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Abstract. This paper presents a multidisciplinary case study of prac-
tice with machine learning for computer music. It builds on the scientific
study of two machine learning models respectively developed for data-
driven sound synthesis and interactive exploration. It details how the
learning capabilities of the two models were leveraged to design and im-
plement a musical instrument focused on embodied musical interaction.
It then describes how this instrument was employed and applied to the
composition and performance of @go, an improvisational piece with in-
teractive sound and image for one performer. We discuss the outputs
of our research and creation process, and build on this to expose our
personal insights and reflections on the multidisciplinary opportunities
framed by machine learning for computer music.

Keywords: Multidisciplinarity, Machine Learning, Interface Design, Com-
position, Performance

1 Introduction

Machine learning is a field of computer science that studies statistical models
able to automatically extract information from data. The statistical learning
abilities of the models induced a paradigm shift in computer science, which re-
considered mechanistic, rule-based models, to include probabilistic, data-driven
models. Recent applications of machine learning led to critical advances in dis-
ciplinary fields as diverse as robotics, biology, or human-computer interaction.
It also contributed to new societal representations of computers through the
loosely-defined notion of Artificial Intelligence (AI).

Computer music also witnessed an increased interest in machine learning.
Research has mostly been scientific in focus, using and studying models to auto-
matically analyse musical data—e.g., extracting symbolic information related to
pitch or timbre from audio data. This led to technical advances in the field of mu-
sic information retrieval [1], while also benefiting the field of musicology, notably
through large-scale computational analysis [2]. In parallel, machine learning also

* Equal contribution.
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enabled the building of many automatic music generation systems, which are
currently being invested by the industry in the wave of AT [3].

Importantly, these scientific investigations of machine learning have also en-
abled the birth of new musical practices. For example, gesture modelling, as a
scientific challenge, opened new design perspectives on body-based musical in-
struments that adapts to one’s way of playing it [4]. Similarly, symbolic sequence
modelling created new human-machine improvisational situations where the ma-
chine learns to imitate a musician’s style [5]. Reciprocally, artistic investigations
of machine learning began taking a complementary approach, using the models
themselves as material for composition of sound [6] and image [7].

We are interested in adopting a joint scientific and musical approach to
machine learning research. We are inspired by the computer music pioneer Jean-
Claude Risset [8], whose research and creation approach to computer science
enabled new scientific understandings of sound as a physical and perceptual phe-
nomenon, jointly with an artistic commitment toward the computed aesthetics.
His work and personal approach gave insight to both scientists—ranging from
formal to social science—, and artists—ranging from composers and performers
to instrument designers. Our wish is to perpetuate his multidisciplinary impetus
toward contemporary computer music issues related to machine learning.

The work that we present here is a step toward this direction. We led a
scientific investigation of two machine learning models that jointly frame new
data-driven approaches to sound synthesis. We then adopted a musical approach
toward these models, leveraging their interactive learning abilities to design
a musical instrument, which we employed to create an improvisational piece.
Rather than seeking general abstractions or universal concepts, our wish was to
test these models through a practical case study to engage a personal reflection
on the musical representations and behaviors that they may encode. Our hope
is that our idiosyncratic research and creation process will help open multidis-
ciplinary perspectives on machine learning for computer music.

The paper is structured as follows. We start by the scientific foundations of
our work, describing the two models that we developed for two musical issues—
sound analysis-synthesis, and sonic exploration. Next, we present the design of
our musical instrument, by describing its workflow and implementation with a
focus on embodied musical interaction. We then describe @go, an improvisational
piece with interactive sound and image for one performer, which we wrote for
our instrument. Finally, we discuss our research and creation process to draw
conceptual insight on machine learning for computer music from crossed science,
design, and art perspectives.

2 Scientific Modelling

In this section, we describe our two machine learning models, based on unsuper-
vised learning and reinforcement learning, from a computer science perspective.
We explain how they respectively address two specific musical issues: sound
synthesis-analysis and sonic exploration.
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2.1 Unsupervised Learning for Sound Analysis and Synthesis

Musical Issue. Most sound analysis-synthesis techniques, such as the phase
vocoder [9] or the wavelet transform [10], are based on invertible transforms that
are independent of the analyzed sounds. Such transforms provide frameworks
that can be applied regardless to the nature of the signal, but in return impose a
determined structure such that the extracted features are not corpus-dependant.
Conversely, could we think about a method retrieving continuous parameters
from a given set of sounds, but rather aiming to recover its underlying structure?

