
HAL Id: hal-02408621
https://hal.science/hal-02408621v1

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconstruction of Full Rank Algebraic Branching
Programs

Neeraj Kayal, Vineet Nair, Chandan Saha, Sébastien Tavenas

To cite this version:
Neeraj Kayal, Vineet Nair, Chandan Saha, Sébastien Tavenas. Reconstruction of Full Rank Al-
gebraic Branching Programs. ACM Transactions on Computation Theory, 2019, 11 (1), pp.1-56.
�10.1145/3282427�. �hal-02408621�

https://hal.science/hal-02408621v1
https://hal.archives-ouvertes.fr

Reconstruction of Full Rank Algebraic Branching
Programs

Neeraj Kayal1, Vineet Nair2, Chandan Saha3, and
Sébastien Tavenas∗4

1 Microsoft Research India, Bengaluru, India
neeraka@microsoft.com

2 Indian Institute of Science, Bengaluru, India
vineet.nair@csa.iisc.ernet.in

3 Indian Institute of Science, Bengaluru, India
chandan@csa.iisc.ernet.in

4 Université Savoie Mont Blanc, CNRS, LAMA, Chambéry, France
sebastien.tavenas@univ-smb.fr

Abstract

An algebraic branching program (ABP) A can be modelled as a product expression X1 ·X2 . . . Xd,
where X1 and Xd are 1×w and w×1 matrices respectively, and every other Xk is a w×w matrix;
the entries of these matrices are linear forms in m variables over a field F (which we assume to
be either Q or a field of characteristic poly(m)). The polynomial computed by A is the entry
of the 1 × 1 matrix obtained from the product

∏d
k=1 Xk. We say A is a full rank ABP if the

w2(d− 2) + 2w linear forms occurring in the matrices X1, X2, . . . , Xd are F-linearly independent.
Our main result is a randomized reconstruction algorithm for full rank ABPs: Given blackbox
access to an m-variate polynomial f of degree at most m, the algorithm outputs a full rank ABP
computing f if such an ABP exists, or outputs ‘no full rank ABP exists’ (with high probability).
The running time of the algorithm is polynomial in m and β, where β is the bit length of the
coefficients of f . The algorithm works even if Xk is a wk−1 × wk matrix (with w0 = wd = 1),
and w = (w1, . . . , wd−1) is unknown.

The result is obtained by designing a randomized polynomial time equivalence test for the
family of iterated matrix multiplication polynomial IMMw,d, the (1, 1)-th entry of a product of
d rectangular symbolic matrices whose dimensions are according to w ∈ Nd−1. At its core, the
algorithm exploits a connection between the irreducible invariant subspaces of the Lie algebra of
the group of symmetries of a polynomial f that is equivalent to IMMw,d and the ‘layer spaces’ of
a full rank ABP computing f . This connection also helps determine the group of symmetries of
IMMw,d and show that IMMw,d is characterized by its group of symmetries.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Circuit reconstruction, algebraic branching programs, equivalence test,
iterated matrix multiplication, Lie algebra

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.21

∗ A part of this work was done during a postdoctoral stay in Microsoft Research India.

© Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 21; pp. 21:1–21:61

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Reconstruction of Full Rank Algebraic Branching Programs

1 Introduction

1.1 Circuit reconstruction

Reconstruction of arithmetic circuits is the algebraic analogue of exact learning [5] of Boolean
circuits using membership and equivalence queries. A reconstruction algorithm takes input
an oracle access to an m-variate degree d polynomial f computed by a size s arithmetic
circuit from some circuit class C, and outputs an arithmetic circuit (preferably from the same
class) of not too large size1 computing f . The algorithm is allowed to make two kinds of
adaptive queries to the oracle: It may ask for evaluation of f at a point a ∈ Fm chosen by
the algorithm (membership query). It may also form a circuit C (a hypothesis) and ask if the
polynomial g, computed by C, equals f ; if not, the oracle returns a point b ∈ Fm such that
f(b) 6= g(b) (equivalence query)2. The desired running time of the algorithm is polynomial
in m, d, s and the bit length of the coefficients of f .

