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Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Département de Physique,
F-69342 Lyon, France

(Dated: 13 December 2019)

The magnetic cannon is a simple device that converts magnetic energy into kinetic energy: when a steel ball
with low initial velocity impacts a chain made of a magnet followed by a few other steel balls, the last ball of
the chain is ejected at a much larger velocity. The analysis of this spectacular device involves understanding
of advanced magnetostatics, energy conversion and collision of solids. In this article, the phenomena at each
step of the process are modeled to predict the final kinetic energy of the ejected ball as a function of a few
parameters which can all be experimentally measured.

I. INTRODUCTION

A. What is a magnetic cannon?

The magnetic cannon, sometimes referred to as the
Gauss rifle is a simple device that accelerates a steel ball
through conversion of magnetic energy into kinetic en-
ergy1–4. The energy conversion at work is reminiscent of
other electromagnetism-based accelerating device, such
as rail-guns5. Figure 1 shows a time sequence (from top
to bottom) of a typical setup where a line of four balls
(the first one being a permanent magnet) is resting on a
rail. When an additional ball approaches from the left
with a low initial velocity, it experiences an attractive
magnetic force from the magnet, collides with the mag-
net, and the final ball on the right is ejected at high
velocity. Note that, to highlight the various sequences
in Figure 1, frame-times are not equi-spaced. The video
from which these frames have been extracted is provided
as a supplementary material. To understand the physics
of the Gauss rifle, the process may be divided into three
phases: (i) acceleration of the ferromagnetic steel ball
in the magnetic field created by the magnet (frames I
to III in Figure 1), (ii) momentum propagation into the
chain of steel balls which is similar to the propagation in
the Newton’s cradle (frame IV), (iii) ejection of the final
ball escaping the residual magnetic attraction (frames V
and VI). While Figure 1 highlights a specific example,
we will focus on the more general case described in Fig-
ure 2, where the initial chain is formed of n steel balls
in front of the magnet and m balls behind (each ball of
mass M having a radius R). The magnet is a strong Nd-
FeB permanent magnet which is maintained on the rail,
strongly enough to prevent the chain from moving in the
leftward direction in the acceleration phase, but loosely
enough to allow momentum propagation in the chain (a
patch of putty can be observed in Figure 1). Note that
the dipolar axis of the magnet is spontaneously aligned
with the axis of the steel ball chain to minimize potential
energy.
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FIG. 1. Time sequence (from top to bottom) showing accel-
eration in the magnetic cannon. A line of three steel balls
initially stuck to the right of a strong permanent magnet,
loosely fixed on a rail, is impacted by a steel ball coming from
the left hand side and accelerated in the magnetic field of the
magnet. Momentum is transferred into the chain and the last
ball on the right is ejected at high velocity. Images from a
2048x360 pixel film acquired at 400 frames per second.

The acceleration phase is governed by the magnetic
field created by the magnet6,7 and the magnetization of
the impacting steel ball. The determination of the mag-
netization of the incoming ferromagnetic steel ball differs
from classical problems in which material (dia- or para-
magnetic balls8) or geometry (large sample of ferromag-
netic materials9–11) are different from ours. The gain of
magnetic energy during the acceleration phase is called
Un to indicate the dependence on the number of balls
screening the magnetic field of the magnet. Part of this
energy is converted into kinetic energy, which will add
up to the initial kinetic energy of the incoming ball Kinit,
resulting in an impacting kinetic energy Kimpact. The en-
ergy transfer in the chain is reminiscent of the Newton’s
cradle12,13, governed by Hertzian contact forces involv-
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FIG. 2. Schematic of the sequences described in Figure 1
and associated kinetic K and (potential) magnetic U ener-
gies. Red arrows represent conversion between magnetic en-
ergy and kinetic energy.

