s or 10 Pa.s. The shear thinning index nc ∈ ]0, 1[.

In dimensionless form the Carreau’s law reads

µ (R,Γ) =
µ̂

µ̂0
=
[

1 + (λR)2 Γ
]

nc−1

2
with λ =

λ̂

ρ̂ d̂2/µ̂0

. (9)

II.3. Base flow

For sufficiently small Reynolds number, the circular Couette flow is a solution of the

system (1), (2), satisfying the boundary conditions (4) and (5). It is given by :

Ub = (0, Vb(r), 0) ,
d

dr

(

r2τrθb
)

= 0 with Vb(R1) = 1 and Vb(R2) = 0 , (10)

where,

τrθb = µb

(

dVb
dr

−
Vb
r

)

with µb = µ (R,Γb) =
[

1 + (λR)2 Γb

](nc−1)/2
. (11)

The system (10), (11) is solved numerically using an iterative process combined with a

polynomial Chebyshev approximation of the azimuthal velocity profile [15, 16]. One must

notice that contrarily to the Newtonian case, for a non-Newtonian fluid, the dimensionless

base flow Ub also depends on R. However, for the sake of simplicity, this dependence is left

implicit. Figure 1 shows the effect of the shear-thinning index on the velocity and viscosity

profiles at η = 0.4 and λR = 100. With increasing shear-thinning effects, the curvature of

the velocity profile becomes more pronounced. The shear rate increases at the inner wall

and decreases at the outer one. This results in a viscosity stratification within the gap. The

viscosity as well as the degree of viscosity stratification defined by dµb/dr increases from

the inner to the outer wall. For sufficiently strong shear-thinning effects, a thick layer of

the fluid with low shear-rate and large viscosity forms at the outer wall as shown by the

curve (4) in Fig. 1(b). In the figure 1(a), the velocity profiles are almost the same as those

obtained for a power-law fluid,

Vb(r) =
r

R1



1−

(

1

R
2/np

2

−
1

R
2/np

1

)−1(

1

r2/np
−

1

R
2/np

1

.

)



 (12)

It is the same for the viscosity profiles except for nc = 0.2 and η = 0.4, where a difference is

observed near the outer cylinder. Actually at η = 0.4, the numerical results show that there
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(a) (b)

FIG. 1: (Color online) Base flow for Carreau fluids at η = 0.4 and λR = 100. Influence of

shear-thinning index nc on the velocity (a) and viscosity (b) profiles. (1) nc = 1

(Newtonian fluid); (2) nc = 0.7; (3) nc = 0.5 and (4) nc = 0.2. Dashed line is the viscosity

profile for a power-law fluid with np = 0.2.

is no significant difference between Carreau and power-law velocity profiles when λR ≥ 10.

However, for the viscosity profiles a larger value of λR is needed to reduce the difference

observed near the outer cylinder, particularly for low values of nc.

II.4. Perturbation equations

The velocity U and the pressure P are splitted into the basic field (with the subscript b)

and the disturbance:

U = Ub + u and P = Pb + p . (13)

Substituting U and P by their expressions in (1) and (2) leads to

∇ · u = 0 , (14)

∂tu = −R [u ·∇u+Ub ·∇u+ u ·∇Ub]− (15)

∇p +∇ · (τ (Ub + u)− τ (Ub)) ,

where, τij (Ub + u) = µ (Ub + u) γ̇ij (Ub + u). The boundary conditions are:

u = 0 and ∂r(u · er) = 0 at r = R1, R2 . (16)
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The second condition arises from the continuity equation. For a small amplitude disturbance,

the viscosity of the perturbed flow can be expanded around the base flow as:

µ (Ub + u) = µb + µ1 (u) + µ2 (u,u) + µ3 (u, u, u) + ... , (17)

where,

µ1 (u) =

[

∂µ

∂γ̇ij

]

b

γ̇ij (u) , (18)

µ2 (u, u) =
1

2

[

∂2µ

∂γ̇ij∂γ̇kℓ

]

b

γ̇ij (u) γ̇kℓ (u) , (19)

µ3 (u, u, u) =
1

6

[

∂3µ

∂γ̇ij∂γ̇kℓ∂γ̇pq

]

b

γ̇ij (u) γ̇kℓ (u) γ̇pq (u) , (20)

The deviatoric stresses in the disturbed flow can also be written as

τij (Ub + u) = τij (Ub) + τ1,ij (u) + τ2,ij (u,u) + τ3,ij (u, u, u) + ... , (21)

with,

τ1,ij (u) = µbγ̇ij (u) + µ1 (u) γ̇ij(Ub) , (22)

τ2,ij (u, u) = µ2 (u ,u) γ̇ij (Ub) + µ1 (u) γ̇ij (u) , (23)

τ3,ij (u, u) = µ3 (u ,u ,u) γ̇ij (Ub) + µ2 (u, u) γ̇ij (u) . (24)

In the case of a circular Couette flow of a viscous fluid, we have γ̇bij = 0, if ij 6= rθ, θr and

γ̇brθ = DV b − V b/r, where D ≡ d/dr. Setting Γb =
(

γ̇brθ
)2

and Γ2 = (1/2)γ̇ij(u)γ̇ij(u), the

expressions of µ1, µ2 and µ3 can be simplified,

µ1 = 2

[

dµ

dΓ

]

b

γ̇brθγ̇rθ(u) , (25)

µ2 =

[

dµ

dΓ

]

b

Γ2 + 2

[

d2µ

dΓ2

]

b

Γbγ̇
2
rθ(u) , (26)

µ3 = 2

[

d2µ

dΓ2

]

b

γ̇brθγ̇rθ(u)Γ2 +
4

3

[

d3µ

dΓ3

]

b

(

γ̇brθ
)3
γ̇3rθ(u) . (27)

Replacing µ1, µ2, µ3 by their expressions (25)-27) into equations (22)-(24), we obtain

τ1,ij = µbγ̇ij(u) if ij 6= rθ, θr , (28)

τ1,rθ =

[

µb + 2

(

dµ

dΓ

)

b

(

γ̇brθ
)2
]

= µtγ̇rθ(u) , (29)

τ2,ij = µ1γ̇rθ(u) if ij 6= rθ, θr , (30)

τ2,rθ = µ2γ̇
b
rθ + µ1γ̇rθ(u) , (31)

τ3,ij = µ2γ̇rθ(u) if ij 6= rθ, θr , (32)

τ3,rθ = µ3γ̇
b
rθ + µ2γ̇rθ(u) . (33)
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In equation (29), µt is the tangent viscosity. For one dimensional shear flow with the velocity

Vb(r) in the azimuthal direction, the tangent viscosity is given by µt = (∂µ/∂γ̇rθ)b. Note

that for simplicity of writing, we preferred to write the viscosity as a function of Ub and u

rather than R,Γb and Γ2.

Here, we consider axisymmetric disturbances. For generalized Newtonian fluids and in the

case where the outer cylinder is fixed and the inner one is rotating, the numerical tests

performed by Alibenyahia et al [16] and Agbessi et al [15], for a large range of rheological

parameters, showed that the least stable mode is axisymmetric. In this case, the continuity

simplifies and is satisfied via introduction of a streamfunction ψ

u = −
1

r

∂ψ

∂z
and w =

1

r

∂

∂r
(ψ) . (34)

However, it is found that it is more convenient to work with φ =
ψ

r
in terms which

u = −
∂φ

∂z
and w =

1

r

∂

∂r
(rφ) (35)

Cross-differentiating r- and z- momentum equations and eliminating the pressure, we

obtain

∂Ω

∂t
= R

[

∂φ

∂z
DΩ−D∗φ

∂Ω

∂z
−

1

r

∂φ

∂z
Ω−

2

r
v
∂v

∂z
− 2

Vb
r

∂v

∂z

]

+ (36)

(

DD∗ −
∂2

∂z2

)

τrz +
∂

∂z

(

Dτzz −D∗τrr +
τθθ
r

)

∂v

∂t
= R

(

∂φ

∂z
D∗v −D∗φ

∂v

∂z
+
∂φ

∂z
D∗Vb

)

+
1

r2
D
(

r2τrθ
)

+
∂

∂z
τθz , (37)

where, D ≡
∂

∂r
, D∗ ≡ D +

1

r
and Ω =

(

DD∗ +
∂2

∂z2

)

φ the azimuthal vorticity.