Circuit reconstruction is a natural learning problem in algebraic complexity theory and
is closely related to two other fundamental problems, lower bound and polynomial identity
testing. Building on the ideas in [21, 2] and [28], Volkovich [42] showed that a polynomial
time reconstruction algorithm for a circuit class C can be used to compute an m-variate
multilinear polynomial h in 2O(m) time such that any circuit from C computing h has size
2Ω(m)3. Also, an efficient reconstruction algorithm (that uses only membership queries) for
a class of circuits automatically gives an efficient blackbox4 identity testing algorithm for
the same class. In this sense, reconstruction is a ‘harder’ problem than lower bound and
identity testing5. However, if we allow reconstruction algorithms to be randomized (thereby
giving them the power of identity testing) then we can hope to have efficient reconstructions
even for some classes of circuits for which efficient blackbox identity testing algorithms
are not known yet. Indeed, a randomized polynomial time reconstruction algorithm for
read-once oblivious algebraic branching programs (ROABP) was given in [29] much before
the quasi-polynomial time hitting-set generators for the same model were designed [14, 3].
The case of read-once formulas is similar (see [39]). A randomized reconstruction algorithm
need not use equivalence queries as a random point b is a witness for f(b) 6= g(b), if f 6= g6.
In this article, we will assume that reconstruction algorithms use only membership queries,
unless we mention equivalence queries explicitly.

Another way to moderate the reconstruction setup is given by average-case reconstruction.
Here the input polynomial f is picked according to some ‘natural’ distribution on circuits
from a class C. This relaxation led to the development of randomized polynomial time
reconstruction algorithm for some powerful circuit classes [17, 19] (albeit on average),
including arithmetic formulas for which we do not know of any super-polynomial lower
bound. The notion of average-case reconstruction is related to pseudo-random polynomial

1 We allow the algorithm to output sub-optimal size circuit as it is NP-hard to compute an optimal circuit
for f even for restricted classes like set-multilinear depth three circuits [20].

2 Throughout this article we will assume that the base field F is sufficiently large, so if f(b) = g(b) for
every b ∈ Fm then f = g.

3 Such an implication is not known for an h belonging to a VNP family.
4 The algorithm has blackbox access to f , i.e. it can make only membership queries to an oracle holding f .
5 Not much is known about the reverse direction: Do strong lower bounds or efficient blackbox identity

testing for a circuit class imply efficient reconstruction for the same class? For certain interesting circuit
classes, the techniques used for identity testing and lower bounds do help in efficient reconstruction (see
[39, 17]).

6 The algorithm in [29] is deterministic if we allow equivalence queries.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:3

families7 and the prospects/limitations of lower bound proofs: An efficient reconstruction
algorithm for polynomials generated according to a distribution D on circuits from class C
implies that D does not generate a pseudo-random polynomial family. Such an algorithm
gives evidence (contingent on the extent of naturalness of D) that most circuits in C have
sufficient “structural/mathematical” properties in them that the reconstruction algorithm
is able to exploit efficiently to distinguish polynomials computed by them from random
polynomials. This may hint at an intriguing possibility that C is adequately ‘weak’ and
amenable to explicit lower bound proofs against it. On the contrary, if D does generate a
pseudo-random polynomial family then certain widely used strategies to prove lower bounds
will not work for C, much like natural proofs for Boolean circuits [36] (see the discussion in
[1]).

Previous work on reconstruction
We will assume that a circuit from class C computing the input polynomial f has a sum gate
at the output. Otherwise, we can apply the factorization algorithm in [22] to gain blackbox
access to all the irreducible factors of f , thereby reducing the problem to a potentially
simpler class of circuits at the cost of making the reconstruction algorithm randomized. Thus,
depth two, depth three and depth four circuits would mean ΣΠ, ΣΠΣ and ΣΠΣΠ circuits
respectively.

