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Laboratoire de Physique, Département de Physique, F-69342 Lyon, France

(Dated: December 13, 2019)

Popsicle sticks can be interlocked in the so-called cobra weave to form a chain under tension.
When one end of the chain is released the sticks rapidly disentangle, forming a traveling wave
that propagates down the chain. In this paper the properties of the traveling front are studied
experimentally and classical results from the theory of elasticity allow for a seemingly impossible
dimensional analysis. The study presented here can help undergraduate students familiarize with
experimental techniques of image processing. Most importantly it demonstrates the predicting
power of dimensional analysis and scaling laws.

I. INTRODUCTION

A. What is a popsicle stick bomb?

Wooden popsicle sticks can be bent and interlocked
into a pattern known as the “cobra weave” (due to the
resemblance with the patterns formed by the scales of
an actual cobra), see figure 1. In the displayed setup,
each individual stick is bent to rest alternatively on top
of and under four perpendicular sticks (as shown at the
bottom of figure 2) but other geometrical configurations
could also be woven. When weaving the chain one realizes
that a large potential energy is stored into the sticks and
the ends of the chain have to be held still. When the
weight holding the sticks down on one end of the chain is
removed, the so-called stick bomb detonates: the sticks
pop-up and a traveling wave is formed.

This system is reminiscent of similar mechanical chain
reactions in a line of dominoes 1–3, or in an assem-
bly of mousetraps4,5, both systems displaying propaga-
tion fronts and conversion of the stored potential en-
ergy (whether gravitational or elastic) into kinetic energy.
This stick bomb also involves a competition between elas-
tic and gravitational energy. This interesting concept is
present in many domains of physics, from the well-known
problem of the bounce of a ball, involving mechanical
physics6,7, to the realization of a precise measurement of
the gravity constant by making ultra-cold atoms bounce
on an atomic mirror, in quantum mechanics8. In this
article the speed of the traveling wave and the height
reached by individual sticks are studied through simple
hands-on experiments.

B. International Physicists Tournament

The work presented here was done in preparation
for the International Physicists Tournament (http://
iptnet.info/), a world-wide competition for undergrad-
uate students. Each national team is composed of six
students who work throughout the academic year on a
list of seventeen open questions and present their find-
ings during the tournament.

Unlike the typical physics exam, the problems must not
only be presented, but also challenged and reviewed by
the other participants, allowing students to respectively
assume the roles of researchers, referees and editors. In
addition to the challenge that the tournament represents,
it provides students with an exciting and eye-opening ex-
perience in which they learn how to design experiments
with the aim of solving physics problems, and to con-
structively criticize scientific solutions.

The authors would highly recommend participation in
the IPT as a rare learning opportunity for undergraduate
students.

FIG. 1. Top: top-view of the popsicle sticks interlocked in
the cobra weave. Bottom: side-view showing the wave prop-
agating.
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C. What undergraduate students can learn from
this problem

This problem can provide an amusing introduction to
solid mechanics, giving a simple example of the conver-
sion of stored elastic energy into kinetic and gravitational
potential energy9 in which students can measure an en-
ergetic yield and consider sources of dissipation. The
problem is also an interesting illustration of the theory
of elasticity since the study of the statics and dynamics
of a single bent stick fits in the Euler-Bernoulli theory for
beam deflection10–12. Moreover, students may familiar-
ize with experimental techniques such as particle tracking
or with the interpretation of a space-time diagram13. Fi-
nally, this paper may help undergraduate students grasp
the importance of dimensional analysis14–16 as well as the
predicting power of scaling laws17,18.

D. Outline

The aim of this study is to understand the dependence
of the velocity and of the height of the cobra wave on
the parameters of the popsicles and of the weaving. In a
nutshell, section II examines the elasticity of one unique
stick, section III focuses on the traveling wave obtained
with one given set of identical sticks, while the proper-
ties of the sticks (dimensions and material) are varied in
section IV.

