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I. INTRODUCTION

The stability of freestanding structures is of great importance in architecture and relies on simple physical principles. [1][2][START_REF] Moore | Understanding structures[END_REF] The main potential causes of collapse include misalignments of the structure and failure of the building material itself. However, when a tower is submitted to a compressive normal force, it can undergo sudden lateral deflections, a phenomenon known as buckling. [START_REF] Jones | Buckling of bars, plates, and shells[END_REF] In particular, the weight of the structure leads to non-uniform normal loads (more intense at the base of the tower than at its top), a phenomenon that will be refereed to as self-buckling in the remaining of the text. In this article, we propose to study this instability at the laboratory scale in simple, affordable, hands-on experiments using gelatin-based materials. The rigidity (or Young's modulus) of the material can be easily varied by changing the gelatin concentration and its consequences on the maximum height of a tower prior to buckling are spectacular. We show that the linear continuous theory of elasticity allows to precisely predict the maximum height of long gelatin bars (of square or circular cross section). We introduce a useful trick to repeat over and over the experiments using individual gelatin-based stackable bricks, produced using a home-made silicone mold of classical Lego R bricks, which allows them to firmly interlock as displayed in Fig. 6. The usefulness of this method relies on the failure mode of the tower when it exceeds the maximum stable height (see the rightmost photograph of Fig. 6): while irreversible fractures appear within a solid block, individual bricks simply detach in the brick tower (and may be used again for further studies). Moreover, the versatility of the gelatin bricks allows one to investigate the increase in stability of smartly-designed freestanding structures.

The experimental protocol described in this article provides an interesting hands-on illustration of the theory of elasticity, more specifically to the Euler-Bernoulli theory for beam deflection, [START_REF] Landau | Theory of Elasticity[END_REF][START_REF] Edge | Elasticity[END_REF][START_REF] Casey | The elasticity of wood[END_REF][START_REF] Turvey | An undergraduate experiment on the vibration of a cantilever and its application to the determination of young's modulus[END_REF][START_REF] Hopfl | Demonstration of different bending profiles of a cantilever caused by a torque or a force[END_REF] and to the phenomenon of buckling. The results presented in this article may also be used as an illustration of the importance of dimensional analysis. [START_REF] Huntley | Dimensional analysis[END_REF][START_REF] Palacios | Dimensional analysis[END_REF][START_REF] Remillard | Applying dimensional analysis[END_REF] Moreover, we show that the predicted frequency of the free oscillations (obtained through a hand-waving argument rather than a rigorous and unnecessarily complex derivation) shows excellent agreement with the experimental measurements.

The article is organized as follows. In section II, the framework of the linear theory of elasticity is recalled, a dimensional analysis of self-buckling is proposed, theoretical predictions for the critical self-buckling height are derived, and the frequency of oscillations of stable towers are theoretically investigated. Section III presents experimental results on the mechanical properties of the gelatin-based gels, on the maximum height of stable towers as well as on the frequency of free oscillations. Finally, the increase in stability of hollow or tapered towers is discussed in section IV.

II. THEORY OF SELF BUCKLING FROM ELASTICA

This section recalls and derives theoretical predictions of the critical self-buckling height and of the oscillation frequency of elastic beams using a continuum approach. The relevance of this approach is shown in Sec. III B: the critical self-buckling height measured of long gelatinbased blocks is identical to that of towers made from stacked bricks (and having the same geometry).

A. Euler-Bernoulli beam theory

The bending and buckling of an elastic tower is well described by the Euler-Bernoulli beam theory, which is a simplification of the linear elasticity theory applied to the case of small deflections. [START_REF] Bauchau | Euler-bernoulli beam theory[END_REF] This theory postulates the existence of a neutral fiber (at the center of the beam), whose length remains unchanged and which remains locally perpendicular to the cross section of a bent beam. The essential result of this theory is that there exists a linear relation between the bending moment, M , within the beam and its local curvature, κ:

M = EIκ (1)
where E is the Young's modulus and I = r 2 dA is the second moment of area, known as the area moment of inertia in engineering (r being the distance to the neutral fiber and dA the surface element in the cross section). In the case of a rectangular beam of thickness w and depth d (where by convention w < d), I = w 3 d/12 and the surface area of the cross section is A = wd. Let us first consider the case of a narrow strip of paper (or a thin metal plate, or a plastic sheet) representing the beam and held between two fingers at an angle of 45 • (Fig. 7 a). If the strip is short enough (typically less than 2 cm) it appears to remain perfectly straight while a longer strip (typically 20 cm) is completely bent under its own weight. There is therefore a clear competition between the flexural rigidity (EI) and the weight (per unit length) ρgA, where ρ is the density of the material and g the standard gravity), the ratio of which has the dimension of a length cubed. One can therefore define, from dimensional analysis, a characteristic length

L c = EI ρgA 1/3 . (2) 
For typical paper (w=0.1 mm, ρ=800 kg/m 3 , E=3 GPa), L c 7 cm, which corresponds to the simple experiments described above. Therefore, L c can be seen as a critical length above which an oblique beam noticeably bends under its own weight.