III. LINEAR STABILITY ANALYSIS

The linearized version of the disturbance equations (36) and (37) is

∂Ω

∂t
= −2R

Vb
r

∂v

∂z
+

(

DD∗ −
∂2

∂z2

)

τ1,rz +
∂

∂z

(

Dτ1,zz −D∗τ1,rr +
τ1,θθ
r

)

, (38)

∂v

∂t
= R(D∗Vb)

∂φ

∂z
+

1

r2
D
(

r2τ1,rθ
)

+
∂

∂z
τ1,θz . (39)
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III.1. Direct mode

Using the invariance of equations (38), (39) (by translation along the axial direction,

reflection z → −z ), we seek the eigenmodes in the following form:

(φ, v) = (F11(r), V11(r)) exp (st+ ikz) , (40)

where k ∈ R, is the axial wavenumber and s = sr + isi a complex eigenvalue. Its real part

sr is the growth-rate of the disturbance and the imaginary part allows to define the axial

phase velocity. Substituting (40) into (38) and (39):

s
(

DD∗ − k2
)

F11 = −2ikR
Vb
r
V11 +

(

DD∗ − k2
) [

µb

(

DD∗ − k2
)

F11

]

+ (41)

2k2
(

D2µb

)

F11 ,

sV11 = ikR (D∗Vb)F11 +
1

r2
D

[

r2µt

(

DV11 −
V11
r

)]

− k2µbV11 , (42)

with

F11 = DF11 = V11 = 0 at r = R1, R2 . (43)

The set of differential equations (41) and (42) is an eigenvalue problem where s is an eigen-

value and X11 = (F11, V11) the eigenvector. It can be written formally as

sM ·X11 = L ·X11 . (44)

Since any multiple of the eigenvector X11 is also solution of (43), X11 can be normalized

such that

max(V11) = 1. (45)

The eigenvalue problem (44) with the boundary conditions (43) is solved using a spectral

collocation method based on Chebyshev polynomials evaluated at N+1 collocation points of

the Gauss-Lobatto method. The matrix eigenvalue problem that results is solved using QZ

algorithm with Matlab. To test the convergence of the numerical method, the computations

of the critical conditions are made with different spectral truncation N . It is observed that 40

collocation points provide sufficient accuracy for the rheological parameters considered here.

The results given in the paper are obtained with N = 50. Marginal stability curves are de-

termined for different rheological parameters (nc and λ). The minimum of these curves gives

the critical conditions Rc and kc. In Figure 2, normalized marginal stability curves, R/Rc vs

12
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FIG. 2: (Color online) Normalized marginal stability curves at η = 0.4 for a Newtonian

fluid (1) where Rc = 68.3, and kc = 3.183 and Carreau fluids: (2)

nc = 0.5, λ = 1, Rc = 16.57, kc = 3.487 ; (3) nc = 0.2, λ = 44, Rc = 2.282, kc = 8.355.

k/kc are shown for a Newtonian fluid and for Carreau fluids. It is interesting to observe that

the marginal stability curves flatten with increasing shear-thinning effects. The curvature

at threshold allows to define the coherence length of perturbations ξ0 =
1

2Rc

(

∂2R

∂k2

)

Rc,kc

.

To evaluate the second derivative, we have followed the methodology described in [36]. The

variation of ξ0 as a function of the shear-thinning index nc for different values of λ is shown

in figure 3. It can be observed that the coherence length of perturbations decreases with

decreasing nc. This effect is particularly significant for very low values of nc.

A second feature of shear-thinning effects is highlighted by eigenvalues spectra. They are

shown in Fig. 4 at the critical conditions with η = 0.4, for a Newtonian and a Carreau-fluid

with nc = 0.2 and λ = 44. The eigenvalues are real or complex conjugate [37]. However, the

first eigenvalue that crosses the real axis is always real in agreement with the principle of

stability exchange [37]. One can note that with increasing shear-thinning effects, the relax-

ation times of the eigenmodes become closer one to another. For instance, for a Newtonian

fluid at the critical conditions, the first eigenvalue is s1 = −8.0 × 10−6 and the second one

is s2 = −44.5 while for a Carreau fluid with nc = 0.2, λ = 44, we have s1 = −1.808 × 10−6

and s2 = −1.726. The variation of the critical Reynolds number as a function of the shear-

thinning index nc, at η = 0.4 is shown in figure 5(a) for different values of the dimensionless

characteristic time λ. With the definition (3) of R, the influence of shear-thinning appears

destabilizing. Opposite effects can be found by using a Reynolds number defined with the

viscosity µbw evaluated at the inner wall, Rw = R/µbw. The selection of the viscosity scale

may be considered a matter of choice, however the conclusion that one reaches by compar-
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FIG. 3: (Color online) Variation of characteristic length ξ0 as a function of the

shear-thinning index nc for different values of λ: λ = 1(⋆), λ = 10(△), λ = 100(◦).
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FIG. 4: (Color online) Eigenspectra for axisymmetric perturbations at critical conditions

with η = 0.4. (a) Newtonian fluid at Rc = 68.296, kc = 3.183. (b) Carreau fluid with

nc = 0.2, λ = 44 at Rc = 2.282, kc = 8.355 .

ing shear-thinning fluids among themselves and against Newtonian fluid can be radically

different from one choice to another. The influence of the rheological parameters nc and λ

on the axial wave number and therefore on the size of the Taylor vortices is represented in

figure 5(b). With increasing shear-thinning effects, the axial wavelength, 2π/kc decreases

significantly because of a strong viscosity stratification. As indicated in the analysis of the

base flow, for weak values of nc and large values of λ, a highly viscous fluid layer adjacent

to the outer wall is formed.

The structure of the critical eigenfunctions is depicted in figure 6 for λ = 44 and different

values of nc. Here V11(r) is a real-valued function, whereas F11(r) is purely imaginary. With
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FIG. 5: (Color online) Carreau fluid. (a) Variation of the critical Reynolds number as

function of shear-thinning index for different values of dimensionless constant time λ. (1)

λ = 0 (Newtonian fluid); (2) λ = 0.1; (3) λ = 0.2; (4) λ = 1; (5) λ = 2; (6) λ = 10; (7)

λ = 20; (8) λ = 40; (9) λ = 60; (10) λ = 100. (b) Variation of the critical axial

wave-number as function of shear-thinning index for different values of λ. (1) λ = 0

(Newtonian fluid); (2) λ = 0.2; (3) λ = 1; (4) λ = 2; (5) λ = 10; (6) λ = 100. The symbol

(◦) corresponds to a power-law fluid.

increasing shear-thinning effects, variations of F11(r) and V11(r) are mainly confined in a

thin layer adjacent to the inner cylinder where the viscosity is lower, and a large part of

the annular space is unaffected by the perturbation: the vortices are squeezed against the

inner wall. Furthermore, the eigenfunction and consequently the associated radial and axial

velocity components are strongly reduced.

Remarks

- The validity of our program has been tested by comparing our results to the ones of Chan-

drasekhar [38] for a Newtonian fluid at different radius ratios η. A very good agreement is

found as indicated by Tab. I (in Appendix A). For the Carreau model, the critical Reynolds

number can be recalculated in terms of the inner wall shear viscosity and compared with

the values given by Alibenyahia et al. [16]. Again, a very good agreement is found as shown

by Tab. II (Appendix A).

- The bifurcation from a stationary circular Couette flow to a stationary Taylor vortex

flow discussed above is not specific to Carreau model. Actually, the principle of exchange

of stability holds for any purely viscous non-Newtonian fluid, where the instability of the
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FIG. 6: (Color online) Critical eigenfunctions at η = 0.4, for Carreau fluids with λ = 44

and different values of the shear-thinning index: (1) nc = 1, Rc = 68.296; (2)

nc = 0.7, Rc = 10.301; (3) nc = 0.5, Rc = 4.702 and (4) nc = 0.2, Rc = 2.282.

circular Couette flow is inertial. Therefore, the oscillating mode observed for instance by

Crumeyrolle et al. [39] at the onset for some polymer solutions which are viscoelastic and

shear-thinning is a signature of the emergence of elastic effects.