ing dissipation14 in an inhomogeneous chain containing
a magnet. Part of the impacting energy is transmitted
through the chain, resulting in a kinetic energy Keject.
Finally, in the expulsion phase, the final kinetic energy
of the ejected ball Kfinal is given by the energy transmit-
ted through the chain decreased by the energy required
to escape the residual magnetic attraction on the right-
hand side of the chain, Um−1. The goal of the present
article is to relate Kfinal to Kinit and the parameters of
the system. Note that the energy conversion process at
lead in this problem is not in contradiction with the fact
that magnetic field do not work on charged particles (the
Lorentz force being perpendicular to the charged par-
ticles velocity). The analysis of a situation similar to
the one investigated here is discussed in details in Grif-
fiths’s textbook15; interested readers could also refer to
the discussion about magnetic energy provided in Jack-
son’s textbook16 (p. 224 and following) All effects related
to the conversion of magnetic energy into kinetic energy
are studied in section II. The transmission of kinetic en-
ergy through the chain is then detailed in section III.
Finally, parameters influencing the global energy conver-
sion of the system and the understanding of a succession
of Gauss rifles are discussed in section IV.

B. International Physicists Tournament

The work presented here was done in preparation
for the International Physicists Tournament (http://
iptnet.info/), a world-wide competition for undergrad-
uate students. Each national team is composed of six
students who work throughout the academic year on a
list of seventeen open questions and present their find-
ings during the tournament.

Unlike the typical physics exam, the problems must not
only be presented, but also challenged and reviewed by
the other participants allowing students to respectively
assume the roles of researchers, referees and editors. In

addition to the challenge that the tournament represents,
it provides students with an exciting and eye-opening ex-
perience in which they learn how to design experiments
with the aim of solving physics problems, and to con-
structively criticize scientific solutions.

The authors would highly recommend participation in
the IPT as a rare learning opportunity for undergraduate
students.

C. What students can learn from this problem

At introductory physics level, this experiment could be
used to foster student’s motivation while working on an
open problem involving energy conservation. In a more
classical laboratory work, students could reinvest their
knowledge on magnetism to find out whether the incom-
ing steel ball is to be considered as a permanent or an
induced magnet through magnetic force and magnetic
field measurements. At graduate level, the question of
the dependence of the final velocity on some of the pa-
rameters of the system might lead to a few days exper-
imental project work in which knowledge on mechanics,
magnetism and non linear physics can be reused.

II. FROM MAGNETIC ENERGY TO KINETIC ENERGY

In this section we investigate the conversion of mag-
netic energy Un into kinetic energy in the acceleration
phase, as well as the symmetric problem of the decrease
of kinetic energy by Um−1 in the ejection phase. Direct
measurement of the spatial dependence of the magnetic
force exerted by the magnet on the incoming (ejected)
ball and of the magnetic field are in agreement with a
permanent dipole/induced dipole modeling.

A. Force exerted by the chain on a steel ball: a
permanent/induced dipole interaction

Let us first focus on the direct measurement of the
magnetic force exerted on the steel ball. Its spatial evo-
lution is measured using a weighing scale mounted as a
Newton-meter, as sketched in Figure 3. A steel ball is at-
tached to a heavy plastic block resting on the scale below
the magnetic cannon chain. The steel ball attached to the
scale is subject to its weight in the downward direction
and to a magnetic force in the upward direction. The evo-
lution of the force exerted by the magnet as a function of
the distance d between the center of the ball attached to
the scale and the center of the magnet, derived from the
apparent mass, is displayed in Figure 3. We observe that
in the presence of one or two steel balls in front of the
magnet, the force is screened but is nonetheless larger
than it would have been with a chain of non-magnetic
balls, since the ferromagnetic balls channel the magnetic
field. A second observation, not illustrated here, is that

http://iptnet.info/
http://iptnet.info/


3

the number of balls behind the magnet has no noticeable
influence on the force exerted on the opposite side.
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FIG. 3. Force measurement setup and spatial evolution of the
magnetic force experienced by the steel ball attached to the
scale as a function of the number n of steel ball in front of the
magnet.