C. Buckling and self-buckling

The case of a vertical beam is more subtle. If the elastic tower is initially perfectly vertical (however tall), its own weight exerts no moment and cannot cause the beam to bend or buckle. However, a straight beam may become unstable to lateral deflections above a critical load, known as Euler's critical load (in the case of a tower, corresponding to a critical height). [START_REF] Jones | Buckling of bars, plates, and shells[END_REF] Buckling is thus an instability with a well-defined threshold (or bifurcation).

When the total load is located at the tip of a vertical tower (therefore neglecting the weight of the tower itself), the critical load above which a tower will buckle when submitted to any perturbation depends on the boundary conditions. For a beam of height H clamped at its base and free at its top, the critical load F c is given by: 4

F c = π 2 2 EI H 2 (3) 
The case of self-buckling, i.e. where the load is uniformly distributed along its height (and with no load at the top) is mathematically somewhat more complex but physically very similar to Euler's critical load, and was solved as early as the XVIII th century. [START_REF] Gautschi | Leonhard euler: his life, the man, and his works[END_REF] The critical height is given by: 16

H c = 3j 1/3 2 2 EI ρgA 1/3 1.986 EI ρgA 1/3 (4) 
where j 1/3 1.866 is the first zero of the J 1/3 Bessel function. Below this height, when shaken a tower simply oscillates around the stable vertical position, whereas above this height, any small perturbation will cause the structure to fail. Note that the height H c only differs from the one obtained by dimensional analysis (see Eq. 2) by a numerical factor.

As a side-note, from Eq. 3 and Eq. 4 one can see that the critical height of a tower whose load is uniformly distributed is 3j 1/3 /π 1.78 times that of the same beam if its whole weight ρgAH c were placed at the top.

D. Oscillations of a vertical beam clamped at its base

An elastic beam hanging from the ceiling is somewhat reminiscent of a pendulum pushed back to the vertical position by a linear spring: it can oscillate around its vertical equilibrium position due to elasticity (with an angular frequency ω e , if the weight is neglected) and due to gravity (with an angular frequency ω g if the elasticity is neglected). These two independent frequencies are given by: 14,17

       ω 2 e = β 1 H 4 EI ρA ω 2 g = j 0 2 2 g H (5) 
where β 1 1.875 is the first zero of cos cosh +1 and j 0 2.405, the first zero of the J 0 Bessel function. In the case of the spring-pendulum, for small-amplitude oscillations the system is linear and the resulting angular frequency is simply given by: ω 2 = ω 2 e + ω 2 g . As a crude first-order assumption, one can consider that the previous linear calculation still holds for the hanging elastic beam. In the case of a vibrating tower whose height is less than the critical self-buckling height, the weight has a destabilizing effect and the angular frequency of the small-amplitude oscillations is now given by:

ω 2 = ω 2 e -ω 2 g ( 6 
)
The frequency vanishes to zero when the height of a tower reaches:

H c = 2β 2 1 j 0 2 EI ρgA 1/3 2.045 EI ρgA 1/3 (7) 
Thus, this equation is not strictly identical to Eq. 4, but only differ by the expression of the prefactor. However the numerical values of the two prefactors are very close (by less than 3%), which indicates that the crude model proposed for the oscillation frequency is relevant. Experimental measurements of the frequency are discussed in section III C and are in good accordance with Eq. 7.