III.1.1. Linear energy equation

The linear energy equation is derived by multiplying (41), (42) by r times the complex

conjugate (F ∗

11, V
∗

11)
T then integrating between the two cylinders. One obtains

Re(s)
〈

k2|F11|
2 + |V11|

2 + |D∗F11|
2
〉

= RJI − Jµb
+ Jµb−µt

, (46)

where 〈(.)〉 =

∫ R2

R1

(.)r dr, JI , Jµb
and Jµb−µt

denote inertial and viscous contributions to the

kinetic energy growth of the perturbation. They are defined by:

JI = −
〈

γ̇brθ (−ikcF11) V
∗

11

〉

, (47)

Jµb
=

〈

µb

[

1

2

(

|γ̇′θθ|
2
+ |γ̇′zz|

2
+ |γ̇′rr|

2
)

+ |γ̇′rz|
2
+ |γ̇′rθ|

2
+ |γ̇′θz|

2

]〉

, (48)

Jµb−µt
=
〈

(µb − µt) |γ̇
′

rθ|
2
〉

, (49)

with γ̇′ij = γ̇ij (u). At criticality, the transfer of energy from the base flow to the perturbation

R JI is exactly balanced by the viscous dissipation (Jµb
−Jµb−µt

). The decrease of the critical

Reynolds number with increasing shear-thinning effects means that

Rc =
Jµb

− Jµb−µt

JI
(50)
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FIG. 7: (Color online) Critical Reynolds number as a function of the shear-thinning index

for Carreau fluids at λ = 1, curves (2) and (2’) and λ = 100, curve (3) and (3’). In the

curves (2) and (3), the viscosity perturbation is taken into account. In the curves (2’) and

(3’), the viscosity perturbation is not taken into account. Curve (1) is represented as a

reference and corresponds to the Newtonian case.

decreases with increasing shear-thinning effects. The term Jµb−µt
originates in the viscosity

perturbation. It is positive definite and produces a reduction of the viscous dissipation and

thus a decrease of the critical Reynolds number. This decrease is quite modest as it is shown

by figure 7, where Rc is compared with that obtained when the viscosity perturbation is not

taken into account.

The numerical results show that JI and Jµb
decrease with increasing shear-thinning effects.

However, Jµb
decrease faster than JI . Thus Rc decreases with increasing shear-thinning

effects. The integrand of JI contains γ̇rθb and the quadratic product of the eigenfunctions.

The integrand of Jµb
contains µb, the quadratic product of the eigenfunctions and their first

derivatives. The eigenfunctions are normalized such that max (V11) = 1.

The variations of JI and Jµb
with shear-thinning effects, has to be due to change with nc

(for instance), in either γ̇rθb, µb or the eigenfunctions.

Figure 10(a) shows that the integrand of Jµb
decreases with increasing shear-thinning effects.

Figure 10(b) shows that the eigenfunctions contribute to increase the viscous dissipation.

Therefore the decrease of Jµb
is due to µb.

Analysis of figures 9(a) and 10(a), show that the eigenfunctions contribute to a decrease of

JI . The shear rate γ̇rθb attenuates this decrease and amplifies the transfer of energy from the
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FIG. 8: (Color online) Integrands of JI (a) and Jµb
(b) at critical conditions: (1)

Newtonian fluid; (2) Carreau fluid with nc = 0.7, λ = 1; (3) Carreau fluid with

nc = 0.2, λ = 1; (4 dashed line) Carreau fluid with nc = 0.2, λ = 10.
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FIG. 9: (Color online) Integrands of JI/γ̇rθb (a) and Jµb
/µb (b) at critical conditions: (1)

Newtonian fluid; (2) Carreau fluid with nc = 0.7, λ = 1; (3) Carreau fluid with

nc = 0.2, λ = 1 ; (4 dashed line) Carreau fluid with nc = 0.2, λ = 10.

base flow to perturbation. Consequently, it appears that changes in the eigenfunctions with

shear-thinning effects cannot be responsible for the decrease of Rc and the effect has to be

due to the change in the base flow: increase of the shear-rate and decrease of the viscosity

near the inner wall.
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FIG. 10: (Color online) Variation of the characteristic time of circular Couette flow

instability as function of the shear-thinning index for different values of the dimensionless

constant-time of the fluid. The radius ratio is η = 0.4.

III.2. Characteristic time

In the neighborhood of the critical conditions such that (R−Rc) /Rc = ǫ << 1, the

growth rate can be approximated using Taylor expansion

s =
ǫ

τ0
+O

(

ǫ2
)

, (51)

where τ0 is the characteristic time for the instability to grow. The determination of τ0

can be obtained by evaluating

(

ds

dǫ

)

ǫ=0

(s is calculated for different values of ǫ, around

ǫ = 0). Figure 10 shows for a Carreau fluid, the variation of τ0 as a function of the shear-

thinning index nc for different values of λ. The characteristic time for the instability to grow

increases significantly with λ, reaches a maximum at nc ≈ 0.3 then decreases slightly as nc

decreases. These results reveal that the onset of Taylor vortex flow is much more gradual

for a shear-thinning fluid than for a Newtonian fluid.

III.3. Adjoint mode

To the direct problem (44) is associated the adjoint problem

sM+ ·Xad = L+ ·Xad with Xad = (Fad, Vad) . (52)
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The adjoint operators M+ and L+ are defined by

〈Xad,M ·X〉 = 〈M+ ·Xad,X〉 and 〈Xad,L ·X〉 = 〈L+ ·Xad,X〉 , (53)

with the inner product between two vector functions f (r) and g(r),

〈f , g〉 =

∫ R2

R1

f∗ · g r dr , (54)

where f ∗ is the complex conjugate of f . The adjoint problem associated to (41), (42) is

s
(

DD∗ − k2
)

Fad = ikR
Vb
r
Vad +

(

DD∗ − k2
) [

µb

(

DD∗ − k2
)

Fad

]

+ (55)

2k2
(

D2µb

)

Fad ,

sVad = −2ikR (D∗Vb)Fad +
1

r2
D

[

r2µt

(

DVad −
Vad
r

)]

− k2µbVad , (56)

with

Fad = DFad = Vad = 0 at r = R1, R2. (57)

IV. WEAKLY NONLINEAR STABILITY ANALYSIS

IV.1. Principle and formulation

A weakly nonlinear analysis using the amplitude expansion method is used as a first

approach to investigate nonlinear effects. Near the bifurcation point, the dynamics are

assumed to be determined by the fundamental mode with wavenumber k = kc, its higher

harmonics generated by the the nonlinear self-interactions and the modification of the base

state due to the interactions with the complex conjugate. It is natural to write the nonlinear

perturbation as the Fourier series

[φ (r, z, t) , v (r, z, t)] =

+∞
∑

n=−∞

[φn (r, t) , vn (r, t)]E
n

with En = einkcz. (58)

The transient evolution of the perturbation is taken into account by the temporal evolution

of the Fourier coefficients φn and vn. Because φ and v are real, we have φ−n = φ∗

n and

v−n = v∗n, where the star denotes the complex conjugate. Substituting (58) into (36) and

(37) and separating out the coefficients of similar exponentials, we obtain a set of nonlinear

partial differential equations for the Fourier components φn and vn:

∂

∂t
Snφn = Sn [Sn (µbφn)]− 2inkRe

Vb
r
vn + [NI1]En + [NV 1]En , (59)

∂

∂t
vn = inkcRe (D∗Vb)φn +

1

r2
D
[

r2µt (Dvn − vn/r)
]

+ [NI2]En + [NV 2]En , (60)
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with

Sn = DD∗ − n2k2c , (61)

[NI]En and [NV ]En the coefficients of En in the nonlinear inertial and nonlinear viscous

terms respectively. The nonlinear viscous terms arise from the shear-thinning behavior.