Low depth circuits: A polynomial time reconstruction algorithm for depth two circuits
follows from the sparse polynomial interpolation algorithm in [30]. By analysing the rank of
the partial derivatives matrix, Klivans and Shpilka [29] gave a randomized reconstruction
algorithm8 for depth three circuits with fan-in of every product gate bounded by d in time
polynomial in the size of the circuit and 2d. Prior to this, a polynomial time randomized
reconstruction algorithm for set-multilinear depth three circuits followed from [7]. In both
[29] and [7] the output hypothesis is an ROABP. For depth three circuits with two product
gates, Shpilka [37] gave a randomized reconstruction algorithm over a finite field F that
has running time quasi-polynomial9 in m, d and |F|. This algorithm was derandomized and
extended to depth three circuits with constant number of product gates in [23]. The output
hypothesis in [37] is a depth three circuit with two product gates (unless the circuit has a low
simple rank10), but it works only over finite fields. Recently, Sinha [40] gave a polynomial
time randomized reconstruction algorithm for depth three circuits with two product gates
over rationals11; the output of Sinha’s algorithm is also a depth three circuit with two product
gates (unless the simple rank of the circuit is less than a fixed constant). For multilinear
depth four circuits with two top level product gates, [18] gave a randomized polynomial time
reconstruction algorithm that works over both finite fields and rationals.

Restricted formulas and ABP: Recently, Minahan and Volkovich [33] gave a polynomial
time reconstruction algorithm for read-once formulas by strengthening the analysis in [38], the

7 Intuitively, a distribution D on m-variate degree-d polynomials using a random seed of length s =
(md)O(1) generates a pseudo-random polynomial family if any algorithm that distinguishes polynomials
coming from D from uniformly-random m-variate degree-d polynomials with a non-negligible bias, takes
time exponential in s.

8 The algorithm is deterministic if equivalence queries are used.
9 The running time is polynomial in m, |F| if the depth three circuit is additionally multilinear.
10The dimension of the span of the linear forms in the two gates after removing their gcd.
11The result holds over characteristic zero fields. We state it for rationals as bit complexity concerns us.

CCC 2017

21:4 Reconstruction of Full Rank Algebraic Branching Programs

latter has a quasi-polynomial time reconstruction algorithm for the same model. Forbes and
Shpilka [14] gave quasi-polynomial time reconstruction algorithms for ROABP, set-multilinear
ABP and non-commutative ABP by derandomizing12 the algorithm in [29]. Prior to this,
the case of non-commutative ABP reconstruction was solved in [6] assuming blackbox access
to the internal gates of the input ABP.

Average-case reconstruction: Few reconstruction algorithms are known under distribu-
tional assumptions on the inputs. Gupta, Kayal and Lokam [17] gave a randomized polynomial
time reconstruction algorithm for random multilinear formulas picked from a natural distribu-
tion: every sum gate computes a random linear combinations of its two children (subformulas),
and at every product gate the set of variables is partitioned randomly into two equal size sets
between its two children (subformulas); the subformulas are then constructed recursively. In
[19], a randomized polynomial time reconstruction algorithm was given for random formulas
picked from the distribution of size s complete binary trees with alternating layers of sum
and product gates, and the linear forms at the leaves are chosen independently and uniformly
at random.

1.2 Motivation and model

Motivation: Given the results in [17, 19], it is natural to study the complexity of average-case
reconstruction for models more powerful than formulas, like ABPs. Another motivation is the
following: Aaronson [1] gave a candidate for pseudo-random family of low degree polynomials
over a finite field F. There it is conjectured that the family {Detd(A ·x) : A ∈ Fd2×m}, where
Detd is the determinant of a d× d symbolic matrix and |x| = m, is pseudo-random if A is
chosen uniformly at random from Fd2×m and m � d. If this is shown to be true (under
plausible hardness assumptions) then that would demonstrate a natural-proofs-like barrier in
the algebraic world. Although the conjecture is made for finite fields, it remains interesting to
study even if the entries of A are chosen from a large enough subset of Q (or char(F) > dc for
a sufficiently large constant c). Moreover, since determinant is complete (under p-projections)
for algebraic branching programs [32] and so is IMMw,d – the (1, 1)-th entry of a product
of d w × w symbolic matrices – it is natural to ask if {IMMw,d(A · x) : A ∈ Fn×m} is also a
pseudo-random polynomial family when A is random and m� w2d; here n = w2(d−2) + 2w
is the number of variables in IMMw,d. If yes then we cannot hope to design an efficient
reconstruction algorithm for algebraic branching programs in the average-case. On the other
hand, if such an average-case reconstruction is possible then the above family generated by
linear projections of IMMw,d is not pseudo-random. This motivates us to pose Problem 3
below (rather optimistically), and study a couple of special cases when it can be solved – one
is in this article and the other in an upcoming work [27]13.