III. EXPERIMENTS USING GELATIN-BASED TOWERS A. Mechanical properties of the gelatin gel

The experimental investigation reported below were carried out using blocks or bricks made of gelatin, an affordable and safe visco-elastic material. Gelatin is a gelling agent made of hydrolyzed collagen and obtained from skin, bones and connective tissues of pigs, chickens, cows and fish. [START_REF] Haug | Physical and rheological properties of fish gelatin compared to mam-FIG. 6. Stability of gelatin-based Lego R -brick towers. Below a critical height (10.5 ±0.5 cm for a gelatin concentration of 16%), when perturbed, a tower oscillates around its stable vertical equilibrium position (at the indicated frequency). Above the critical height, any small-amplitude perturbation causes the tower to collapse (right-most tower). malian gelatin[END_REF] It forms an elastic gel when dissolved in hot water and left to cool. The mechanical properties of the gel depends on their mass concentration in gelatin C, on the preparation protocol (most importantly on the duration and temperature at which the gel sets), as well as the initial gelation strength of the dry gelatin (characterized by the standardized Bloom number test). [START_REF] Osorio | Effects of concentration, bloom degree, and ph on gelatin melting and gelling temperatures using small amplitude oscillatory rheology[END_REF] The gelatin used in our experiments has a Bloom number ranging from 200 to 225. The mechanical properties of gelatin gels are very sensitive to temperature changes: typically, a variation in 2 C • of the ambient temperature may cause a 20% change in the Young's modulus. [START_REF] Djabourov | Gelation of aqueous gelatin solutions. ii. rheology of the sol-gel transition[END_REF] When exposed to air gelatin samples quickly dry out and must therefore be kept wet during experiments. Moreover they may slowly swell when stored in water over several days. All gelatin blocks or bricks were produced using a home-made molds and where left to set in a fridge for 24h prior to the experiments, conducted at 20 C • . The density of the gels (for concentrations up to 30%) does not significantly differ from that of pure water. Note that agar-agar gels set within minutes and can represent a good alternative to gelatin-based gels.

The Young's modulus, E, of the gelatin gels and their compressive strength, σ c , (the pressure at which they fail, forming irreversible fractures) were measured using an Anton Paar AR1000 rheometer in which cylindrical samples (20 mm in height and diameter) were tested. This device can simultaneously measure the applied normal force (with an accuracy of 10 -4 N) and the resulting deformation (with an accuracy of less than 1 µm). The Young's modulus is measured as the initial slope of the stress-strain curve while the compressive strength is computed from the maximum stress sustained before the sample fractures.

Figure 8 shows the results as a function of the concentration at a temperature of 20 C • . The Young's modulus ranges from 0 for C 3.5%, (meaning that the solution is simply liquid at low concentrations) to 75 kPa for C = 20%. Note that the values of E and σ c are of the same order of magnitude, which indicates that the material can undergo very large deformations (more than 50%) before failing.

Let us emphasize that the high precision of a commercial rheometer is an unnecessary luxury since, as mentioned above, the mechanical properties of the gel are very sensitive to the concentration, the preparation protocol and to small temperature variations. The measurements of E and σ c can be easily performed by compress- ing a sample directly on a scale while the deformation is measured with a caliper.

B. Maximum height of simple towers before self-buckling

Before introducing the use of stackable bricks made of gelatin, we first report the maximum height of a continuous beam made of gelatin. Two blocks (16 × 16 mm and 32 × 32 mm) of concentration 14 % were used and their height prior to buckling is reported in Fig. 9 (open circles). Clearly, these two points align well with the other data sets obtained with stacked bricks. This confirms that the behavior of towers made of individual bricks is identical (when it comes to the critical self-buckling height) to that of solid tower of gelatin gels, and it validates the continuum approach used in Sec. II. Note however that for large deformations (far above the critical height) the solid blocks may experience irremediable fracturing whereas individual bricks can simply separate and be reused.

The bricks were produced using a home-made silicone mold of classical Lego R bricks. We used bricks of dimensions width w = 16 mm, depth d = 32 mm and height 10 mm, showing 2 rows of 4 studs, further referred to as 4×2 bricks. Cutting those in half creates 4×1 bricks while interlocking them, one can build wider towers. Individual bricks are carefully stacked up until the tower falls. Us-ing this simple protocol, the maximum height H max is bounded between two integer values (between 10 and 11 bricks on Fig. 6, i.e. 10 cm < H max < 11 cm). Figure 9 shows the results obtained for 4×1, 4×2 and 4×4 towers, and for three concentrations C = 8%, C = 12% and C = 16%. The corresponding maximum heights range from 4 cm to 16 cm. The experimental measurements are plotted as a function of the theoretical predictions of Eq. 4, using the values of the Young's modulus of Fig. 8.

This results validates the continuous medium approach used for the tower made from stacked bricks, indicating again that a tower made of individual bricks will buckle at the same height as a solid block of gel of identical cross section.