As in references [25–28, 40, 41], the amplitude A(t) of the fundamental mode (φ1, v1) is

considered as small, therefore the Fourier components φn and vn can be sought using a

perturbation method expanding around the solution of the linear problem:

[φ1(r, t), v1(r, t)] = A(t) [F1(r, t), V1(r, t)] . (62)

The amplitude of the perturbation is defined by setting

A(t) = max(v1(r, t)) . (63)

It is clear that if the linear solution is O(A), the leading term of (φ2, v2) is O(A
2) because

of the interaction of the fundamental with itself. The same reasoning applied to higher

harmonics shows that (φn, vn) can be written as

[φn(r, t), vn(r, t)] = An(t) [Fn(r, t), Vn(r, t)] if n > 0, (64)

and

[φ0(r, t), v0(r, t)] = A2(t) [F0(r, t), V0(r, t)] . (65)

Substituting (64) and (65) into (59) and (60) and equating similar powers of A(t), leads to

the following set of equations for Fn and Vn
(

∂

∂t
+ ng

)

SnFn = Sn [Sn (µbFn)]− 2inkRe
Vb
r
Vn + [NI1]AnEn + [NV 1]AnEn , (66)

(

∂

∂t
+ ng

)

Vn = inkcRe (D∗Vb)Fn +
1

r2
D
[

r2µt (DVn − Vn/r)
]

+ [NI2]AnEn + [NV 2]AnEn .

(67)

The time evolution of the amplitude A(t) is given by the Stuart-Landau equation

g =
1

A

dA

dt
=
∑

m=0

gm |A|2m , (68)

where g0 = s is the linear eigenvalue, and gm with m > 1, the mth Landau coefficient. Since

Fn(Vn) is O(1) or O(A
2) as A→ 0, the nonlinearities generate terms in ascending power of

A2. Hence, Fn and Vn are expanded as follows

Fn(r, t) =

+∞
∑

m=0

Fn,2m+n(r)A
2m , Vn(r, t) =

+∞
∑

m=0

Vn,2m+n(r)A
2m. (69)
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Substituting (69) into (66) and (67) and using (68) yields the differential equations for

Fn,2m+n and Vn,2m+n,

L1nmFn,2m+n + L2nmVn,2m+n = [NI1]EnA2m+n + [NV 1]EnA2m+n

−
m
∑

j=1

[2(m− j) + n] gjSnFn,2(m−j)+n (70)

L3nmFn,2m+N + L4nmVn,2m+n = [NI2]EnA2m+n + [NV 2]EnA2m+n

−

m
∑

j=1

[2(m− j) + n] gjVn,2(m−j)+n , (71)

with

L1nm = (2m+ n) sSn − Sn (µbSn) , L2nm = −2inkcRVb/r , (72)

L3nm = −inkcR (D∗Vb) , L4nm = (2m+ n) s−
1

r2
D
[

r2µt (D − 1/r)
]

(73)

IV.2. Solution procedure

The system of differential equations (70) and (71) is solved sequentially beginning from

n = 1 and m = 0. The problem n = 1, m = 0 is the linear problem (41) and (42). The

problem n = 0, m = 1 yields the first correction to the base flow, the problem n = 2, m = 0

yields the second harmonic mode; n = 1, m = 1 yield the coefficient g1 of feedback on

the fundamental mode. More precisely, g1 is determined using the solvability condition to

the equation which gives the modification of the fundamental mode. For each (n,m), the

system of differential equations (70), (71) with the associated boundary conditions is solved

numerically using a spectral collocation method based on Chebyshev polynomials as in the

linear problem (41)-(43).

V. RESULTS AND DISCUSSION

V.1. Modification of the base flow

The interaction of the fundamental AF11, AV11 with its complex conjugate through the

nonlinear quadratic terms produces a correction of the basis state: A2F02 and A
2V02. Equa-

tions for F02 and V02 are obtained by setting n = 0 and m = 1 in (70)-(73). The factor of

A2E0 arising from the nonlinear inertial and nonlinear viscous terms in (70) vanish, therefore

F02 = 0 . (74)
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The modification of the base flow satisfies the following equation

1

r2
D

[

r3µtD

(

V02
r

)

− 2sV02

]

=−R

(

∂φ

∂z
D∗v −D∗φ

∂v

∂z

)

A2E0

(75)

−
1

r2
D
(

r2τ2,rθ
)

A2E0
,

with the boundary conditions

V02 = 0 at r = R1, R2 . (76)

In equation (75), (·)A2E0 means the coefficient of A2E0 in the nonlinear inertial or nonlinear

viscous terms. Figure 11 shows the modification of the base flow at order A2 for λ = 1 and

different values of nc. One notes that with increasing shear-thinning effects (decreasing nc),

V02(r) becomes more concentrated in the neighborhood of the inner cylinder because of the

viscosity stratification. Furthermore, the numerical results indicate that from λ = 1, there

is practically no influence of this parameter.

The profiles of V02 are related to the radial inflow and outflow jets. The radial inflow jet car-

ries fluid particles with low azimuthal momentum from the outer cylinder inward, decreasing

the azimuthal velocity near the inner cylinder. The radial outflow jet carries fluid particles

with high azimuthal momentum from the inner cylinder outward, increasing the azimuthal

velocity near the outer cylinder. This reorganization of the azimuthal flow tends to increase

|dV/dr| at the walls and to reduce |dV/dr| in the fluid interior. Note also that the deficit

of the azimuthal velocity near the inner cylinder is higher than the surplus near the outer

cylinder. Canceling artificially, the nonlinear viscous terms in (75) allows to highlight the

contribution of the nonlinear inertial terms and vice-versa, to highlight the contribution of

the nonlinear viscous terms on the modification of the base flow.

The contribution of the nonlinear viscous terms, which arise from the viscosity perturbation

is shown in Fig. 12(a). The azimuthal velocity is increased in practically all the annu-

lar space, and mainly near the inner cylinder for strong shear-thinning effects. This is a

consequence of the reduction of the viscous dissipation described by the term Jµb−µt
in

equation (49). The modification of the base flow by the nonlinear viscous terms is weaker,

but of the same magnitude order, than that induced by the nonlinear inertial terms shown

in figure 12(b). The difference between these two contributions decreases with increasing

shear-thinning effects.
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FIG. 11: (Color online) Modification of the base flow at η = 0.4, for Carreau fluids with

λ = 1 and different values of the shear-thinning index: (1) nc = 1 Newtonian fluid; (2)

nc = 0.7; (3) nc = 0.5 and (4) nc = 0.2.
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FIG. 12: (Color online) Modification of the base flow at η = 0.4, for Carreau fluids with

λ = 100 and different values of the shear-thinning index: (1) nc = 1; (2) nc = 0.7; (3)

nc = 0.5 and (4) nc = 0.2. (a) Contribution of nonlinear viscous terms; (b) contribution of

nonlinear inertial terms.

V.2. Second harmonic mode

Interaction of the fundamental (AF11, AV11) with itself through the quadratic nonlinear

terms in the perturbations equations (36), (37) generates the second harmonic, A2 (F22, V22).

Equations for F22 and V22 are obtained by setting n = 2, m = 0 in (70) and (71) and

extracting the factors of A2E2 in the nonlinear terms. At order n = 2, m = 0, equations
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FIG. 13: (Color online) Second harmonic mode at the critical conditions for

η = 0.4, λ = 10 and different values of the shear-thinning index: (1) nc = 1 Newtonian

case; (2) nc = 0.7; (3) nc = 0.5; (4) nc = 0.2. (a) Radial profile of Im(F22); (b) azimuthal

velocity V22.

(70) and (71) reduce to

L122F22 + L222V22 = [NI1]A2E2 + [NV 1]A2E2 , (77)

L322F22 + L422V22 = [NI2]A2E2 + [NV 2]A2E2 , . (78)

The boundary conditions read

F22 = DF22 = V22 = 0 at r = R1, R2 . (79)

Radial profiles of Im(F22) and V22 are shown in figure 13 for λ = 10 and different values of

nc. As for the fundamental mode, with increasing shear-thinning effects, the variations of

F22 and V22 are confined in a thin layer adjacent to the inner wall, i.e the second harmonic is

squeezed against the inner cylinder. Furthermore, with increasing shear-thinning effects the

maximum of the azimuthal velocity V22 is amplified, whereas the radial velocity is reduced.