We will now establish the relation between this mag-
netic force and the magnetic field created by the magnet,
in a way similar to that developed by Jackson17, and
show that the permanent/induced dipole assumption is
accurate. The evolution of the intensity of the field along
the magnet’s axis as a function of the distance d from its
center is shown in Figure 4. The magnetic field inten-
sity was measured using a Bell 7030 Gaussmeter but this
could also be achieved using cheap and easy to implement
integrated electronic devices? . This evolution scales as
d−3 as expected for a dipolar magnetic field. The mag-
netic field outside a uniformly magnetized sphere being
exactly that of a point dipoleat the center of the sphere16,
this scaling remains valid arbitrarily close to the magnet
surface and the dipole strength of the magnet, M0, can
be determined according to

B(d) =
µ0M0

2πd3
(1)

where µ0 is the vacuum magnetic permeability. The best
fits according to Equation 1 up to d ∼ 0.2m are shown
as full black lines in Figure 4 and lead to M0 = 3.64 ±
0.1 Am2.

The origin of the magnetic force experienced by the
ferromagnetic steel ball lies in the interaction of the mag-
netic field created by the magnet and the magnetization
of the steel ball. Assuming that the steel ball has an
induced magnetic moment mball(d), the force reads

FM(d) = −∇ (mball(d) ·B(d)) (2)

Equation 2 clearly shows a dependence on the magne-
tization properties of the steel ball. If mball(d) is con-
stant and independent of d (i.e. the steel is at satura-
tion), FM(d) is expected to scale as d−4 as for an inter-
action between permanent dipoles6. On the other hand,
if mball(d) ∝ B(d), FM(d) is expected to scale as d−7

as for an interaction between a permanent dipole and an
induced dipole.
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FIG. 4. Spatial evolution of the magnetic field created by the
magnet - the inset shows B−1/3(d) - and associated dipolar
best fits (black lines).

The experimental data presented in Figure 3 are dis-
played in logarithmic scales in Figure 5 and are consistent
with a d−7 scaling when n = 0. This justifies the hypoth-
esis of an induced magnetization proportional to the mag-
netic field, or equivalently a permanent/induced dipole
interaction. A precise computation of the ball magneti-
zation is a rather difficult task, since the field is highly
inhomogeneous over the ball volume and the (unknown)
magnetic permeability of the steel is expected to play a
leading role. However, we will show in the following that
a simple model correctly describes our experimental data.
Let us first recall a classical result of magnetostatics (re-
fer to p. 199 in textbook16) which gives the magnetic
moment of a sphere of relative magnetic permeability µr
immersed in a constant and homogeneous magnetic field
B0 as

mball =
4πR3

3µ0

3(µr − 1)

µr + 2
B0. (3)

leading to a magnetic field intensity inside the ball
3µrB0/(µr + 2). In other words the magnetic field is
amplified inside the sphere, by a factor 3µr/(µr + 2). In
the case of soft steel, one expects values of µr in the
range [50 − 104], which leads to a maximum three-fold
increase. Let us make a crude approximation and now
assume that Equation 3 remains valid in our configura-
tion where the magnetic field created by the magnet is
strongly inhomogeneous. Using the value of the magnetic
field at the center of the steel ball, this leads to the fol-
lowing approximation of the magnetic force experienced
by the steel ball:

FM(d) = −4πR3

µ0

µr − 1

µr + 2

∂B2

∂d
∼

µr�1
−4πR3

µ0
∇∂B

2

∂d
. (4)

Using the dipolar model for the magnetic field (Equa-
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tion 1), the force can be conveniently expressed as:

FM(d) = −6µ0R
3M2

0

πd7

µr − 1

µr + 2
∼

µr�1
−6µ0R

3M2
0

πd7
. (5)

Figure 5 shows the spatial evolution of the force according
to Equation 4 (black squares) and Equation 5 (solid black
line) assuming µr � 1. Our simple model is in very good
agreement with the direct measurement of the force.
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FIG. 5. Spatial evolution of the magnetic force for n = 0, 1, 2:
direct force measurements (colored bullets), force computed
from magnetic field measurements according to Equation 4
(black squares) and according to equation 5 for n = 0 (solid
black line) showing the validity of our permanent/induced
dipole model.

When one or two balls are in front of the magnet (i.e.
n = 1, 2 in Figure 5), establishing a theoretical expres-
sion of the magnetic field created by the magnet and
channeled through the balls is beyond the scope of the
present article. However, Figure 5 shows that the esti-
mate of the magnetic force given by equation 4 is in close
agreement with the direct measurement.