To model the popsicle stick bomb and understand why
a wave propagates, sticks are modeled by beams in the
theory of elasticity framework whose important results
are recalled in section II. We will first focus on the static
aspects by considering the mechanical equations, bound-
ary conditions and the energy stored in a beam. The
dynamics of a stick will also be discussed for a clamped
beam, by studying the frequency (in the linear approxi-
mation) of the first transverse vibration mode. We then
explain how the parameters of the sticks are measured
and discuss the efficiency of the conversion of stored elas-
tic energy into kinetic and gravitational energy.

Experimental data obtained for the traveling waves us-
ing a given set of wooden sticks will be exposed in part III
where the experimental methods used to measure the
speed and height of the traveling wave are explained.

Finally, we will derive in part IV scaling laws allow-
ing us to predict the speed and height of a cobra wave,
by knowing only some intensive (Young’s modulus, den-
sity) and extensive (geometrical dimensions) parameters
of one stick. The predicting power of the scaling law and
the influence of dimensionless parameters are discussed.

II. ELASTICITY OF A SINGLE STICK

A. Euler-Bernoulli beam theory

This section analyses the elastic properties of one
single stick. Unless otherwise mentioned the classical
results presented in this paragraph are taken from ”The
Theory of Elasticity” by Landau and coworkers10.

a. General hypotheses The Euler-Bernoulli beam
theory is a simplification of the theory of elasticity lim-
ited to small deformations and in which the shear stress
in neglected. In this framework there exists a neutral
axis along the beam whose length remains constant and
to which the cross section remains perpendicular. In the
case where the beam is only constrained by point sup-
ports (i.e. with no distributed load or torque) the static
beam equation z(x) follows:

d4z

dx4
= 0 (1)

meaning that between two consecutive contact points,
the equation of the beam is a third degree polynomial
whose coefficients are given by the boundary conditions.

Equation 1 is derived analytically but a hand-waving
argument can help understand its fundamental physical

meaning. The local curvature c =
d2z

dx2
of the stick

is the first relevant derivative of the profile z(x) that
plays a crucial role. Indeed, a stick can be translated
(affecting the absolute value of z) or rotated (changing
dz

dx
) without any changes to the physics of the bending

(except for the unrealistic case of extremely flexible
sticks whose shape is affected by gravity). In terms

of curvature, equation 1 therefore simply reads:
d2c

dx2
= 0.

b. Elastic potential energy A point contact at a
given position x0 simply imposes the position z(x0) and
continuity of the first and second derivatives of z. Note
that the force locally imposed by the point contact can
be computed from the third derivative of z. More impor-
tantly for the present article, the elastic potential energy
stored in the bent beam is given by:

Uel =

∫ L

0

1

2
EI

(
d2z

dx2

)2

dx

where E is the Young’s modulus of the material and I
the second moment of area, given by I = lh3/12 for a
rectangular beam of constant section l×h and length L.
Again, this equation can be understood in term of the
curvature c of the sticks: Uel ∝ 1/2

∫
c2dx.

The elastic potential energy is given in equation 2 for
various configurations: deflection of δ at the end of a
clamped beam (or cantilever), at the center of a 2-point
bent beam (x = 0 and x = L), for a 4-point bent beam
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δl

FIG. 2. Sketches of a single stick in four configurations. For
clarity the thickness, h, and the deformation, δ, are largely
exaggerated.

(x = 0, L/3, 2L/3 and L), and for a beam woven between
four perpendicular sticks. Note that the last case requires
a careful analysis since one has to determine on which
edges of the central sticks the beam rests (the contact
points are indicated by dots in figure 2).



U cel =
3

2

EI

L3
δ2 clamped,

U2p
el = 24

EI

L3
δ2 2 points,

U4p
el = 432

EI

L3
δ2 4 points,

U4s
el ' 872.4

EI

L3
δ2 4 sticks.