V.3. Modification of the fundamental mode at cubic order: Cubic Landau con-

stant

The nonlinear interactions between the fundamental, the second harmonic and the modi-

fication of the base flow lead to a cubic correction O
(

A3
)

to the fundamental mode. The first

Landau coefficient g1 accounts for these nonlinear interactions on the fundamental mode.
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The modification of the fundamental mode at order A3 is governed by (70) and (71) with

m = n = 1, i.e.

L113F13 + L213V13 = [NI1]A3E1 + [NV 1]A3E1 − g1S1 F11 , (80)

L313F13 + L413V13 = [NI2]A3E1
+ [NV 2]A3E1 − g1V11 . (81)

The boundary conditions are

F13 = DF13 = V13 = 0 at r = R1, R2 . (82)

The system (80) and (81) can be written

L ·X13 = −g1M ·X11 +NI +NV with X13 = (F13, V13) . (83)

At the critical conditions, (83) has a non-trivial solution if the Fredholm solvability condition

is satisfied, i.e. orthogonality of the inhomogeneous part of (83) to the null-space of the

adjoint operator of L. The cubic Landau constant is then readily obtained,

g1 = gI1 + gV1 =
(

gI10 + gI12
)

+
(

gV10 + gV12 + gV1−11

)

, (84)

with

gI10 =
〈NI (X02|X11) ,Xad〉

〈M ·X11,Xad〉
, gV10 =

〈NV (X02|X11) ,Xad〉

〈M ·X11,Xad〉
(85)

gI12 =
〈NI (X22|X−11) ,Xad〉

〈M ·X11,Xad〉
, gV12 =

〈NV (X12|X−11) ,Xad〉

〈M ·X11,Xad〉
(86)

gV1−11 =
〈NV (X11,X11|X−11) ,Xad〉

〈M ·X11,Xad〉
, (87)

where X−11 = X∗

11, g
I
10 and gV10 are the feedback of the mean flow correction onto the

fundamental through the nonlinear inertial and nonlinear viscous terms respectively, gI12 is

the feedback of the second harmonic onto the fundamental, etc. The vertical bar notation

in (85)-(87) may be better defined through an example of a nonlinear term. For instance
(

D∗φ
∂v

∂z

)

(X22|X−11) → D∗F22(−ikV
∗

11) + D∗F
∗

11(2ikV22). The integrals in (85)-(87) are

evaluated by means of the Clenshaw and Curtis method. In figure 14(a), g1 is plotted as a

function of nc for different values of λ. The sign of g1 is negative indicating a supercritical

nature of the bifurcation. As expected for weakly shear-thinning effects, the contribution

of the nonlinear viscous terms gV1 , on the first Landau coefficient, play a minor role and
∣

∣gI1
∣

∣ >> gV1 . With increasing the shear-thinning effects (decreasing nc), the contribution of
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FIG. 14: (Color online) (a) Cubic Landau constant, g1, as a function of nc for different

values of the dimensionless constant time λ with η = 0.4. (b) Contribution of the

nonlinear inertial terms (−gI1) and nonlinear viscous terms gV1 at λ = 100.

the nonlinear inertial terms gI1 and nonlinear viscous terms gV1 become of the same order,

however |gI1| remains larger than gV1 , as shown in figure 14(b). Note that gV1 is positive, i.e.

nonlinear viscous terms favor a subcritical bifurcation. Contributions of the different terms

gI10, g
I
12, g

V
12 ... that control the value of g1 are given in Appendix B. The data show that

for a Newtonian fluid, g1 is dominated by the feedback of the base flow correction onto the

fundamental. With increasing shear-thinning effects, the feedback of the second harmonic

becomes more significant.

V.4. Features of the perturbation near the threshold

Besides the Landau coefficient, the amplitude of the perturbation A is an important

quantity in the nonlinear stability analysis. It is obtained by setting dA/dt = 0 in (68). In

the neighbourhood of the critical conditions, to lowest order in ǫ, the amplitude is

A =

√

−ǫ

τ0 g1
. (88)

The numerical values of the Landau coefficient and hence the values the perturbation am-

plitude A depend upon the normalization condition used for the eigenfunction in the linear

theory. However, the physical velocity components, i.e. the product of the amplitude with
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the eigenfunctions of the linear theory are independent of the normalization. For instance,

we can consider the mean kinetic energy of the perturbation or the torque applied on the

inner cylinder.

V.4.1. Mean kinetic energy

At order A2, the mean kinetic energy is defined by

ξ = A2

∫ R2

R1

(

k2c |F11|
2 + |V11|

2 + |D∗F11|
2) rdr . (89)

Figure 15(a) plots ξ as a function of ǫ for different values of the shear-thinning index nc. The

dimensionless constant time is fixed λ = 10. The curves are practically identically to those

obtained for a power-law fluid. As it can be observed the kinetic energy of the perturbation

decreases with increasing shear-thinning effects. Figure 15(b) shows that the azimuthal ki-

netic energy is much larger than the radial and axial ones. For instance at nc = 0.2, more

than 95% of the kinetic energy is concentrated on the azimuthal velocity.

The decrease of the kinetic energy with increasing shear-thinning effects is due to the vis-

cosity stratification. Indeed, with increasing shear-thinning effects, the Taylor vortices are

confined in the thin region near the inner wall where the viscosity is low (the perturbations

are suppressed in the highly viscous fluid at a short distance from the inner cylinder) and

their strength becomes weaker as shown in figure 6a.

V.4.2. Torque

The determination of the torque T̂ applied on the inner cylinder is of great interest. It

provides information about the energy dissipation since the energy injected in the fluid per

unit of time is obtained by multiplying the torque by the velocity of the inner cylinder.

Dubrulle [42] and Eckhardt [43] demonstrated that the dimensionless torque G = T̂ /2πρ̂ν̂2ĥ

where ν̂ is the kinematic viscosity and ĥ the height of the inner cylinder, is related to the

angular momentum flux. By analogy with the heat transfer in Rayleigh-Bénard convection,

the previous authors defined a pseudo-Nusselt number, Nu∗ for a Taylor Couette flow as the

ratio of G to the dimensionless torque of the laminar flow Gb. Hence, for a purely viscous

fluid,

Nu∗ =
G

Gb
=

∫ 2π/kc
0

(µγ̇rθ)r=R1
dz

(2π/kc) (µbγ̇rθb)r=R1

. (90)
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FIG. 15: (Color online) (a) Kinetic energy at order A2 for different values of the

shear-thinning index nc with λ = 10 and η = 0.4. (b) Ratio of azimuthal ξθ (curve 1),

radial ξr (curve 2) and axial ξz (curve 3) kinetic energy to the total kinetic energy ξ.