Algebraic branching program: Algebraic branching program (ABP), an arithmetic analogue
of Boolean branching program, is a well-studied model in algebraic complexity theory specially
because it captures the complexity of polynomials like the iterated matrix multiplication and
the symbolic determinant. Separating the computational powers of formulas and ABPs, and
that of ABPs and circuits are outstanding open problems in arithmetic circuit complexity.

12Replacing the equivalence queries by quasi-polynomial size hitting-sets for ROABP.
13 See Section 1.4 for some details on this work.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:5

An ABP is defined below. For the rest of this article, the base field F would be the field of
rationals Q14.

I Definition 1 (Algebraic branching program). An algebraic branching program (ABP) of
width w and length d is a product expression X1 · X2 . . . Xd, where X1, Xd are row and
column vectors of length w respectively, and for k ∈ [2, d− 1], Xk is a w × w matrix. The
entries in X1 to Xd are affine forms in the variables x = {x1, x2, . . . , xm}. The polynomial
computed by the ABP is the entry of the 1× 1 matrix obtained from the product

∏d
k=1 Xk.

An ABP of width w, length d, and in m variables, and with the coefficients of the affine
forms from S ⊆ F, will be called a (w, d,m, S)-ABP.

An alternate definition: Alternatively, an ABP is defined as a layered directed acyclic
graph with a source s and a sink t. A width w and length d ABP has d+ 1 layers, where
the first and the last layers contain one vertex each, labelled s and t respectively, and every
other layer has w vertices. There is an edge from every vertex in layer k to every vertex in
layer k + 1, for all k ∈ [d], and these edges between adjacent layers are labelled by affine
forms in x variables. The weight of a path from s to t is the product of the edge labels in
the path, and the polynomial computed by the ABP is the sum of the weights of all paths
from s to t. It is easy to verify that the two definitions of ABP are equivalent. We use either
of these definitions in our arguments later based on suitability.

Average-case ABP reconstruction: In order to study average-case complexity of the re-
construction problem for ABPs, we need to define a distribution on polynomials computed
by ABPs. A seemingly natural distribution is as follows: Consider the universe of all polyno-
mials computed by (w, d,m, S)-ABPs for some finite set S ⊆ F of large enough size. Pick a
polynomial f uniformly at random from this universe, and give blackbox access to f as input
to a reconstruction algorithm. However, a distribution is ‘realistic’ only if there is an efficient
sampling algorithm that outputs (some suitable circuit representation of) f according to the
distribution. For the above distribution, it is not clear if such an efficient sampling algorithm
exists. A reason being, multiple different ABPs may be computing the same polynomial, so
picking a random ABP is not sufficient to sample from this distribution. However, picking a
random ABP (as described below) gives another natural distribution for which there is a
trivial efficient sampling algorithm. Let Sγ be the set of all positive and negative rational
numbers with γ bits before and after the decimal.

I Definition 2 (Random algebraic branching program). Given the parameters w, d,m and
γ, a random (w, d,m, Sγ)-ABP is a (w, d,m, Sγ)-ABP with coefficients of the affine forms
chosen independently and uniformly at random from Sγ

15.

Indeed there is a randomized sampling algorithm which when given the parameters w, d,m
and γ outputs a random (w, d,m, Sγ)-ABP in time (w, d,m, γ)O(1). An average-case ABP
reconstruction problem can then be posed as follows.

I Problem 3 (Average-case ABP reconstruction). Design an algorithm which when given
blackbox access to a polynomial f computed by a random (w, d,m, Sγ)-ABP, outputs an

14Our results also hold over finite fields of sufficiently large (meaning, polynomial in the relevant parameters)
characteristic.