Note however that if the cross section is large enough, the compressive strength may become the limiting factor. Indeed, the maximum height before the bottom brick of the tower fails is given by the hydrostatic pressure: ρgH = σ c . Nevertheless, for a concentration of C = 8% the corresponding height is as large as 90 cm whereas it reaches 350 cm for C = 20%. Let us also mention that for such tall towers, the irregularities in the shape of the individual bricks can cause the tower to simply tip over since its center of gravity might not remain above its base.

C. Predicting self buckling from stable structures self-oscillations

The oscillatory motion of stable 4×2 towers, at a concentration of C = 16% (as in Fig. 6), was studied using a camera (Ximea, xiQ MQ013MG-ON). The tower is given an initial gentle push (of less than a cm) and its free oscillations are recorded at 100 Hz. The period is computed from the average duration of the first 5 oscillations yielding an estimated uncertainty of 0.1 Hz. presents the results obtained for towers of height H ranging from 5 cm to 10 cm. The frequency is plotted as a function of H on panel a) and of 1/H 2 in panel b) (since the frequency of a beam whose weight is neglected scales as 1/H 2 , as indicated by Eq. 5). The frequency vanishes to zero as the height tends toward the critical self-buckling height. The good agreement between the experimental data and the theory validates the hypotheses made and shows that self-buckling is indeed the main limitation to the height of gelatin towers.

On both panels, the red line corresponds to the simplified model presented in section II D and perfectly matches the experimental data. Again, this indicates that the limiting factor in the height of a tower originates from the competition between its elasticity (a stabilizing effect) and its own weight (a destabilizing effect).

Let us mention that the measurement of the frequency of the free oscillations can also constitute a good tool to accurately determine the critical self-buckling height. [START_REF] Plaut | Use of frequency data to predict buckling[END_REF] Stacking up individual bricks until the tower buckles only lead to a precision of one brick height (1 cm in our case) whereas the frequency vs. H might simply be interpolated as a straight line (when vanishing to zero) whose intersect with the x-axis gives a value of H c with a typical accuracy of 1 mm.

IV. TOWARD HIGH TOWERS: INFLUENCE OF DESIGN AND SHAPES

The shape of most actual towers and sky-scrappers is not simply rectangular: from the pyramids of Egypt in ancient times, to the more modern Eiffel tower and Burj Khalifa, architects have always conceived designs. The choice of complex shapes is not entirely aesthetic (or financial) but is often governed by physical and engineering considerations. 1,[START_REF] Salamo | Physics for architects[END_REF] Two major improvements can be done to increase the critical self-buckling height of an elastic tower: the structure can be hollow or tapered. In this section, these two effects are studied through experiments and theoretical predictions. Note however that although a hollow structure could reach a greater self-buckling height, its overall ability to support an additional external weight could be less than the corresponding solid tower.

Let us mention that the biggest challenges modern skyscrappers have to face include buckling and oscillating under strong winds and resistance to earth-quakes, rather than buckling under their own weight. [START_REF] Gallant | The shape of the eiffel tower[END_REF] 

A. Hollow towers

It is obvious from Eq. 4 that increasing the second moment of area I (while the mass per unit length is kept constant) pushes back the self-buckling limitation. A simple experiment can be made to demonstrate the increase in stability of hollow towers. Using 4×1 bricks, one can build a simple 4×4 tower and a hollow 5×5 tower whose cross-sections areas are equal (see Fig. 11). The ratio of the second moment of area of the two structures is therefore (5 4 -3 4 )/4 4 = 2.125, showing an outstanding increase in the rigidity of the tower. The critical height of the hollow tower is thus 2.13 1/3 1.29 times that of the full structure. The difference between the two is clearly visible in Fig. 11, in which the ratio of the two heights corresponds to the predicted value.

The stability of two types of hollow towers built using a variety of concentrations was investigated: the 5×5 hollow tower displayed in Fig. 11 of width 4 cm (which should be compared to a solid 4×4 tower, which has the same material per unit length), and a 9×9 hollow tower (made of 4×1 bricks, with a 7x7 empty hole in the center) of width 7.2 cm (which reached 38 cm in height!). The results are summarized in table I and are in very good accordance with the theoretical predictions.