Model. The recent rise of unsupervised generative models can provide a new
approach to sound analysis-synthesis, by considering each item of a given audio
dataset {x, }ne1...p, in our case a collection of spectral frames, as draws from an
underlying probability distribution p(x) that we aim to recover. The introduction
of latent variables z allows us to control a synthesis process by modelling the
joint distribution p(x,z) = p(x|z)p(z), such that these variable act as parameters

for the generative process p(x|z). The full inference process, that would here
— p(xl2)p(z)

correspond to the analysis part, leverages the Bayes’ rule p(z|x) P1e)

recover the distribution p(z|x), called the posterior.

Generation
(synthesis)

X

Control ----2 ——————— >| Latent space

Sound dataset lnferenf:e
X (analysis)

Fig. 1. Unsupervised learning for sound analysis and synthesis. The variational auto-
encoder (VAE) encodes a sound dataset into a high-dimensional latent space, which
can be parametrically controlled to synthesize new sounds through a decoder.

To improve expressivity of inference and generation, we propose to investigate
variational learning, a framework approximating the true posterior p(z|x) by
a distribution g(z|x), such that both inference and generative process can be
freely and separately designed, with arbitrary complexity. The variational auto-
encoder (VAE) is representative of such methods [11]. In this model (Fig. 1),
inference and generation processes are held by two jointly trained separated
networks, respectively the encoder and the decoder, each modelling respectively
the distributions ¢(z|x) and p(x|z). The inherent Bayesian nature of variational
learning forces the smoothness of the latent space, a high-dimensional, non-linear
sonic space, whose parametric dimensions can be freely explored in the manner
of a synthesizer.

In related work, we show how this latent space can be regularized according
to different criteria, such as enforcing perceptual constraints related to timbre
[12]. We refer the reader to the latter paper for technical details on the model
and quantitative evaluation on standard sound spectrum datasets.
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2.2 Reinforcement Learning for Sonic Exploration

Musical Issue. Sonic exploration is a central task in music creation [13]. Specif-
ically, exploration of digital sound synthesis consists in taking multiple steps and
iterative actions through a large number of technical parameters to move from
an initial idea to a final outcome. Yet, the mutually-dependent technical func-
tions of parameters, as well as the exponential number of combinations, often
hinder interaction with the underlying sound space. Could we imagine a tool
that would help musicians explore high-dimensional parameter spaces?

Model. We propose to investigate reinforcement learning to support explo-
ration of large sound synthesis spaces. Reinforcement learning defines a statisti-
cal framework for the interaction between a learning agent and its environment
[14]. The agent can learn how to act in its environment by iteratively receiving
some representation of the environment’s state .S, taking an action A on it, and
receiving a numerical reward R. The agent’s goal, roughly speaking, is to maxi-
mize the cumulative amount of reward that it will receive from its environment.

USER AGENT ENVIRONMENT ‘D
—>| Learning Algorithm |<— cocee
Reward R State S ceoee
+ /- | Exploration Method Im> oo

Fig. 2. Reinforcement learning for sonic exploration. The agent learns which actions
to take on a sound synthesis environment based on reward given by the musician. The
agent implements an exploration method to foster discovery along interaction.

For our case of sonic exploration, we propose that the musician would listen
to the agent exploring the space, and teach it how to explore by giving reward
data (Fig. 2). Formally, the environment’s state is constituted by the numerical
values of all synthesis parameters. The agent’s actions are to move one of the pa-
rameters up or down at constant frequency. Finally, the musician communicates
positive or negative reward to the agent as a subjective feedback to agent ac-
tions. We implemented a deep reinforcement learning model to support learning
from human reward signal in high-dimensional parametric spaces [15].

A crucial requirement for reinforcement learning agents is to autonomously
explore their environment, to keep on discovering which actions would yield the
most reward. We developed a statistical method, based on intrinsic motivation,
which pushes the agent to “explore what surprises it”. The resulting interactive
learning workflow was found to be useful to relax musicians’ control over all
synthesis parameters, while also provoking discoveries by exploring uncharted
parts of the sound space. We report the reader to [16,17] for technical details
on the tool and qualitative evaluation from expert sound designers.
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3 Instrument Design

In this section, we present our musical instrument that combines our two models
and leverages their learning capabilities from a design perspective. We describe
how interaction design was framed in joint coordination with hardware and soft-
ware engineering to support embodied musical interaction.