Using (17) and (28)-(33), Nu∗ can be written as

Nu∗ = 1 +

(

µt

µb

)

R1

∫ 2π/kc
0

(γ̇rθ)r=R1
dz

(γ̇rθb)r=R1

+

∫ 2π/kc
0

(µ1γ̇rθ + µ2γ̇rθb)r=R1
dz

(µbγ̇rθb)r=R1

+ ... (91)

In the laminar regime, the angular momentum flux is diffusive and Nu∗ = 1. In the TVF

regime, the pseudo-Nusselt number at order A2 is given by

Nu∗ = 1 + A2

(

µt

µb

)

R1

(

DV02
DVb

)

R1

+ 2
A2

(µb)r=R1

(

dµb

dΓb

)

R1

(

3 |DV11|
2 +

∣

∣D2F11

∣

∣

2
)

R1

+

4
A2

(µb)r=R1

(

d2µb

dΓ2
b

)

R1

|DV11|
2
R1

+O
(

A4
)

. (92)

Using (88), the pseudo-Nusselt number can be written formally as

Nu∗ = 1 +Kǫ . (93)

For a Newtonian fluid, the expression of the slope K reduces to

K = −
1

τ0g1

(DV02)R1

(DVb)R1

with DVb = −
2

η (1 + η)
(94)

In this case, the increase of the torque applied on the inner cylinder is due to the increase

of the inner wall shear rate of the mean flow, via the term (DV02)R1
. For non-Newtonian

shear-thinning fluids, there is an additional term arising from the viscosity perturbation
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FIG. 16: (Color online) Torque applied on the inner cylinder, at order A2, versus ǫ for

different values of the shear-thinning index nc with λ = 10.

as indicated by (92). Figure 16 shows the variation of Nu∗ with ǫ, for different values of

nc. The dimensionless constant time of the fluid is fixed at λ = 10. The pseudo-Nusselt

number decreases with increasing shear-thinning effects, in agreement with the decrease of

the kinetic energy of the perturbation. The intensity of the Taylor vortices diminishes and

thus the modification of the shear-rate at the inner wall is weaker. However, the analysis of

the different terms in equation (91) shows that for a strong shear-thinning fluid, the term

µ1γ̇rθ(u) plays a significant role in the reduction of Nu∗. This term called “non-Newtonian

Reynolds-stress” in [44] contributes to the reduction of the viscous dissipation.

V.5. Validation by computing higher-order Landau constants

Figures 15 and 16 indicate that the kinetic energy of the perturbation and the pseudo-

Nusselt number Nu∗ decrease with increasing shear-thinning effects. This result was ob-

tained by truncating the series (68) to the first Landau constant, at cubic order in A. For

a significant deviation from the critical condition, terms of higher order become large and

should be taken into account. A weakly nonlinear expansion was then carried out up to

seventh-order in amplitude. As in the Newtonian case, for shear-thinning fluids, the Landau

constants are of the same sign and increase very fast, i.e. A has to be very small to satisfy

the assumption of the weakly nonlinearity. This increase is stronger with increasing shear-

thinning effects as it is shown by the data in table V (Appendix C). The representation
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FIG. 17: (Color online) Influence of shear thinning effects on the pseudo-Nusselt number

at η = 0.4 and λ = 10. The symbols correspond to a power-law model for the same

shear-thinning index.

of the equilibrium amplitude versus ǫ at figure 27 (Appendix C), at the third-, fifth- and

seventh-order shows that the correction brought by adding a new term decreases.

Figure 17 shows the variation of the pseudo-Nusselt number as a function of ǫ for different

values of nc. As it can be observed, the decrease of Nu∗ with increasing shear-thinning

effects is confirmed at least for a reasonable distance from the critical conditions. Curves

for Carreau and power-law models are not distinguishable except for nc = 0.2. In this last

case, a higher value of λ is needed.

Similarly, the numerical results show that for a reasonable departure from the critical condi-

tions, the kinetic energy of the perturbation decreases with increasing shear-thinning effects

and it is mainly concentrated on the azimuthal velocity component.

Remarks

- Our results for Nu∗ are compared with those obtained experimentally by Donnelly & Si-

mon [45] for a Newtonian fluid with η = 0.5. A good agreement is found at least up to

ǫ = 0.5 as it is illustrated by Tab. III (Appendix A). With the exception of one point, the

relative difference is less than 1 %.

- For nc = 0.2 and 0.4, the curves Nu∗ versus ǫ are dashed when ǫ exceeds a particular

value say ǫ0. Actually, harmonics analysis done in §V.7 shows that for sufficiently strong

shear-thinning effects, the fourth harmonic overtakes the third one when ǫ > ǫ0, which may
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delimit the range of validity of the results.

- Departing sufficiently from the critical conditions, we can no longer assume s = 0 in the

equations that describe the modification of the fundamental mode. Hence, these equations

become unconditionally solvable. To calculate the Landau coefficients, an iterative process

was used as suggested by Sen & Venkateswarlu [28] (See also Bouteraa et al. [46] and

Bouteraa & Nouar [47]).

V.6. Description of the flow field

The change in the flow structure with increasing shear-thinning effects is described by

contours of stream function ψ, azimuthal vorticity and velocity components u, v and w.

Figure 18 shows isolines of constant ψ on one wavelength λz = 2π/kc (two cells), for Newto-

nian and Carreau fluids at a reduced Reynolds number ǫ = 0.1. Positive and negative values

of ψ correspond to anticlockwise and clockwise rotation. The vortices lose the symmetry

along the horizontal axis through the cell center. The eye of vortices is shifted towards upper

and lower cell boundaries, i.e. z/λz = 0 and 1. This effect is weak for a Newtonian fluid (fig-

ure 18(a) and becomes more pronounced with decreasing the shear-thinning index nc. This

axial shift of the vortex eye is coupled with the radial shift towards the inner cylinder due

to the viscosity stratification discussed in § II.3. The displacement of the vortex center in

the direction of higher shear-stress and lower viscosity leads to an increasing concentration

of vorticity near the inner wall at z/λz = 0 and 1 as it is shown in figure 19 where isolines

of contours of Ω are displayed for different rheological parameters. In contrast with the

build-up of vorticity near the inner cylinder and at the corners z = 0 and z = λz, the region

between the two cells, around z/λz = 0.5, which is practically void of vorticity increases in

area with increasing shear-thinning effects.

This build-up of the vorticity with increasing shear-thinning effects and the change in the

vortices can be related to the evolution of the radial flow from the inner to the outer cylinder

(outflow) at z/λz = 0 and z/λz = 1 and from the outer to the inner one (inflow), around

z/λz = 0.5. Figure 20 shows the radial velocity component at the vortex eye center, versus

z for Newtonian and Carreau fluids. It can be observed that the radial outflow is stronger

than the radial inflow.

The ratio ru between the intensity (max|u|) of the radial outflow and that the radial inflow,

increases with increasing shear-thinning effects. At ǫ = 0.1, ru increases from 1.6 for a New-
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FIG. 18: (Color online) Contours of streamfunction at ǫ = 0.1 for (a) Newtonian fluid,

with (ψmax = 2.2 10−2); (b) Carreau fluid with nc = 0.5, λ = 1 (ψmax = 1.05510−2); (c)

Carreau fluid with nc = 0.2, λ = 1, (ψmax = 2.082 10−3) ; (d) Carreau fluid with

nc = 0.2, λ = 10, (ψmax = 2.1 10−3). The increment between lines is ∆ψ = ψmax/10.

tonian fluid to 4.5 for a Carreau fluid with nc = 0.2 and λ = 10. The width of the radial

outflow zone decreases with decreasing nc and the region of inflow increases accordingly. For

instance, at ǫ = 0.1 and for a Carreau fluid with nc = 0.2 and λ = 10, the ratio between the

axial extent of radial outflow and that of inflow is practically 3, whereas for a Newtonian

fluid, the ratio is slightly larger than 1. With increasing Reynolds number R, the radial

outflow becomes stronger, increasingly jet-like, and the ratio ru between max|u| in outflow

and inflow increases. At ǫ = 0.3, ru ≈ 6.5 for a Carreau fluid with nc = 0.2, λ = 10, whereas

for a Newtonian fluid, ru ≈ 2.1.

Fluctuations in the radial inflow, observed with decreasing nc, might be related to the in-

fluence of harmonics discussed in the Section V.7.

The change of the flow with increasing shear-thinning effects is also shown from consid-

eration of the azimuthal velocity distribution. Contours of v are displayed in figure 22 for

Newtonian and Carreau fluids at ǫ = 0.1. Positive azimuthal streaks evolve in the outflow

region, z/λz = 0 and 1, where high azimuthal momentum fluid is carried outward from

near the inner cylinder. Similarly, negative azimuthal streak evolves in the inflow region,
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FIG. 19: (Color online) Contours of vorticity for (a) Newtonian fluid, nc = 1, with

Ωmax = 1.121; (b) Carreau fluid with nc = 0.5, λ = 1, Ωmax = 1.625; (c) Carreau fluid

with nc = 0.2, λ = 1, Ωmax = 3.965; (d) Carreau fluid with nc = 0.2, λ = 10,

Ωmax = 4.199. The increment between lines is ∆Ω = Ωmax/10.

z/λz = 0.5, where low azimuthal momentum fluid is carried inward from near the outer

cylinder. With increasing shear-thinning effects, contours lines of v are more concentrated

in the vicinity of the inner cylinder, and the positive azimuthal streaks of narrow width are

separated by a negative streak of a large extent. The evolution of the positive and negative

azimuthal streaks with increasing Reynolds number is illustrated by plotting in figure 23

the axial profile of v at a fixed radial position (center of patterns) and different values of ǫ.