(2)

The numerical prefactor in the last equation is ob-
tained using the dimensions of the sticks shown on fig-
ure 1; l = 10 mm and L=110 mm. Indeed, when taking
the width of the sticks, l, into account, one realizes that
the first obvious effect is that their length is reduced by
2l since the outermost contact points are at a distance
l from the ends. Moreover the width, l, also induces
a larger deformation and hence a greater elastic energy
in the central part of the bent stick. The energy was
computed using Maple for various values of l/L and we
empirically found that accounting for l is equivalent to
reducing its length to L− 2.3l, meaning that the elastic
potential energy is given by :

U4s
el (l/L) = U4p

el

1

(1− 2.3 l/L)3
≡ U4p

el f(l/L). (3)

The prefactor in the last line of equation 2 is then given
by: 872.4 ' 432f(10/110).
c. Vibrations The equation of motion describing the

dynamics of a uniform beam of mass m undergoing trans-
verse deformations (forbidding any twisting) can be eas-
ily derived from the lagrangian of a stick and is given
by10:

EI
∂4z

∂x4
+
m

L

∂2z

∂t2
= 0 (4)

Solving equation 4 allows one to compute the eigen
modes of a vibrating beam and the corresponding
frequencies. For instance, the angular frequencies of
the eigen modes of a beam clamped at one end (can-

tilever) are given by ωn = αn

√
EI
mL3 with α1 ' 3.52,

α2 ' 22.0, α3 ' 61.7, when for a free beam (under
no constrants): α1 ' 22.4, α2 ' 61.7, α3 ' 121.0.
Note again that all the eigen frequencies are propor-

tional to a characteristic frequency ω∗ ≡
√

EI
mL3 with

a geometrical prefactor that depends on the bound-
ary conditions. It is worth mentioning that ω∗ can be
easily deduced from a dimensional analysis of equation 4.

d. Equivalent spring-mass system Obviously the en-
ergy stored varies widely from one configuration to an-
other but the reader must note that the elastic potential
energy is always proportional to a characteristic energy
1
2kδ

2, where k ∝ EI/L3, with a geometrical prefactor.
The characteristic energy can be regarded as the poten-
tial energy stored in a linear spring. A dimensional anal-
ysis seems in principle impossible because of the large
number of lengths in the problem (length, width and
thickness of the beam, pitch of the pattern). However the
theory of elasticity provides one with an effective spring
constant which then allows for a dimensional analysis.
A characteristic elastic energy stored in a stick in cobra

weave is therefore given by U∗
el ≡

Elh5

L3
since in this case,

the deflection is given by: δ = h.
Even more interestingly for the scaling laws discussed

in section IV, one can notice that ω∗ ∝
√
k/m, the

angular frequency of a linear spring-mass system. Al-
though seemingly impossible, a dimensional analysis of
the problem is rendered possible by the theory of elastic-
ity. Having understood this subtle point, one finds itself
equipped with a characteristic time for the deformation
of the beam woven in the cobra pattern: T ∗ =

√
m/k.

Note moreover that this characteristic time T ∗ can be
written as a function of the material properties (Young’s
modulus, E, and density, ρ):

T ∗ =
L

h
L

√
ρ

E
=
L

h

L

c0
.

where the ratio c0 =
√
E/ρ has the dimension of a veloc-

ity and is the speed of sound of a material whose Pois-
son’s ratio, ν, equals zero. For the more realistic value of
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ν = 0.3 for hard wood, the speed of sound (compression

waves) is given by
√

E
ρ

1−ν
(1+ν)(1−2ν) ' 1.16 c0.

Interestingly, the characteristic time can therefore be
seen as the product of the length-to-thickness aspect ratio
of the sticks, L/h, and the time it takes a sound wave to
propagate along the stick.

B. Measurement of the mechanical parameters
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FIG. 3. Free oscillations of the free end of a clamped wooden
stick (Wood 2 in table I) in linear (top) and log (bottom)
scales. Measuring the frequency leads to the value of the
Young’s modulus of the stick. The damping is caused by
internal dissipation within the stick.

Mass and dimensions of the sticks can be easily mea-
sured using a scale and a caliper. The Young’s modu-
lus, E, or equivalently, the effective spring constant, k,
were measured using two separate methods on a beam
clamped at one end. The first method that was used con-
sists in simultaneously measuring the force, F , applied at
the free end of the stick (using a dynamometer) and the
resulting deflection δ. The relation between the two is
given by the Euler-Bernoulli theory: F = 3EIδ/L3. We
have checked that the relation between the force and the
deflection remains linear for small deflections (δ < L/10)
and the slope gives a direct measurement of the effective
spring constant, which leads to the value of the Young’s
modulus.

