
HAL Id: hal-02408660
https://hal.science/hal-02408660

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PRUDA: An API for Time and Space Predictible
Programming in NVDIA GPUs using CUDA

Reyyan Tekin, Houssam-Eddine Zahaf, Giuseppe Lipari

To cite this version:
Reyyan Tekin, Houssam-Eddine Zahaf, Giuseppe Lipari. PRUDA: An API for Time and Space Pre-
dictible Programming in NVDIA GPUs using CUDA. Junior Workshop: JRWRTC - Real-Time Net-
works and Systems 2019, Nov 2019, Toulouse, France. �hal-02408660�

https://hal.science/hal-02408660
https://hal.archives-ouvertes.fr

PRUDA: An API for Time and Space Predictible
Programming in NVDIA GPUs using CUDA

Reyyan Tekin, Houssam-Eddine ZAHAF, Giuseppe Lipari
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France

{firstname.familyname}@univ-lille.fr

ABSTRACT
Recent computing platforms combine CPUs with different
types of accelerators such as Graphical Processing Units
(GPUs) to cope with the increasing computation power needed
by complex real-time applications. NVIDIA GPUs are com-
pound of hundreds of computing elements called CUDA cores,
to achieve fast computations for parallel applications.

However, GPUs are not designed to support real-time ex-
ecution, as their main goal is to achieve maximum through-
put for their resources. Supporting real-time execution on
NVIDIA GPUs involves not only achieving timely predictable
calculations but also to optimize the CUDA cores usage.

In this work, we present the design and the implemen-
tation of PRUDA (Predictable Real-time CUDA), a pro-
gramming platform to manage the GPU resources, there-
fore decide when and where a real-time task is executed.
PRUDA is written in C and provides different mechanisms
to manage the task priorities and allocation on the GPU.
It provides tools to help a designer to properly implement
real-time schedulers on the top of CUDA.

1. INTRODUCTION
Many real-time applications such as computer vision, surveil-

lance systems, etc. demand complex processing on a large
amount of data. Classical multiprocessor platforms combin-
ing only CPUs are not able to satisfy the real-time require-
ments of such systems as they require computing capabilities
in the order of teraflops.

Recently, NVIDIA have provided computing platforms
combining CPUs with different types of specialized comput-
ing unit such as GPUs, Deep Learning Accelerating (DLA),
etc., on the same chip. These platforms can offer suitable
solutions to meet deadlines for emerging complex real-time
applications. However, the complexity of the software, com-
bined with the complexity of the hardware architecture,
makes it difficult to analyse the temporal behavior of such
systems. Moreover, these accelerators are not fundamen-
tally designed to execute real-time tasks. Therefore, they
do not provide proper hardware and software mechanisms
to schedule real-time tasks.

Several works [1, 3, 5] have attacked the problem of pro-
viding support to real-time systems onto GPUs from dif-
ferent perspectives. Kato et al. have proposed platforms
(TimeGraph and RGEM) for non-preemptive scheduling for
graphical tasks in GPU [5], [4]. Authors in [1] tried to study
how a GPU takes scheduling decisions based on benchmark-
ing of the Jetson TX2 platform. Capodieci et al. in [2]
modified the proprietary NVIDIA driver to implement an

event-driven scheduler allowing to use fine grain preemption
levels provided by recent GPUs under different policies such
as EDF and fixed priority. GPUSync [3] is a platform able
to control scheduling within the GPU using locks. The work
in [2] has closed sources whereas GPUSync [3] platform does
not provide tools to freely implement real-time schedulers.
In both works, GPU is used as a single core platform.

Contributions..
In this work, we develop PRUDA, a platform that im-

plements different strategies to control real-time execution
within a GPU using CUDA. PRUDA provides a control over
priorities and task allocation and parallel execution within
the same GPU at the same time. The different primitives
of PRUDA allows implementing several real-time scheduling
policies using different strategies. The platform is currently
under active development: we are working on implementing
special verison of EDF (GRUB) and Fixed priority schedul-
ing policies with PRUDA.