B. Conversion of magnetic energy into kinetic energy

The available magnetic energy in the presence of n
steel balls in front of the magnet is computed from
the above spatial evolution of the magnetic force as∫ 2(n−1)R

−∞ FM(x)dx; the upper limit of the integral being
the minimum approaching distance of the center of the
incoming ball from the center of the magnet. This can
be done either by integration (i) of the measured force
profile, (ii) of the force expressed as a function of the gra-
dient of the square of the magnetic field profile according
to equation 4, which reads Un = 4πR3B2(2(n+1)R)/µ0.
Table I summarizes the estimations of the available mag-
netic energy according to these computations for several
values of n. As expected from the previous subsection,
a very good agreement is observed between these values,

and the available magnetic energy can be conveniently
computed from the magnetic field measurement.

Un n = 0 n = 1 n = 2
From force meas. 72 ± 3 mJ 7.2 ± 1 mJ 1.4 ± 0.2 mJ
From field meas. 75 ± 25 mJ 6.4 ± 1 mJ 1.6 ± 0.4 mJ

TABLE I. Available magnetic energy estimated from direct
magnetic force measurement, or from a permanent/induced
model involving the direct magnetic field measurement. The
larger errors reported on last line lie in the low spatial reso-
lution of the direct magnetic field measurements.

Note that a third computation of U0 can also be per-
formed by the integration of equation 5 when n = 0 as
U0 = µ0M

2
0 /(64πR3) = 95± 5 mJ. This larger estimate

can be understood from an overestimation of the mag-
netic field in the vicinity of the magnet using the dipo-
lar approximation (as expected the dipolar approxima-
tion is not valid close to the magnet). Since most of the
acceleration occurs very close to the magnet, this leads
to an overestimate of 25% of the available magnetic en-
ergy. However, as shown below, the expression of the
force given by equation 5 is useful to predict the time
evolution of the speed of the impacting ball.

A partial conclusion can be drawn here for the
optimization of the magnetic cannon. Un and Um−1

represent respectively the gain and loss of magnetic
(potential) energy. As Uk strongly decreases with k,
the maximum increase of magnetic energy is achieved
for the lowest value value of n, i.e. n = 0, while the
minimum losses are obtained for large values of m.
The optimization of the number m of balls behind the
magnet will be addressed in section IV.

Let us now consider the conversion of the available
magnetic energy Un into kinetic energy. The incoming
ball is subject to magnetic and friction forces. Friction
forces may however be neglected: the magnetic force is
of the order of 10 N, while for M = 28 g balls and a
maximum velocity of order of 3 m.s−1, the friction force
is estimated around 0.03 N and the viscous drag force
around 10−4 N. Because the magnetic force strongly in-
creases as the distance between the incoming ball and the
magnet decreases, most of the acceleration occurs in close
vicinity of the magnet. As a consequence, the magnetic
energy is mostly converted into translational energy and
the rotation of the incoming ball can be neglected.

The work-energy theorem leads to an evolution of the
ball velocity ẋ as

ẋ(x) =

√
2

M

∫ x

−∞
~FM. ~dx+ ẋ2

−∞ (6)

where ẋ−∞ is the initial velocity at large distance from
the magnet (the initial velocity being null in the case of
a single cannon, but may be non-zero when several suc-
cessive rifles are investigated, as in subsection IV B). At
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FIG. 6. Spatial evolution of the incoming ball velocity (n =
0): experimental values from high-speed camera (dots), per-
manent/induced model (solid red curve) and final velocity es-
timated from integration of the magnetic force measurement,
assuming a complete conversion of magnetic energy into ki-
netic energy (blue diamond).