3.1 Interaction design

Motivation. Our main design motivation was to use our reinforcement learning
agent to support musical exploration of high-dimensional latent sound spaces
built by our unsupervised learning model.

Specifically, our aim was to exploit the exploration behaviour of our reinforce-
ment learning agent to support non-symbolic improvisation inside the spaces.
Instead of acting as a tool, we used machine learning as an expressive partner
[5] that would be playable by musicians using positive or negative feedback.

A complementary aim was to employ the generative abilities of our unsuper-
vised learning model to support customization of sound synthesis spaces. Instead
of accurately modelling sounds, we used machine learning as a creative interface
[18] that lets musicians experiment with the nonlinearities of the latent spaces.

PLAYING ‘)
Improvization by feedback

SETUP Change dimensionality | | Load latent space

Customization of

sound synthesis spaces Change action
frequency | Build latent space |

ICreote sound dataset |

Fig. 3. The interactive workflow that we designed for our instrument.

Workflow. We designed a two-phase interactive workflow, shown in Fig. 3.

The setup phase allows musicians to configure the instrument. They can
create a customized sound dataset for the unsupervised learning model, exper-
iment with various training parameters, or also load a previously-built latent
sound space. They can also change dimensionality of the reinforcement learning
agent to explore specific dimensions of the latent sound space, as well as the
frequency at which it would take actions inside the latent space.

The playing phase allows musicians to improvise with the agent by means
of feedback. The agent produces a continuous layer of sound from the spectrum
output of the VAE. Musicians can either cooperate with its learning by giving
consistent feedback data to attain a sonic goal. Or, they can obstruct its learning
by giving inconsistent feedback data to improvise through sonic exploration.
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3.2 Engineering

Implementation. Technically (see Fig. 4), the reinforcement learning agent
receives a representation of the environment’s state S as a position in the la-
tent space z. Then, it takes an action A corresponding to a displacement along
some dimension of the latent space. The resulting position has the unsupervised
learning model generate a sound spectrum x. Based on the sound, the musician
would communicate reward R to the agent. The latter would progressively learn
to explore the latent space in relation to the musician’s feedback data.

Python Max/MSP

Fig. 4. Schematic representation for the engineering of our instrument.

Hardware. We designed a hardware prototype to support embodied musical
interaction (see Fig. 4, left). It consists in two velcro rings, each of them equipped
with a wireless inertial measurement unit'. We took each unit angular rotation
about each forearm axis and summed them to compute a single, normalized
numerical reward signal. This, combined with the lightweight, nonintrusive velcro
rings, lets musicians experiment with a wide range of gesture vocabulary [19] to
communicate positive or negative feedback to the agent.

Software. We implemented our two machine learning models as Python li-
braries?3. We developed a Max/MSP patch to implement a user interface for
the setup phase, as well as a hardware data converter for the playing phase.
We leveraged the OSC protocol to bridge hardware data, reinforcement learning
agent, unsupervised latent space, and sound spectra together into the patch.

4 Musical Artwork

In this section, we present @go, an improvisational piece that we wrote for our
musical instrument, to be premiered at the 1jth International Symposium on
Computer Music Multidisciplinary Research, held in Marseille, France. We de-
scribe the intended aesthetics of sound, image and body, and detail how compo-
sition and performance were approached in relation to our learning instrument.

"http://ismm.ircam.fr/riot/
*https://github.com/acids-ircam/variational-timbre
3https://github.com/Ircam-RnD/coexplorer
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4.1 Aesthetics

Motivation. Our artistic motivation for @go was to open a sensitive reflection
on what may actually be learned on a musical level through interaction with
machine learning, both by the human and its artificial alter ego—the machine.
To share this reflection with members of an audience, we opted for a performance
format that displays a human and a machine mutually learning to interact with
each other—on an embodied level for the human, and on a computational level
for the machine—through live improvization.

The learning machine possesses a distinctive musical behaviour, as well as
two latent sound spaces, that are all originally unknown to the human performer.
The latter will expressively negotiate control of these spaces with the machine,
communicating positive or negative feedback using our instrument and its motion
sensors placed in both hands. The slowly-evolving spectromorphologies, synthe-
sized and projected in real-time on stage, create a contemplative, minimalist
atmosphere intended to let members of the audience freely consider potential
learnings of musical qualities by the human and the machine.

Fig. 5. Pictures taken from «go.

Intentions. The piece’s aesthetic intentions toward machine learning lie at three
intertwined levels: sound, image, and body (see Fig. 5).