The second method consists in studying the first mode
of vibration of a clamped stick. The frequency of this
mode is given in the previous paragraph and allows one

to compute the Young’s modulus (or equivalently the ef-
fective spring constant). This second method is far more
accurate than the first method. Figure 3 shows the po-
sition of the free end of a wooden stick of length L = 85
mm after it was given an initial deflection of δ = 5mm.
The data was obtained by tracking the position of the
end of the stick using the “Analyze Particle” tool in Im-
ageJ, a free software developed by NIH, from a film taken
at 1000 FPS with a resolution of 10× 1500 pixels.

It is worth noting that the vibrations of the stick are
rapidly damped. In principle the damping can originate
both from air resistance (drag) and from internal dissipa-
tion. A rapid estimation of the drag force (based on the
Reynolds number) shows that the effective quality factor
of the vibrations should be of the order of 106. It is very
clear from figure 3 that the damping is much faster (the
amplitude is halved in less than 10 oscillations), which
indicates that the main source of damping is the inter-
nal dissipation within the stick, whose influence will be
discussed in section IV. Although this dissipation mech-
anism is not expected to be linear, the damping is re-
markably close to an exponential decay (see figure 3).

C. Energy release and efficiency

In this section we will discuss the efficiency of the con-
version of elastic potential energy into gravitational en-
ergy.

To measure this ratio we performed a very simple ex-
periment, considering the case of a stick which is stuck
between two nails, as shown on figure 4 and bent when
one applies a force F , with the help of a dynamome-
ter, at the free end of the stick. The energy stored into
the stick is not computed from the theory (which re-
lies on a number of assumptions) but instead directly
measured as the work provided by the dynamometer:

Uel =

∫ δ

0

Fdδ =
1

2
F δ.

When the dynamometer is removed the stick rises,
reaches a maximum point, and then falls down. We mea-
sure the maximum height H reached by the center of
mass of the stick, in order to compute the maximum grav-
itational energy Eg = mgH. Repeating this experiment
for several values of F , one is able to plot Eg as a function
of Uel in order to determine the efficiency of the conver-
sion of elastic energy into gravitational energy. The plot
is represented on figure 4, and gives a constant efficiency
of roughly 0.25. Only a fraction of the available energy
is therefore used to reach the maximum height. In this
particular case 75% of the energy is converted into vibra-
tions (mostly transverse but possibly in twisting modes
as well) and rotation (in all directions) or dissipated (be-
cause of air friction or internal dissipation).

This empirical efficiency of 25% is specific to the setup
used here and one should therefore expect a different effi-
ciency for a stick in the cobra weave. The simple geome-
try presented in this section optimizes the height reached
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FIG. 4. Gravitational energy of a stick as a function of the
elastic energy stored, in the case of the simple setup shown
on the upper part of the figure. A stick is placed between
two nails and bent at its free end. When the force is released,
the sticks takes off vertically. The data shows a remarkably
linear behavior which defines a constant conversion efficiency
of roughly 25%.

by a stick whereas a more symmetrical shape, such as the
cobra weave (see figure 2) would favor vibrations at the
expenses of the height. Moreover, in the cobra weave
solid friction between the sticks can be very high, and
is another source of energy dissipation. Hence, the ef-
ficiency of the conversion of elastic energy into gravita-
tional energy for an actual popsicle stick bomb is ex-
pected to be even lower than 25%. For the sticks used in
figure 7 the efficiency was found to be close to 5%.

III. SPEED AND HEIGHT OF THE WAVE FOR
ONE SET OF STICKS

The height and velocity of the wave may depend on
numerous parameters. The material properties and the
dimensions of the sticks are discussed in section IV. Here
instead we focus on results obtained with a given set of
wooden sticks, varying only the pitch of the cobra pat-
tern.

A. Experimental methods

A 3-m long chain of sticks is woven keeping the ex-
tremities clamped using large weights. When the weight
is removed at one end, the stick bomb detonates and the
propagation of the wave is filmed using a fast camera at
rates up to 2000 FPS with a resolution of 1500×10 pixels.