the impact, this expression reads Kimpact = Kinit + Un,
i.e. a unity conversion factor. The assumptions leading
to this simplified expression have been experimentally
verified with n = 0 and ẋ−∞ = 0. A high-speed camera
(8000 frames per second) images the incoming ball during
the acceleration phase. The velocity of the ball is com-
puted as the derivative of the position of the center of the
ball, extracted using ImageJ, a free software developed by
NIH. Figure 6 displays the experimental velocity of the
ball (dots) and the theoretical curve predicted by equa-
tion 6 using the dipole approximation of equation 5 (solid
red line). The impact velocity computed from the inte-
gration of the direct force measurement (and assuming a
complete conversion magnetic energy into kinetic energy)
is also displayed as the blue diamond symbol. The good
agreement of the measured final velocity with these esti-
mates shows that friction may indeed be neglected and
that the available magnetic energy is fully converted into
translational kinetic energy. The red curve of Figure 6
shows that the permanent/induced dipole hypothesis en-
ables to correctly predict the evolution of the impacting
ball velocity; however, this model slightly overestimates
the velocity, as expected from the overestimate of the
available magnetic energy discussed above.

As a partial conclusion here, we showed that the whole
available magnetic energy from the attraction of the mag-
net is converted into kinetic energy. Moreover, we pro-
vided a simplified expression of the force exerted by the
magnet on the steel ball which leads to a theoretical ex-
pression of the magnetic energy Un. Similar arguments
can be applied in the ejection phase, where the kinetic en-
ergy of the ejected ball is given by Kfinal = Keject−Um−1.

III. NESTERENKO SOLITON: FROM NEWTON’S
CRADLE TO GAUSS CRADLE

Following the impact of the incoming steel ball, the
energy propagates in the ball chain similarly to what oc-
curs in Newton’s cradles12,13. However, in the magnetic
cannon the chain is inhomogeneous (presence of a sin-
tered NdFeB magnet). This section develops a classical
model based on Hertzian contact and discusses briefly
the Nesterenko soliton. Experimental yields accounting
for the presence of the magnet are then presented.

A. Nesterenko soliton: propagation of a non-linear wave

Let us consider a chain of N balls of radius R allowed
to translate along the x-axis and let the position of the
balls be xi (see Figure 7 (a)). The force acting between
two balls in contact is given by the Hertz law18:

F =
E
√

2R

3(1− ν2)
(xi − xi+1 − 2R)3/2,

E and ν being respectively the Young and Poisson moduli
of the ball material.

In the case of the steel balls used in our experiments,
an upper bound of the compression δ = xi − xi+1 − 2R
of the balls during the propagation of the wave can be
estimated assuming equality of the compression energy
2E
√

2Rδ5/2/(15(1 − ν2)) with the kinetic energy of the
impacting ball (of the order of 0.05 J). The correspond-
ing force is of the order of magnitude of 1000 N. This
largely exceeds the magnetic force experienced by the
steel balls (even when in direct contact with the magnet,
typically 25 N). This demonstrates that the properties of
the solitary compression wave are unaffected by the mag-
netic forces acting within the chain (although obviously
the velocity of the impact ball strongly depends on the
magnetic force).

Knowing the forces acting on each ball, the equa-
tions of motion can be numerically solved. Figure 7(b)
shows the numerical solution for a chain of 5 steel balls
(E = 210 GPa, ν = 0.3) of radius R = 9.5 mm. This
graph shows several interesting features: (i) the final ve-
locity of the impacting ball is negative, i.e. it experienced
a rebound (note that unlike in the experiments, the first
ball of the chain is unconstrained). (ii) The final velocity
of the second-to-last ball is non-zero (although small),
i.e. several balls can be ejected. Note that these fea-
tures are visible in actual Newton’s cradle. (iii) Since in
this simple case the total energy is conserved, the veloc-
ity of the last ball is less than that of the impacting ball
(roughly 98.7%). The main conclusion is therefore that,
even without any dissipation, the transmitted energy of
the ejected ball Keject is lower than the kinetic energy of
the impacting ballKimpact and a yield η = Keject/Kimpact

should be introduced. For the specific case displayed in
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Figure 7(b), the numerical simulation provides an esti-
mate of η = 0.975.

As a side-note, it is worth mentioning that an analytic
solution to the continuous limit of the equation of motion
was given by Nesterenko19,20:

∂x

∂t
= A sin4

(
x− ct
L

)
.