Another interesting consequence of Eq. 4 is the comparison with a solid tower of identical width. If a fraction φ of a tower is hollow so that its surface area scales as 1 -φ 2 and its second moment of area as 1 -φ 4 , then the corresponding maximum height scales as (1 + φ 2 ) 1/3 , which ranges from 1 to 2 1/3 1.260. It therefore appears that thinner walls allow for taller structures. However, another limitation arises as the walls thin down: for wide structures and thin walls, the walls themselves may start to buckle under the weight of the structure. The determination of the optimal thickness of the wall is a complex problem with no analytical solution. [START_REF] Rhodes | Buckling of thin plates and members-and early work on rectangular tubes[END_REF][START_REF] Schafer | Local, distortional, and euler buckling of thinwalled columns[END_REF][START_REF] Keller | The shape of the strongest column[END_REF] B. Tapered towers

The principle behind the increased rigidity of tapered tower seem simple since most of its weight is located at the bottom. Yet, the rigidity of such a tower also decreases as the structure tappers, and an exact calculation of their critical self-buckling height, H c , is necessary. [START_REF] Smith | Analytic solutions for tapered column buckling[END_REF] We need to mention that using individual bricks, it can be difficult to build smooth tapered towers. Therefore, in this section experiments were conducted using solid wedges and pyramids of gelatin gels, directly molded in home-made molds. The critical height for self-buckling is then measured when holding carefully the base of the tapered structure using both hands, which results is rather large uncertainties (typically 2 cm), but nevertheless proves accurate.

Wedges

For a wedge of half-angle α (long in the perpendicular direction), the critical height is given by:

H wedge c = j 2 2 6 E ρg tan 2 α ( 8 
)
where j 2 5.136 is the first zero of the J 2 Bessel function. The critical height can be rewritten as a function of the corresponding width at the base given by a = 2H wedge c tan α:

H wedge c = j 2 2 2 Ea 2 12ρg 1/3 (9) 
In comparison, for a simple rectangular tower of width a (see Eq. 4):

H rect. c = 3j 1/3 2 2 Ea 2 12ρg 1/3 (10) 
Equations 9 and 10 indicate that a wedge-shaped tapered tower can be 1.190 times as tall as a rectangular tower of identical width at its base.

Figure 12a shows the experimental maximum height before self-buckling for wedges of various half-angles and for various concentrations. The experimental data is plotted as a function of the corresponding theoretical value of H rect. c for rectangular towers and the dashed-line has the expected slope of 1.190. The agreement between the experiments and the prediction is very satisfactory, showing that all wedge-shaped towers are indeed 19% taller than their rectangular counterparts.

Pyramid

The shape can be further improved by building a tower which tapers down towards the tip in both directions, its cross-section being a square as opposed to a rectangle in the case of a wedge. The critical height of such a pyramid of half-angle α is given by: 16

H pyramid c = j 3 2 2 E ρg tan 2 α ( 11 
)
where j 3 6.380 is the first zero of the J 3 Bessel function.

For the same half-angle, the height of a pyramid can therefore be as much as (3j 2

3 )/(2j 2 2 ) 2.31 times that of a wedge-shaped tower. The maximum height of pyramids and wedges of identical half-angles were experimentally measured for various values of α and various concentrations. Figure 12b shows a comparison between the two shapes as the slope of the dashed line is the predicted ratio. Note that pyramids can be 2.31 1/3

1.32 as tall as the corresponding wedge-shaped towers of identical widths.

V. CONCLUSION

We have shown that the main limiting factor of the stability of gelatin-based brick towers is the buckling under their own weight. The classical theory of elasticity provides a continuum approach whose predictions (of the critical height and of the frequency of the oscillations of stable tower) are in good agreement with experimental measurement. Two improvements that can help push the limits of self-buckling are proposed: structures can be hollow or tapered. Combining both techniques, we were able to build a brick tower (pyramidal and hollow, 12×12 at its base, C = 30%) as tall as 56 cm.