The films obtained were processed using the Orthogo-
nal View function in ImageJ, in order to perform a spa-
tiotemporal analysis. This function consists in choosing

one fixed horizontal line for all the pictures located ap-
proximately at half-height of the wave. A threshold is
applied to make the picture black and white. The profile
along this line is then plotted for all the frames which
therefore creates space-time diagram (see figure 5).

FIG. 5. Space-time diagram of the wave using wet wooden
sticks. The two lines can be interpreted as the horizontal
position of the ascending (front) and descending (rear) of the
”hump” seen on figure 1, measured at half-height. A steady
state is reached after the front has traveled 1.5 m (dashed
line), corresponding to roughly 100 sticks.

When the chain reaction is triggered at one end of the
chain a traveling wave is triggered. One can easily see
the evolution of the front and rear position of the wave
as a function of time. A steady state, in which the half
width of the wave remains constant and the trajectory
of the front is a straight line, is reached after the front
has traveled for no less than 1.5m (dashed line). It is
therefore important that the length of the chain is longer
than this transient length (which may depend on the type
of sticks used).

The velocity is measured as the slope of the trajectory
in the steady regime. The height of the wave is directly
measured on the frames (see figure 1), considering for
each of them the altitude reached by the center of mass of
a highest stick. The results are averaged over the steady
state.

The authors need to mention that for convenience the
sticks used in figures 1 and 5 were made of remarkably
flexible wood and were soaked in water for several days.
This results in low speed (1.7 m/s) which helps taking
sharp images and produces clear space-time plots. How-
ever in the following more rigid sticks are used.

B. Results and discussion

The results presented in this section were obtained us-
ing one set of rigid sticks (Wood 2 in table I), soaked
in water for three weeks (thickness h = 2.3 mm, width
l = 10 mm, length L = 114 mm, density ρ = 970kg.m−3
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and Young’s modulus E = 5.0 GPa , measured using the
method presented in section II B).

pitch

L

FIG. 6. Sketch of the cobra weave: the black lines correspond
to the sticks of length L. The pitch is defined as the distance
between the extremities of two consecutive sticks: pitch =
2L
3

sin α
2

.

This section is devoted to the study of the influence of
the pitch of the pattern (see figure 6) on the speed and
height of the wave. The pitch appears to be a crucial pa-
rameter and can be easily changed by varying the angles
between the sticks when building the chain. One can eas-
ily show that this pitch is given by pitch = 2L

3 sin(α/2)
where α is the angle between the sticks (see figure 6).
The same set of sticks was used to build several chains
with different values of α, and the results of this study
are shown on figure 7.

The first conclusion that can be drawn is that the
height is unaffected when the pitch is varied whereas the
speed of the wave clearly increases with increasing pitch.
As discussed in section II for the simpler case of a sin-
gle stick, the height reached by the wave finds its origin
in the elastic energy stored when the chain is built. In
a steady state each individual stick can on average only
hope to recover its own elastic energy. When neglecting
both the width l of the bent stick (i.e. considering 2D
cross sections as in figure 2) and the twisting of the sticks,
the elastic energy stored in the bending is independent of
the pitch. This leads to a constant height when the pitch
is varied. The data presented on figure 7 also enables one
to estimate the efficiency of the energy conversion. On
average, the efficiency is roughly 5%, considerably less
that the 25% obtained with the more favorable setup of
figure 4.

As discussed in section II the motion of a stick occurs
over a typical time T ∗, specific to each set of sticks, with
numerical prefactors that depend on the exact configura-
tion. For a given set of sticks, when the pitch is varied,
a dimensional analysis therefore indicates that the speed
of the wave should scale as the ratio: pitch/T ∗. This
predicted linear dependence of the velocity as a function
of the pitch is indeed experimentally confirmed (blue line
on figure 7). For the sake of clarity, the width l of the
sticks is not shown on figure 6 but clearly, the pitch has

to exceed this value. Therefore, the linear fit is obtained
using an offset of l = 10 mm.

In conclusion, a dimensional argument allows one to
predict both the linear dependence of the speed and the
constant height as a function of the pitch.
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FIG. 7. Dependence of the speed (top) and height (bottom)
of the wave on the pitch of the pattern. The speed V depends
linearly on the pitch, however with an offset corresponding to
the width of the sticks l. The height H seems to be inde-
pendent of the pitch. The blue line indicates an efficiency of
5%.