The remainder of this paper is structured as follows. GPU
architecture and its known scheduling mechanisms are de-
tails in Section 2. Section 3 presents the task and architec-
ture models. We reserve Section 4 to define how priorities
and allocations are controlled within a GPU using our plat-
form. In Section 5, we overview the implementation of real-
time schedulers using PRUDA. We draw our conclusions in
Section 7.

2. GPU PROGRAMMING AND PRUDA PRIM-
ITIVES

A GPU is compound of one or more streaming multiproces-
sors (SMs) and one or more copy engines (CEs). Streaming
multiprocessors are able to achieve computations (kernels),
whereas copy engines execute memory copy operations be-
tween different memory spaces. Programming the GPU re-
quires dividing parallel computations into several grids, and
each grid to several blocks. A block is a set of multiple
threads. A GPU can be programmed using generic plat-
forms such OpenCL or proprietary independent APIs. We
use CUDA, a NVIDIA proprietary platform, to have a tight
control on SMs and CEs in the C programming language
and using the NVIDIA compiler.

When a kernel is invoked by CPU code, it submits com-
mands to the GPU. How and when commands are executed,
is hidden by constructors for intellectual property concerns.
Authors in [1] have tried to reveal some GPU scheduling se-
crets by benchmarking a Jetson TX2 (abbreviated TX2 in
the rest of this paper). It is compound of 6 ARM-based CPU

SM0 (128 cores) SM1 (128 cores)

Cpy. Engine

Denver CPUs)

A57 CPUs

NVIDIA PASCAL GPUCPU Islands

Shared Main Memory

Figure 1: Jetson TX2 Architecture

cores, along with an integrated NVIDIA PASCAL-based
GPU as shown in Figure 1, all running onto Ubuntu. The
GPU in the TX2 is compound of 256 Cuda cores, divided
into two SMs and one copy engine. CPUs and GPU share
the same memory module. From a programming perspec-
tive, one may either allocate two separate memory spaces
for CPU and GPU using malloc and CudaMalloc primitives
respectively. The programmer may use a memory space vis-
ible logically by the CPU and the GPU called CUDA uni-
fied memory (even for discrete GPUs), therefore no memory
copies are needed between CPU and GPU tasks such mem-
ory spaces (buffers) allocated using the CudaMallocManaged
primitive. The current version of PRUDA supports CUDA
unified memory to avoid dealing with memory copy opera-
tions, as it will be shown in PRUDA architecture. An exten-
sion to separate memory spaces is under development and
will be soon available.

Typical Cuda programs are organized in the same way.
First, memory is allocated both on CPU and GPU. Further,
memory copies are operated between CPU and GPU. Then,
the GPU kernel is launched, and finally results are copied
back to the CPU by memory copy operations.

Regarding kernel execution within the GPU, authors in
[1] affirm that all threads of any block are executed by only
one SM, however different blocks of the same kernel may be
executed on different SMs. In Figure 2, the green kernel is
executed on both SM0 and SM1, the red SM is executed
only on SM0. The kernel execution order and mechanisms
are driven by internal closed-source NVIDIA drivers (in our
case of study). A PRUDA user may obtain the SM where a
given block/thread is executing by using the pruda get sm()
function. PRUDA allows also enforcing the allocation of
a given kernel to a specific SM by using PRUDA function
pruda allocate to sm(int sm id), where the sm id is the id of
the target streaming multiprocessor. Implementation details
about how these functions work can be found in the PRUDA
description section.

To enforce an execution order between different kernels,
we use a specific data structure, called Cuda Stream. A cuda

SM0

SM1

Kernel 1

Kernel 2

Figure 2: Example of Kernel scheduling in GPU

void *pruda_task(void * arg) {

struct timespec_t next;

p_kernel_t *pk = (p_kernel_t *)(arg);

while (1) {

// memory copy operation

clock_gettime(CLOCK_REALTIME, &next);

pruda_subscribe(pk->kernel,p->priority)

timespec_addto(next, pk->T);

clock_nanosleep(CLOCK_REALTIME, 0, &next, 0);

}

}

Figure 3: Pseudo-code of PRUDA task

stream has a FIFO behavior. Therefore, kernels submitted
to a Cuda stream are executed one after the other in a se-
quential fashion. Therefore, synchronization between two
consecutive kernels is implicitly achieved. This property will
be used later to implement non preemptive EDF and fixed
priority real-time scheduling policies.