One of our intentions was to reveal the sound representations learned by the
unsupervised learning model to the audience. We thus built latent sound spaces
using sound data that was commonly used and produced in pioneering works of
computer music. In addition, we projected the generated sound spectrums on
stage to provide the audience with a visual representation that accentuate, not
disrupt, the sonic perception of the piece.

Another intention was to display the exploration behaviour of the reinforce-
ment learning agent in front of the audience. To do this, we wanted to challenge
the skills and abilities usually at stake in performance, by summoning an ecolog-
ical approach and evoking a sense of reciprocal interaction between the human
and the machine. In this sense, rather than using it for control purposes, we used
the body of the performer to convey kinesthetic information about how machine
exploration may be internally experienced by a human. In parallel, we added raw
textual information about the machine’s internal state at top left of the image
projection to emphasize the machine’s encoded perception of the performer.
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4.2 Writing

Composition. The piece was composed at three temporal scales (see Fig. 6).

The first scale is that of exploration. It consists in the improvisational paths
taken by the reinforcement learning agent following the performer’s feedback
data. We set the frequency of agent actions between 30 and 100 milliseconds.
This choice allowed for slow, continuous evolution of spectromorphologies, which
enables to grasp the behaviour of the agent inside the latent spaces.

W

exploration

dimension

latent space + (p

Fig. 6. Temporal structure composed for the piece.

The second scale is that of latent space dimensionality. It consists in defining
the axis of the latent spaces that the reinforcement learning agent will explore.
We set the dimensions to 1, 2, 4, and 8, respectively. This allows to write a
specific kind of musical form inside the latent space: the more dimensions we
open to the agent, the more sonic variance the performer and audience members
will experience.

The third scale is that of latent space itself. It consists in connecting the
reinforcement learning agent to another type of latent space. We used two latent
spaces, respectively built from additive synthesis sounds and physical instru-
ments recordings (flute, saxophone, piano, violin, bassoon [20]). This enables
to write form within different soundscapes, allowing the building of a narrative
(here, going from elementary sinusoidal spectra to richer instrumental timbres).

Performance. While the piece is intended to be improvised, our sole instruction
toward the stage performer is that he or she globally performs with the machine
with an overall sense of attentiveness*. We propose that the performer would
start the piece facing the audience, relaxed, using the instrument with small
forearm rotations only. As the piece would unfold over time, the performer would
be free to adapt its gestures in response to the slowly evolving complexity of the
explored spaces, focusing on embodied interaction with the machine.

A second contributor is required to manage the two remaining temporal scales
of the piece—i.e., changing dimensionalities, and switching latent spaces.

4See the following video recording: https://youtu.be/gCz00NCh1JQ
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5 Discussion

In this section, we take a critical look at the output of our case study by dis-
cussing our research and creation process. We then expose our personal reflec-
tions emerging from practice with machine learning, and propose conceptual
insight for future multidisciplinary inquiries in the realm of computer music.

5.1 Case study

Process. The work presented here relates a practical case study with machine
learning in the frame of computer music. We leveraged both conceptual and
technical aspects of machine learning to jointly produce scientific knowledge
with our two models for sound synthesis, as well as musical creations through
the design of our instrument and the writing of our musical piece. In this sense,
our work emerged from a research and creation process, in which we closely
articulated a research methodology with a creation project.

We followed a sequential disciplinary agenda (see Fig. 7, solid lines and ar-
rows). We started by the scientific modelling of sonic exploration and sound syn-
thesis, which took us two years to date. We then planned a one-month period
to conceive the instrument, write and practice the musical piece. This research
and creation agenda was mainly required by our work occupation focusing on
computer science research without necessarily addressing music creation.

While many researchers of our laboratory were involved in scientific mod-
elling, we (the two coauthors) managed instrument design and musical piece as
a pair. Importantly, we both followed a dual training in science and music, and
were doctoral students in the domain of machine learning applied to computer
music at the time of writing. In addition, both of us have professional experience
in music composition and performance. These dual skills were central to indi-
vidually work, as well as to effectively collaborate, on conceptual and technical
aspects related to machine learning throughout the process.