IV. SCALING LAWS

A. Various materials and dimensions

The previous section presented data obtained with the
same wooden sticks as the pitch of the cobra weave was
varied. In addition to these experiments the dimensions
and material of the sticks were varied (table I gives a
summary of the sticks used) while the angle α of the co-
bra weave is kept constant (to 90◦). In order to vary
their Young’s modulus, the wooden sticks were soaked
in water, for durations ranging from a few days to a few
weeks. This process did make the wooden sticks less
rigid (their Young’s modulus was computed in a simple
clamped configuration using the method presented in sec-
tion II B) but it also affected their density (up to a factor
2) and size (with an increase up to 10%). For all sets
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of sticks the Young’s modulus E and density ρ were in-
dependently measured prior to any experiment and the
corresponding so-called speed of sound c0 =

√
E/ρ is re-

ported in table I. Plastic sticks of various sizes, made of
PVC (polyvinyl chloride), were also used.

TABLE I. Parameters of sticks

Name h (mm) l (mm) L (mm) c0 (m/s)

± 0.1 ± 0.1 ± 1 ± 100

Wood 1 2.2 9.5 113 4600

Wood 2 2.4 10.0 114 2000

Wood 3 2.3 10.0 114 2300

Wood 4 1.1 5.3 136 6500

PVC 1 2.0 9.7 100 1400

PVC 2 2.0 9.7 120 1400

PVC 3 2.0 9.7 140 1400

PVC 4 2.0 9.7 133 1400

Figure 8 shows the experimental results obtained us-
ing these various sticks plotting both the height, H, and
velocity, V , of the wave. The relation between H and
V is not expected to be simple and the data are not ex-
pected to fall onto a master curve. The figure is only
intended as a synthetic way to present the experimen-
tal results. However a general trend can be seen as the
stiffer and lighter sticks tend to both travel faster and
reach a greater height, but the next paragraph reveals
that thickness-to-length aspect ratio h/L plays a crucial
role.

B. Characteristic velocity and height

As shown in section III, the velocity of the wave
is proportional to the pitch of the pattern divided by
the characteristic time of vibration of a stick. There-
fore a relevant characteristic velocity can be defined as
pitch/T ∗ ∝ L

√
k/m ∝

√
E/ρ(h/L) ≡ V ∗ = c0 h/L.

While the linear dependence on the pitch was confirmed
in section III, the more complex dependence on the ma-
terial parameters through the speed of sound c0 and on
the aspect ratio h/L is examined in next paragraph. It is
important to emphasize that the characteric speed, V ∗,
is not a theoretical prediction of the actual speed since
unknown numerical prefactors have been left out.

Obviously the gravitational potential energy, Eg =
mgH, gained by a single stick finds its origin in the elas-
tic energy stored during the weaving. Comparing these
two energies is equivalent to comparing the height H
with a characteristic height defined as H∗ ≡ Uel/mg =
c20
g (h/L)4. The characteristic height, H∗, can then be

seen as the maximum average height reach by the sticks
if all the potential energy were converted into gravita-
tional energy. Again, the predicted dependence of the
height on the material parameters and dimensions of the

sticks requires an experimental validation.
To summarize we have identified both a characteris-

tic horizontal velocity and a characteristic height of the
traveling wave:


V ∗ = c0

h

L

H∗ = 36 f

(
l

L

)
c0

2

g

(
h

L

)4 (5)

The two scales are specific to each set of sticks and
depend solely on their speed of sound and aspect ratio.
For dry wood the speed of sound is of the order of 4000
m/s and the aspect ratio of the wooden popsicle sticks
is h/L = 2/110, leading to a characteristic velocity for
the wave of V ∗ ' 70 m/s, which gives the right order
of magnitude (see figure 8). The characteristic height is
H∗ ' 5.7 m, which again gives the right order of mag-
nitude given the low efficiency of the energy conversion
(see figure 7).