This analytic solution is in excellent agreement with the
numerical solution (see Figure 7). Remarkably the dis-
persion is counter-balanced by the non-linearities and
this solitary wave travels without distortion. Among
other interesting features, it should be mentioned that
the spatial extension of the soliton is constant (L ' 10R)
while its velocity c increases with increasing amplitude A.
The duration of the propagation for a given chain there-
fore decreases with increasing velocity of the impacting
ball.

B. Experimental measurement of the energy transmission
yield η

The above model does not account for any source of en-
ergy dissipation. An experimental determination of the
yield η = Keject/Kimpact is required to derive a global
energy balance of the magnetic cannon. Figure 8(a)
shows the experimental setup used: the energy of the

impacting ball is controlled via the launching height of
a pendulum hitting the chain (with no magnet) and the
energy of the ejected ball is computed from its impact
position on the ground after falling from a table. Simi-
larly to the above mentioned model, none of the balls are
fixed. Figure 8(b) shows the measurements of the energy
transmitted to the ejected ball Keject as a function of
Kimpact. Several interesting features should be empha-
sized: (i) the energy transmitted to the ejected ball is
proportional to the energy of the impacting ball, (ii) the
yield η decreases with the length of the chain, (iii) the
experimental yield is lower than 0.975 due to the numer-
ous sources of dissipation: for a chain of five balls, the
experimental yield is only about 0.83. The experimental
determination of the yield is compatible with an evolu-
tion as η = η0 − 0.024(n+m+ 1), with η0 = 0.95 in the
case of a chain of steel balls. This result shows that dis-
sipation sources (viscous and solid friction, deformations
or imperfect contacts between the balls in the chain) can-
not be neglected.

Moreover, in the magnetic cannon, the presence of the
magnet does not only introduce an inhomogeneity, but
also a magnetic field that magnetizes the steel balls, lead-
ing to a strong attraction between the balls - which pre-
vents for instance the rebound of the impacting ball. The
strength of the magnetic field does not modify the phys-
ical principles at lead in the Nesterenko soliton propa-
gation: the maximum intensity of the magnetic force for
a 600 mT field, is three orders of magnitude below the
mechanical compression forces. Moreover, the sintered
NdFeB magnet introduces an inhomogeneity with dis-
tinct mechanical properties (Young and Poisson moduli
and density) which may cause a higher dissipation due to
the sintered structure of the magnet. The presence of an
intruder (the magnet) in the chain also triggers a partial
reflection of the wave. In order to estimate this effective
dissipation, the experimental setup has been modified as
represented in Figure 8(c). Figure 8(c) shows the evolu-
tion of the transmitted kinetic Ktrans as a function of the
impacting kinetic energy Kimpact for a 7-balls chain with
and without a magnet. Note that the increase/decrease
of energy from magnetic acceleration/deceleration has
been taken into account in the computation of the ener-
gies. Yet, the insertion of the magnet leads to an impres-
sive yield drop from 81% to 44%, leading to η0 ∼ 0.61.

IV. OPTIMIZATION OF THE MAGNETIC CANNON

A. Optimization of a single magnetic cannon

As previously stated, the optimal energy gain is ob-
tained with no ball on the left of the magnet (or n = 0),
and strongly depends on the properties of the magnet.
The optimal configuration also requires to lower the loss
of magnetic energy Um−1, which is obtained with a large
number of balls on the right of the magnet (or m � 1),
and to maximize the yield η of the chain, which requires
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to minimize the total number m + n + 1 of balls in the
chain. The details provided in the previous sections en-
ables us to express the kinetic energy of the ejected ball
as a function of the initial kinetic energy and the prop-
erties of the system as

Kfinal = η(n+m+ 1) [Kinit + Un]− Um−1 (7)

The maximal value of Kfinal is obtained when the total
losses [1−η(n+m+1)]Un+Um−1 are minimized. Figure 9
shows the evolution of the normalized losses as a function
of m for n = 0 (in this configuration, no ball is ejected
when m = 1). A weak minimum is observed for m = 3;
for values of m larger than 3, losses weakly increase with
m. This Figure shows that the loss of magnetic energy
Um−1 can be neglected when m > n + 2. The optimal
configuration, i.e. maximizing the kinetic energy of the
ejected ball, is thus obtained for no balls in front of the
magnet and three balls behind the magnet (or n = 0,m =
3), which is the configuration displayed in Figure 1.