15More generally, Sγ can be any arbitrarily fixed set containing rational numbers of the form p
q , where p

and q are γ bit integers. For concreteness of the discussion we have fixed Sγ in a specific way.

CCC 2017

21:6 Reconstruction of Full Rank Algebraic Branching Programs

ABP computing f with high probability16 . The desired running time of the algorithm is
(w, d,m, γ)O(1).

Note that we allow the reconstruction algorithm to output any ABP computing f which
may not be a (w, d,m, Sγ)-ABP. The main requirement is that the running time should be
polynomial in w, d,m and γ.

1.3 Our result
We give a solution to the above problem, if the number of variables m and the size of the set
Sγ are greater than w2d and (mwd)2 respectively. Observe that if the random affine forms
in the matrices X1 to Xd (as in Definition 2) have more than w2d variables then these affine
forms are F-linearly independent with high probability as Sγ is also sufficiently large. This
motivates us to define a full rank ABP. In the following discussion, by homogeneous degree 1
part of an affine form a0 +

∑m
i=1 aixi we mean

∑m
i=1 aixi where ai ∈ F.

I Definition 4 (Full rank algebraic branching program). A full rank ABP A of width bounded
by w and length d is a product expression X1 ·X2 . . . Xd, where X1, X2 are row and column
vectors of lengths w1 and wd−1 respectively, and for k ∈ [2, d− 1] Xk is a wk−1 × wk matrix
such that wk ≤ w for all k ∈ [d−1]; the entries in X1 to Xd are affine forms in x variables and
moreover, the homogeneous degree 1 parts of these affine forms are F-linearly independent.
We say ABP A has width w = (w1, w2, . . . , wd−1) ∈ Nd−1.

The following is an example of a full rank ABP,

[
1 + x1 + x2 2 + x2 + x3 x3 + x4

] 1 + x4 + x5 x5 + x6
x6 + x7 x7 + x8
x8 + x9 4 + x9 + x10

[3 + x10 + x11
2 + x11

]
.

A canonical example: Another example of a polynomial computed by a full rank ABP is
the iterated matrix multiplication polynomial IMMw,d, which is the entry of the 1× 1 matrix
obtained from a product of d symbolic matrices X1 to Xd with dimensions as in Definition 4.
The number of variables in IMMw,d is n = w1 +

∑d−1
k=2 wk−1wk + wd−1. See Definition 2.3

for a slightly detailed definition of IMMw,d. Generally in the literature, the matrices X1 to
Xd have a uniform dimension w (i.e. wk = w for every k ∈ [d − 1]) and the polynomial is
denoted by IMMw,d. We consider varying dimensions primarily because the algorithm in
Theorem 5 below is able to handle this general setting, even if w is unknown.

Our main result is an efficient randomized algorithm to reconstruct full rank ABP.

I Theorem 5 (Full rank ABP reconstruction). There is a randomized algorithm that takes as
input a blackbox for an m variate polynomial f over F of degree d ∈ [5,m], and with high
probability it does the following: if f is computed by a full rank ABP then the algorithm
outputs a full rank ABP computing f , else it outputs ‘f does not admit a full rank ABP’.
The running time is poly(m,β)17, where β is the bit length of the coefficients of f .

16The probability is taken over the random choice of f (the polynomial computed by a random (w, d,m, Sγ)-
ABP) as well as over the random bits used by the reconstruction algorithm, if it is randomized.

17Throughout this article poly(m) denotes a sufficiently large polynomial function in m; poly(m,β) is
defined similarly.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:7

Remarks: Theorem 5 implies an efficient average-case reconstruction algorithm for ABPs
(Problem 3) when m ≥ w2d and |Sγ | ≥ (mwd)2, as a random (w, d,m, Sγ)-ABP is full rank
with high probability if m and |Sγ | are sufficiently large. The algorithm of Theorem 5 is
given in Section 1.5. Following are a couple of remarks on this algorithm:
1. Uniqueness of full rank ABP: Suppose f is computed by a full rank ABP of width

w = (w1, w2, . . . , wd−1), and assume18 that wk > 1 for every k ∈ [d−1]. Then the output
of the algorithm is a full rank ABP of width w or (wd−1, wd−2, . . . , w1), with probability
at least 1− 1

poly(w,d) , where w = maxk∈[d−1]{wk}. In fact, any full rank ABP computing
f is ‘unique’ up to the symmetries19 of iterated matrix multiplication which we study in
Section 6.