In Cuda, the user may define several streams. A prior-
ity might be set between different streams. Therefore, if a
stream A has a higher priority than stream B, all kernels of
A are meant to execute before kernels that are submitted to
B. If a kernel in B is executing, and a kernel is activated on
A, the GPU might preempt the kernel of B, to execute the
kernel of A according to the GPU preemption level (we will
show this behaviour in our benchmarks). We highlight that
fine-grain preemption capabilities are available in NVIDIA
GPUs starting from the PASCAL architecture. For exam-
ple, if a preemption is set at a block level, preemption will be
achieved when all already executing blocks finish their exe-
cution. Recent VOLTA GPUs allow even finer preemption
levels.

Even if it is possible to create more than 2 streams, only
two levels of priority are available in the Jetson TX2 plat-
form. These properties will be used later to approximate
EDF and fixed priority preemptive scheduling policies.

Other PRUDA functions will be detailed later.

3. SYSTEM MODEL
In this paper, we are only interested in GPU programming

and scheduling. While this paper provides real-time support
to GPUs, we do not provide any schedulability analysis yet,
the analysis is work in progress.

We assume that all tasks in the system are programmed
used PRUDA, therefore only PRUDA tasks are in concur-
rence in GPU. Each task τi is characterized by its deadline
Di and its period Ti. Tasks are strictly periodic, therefore
the exact time between two successive activations of task τi
is equal to Ti. The jth instance of task τi must finish it
execution no later than Ti × j + Di, otherwise it misses its
deadline. The task may be scheduled using fixed priority,
therefore it may be characterized by parameter priority Pi.
From the implementation perspective, each PRUDA tasks
is a instance of a periodic CPU thread as shown in the al-
gorithm of Figure 3.

The PRUDA task starts by parsing the kernel parame-
ters which are the kernel code, priority, deadline and period.

Further it starts the periodic task behavior. The task get
the current time and computes the next instance activation
time next. Later, the GPU job is registered in the correct
(according to the desired scheduling policy) GPU run-queue
(see PRUDA architecture in Figure 4). Once the PRUDA
CPU thread launched the kernel, it sleeps until the next
activation. Another scheduling entity checks the run-queue
state and schedule the highest priority tasks first according
to (i) one of the strategies details into the next section and
(ii) to the desired scheduling policy.

The memory copy operation line achieves memory copies.
This operation may need to copy several buffers from CPU
to GPU and vice-versa. The current version of the platform
use Cuda unified memory, therefore memory coherency is
achieved automatically by the NVIDIA Driver.

The GPU may be scheduled as a single core platform
or a parallel platform where each streaming multiproces-
sor is an independent core by the mean of the PRUDA
allocate to sm(· · ·) function. The allocation to a given SM

is achieved by testing if the task is in the correct SM, if yes,
the computation is achieved, otherwise the thread on the
wrong SM is killed.

4. TEMPORAL AND SPATIAL CONTROL
OF PRUDA TASKS ON GPU

Our platform integrates several strategies to implement
scheduling decisions. These strategies have different perfor-
mances and overheads.

4.1 Single-stream strategy
The first strategy, called single-stream , uses one Cuda

stream to enforce kernel scheduling decision. The sched-
uler uses three queues: a task queue (tq) which contains all
PRUDA tasks list; an active kernels queue rq which contains
the active PRUDA jobs; and the stream queue sq, which con-
tains kernels that will be submitted to GPU. When a kernel
is activated, it is added to the correct active kernel queue
rq via the pruda subscribe(· · ·) function. Further, if Cuda
stream queue sq is empty, it is moved from the rq to sq if it
is the highest priority job according to the given scheduling
policy using pruda resched function.

As only one Cuda stream is used, once the pruda task
is executing, it can not be preempted by another higher
priority task, therefore only non preemptive scheduling al-
gorithms can be implemented using this strategy. However,
we would like to highlight that we allow pruda user to abort
the current kernel under execution by calling pruda abort()
function.