Output. The relatively short period dedicated to musical creation pushed us
to take pragmatic decisions about the form of outputs, notably by relinquishing
certain technical developments. For example, using the unsupervised learning
model to learn temporal features of sound spectrums could have improved the
timbre richness of the generated sounds, as well as supported other musical forms
than slow spectromorphology evolution. Also, other agent commands than feed-
back data could have been designed to support expressive human control over
the reinforcement learning agent exploration. Finally, many other musical forms
could have been conceived, using other sound datasets—e.g., voice corpora or
environmental sounds—and investigating other temporal writings for dimension-
ality and exploration. Future continuation of our work may consider addressing
these research questions to evolve the generated outputs.
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5.2 Authors’ reflections on machine learning for computer music

Conceptual insight. Beyond the created outputs, our process of practice with
the two machine learning models let us reflect on conceptual issues, which feed
back into many different disciplines (see Fig. 7, dashed lines and arrows).

1

v :

I Formal Sciences I —> I Engineering I —> | Composition |::
_______________ . | | |

i Social Sciences  <+------- ~I Interaction design |<l- ——————— ~I Performance E
SCIENCE DESIGN ART :
I

Fig. 7. Our case study. Solid arrows: The sequential research and creation process that
we took to scientifically investigate our models, and musically create our instrument and
artwork. Dashed arrows: The personal conceptual insight gathered along our process.

On the one hand, composing with the sonic aesthetics produced by the un-
supervised learning model let us reflect on epistemological issues that span both
formal and social science (Fig. 7, upper and lower dashed arrows). Should ma-
chine learning be considered as a modelling tool for sound data, or rather as
a framework for sound synthesis that remains to be crafted? Our insight leans
toward the latter option. Rather than imposing deterministic rules to define a
sound space [21], probabilistic methods propose heuristics that aim to inverse
this methods by retrieving structure directly from the data. More specifically,
Bayesian approaches filtrates the ”space of everything possible” to get closer from
the data structure, thus providing interesting generalization abilities in addition
to structural information, from the point of view of formal science. Conversely,
adopting an artistic approach to the learned representations also provides an al-
ternative way of evaluating these models, completing existing machine learning-
focused evaluations methods of such unsupervised learning systems. However,
such evaluations have to deal with musicological approaches in the realm of the
social sciences, and remains still an underrated field of research.

On the other hand, performing with a reinforcement learning-based musi-
cal instrument offers new design and scientific views on interactivity (Fig. 7,
middle dashed arrows). How should we approach an artificial musical partner
that learns to behave from our sole feedback data? Alternatively, should explo-
ration be analysed as an expressive musical behaviour? Our insight is that the
data-agnostic framework of machine learning may support the development of
new modalities for human-machine interaction, which may originate from the
social sciences. In the musical domain, machine learning may be used to en-
hance modes of communication that already exist between musicians. Feedback,
for example, is a broad communication channel that concern all types of living
or nonliving systems [22]. By designing interactions with machine learning that
rely on feedback data, we may create more accessible musical partners and in



Machine Learning For Computer Music Multidisciplinary Research 11

turn instigate analytical views on these embodied notions—as it has been the
case with machine learning-based gesture modelling tools [4]. Exploration, as
a performative and improvisational practice, remains to be investigated more
deeply in that sense.

Toward intrinsic approaches. In this paper our approach was to study the
artistic possibilities emerging from the encounter of our two models, rather than
to evaluate them separately on their respective tasks. Precisely, our experience
in practicing such models revealed to us two distinctive approaches: an extrinsic
approach, where machine learning models are designed towards a specific task
and used faithfully to this end—such as in music information retrieval—, and an
intrinsic approach, where these models are exploited for themselves and taken
as objects that can be explored, hacked, and manipulated—such as in gesture
modelling, or improvisational systems. While the first approach has so far been
the most common, as machine learning was originally created to tackle complex
issues that preceding techniques fell short with, we think that the second may
unfold new creative opportunities for computer music, just as Jean-Claude Ris-
set’s joint scientific and musical approach to computing did [23]. We hope that
the present case study stands in favour of this argument.

While we built on our joint machine learning and music training to lead our
case study, it may require more time to manage collaboration between machine
learning experts and researchers, engineers, musicians, artists, musicologists, sci-
entists, designers, or epistemologists, toward shared musical goals. We believe
that multidisciplinary collaboration is key to lead intrinsic examination of ma-
chine learning, and that the latter may be crucial to go beyond suspicions and
actively negotiate the place of the human artist in upcoming AI music systems.

6 Conclusion

We presented a practical case study of machine learning for computer music. We
studied two machine learning models, from which we designed a musical instru-
ment, and wrote a piece for it. We discussed the research and creation process
that fostered our case study and showed the conceptual benefits in terms of feed-
back. Future work may include multidisciplinary collaborations to intrinsically
study machine learning in the realm of computer music.
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