The positive azimuthal streak increases strongly with ǫ and shear-thinning effects, whereas

v varies relatively little in the inflow region. This asymmetry between the inflow and the

outflow can be described in terms of local Reynolds number defined with the local azimuthal

velocity and the local viscosity.

The influence of shear thinning effects on the flow structure is also illustrated by contours

of the axial component of the velocity w, represented in the figure 24. With increasing the

shear-thinning behavior, the maximum of w is shifted radially towards the inner cylinder

and axially towards the outflow boundaries z/λz = 0 and 1. Hence, in a very thin region
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FIG. 20: (Color online) Radial component of velocity versus z at a fixed radial position

corresponding to the vortex eye center. (a) Newtonian fluid; (b) Carreau fluid with

nc = 0.5, λ = 1; (c) Carreau fluid with nc = 0.2, λ = 1; (d) Carreau fluid with nc = 0.2,

λ = 10. (1) R = 1.1Rc, (2) R = 1.2Rc , (3) R = 1.3Rc

across the outflow boundary, w changes from positive extremum to negative extremum and

vice versa.

The change in the flow structure with R and shear-thinning effects modifies the second

invariant Γ of strain-rate tensor γ̇ and therefore the viscosity. Analysis of the different com-

ponents γ̇ij show that Γ is dominated by the term (γ̇rθ(Ub+u))2 ≈ (γ̇brθ)
2+2γ̇brθγ̇rθ. In the

outflow region, according to the contours of the azimuthal velocity (22), ˙γrθ(u) is positive

and maximum at the inner cylinder (Γ < Γb), then decreases, vanishes (Γ = Γb) around the
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FIG. 21: (Color online) Contours of radial velocity component at ǫ = 0.1 for (a) Newtonian

fluid, umax = 0.077, umin = −0.049 ; (b) Carreau fluid with nc = 0.5, λ = 1, umax = 0.057,

umin = −0.021 ; (c) Carreau fluid with nc = 0.2, λ = 1, umax = 0.0466, umin ≈ −0.012;

(d) Carreau fluid with nc = 0.2, λ = 10, umax = 0.046, umin = −0.012. The increment

between lines is ∆u = umax/10 for positive values and ∆u = umin/10 for negative values.

center of the pattern, and becomes negative (Γ > Γb). Similar description can be done for

the inflow region, but with opposite signs. This variation of Γ explains the shape of the

viscosity contours (Figure 25). For sufficiently strong shear-thinning effects, the vortices are

confined near the inner cylinder with a quite large fluid layer adjacent to the outer cylinder

where the perturbation is practically inexistent. In this case, the viscosity contours remain

straight lines near the outer cylinder as it is shown by figure 25 (b) where the viscosity

contours are represented at ǫ = 0.1 for a Carreau fluid with nc = 0.2 and λ = 10.

V.7. Harmonics

Nonlinearities of inertial and viscous terms generate spatial harmonics (in the axial direc-

tion) of the fundamental mode. From equations (58), (64), (65) and (69), the flow variables
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FIG. 22: (Color online) Contours of azimuthal velocity v at ǫ = 0.1 for (a) Newtonian

fluid, vmax ≈ 0.1, vmin ≈ −0.12; (b) Carreau fluid with nc = 0.5, λ = 1, vmax = 0.11,

vmin ≈ −0.093; (c) Carreau fluid with nc = 0.2, λ = 1, vmax ≈ 0.225, vmin ≈ −0.12; (d)

Carreau fluid with nc = 0.2, λ = 10. The increment between lines is ∆ v = vmax/10 for

positive values and ∆ v = vmin/10 for negative values .

(u, v, w) can be written as sum of Fourier components. For instance for v:

v(r, z) = v0(r) +

∞
∑

n=1

vn cosnkcz (95)

with

v0 =

∞
∑

m=0

A2mV0,2m and vn = 2

∞
∑

m=0

A2m+n Vn,2m+n. (96)

The amplitude A is the stationary solution of the amplitude equation (68). The form of the

u-component is similar to v except that v0 is omitted. The w-component is like u except

that the z-dependency is in sinnkcz. In order to describe the growth of harmonics with

Reynolds number, the Fourier amplitude vn in (95) are averaged over the gap width, as in

[48] and [6],

vn =
1

R2 − R1

∫ R2

R1

vn(r)rdr. (97)
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FIG. 23: (Color online) Azimuthal component of velocity versus z at fixed radial position

(center of pattern) and different Reynolds number. (a) n = 1 Newtonian fluid, (b)

Carreau fluid with nc = 0.5, λ = 1, (c) Carreau fluid with nc = 0.2, λ = 1, (d) Carreau

fluid with nc = 0.2, λ = 10. (1) R = 1.1Rc, (2)R = 1.2Rc, (3) R = 1.3Rc

We recall that v0 corresponds to the modification of the base flow, v1 to the distorted

fundamental mode, v2 to the second harmonic, etc ... In Figure 26, we have represented,

the growth of the averaged Fourier amplitudes as the Reynolds number is increased, for

Newtonian and shear-thinning fluids. The initial amplification of the fundamental mode

n = 1 is stronger for a Newtonian fluid than for a shear-thinning fluid. At ǫ = 0.3,

u1(Newtonian fluid) ≈ 10 × u1(shear-thinning fluid). The zeroth-mode becomes more sig-

nificant as the Reynolds number is raised. For example, at ǫ = 0.3, v0 = 0.77 × v1 for a
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FIG. 24: (Color online) Contour of axial velocity component w at ǫ = 0.1 for (a)

Newtonian fluid, wmax = 0.082 ; (b) Carreau fluid with nc = 0.5, λ = 1, wmax = 0.063 ;

(c) Carreau fluid with nc = 0.2, λ = 1, wmax = 0.05 , (d) Carreau fluid with nc = 0.2,

λ = 10, wmax = 0.048. The increment between lines is ∆w = wmax/10 for positives values

and ∆w = −wmax/10 for negative values.

Newtonian fluid and v0 = 0.84×v1 for the shear-thinning fluid. Higher harmonics, n = 2, 3, 4

grow faster with Reynolds number for shear-thinning fluids than for a Newtonian fluid. Note

also in figure 26 (d) that for sufficiently strong shear-thinning behavior, the harmonic num-

bered (4) may overtake the harmonic numbered (3).

All in all, nonlinearities of the viscous terms combined with that of the inertial terms lead

to a stronger amplification of higher harmonics.

VI. CONCLUSION

Taylor-vortex flow (TVF) regime in shear-thinning fluids is considered in the present

work. We focused mainly on the wide gap configuration. The fluid is assumed purely

viscous. Compared to the Newtonian case, an additional nonlinearity appears in the mo-

mentum equations, via the rheological law. This additional nonlinearity is more complex

than the quadratic nonlinear inertial terms. A weakly nonlinear analysis is used as a first
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FIG. 25: (Color online) (a)Viscosity contours at ǫ = 0.1 for: Carreau fluid with

nc = 0.5, λ = 1, µmax = 0.63, µmin = 0.094, the increment between lines is ∆µ = 0.015.

(b) Carreau fluid with nc = 0.2, λ = 10, µmin = 0.0046, µmax = 0.86, the increment

between lines is ∆µ = 0.02.

approach to take into account nonlinear effects. The amplitude expansion Landau-Stuart

method is adopted. The Carreau model is used as a typical rheological model.