This strategy is simple and easy to implement. It pro-
vides an implicit synchronization between active tasks, i.e.
if task B is in the stream queue while A is running, B will
wait until A finishes its execution before starting without
overlapping. However, the use of this strategy involves re-
serving all the GPU resources (both SMs) for a single pruda
task at a time, even if this task is not using all GPU cores,
therefore resource are wasted. In the next strategies, we will
show how to overcome these limitations.

4.2 Multiple stream: preemption enabling
In the second strategy, called multiple streams, PRUDA

creates multiple streams to take scheduling decisions, allow-
ing concurrent kernel execution on GPUs and preemption.

First, we recall that the TX2 allows only two priority
levels. Therefore, we create only two streams: one with
high priority and the other with low priority. The queue
of the high priority stream is denoted by h-sq, the second
stream queue is denoted by l-sq. We recall that using sev-
eral streams allow asynchronous and concurrent execution
between the two streams, however within the same stream
the execution is always FIFO.

When a task is active, it is added to the correct ready-task
queue rq. Further, the scheduler checks one of the following
situations:

1. h-sq = ∅∧ l-sq = ∅ : the scheduler will allocate the task
to the l-sq queue, therefore the task will be submitted
immediately to the GPU.

2. h-sq = ∅∧ l-sq 6= ∅ : the scheduler checks that the
activated task has a higher priority than the task in
l-sq. If yes, the task is inserted into the high priority
queue h-sq, therefore it preempts the task in the l-sq if
possible. Otherwise, no scheduling decision are taken.

According to the scheduling decisions mechanism described
in the text above, only one preemption is allowed when a
task is already in execution. For example, if a task C arrives
after B has preempted A, task C must wait until B finishes
even if it is the highest priority active job. We are currently
developing schedulability analysis for such limited preemp-
tion system. We would like also to highlight that preempted
tasks, will continue to use GPU resources if the high priority
task is not using all of the GPU resources.

Even if this strategy solves preemption limitations of the
previous one, it is more complex. It uses also a GPU as a
single core. In the next section, we use each SM in the GPU
as a single processor allowing parallel execution within the
GPU. We highlight also that the preemption at instruction
level can not be guaranteed as the later is decided by the
NVIDIA closed internals. However, we ensure that the pre-
emption can be achieved at block boundaries, therefore the
worst preemption cost is in the order of the block execution.

4.3 SMs as cores strategy
The third strategy uses the GPU in similar way as the

previous one; therefore two streams are created and with the
same queue configuration. However, we allow tasks to call
the function pruda allocate to sm(· · ·), thus using a GPU as
a multiprocessor rather than a single core. We consider two
types of pruda tasks : the ones that are allocated to a given
SM and the other that are not (we consider that the PRUDA
tasks, not calling the allocation function as tasks requiring
the GPU exclusively).

In addition to the scheduling structures described for the
previous strategy, this strategy uses one queue per SM : sm0-
q and sm1-q. When a task is active, if it uses both SMs, no
other task will be scheduled at the same time, therefore it
will be added to l-sq or h-sq similarly as in the previous
strategy. Otherwise, it uses a single SM and it is assigned to
the correct SM queue. Later, the two job having the high-
est priority in sm0-q and sm1-q are scheduled first by being
inserted in l-sq and h-sq. This allows parallel execution on
both streaming multiprocessor. This strategy allows using
the GPU of TX2 as a 2-core platform.

In fact, the allocation function tests if a given block-
/thread is in the correct SM: if yes, it continues onward

P6

P5

P4

P3

P2

P1

...

pruda add task

task queue (tq)

Active task queue (rq)

pruda subscribe

steam queues

h-sq

l-sq

pruda resched

SM0-q

SM1-q

p
ru

d
a

a
ll
o
c

p
ru

d
a

re
sc

h
ed

GPU internals

SM0 SM1

pruda check

pruda abort

Figure 4: PRUDA global overview

execution, otherwise it exits. Therefore, the user has either
to take that into account when using the block and thread
indexes, or he/she must use new functions we provide to cal-
culate indexes. The thread and block indexing mechanism
we provide is simple but effective. The user is free to use
the Cuda indexes, or our platform indexes, as long as there
is no conflict. We highlight here that both of the previous
strategies do not require any modification in the kernel code
nor in the programming fashion (indexing). Although this
method is more complex to implement than the two previous
ones, it provides both temporal and spatial tasks execution
control on GPUs. Analyzing the behavior of this final strat-
egy is a challenging theoretical question, that is considered
for future work.