As a digression, the mechanical properties of the gels could be further investigated. Indeed, gelatin-based gels are not simply elastic but display a viscoelastic behavior (reminiscent of the properties of silly putty: 28 ) the storage modulus (which characterizes the elasticity) is typically larger than the loss modulus (which characterizes the viscous behavior) but for low concentrations, both quantities are of the same order of magnitude. [START_REF] Michon | Concentration dependence of the critical viscoelastic properties of gelatin at the gel point[END_REF] Although, as a first-order approximation, the material can be considered purely elastic, the bricks can undergo a slow deformations when submitted to a constant pressure (a phenomenon known as creep flow [START_REF] Oswald | Rheophysics," Rheophysics, by Patrick Oswald[END_REF][START_REF] Zanotto | Do cathedral glasses flow?[END_REF] typically occurring within a few minutes). These properties can affect the stability of the brick-towers. Stacks whose height is less than but close to the expected critical height for self-buckling might be initially stable when built, but can slowly become unstable and buckle within minutes. FIG. 7. Schematics of elastic beams. a) oblique beam bent under its own weight, b) buckled tip-loaded beam and c) clamped beam self-buckled under its own weight. The first case causes a continuous deformation of the beam while the two others display a well-defined threshold and lead to sudden large-amplitude deformations. FIG. 8. Young's modulus, E, and compressive strength, σc of gelatin gels at 20 C • as a function of the weight concentration in gelatin. Both quantities displays a linear dependence on the concentration, and vanish at C = 3.5 ± 0.5%, indicating that below this critical concentration, the medium can be considered liquid. The solid lines are linear fits. FIG. 9. Experimental vs. theoretical critical self-buckling height, for towers of rectangular cross-sections, for various dimensions and gelatin concentrations. The solid black line has a slope of 1 and emphasizes the excellent agreement between the experimental data and the theoretical predictions. FIG. 10. Frequency, f , of the free oscillations of a tower (4×2 , C = 16%) (a) as a function of its height, H, (b) as a function of 1/H 2 . The solid line is the theoretical prediction of Eq. 6. The frequency vanishes to zero as the height tends toward the critical self-buckling height. The good agreement between the experimental data and the theory validates the hypotheses made and shows that self-buckling is indeed the main limitation to the height of gelatin towers. FIG. 11. Picture of solid and hollow towers (built from 4×1 bricks at C = 10% at their maximum height. The solid tower reaches 12.5±0.5 cm, while the hollow tower reaches 16.5±0.5 cm, which corresponds to the predicted increase of 29% for hollow towers of identical cross-section areas. FIG. 12. a) Experimental maximum height of wedge-shaped tower vs. the corresponding predicted critical height of rectangular tower of identical width at their base. The solid line shows the predicted proportionality (slope of 1.190) and nicely matches the data. As expected, wedges can be 19% taller than rectangular towers before buckling. b) Experimental maximum height of pyramidal towers vs. that of wedge-shaped tower of identical half-angle. The solid line shows the predicted proportionality (slope of 2.31), in excellent agreement with the experimental data. Pyramids can be 131% taller than wedges.
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 1 FIG. 1. Stability of gelatin-basedLego R -brick towers. Below a critical height (10.5 ±0.5 cm for a gelatin concentration of 16%), when perturbed, a tower oscillates around its stable vertical equilibrium position (at the indicated frequency). Above the critical height, any small-amplitude perturbation causes the tower to collapse (right-most tower).
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  FIG. 2. Schematics of elastic beams. a) oblique beam bent under its own weight, b) buckled tip-loaded beam and c) clamped beam self-buckled under its own weight. The first case causes a continuous deformation of the beam while the two others display a well-defined threshold and lead to sudden large-amplitude deformations.
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 303 FIG.3. Young's modulus, E, and compressive strength, σc of gelatin gels at 20 C • as a function of the weight concentration in gelatin. Both quantities displays a linear dependence on the concentration, and vanish at C = 3.5 ± 0.5%, indicating that below this critical concentration, the medium can be considered liquid. The solid lines are linear fits.
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 4 FIG.4. Experimental vs. theoretical critical self-buckling height, for towers of rectangular cross-sections, for various dimensions and gelatin concentrations. The solid black line has a slope of 1 and emphasizes the excellent agreement between the experimental data and the theoretical predictions.
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 85 FIG.5. Frequency, f , of the free oscillations of a tower (4×2 , C = 16%) (a) as a function of its height, H, (b) as a function of 1/H 2 . The solid line is the theoretical prediction of Eq. 6. The frequency vanishes to zero as the height tends toward the critical self-buckling height. The good agreement between the experimental data and the theory validates the hypotheses made and shows that self-buckling is indeed the main limitation to the height of gelatin towers.

TABLE I .

 I Critical self-buckling height of solid and hollow towers built using 4×1 bricks for various concentrations and overall widths.

	C Total width Hc (solid) Hc (hollow) Theory (hollow)
	%	cm	cm (±0.5) cm (±0.5)	cm (±0.5)
	10	4.0	12.5	16.5	16.1
	30	4.0	20.5	25.5	25.3
	30	7.2	25.5	38	36.5
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