As a first step, the critical Reynolds number, Rc, for the onset of Taylor vortices was deter-

mined for a large range of rheological parameters. It is shown that, Rc defined with the zero

shear viscosity decreases with increasing shear-thinning effects. This is the consequence of

the increase of the shear-rate and decrease of the viscosity near the inner wall. Furthermore,

the characteristic time for the growth of the vortices increases significantly with increasing

shear-thinning effects. Computation of the first Landau coefficient g1, indicates that it is

dominated by the feedback of the base flow correction onto the fundamental mode, when

the Newtonian fluid is considered. For a shear-thinning fluids, the feedback of the first

harmonic becomes more and more significant as the shear-thinning index decreases. The

kinetic energy ξ of the fundamental mode was determined. It is shown that ξ decreases with

increasing shear-thinning effects and more than 90 % of ξ is concentrated on the azimuthal
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FIG. 26: (Color online) Evolution of the harmonics (averaged over a width gap) as a

function of the reduced Reynolds number for a Newtonian fluid, frame (a) and (c) and a

Carreau fluid, frame (b) and (d), with nc = 0.2, λ = 10.

component.

Detailed analysis of the flow structure in the TVF regime at moderate distance from

the onset was obtained by considering amplitude equation at seventh-order. It is shown

that with increasing shear-thinning effects, Taylor vortices are squeezed against the inner

cylinder and the center of the patterns are axially shifted towards the outflow boundaries

(z = 0, z/λz = 1). Associated with this shift of the patterns is the increasing concentration

of vorticity at these positions. Furthermore, the outflow becomes more stronger than the

inflow and the area of the inflow increases accordingly. Positive azimuthal streaks induced
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by the radial outflow is more and more significant. Whereas, the negative azimuthal streak

is weak and occupies a large region. The change in the flow structure modifies the viscosity

field. The numerical results show that this modification is mainly related to the variation

of the shear-rate γ̇rθ(Ub + u). The pseudo-Nusselt number Nu∗ is another feature of the

flow structure. It is found that Nu∗ decreases with increasing shear-thinning effects. Besides

this, analysis of the Fourier coefficients shows that even at moderate distance from the onset,

higher harmonics become more relevant comparatively to the Newtonian case.

Additional computations were performed for a narrow gap configuration. In this case, the

azimuthal velocity profiles of the base flow get close to the linear profile, the viscosity

stratification is weak and the range of R where the TVF regime is stable is quite limited.

According to Coles [49] and Jones [5], for η ≥ 0.9, transition to wavy vortex flow is observed

at R ≈ 1.2Rc (ǫ = 0.2). Some results are reported in Appendix D for radius ratio η = 0.9.

For strong shear-thinning effects, the marginal stability curve flattens and the coherence

length of the perturbation decreases significantly. In this case, modes of different wavenum-

bers (delimited by the Eckhaus boundary) exist close to the onset of the primary bifurcation.

These modes may interact with each other leading to a secondary bifurcation with a more

complex dynamic. The interaction of modes of different wavenumber limits the range of

validity of the weakly nonlinear analysis. Nevertheless, we think that the modifications of

the flow structure described in this study plays a fundamental role in triggering an eventual

secondary bifurcation. To understand the interaction between different modes, a fully non-

linear method based on the numerical continuation can be used [50]. This approach could

be useful to clarify the influence of shear-thinning on the coupling between the fundamen-

tal mode and the second harmonic observed experimentally by Crumeyrolle et al. [51] for

semi-dilute aqueous solutions of high molecular weight polyethylenoxide.
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Appendix A: Validation

Radius ratio η Chandrasekhar [38] (Rc) Our results (Rc)

η = 0.975 260.9476 260.9496

η = 0.950 184.98 184.99

η = 0.925 151.48 151.4772

η = 0.900 131.6131 131.6145

η = 0.875 118.157 118.1571

η = 0.850 108.3119 108.3131

η = 0.750 85.7764 85.7765

η = 0.650 74.9622 74.9623

η = 0.500 68.1862 68.1863

TABLE I: Newtonian fluid. Critical Reynolds number at different radius ratios.

Comparison with Chandrasekhar’s results [38]

.

Rheological parameters Alibenyahia et al. [16] (Rc)/µw Our results (Rc)/µw

n = 0.7, λ = 20 260.9476 260.9496

n = 0.5, λ = 20 184.98 184.99

n = 0.3, λ = 20 151.48 151.4772

TABLE II: Carreau fluid. Critical Reynolds number defined with the inner wall shear

viscosity. Comparison with Alibenyahia et al. [16]

.

Appendix B: Contribution of nonlinear inertial and nonlinear viscous terms

The feedback of the mean flow correction and that of the first harmonic on the funda-

mental mode through the nonlinear inertial and nonlinear viscous terms are given in table

IV for λ = 10 and different values of the shear-thinning index nc.
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R Nu∗ Our results Nu∗ Donnelly & Simon [45]

69.1 1.012422 1.016190

70.2 1.027175 1.024306

73.0 1.063204 1.053082

75.3 1.090811 1.076942

78.8 1.129259 1.111199

85.1 1.188594 1.167744

94.8 1.260240 1.246044

107.0 1.326927 1.279206

121.0 1.383261 1.394628

TABLE III: Newtonian fluid. Variation of the Pseudo-Nusselt number Nu∗ versus

Reynolds number at η = 0.5. Comparison between our results and those obtained

experimentally by Donnelly & Simon [45]

nc g1 gI10 gV10 gI12 gV12 gV1−11

0.2 -38.235 -29.561 6.721 -28.098 25.534 -12.831

0.3 -53.698 -33.737 5.724 -42.354 26.268 -9.598

0.4 -76.801 -45.024 3.527 -52.555 24.690 -7.438

0.5 -108.301 -65.101 9.766 -60.968 22.549 -5.758

0.6 -151.688 -95.215 -1.276 -71.688 20.446 -3.956

0.7 -214.583 -140.846 -3.006 -86.899 18.018 -1.849

0.8 -315.127 -215.481 -4.105 -110.776 14.775 4.592

0.9 -496.243 -351.458 -3.970 -152.723 9.693 2.216

1.0 -867.033 -632.705 0.000 -234.329 0.000 0.000

TABLE IV: Cubic Landau constant and contributions of nonlinear inertial and nonlinear

viscous terms at the critical conditions

Appendix C: Landau constants

The Landau coefficients g1, g2, g3 are given in table V for λ = 10 and different values of

the shear-thinning index.
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nc g1 g2 g3

0.2 -38.217 -11496.709 -2411946.180

0.3 -53.698 -16939.108 -5604408.660

0.4 -76.647 -21517.202 -8480701.020

0.5 -108.271 -25742.819 -10761822.517

0.6 -151.684 -31643.773 -13182598.598

0.7 -214.583 -33736.107 -12116764.641

0.8 -315.127 -38383.606 -11625135.458

0.9 -496.243 -48609.312 -12000787.340

1.0 -867.033 -62111.466 -12310212.318

TABLE V: Landau constants at the critical conditions for different values of the

shear-thinning index
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0

0.005

0.01

0.015

FIG. 27: (Color online) Evolution of the amplitude A versus ǫ = (R−Rc) /Rc for a

shear-thinning fluid with nc = 0.5, λ = 10, at cubic, fifth and seventh-order in the

amplitude expansion.

Appendix D: Flow structure and viscosity field for η = 0.9

In the figure 28 we have represented contours of the stream function, the vorticity and

the viscosity distribution at ǫ = 0.1, for a Carreau fluid with nc = 0.2 and λ = 10.
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FIG. 28: (Color online) Narrow gap, η = 0.9. Flow field structure for a Newtonian fluid

and a Carreau fluid with nc = 0.2, λ = 10. (a) Contours of the stream function for a

Newtonian fluid, ψmax = 0.12, ∆ψ = ψmax/10. (b) Contours of the stream function for the

Carreau fluid,ψmax = 0.072, ∆ψ = ψmax/10 . (c) Contours of vorticity for a Carreau fluid,

Ωmax = 0.35, ∆Ω = Ωmax/10. (d), Contours of the viscosity for the Carreau fluid,

µmax = 0.0843, µmin = 0.02, ∆µ = 0.004.
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