5. REAL-TIME POLICIES USING PRUDA
Implementing real-time schedulers using PRUDA is sim-

ple. In fact, it requires implementing the pruda subscribe
function and the pruda resched function. The goal of the
first is to put the active task in the correct queue according
to its priority. If the scheduling algorithm is fixed priority,
it has to put it directly in the corresponding priority queue.
If the algorithm is EDF, it requires calculating the priority
and further inserting the task into the correct queue. The
goal of the second function is to select which active task
to select and in which Cuda stream queue it should be in-
serted, therefore to be submitted to the GPU. The user is
also able to call pruda abort to exit the execution of a given
kernel to mix real-time with non real-time tasks if desired.
The description of PRUDA provided in the current and the
previous section is described in Figure 4. We highlight that
pruda functions (except subscribe and resched) can be used
even for non pruda tasks.

6. PRUDA API
All three strategies are integrated into the Pruda C++

API. We also have implemented for the single stream strat-
egy both EDF and Fixed priority algorithms.

First of all, the API (Figure 4) requires the user to im-
plement its kernel using CUDA. Further, the first step is to
initialize the pruda scheduler by invoking function:

pruda init sched(method t method, policy p);
where method is either SINGLESTREAM for the first strat-
egy, MULTIPLESTREAMS for the second and for the MUL-
TIPROC third. The policy P is the scheduling policy. The
current version supports EDF or FP.

Once the scheduler has been initialized, we add kernels to
the task queue tq by invoking function:

pruda add kernel(p kernel t kern, int gs, int bs, int p);
where kern is the a pointer to the kernel function, gs is the
grid size, bs is the block size and p is the task priority if
fixed priority policy is selected.

Once all pruda kernels have been added, the function
pruda start is invoked to start all periodic threads. Mem-
ory operations are implicitly achieved by the mean of Cuda
unified memory, however explicit memory copies are under
development to be soon supported.

7. CONCLUSION
In this paper, we have presented PRUDA, a program-

ming interface to develop real-time scheduler on the top of
Cuda. PRUDA provides different strategies to control tem-
poral and space behavior of real-time tasks on the GPU.
In future work, we plan to provide tools to analyze the real-
time behavior of PRUDA tasks. In fact, scheduling real-time
tasks does not allow free preemption and has a very limited
number of priorities. These limitations has to be taken into
account in the analysis of PRUDA tasks behavior to ensure
the respect of timing constraints. We are also planing to de-
velop a tool for tracing pruda tasks along with the NVIDIA
nvprof profiling tool.

8. REFERENCES
[1] Tanya Amert, Nathan Otterness, Ming Yang, James H

Anderson, and F Donelson Smith. Gpu scheduling on
the nvidia tx2: Hidden details revealed. In RTSS’2017,
pages 104–115. IEEE, 2017.

[2] Nicola Capodieci, Roberto Cavicchioli, Marko
Bertogna, and Aingara Paramakuru. Deadline-based
scheduling for gpu with preemption support. In
RTSS’2018, pages 119–130. IEEE, 2018.

[3] Glenn A Elliott, Bryan C Ward, and James H
Anderson. Gpusync: A framework for real-time gpu
management. In RTSS’2013, pages 33–44. IEEE, 2013.

[4] Shinpei Kato, Karthik Lakshmanan, Aman Kumar,
Mihir Kelkar, Yutaka Ishikawa, and Ragunathan
Rajkumar. Rgem: A responsive gpgpu execution model
for runtime engines. In 2011 IEEE 32nd Real-Time
Systems Symposium, pages 57–66. IEEE, 2011.

[5] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar,
and Yutaka Ishikawa. Timegraph: Gpu scheduling for
real-time multi-tasking environments. In Proc. USENIX
ATC, pages 17–30, 2011.