The kinetic energy of the ejected ball may be conve-
niently expressed for a spherical magnet of radius R when
neglecting Um−1 in equation 7. The dipolar moment of
the magnet can be estimated as M0 ∼ 4πR3Br/(3µ0)
with Br the residual flux density (of the order of 1.27 T

for a grade N40 NdFeB magnet), which leads to

Kfinal ∼ (η0 − 0.024(m+ 1))
πR3B2

r

36µ0

B. Maximal acceleration achievable using N successive
rifles

Once the optimization of one single magnetic rifle has
been achieved, a natural question arises: to what extent
is it possible to increase the ejected kinetic energy by
using a succession of several rifles?

Let us now focus on a configuration with N successive
identical magnetic rifles: the ball ejected from rifle i will
be accelerated by rifle i+1 according to equation 7. When
neglecting losses between two successive rifles, the kinetic
energy of the last ejected ball reads

Kfinal(N) = ηNU0
init + Un

N∑
i=1

ηi − Um−1

N−1∑
i=0

ηi (8)

The kinetic energy of the ejected ball increases with
the number of modules, but since the energy gain is con-
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FIG. 9. Evolution of losses normalized to U0 as a function
of m: loss of magnetic energy (blue circles), loss within the
chain (red squares) and total losses (black diamonds).

stant and independent of the initial velocity while the
dominant source of energy losses - through the propa-
gation of the soliton within the chain - is proportional
to the impacting energy, there is a maximum achievable
kinetic energy

Kmax =
ηUn − Um−1

1− η
(9)

This saturation has been experimentally observed us-
ing a chain of 10 rifles composed of one magnet followed
by m = 3 balls and separated by 10 cm - note that for
this specific setup, balls have a radius of 4 mm. Velocities
of the ejected ball were estimated from sound recording
of the successive shocks between the ball ejected from
rifle i and the magnet of rifle i + 1 and is displayed in
Figure 10. This low-cost technique allows to provide the
time-average velocity between two successive rifles. The
experimental evolution is consistent with the prediction
given above, neglecting Um−1, using U0 as determined by
the direct force measurement and a yield η = 0.6.

V. CONCLUSION

In conclusion we were able to successfully model the ki-
netic energy of the ball ejected from a magnetic cannon.
In the acceleration phase, experimental data show a very
good agreement with a simple model of uniform magne-
tization of a sphere plunged in the magnetic field cre-
ated by the magnet. In the case where no steel balls are
present between the incoming ball and the magnet, this
magnetic field is accurately modeled as a dipolar mag-
netic field. We also provided a model based on Hertzian
contact and solid collisions accounting for the propaga-
tion of momentum in the chain of balls and determined an
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FIG. 10. Time-average velocity of balls ejected by successive
identical rifles (estimated from sound recording) and model
with η = 0.6.

experimental effective yield accounting for its efficiency.
These ingredients enable us to predict the final kinetic
energy as a function of the parameters of the system (ge-
ometrical sizes, magnetic properties ) for a single mag-
netic cannon or an assembly of several modules.

Some limitations of our work could however deserve
further analysis and modeling. In the presence of steel
balls between the magnet and the incoming ball (i.e.
n ≥ 1), we derived the magnetic force as a function of
the spatial evolution of the magnetic field. However a
detailed modeling of the ”channeling” of the dipolar field
created by the magnet within ferromagnetic balls would
make it possible to predict more precisely the energy gain
in the acceleration phase. The study of the behavior
of the magnetic cannon using paramagnetic or super-
paramagnetic materials instead of ferromagnetic materi-
als could also be envisioned. The modeling of momentum
propagation described in the present article is very simi-
lar to the Newton’s cradle. Including the cohesion forces
from the magnetic field as well as an effective behavior
of the sintered NdFeB magnet could be an extension of
this work.
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