C. Collapse

As one can see on figure 8, the experimentally gathered
data displays an important spreading of the values of V
and H between the different types of sticks used. Namely,
the speed ranges from 7 m/s to 36 m/s and the height
from 15 cm to 100 cm. When the same data is rescaled
using the characteristic quantities defined in the previ-
ous paragraph (specific to each type of sticks) a good
collapse is obtained. In particular, the reduced veloc-
ity V/V ∗ only varies by a factor 3. The overall collapse
seems to be less efficient regarding the reduced height
but a close inspection reveals that the data splits in two
separate groups, accordingly to the material used (wood
or PVC). Within each of these groups, the collapse is far
better (at most a factor 2 for the reduced velocity, and
a factor 3.5 for the reduced height). This shows that
the characteristic height and speed provide one with two
accurate scales for the popsicle stick bomb.

The existence of these two sub-sets, based on the ma-
terial used, can be explained and expected. The dimen-
sional analysis used to derive the characteristic scales
inherently excludes some phenomena among which two
might play a crucial role: on the one hand, the solid fric-
tion between the sticks (either static or dynamic) and on
the other hand, the internal dissipation. Both phenom-
ena can be characterized by dimensionless parameters:
respectively the friction coefficients (µs and µd) and the
quality factor Q (or damping) of the oscillations (see fig-
ure 3). It is clear that increasing either the friction or
the damping can only lead to lower values of the height
and the velocity since both solid and internal frictions are
a source of energy dissipation. Performing accurate and
reproducible measurements of friction coefficients can be
a difficult endeavor but in our experiments it is obvious
that the rough wooden popsicle sticks used have greater
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FIG. 8. Top: speed V and the height H of the wave for each
type of sticks tested. The squares represent the four types of
PVC sticks, and the circles the four types of wooden sticks.
The points are widespread and no simple relationship between
the two quantities is expected. Bottom: Plot of the rescaled
data, V/V ∗ and H/H∗. One can notice a good collapse of
the data which gathers according to the material used.

friction coefficients than the smooth PVC sticks. More-
over, measurements of the decay rate of the free vibra-
tions of a clamped beam clearly indicate that the in-
ternal dissipation of wood is greater than that of PVC.
Altogether these observations justify the two subsets of
rescaled data, and clarify why both the rescaled height
and speed of wood should be less than those of PVC.

The results and conclusions presented in this para-
graph can illustrate the predicting power of scaling laws.
Indeed, one could have reasonably computed (within er-
ror bars) the speed and height of the stiffer dry sticks,
knowing only their dimensions and the corresponding
speed of sound, from the results obtained with more flex-
ible wooden sticks. Alternatively, the height and speed
of the wave of for instance thicker sticks can be extrapo-

lated.

V. CONCLUSION

In summary, the linear theory of elasticity allows us
to derive scaling laws for the height and speed of the
traveling wave. These predictions are validated through
a series of experiments varying the pitch of the weave as
well as the dimensions and materials of the sticks. This
problem is a good example of how dimensional analysis
can shed new light on a complex phenomenon.

Several aspects of the popsicle stick bomb are not ad-
dressed in this paper and might deserve further attention.
It can be seen on figure 1 that the pattern is not sym-
metrical. Indeed, the wave differs depending on which
end of the chain is released, i.e. on the direction of prop-
agation. Equivalently, if the chain is flipped over before
the release, the wave properties are affected. Note that
the scaling laws should still apply although the numerical
prefactors might differ. In particular, it would be inter-
esting to study whether the rescaled velocity and height
of this so-called ”reverse” wave fall in the same region as
those of the ”regular” wave. The influence of the support
has not been investigated. Indeed, the speed and height
might vary whether the chain is set on a hard surface
(such as a laboratory table) or on a softer surface (such
as a rug or carpet). Numerous home videos found online
also show that the wave can propagate without a direct
support. It would therefore be interesting to study the
case of a chain hanging vertically. Finally, the pattern
of the weave can be varied. A cobra weave can be cre-
ated by interlocking one stick to three or five (instead
of four) perpendicular sticks and a square pattern can
also be built. The elastic energy and characteristic time
would clearly vary but once more it would be interesting
to check if the scaling laws hold.
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