2. No knowledge of w: The algorithm does not need a priori knowledge of the width vector
w, it only knows the number of variables m and the degree d of f . The algorithm is able
to derive w from blackbox access to f (Section 1.5 gives a sketch of how this is done).

Observe that if f is computed by a full rank ABP of width w then f is an affine projection
of the polynomial IMMw,d via a full rank transformation (see Definition 17). So the above
theorem is identical to the theorem below.

I Theorem 6. Given blackbox access to an m variate polynomial f ∈ F[x] of degree d ∈ [5,m],
the problem of checking if there exist a w ∈ Nd−1, a B ∈ Fn×m of rank n equal to the number
of variables in IMMw,d, and a b ∈ Fn such that f = IMMw,d(Bx + b)20, can be solved in
randomized poly(m,β) time where β is the bit length of the coefficients of f . Further, with
probability at least 1− 1

poly(n) , the following is true: the algorithm returns a w, a B ∈ Fn×m
of rank n, and a b ∈ Fn such that f = IMMw,d(Bx + b) if such w, B and b exist, else it
outputs ‘f does not admit a full rank ABP’.

A full rank ABP for f can be derived readily, once we compute w, B and b as above. Using
known results on variable reduction and translation equivalence test (see Section 2.2) proving
Theorem 6 reduces in polynomial time to giving an equivalence test (see Definition 18) for
the IMMw,d polynomial – this reduction is described in Section 1.5.

I Theorem 7 (Equivalence test for IMM). Given blackbox access to a homogeneous n variate
polynomial f ∈ F[x] of degree d ∈ [5, n], where |x| = n, the problem of checking if there
exist a w ∈ Nd−1 and an invertible A ∈ Fn×n such that f = IMMw,d(Ax), can be solved
in randomized poly(n, β) time where β is the bit length of the coefficients of f . Further,
with probability at least 1− 1

poly(n) the following holds: the algorithm returns a w, and an
invertible A ∈ Fn×n such that f = IMMw,d(Ax) if such w and A exist, else it outputs ‘no
such w and A exist’.

Remarks: Suppose f = IMMw,d(Ax) for an invertibleA ∈ Fn×n and w = (w1, w2, . . . , wd−1).
1. Irreducibility of IMMw,d: We can assume without loss of generality that wk > 1 for every

k ∈ [d− 1], implying IMMw,d is an irreducible polynomial. If wk = 1 for some k ∈ [d− 1]
then IMMw,d is reducible, in which case we use the factorization algorithm in [22] to get
blackbox access to the irreducible factors of f and then apply Theorem 7 to each of these
irreducible factors (Section 1.5 has more details on this).

18The first remark after Theorem 7 justifies this assumption.
19The stabilizer under the action of the general linear group.
20A variable set x = {x1, . . . , xm} is treated as a column vector (x1 . . . xm)T in the expression Bx + b.
The affine form entries of the column Bx + b are then plugged in place of the variables of IMMw,d
(following a variable ordering, like the one mentioned in Section 2.3).

CCC 2017

21:8 Reconstruction of Full Rank Algebraic Branching Programs

2. Uniqueness of w and A: Assuming wk > 1 for every k ∈ [d − 1], it would follow from
the proof of the theorem that w is unique in the following sense: if f = IMMw′,d(A′x),
where A′ ∈ Fn×n is invertible, then either w′ = w or w′ = (wd−1, wd−2, . . . , w1). Since
f = X1 · X2 . . . Xd = XT

d · XT
d−1 . . . X

T
1 , w′ can indeed be (wd−1, wd−2, . . . , w1). The

invertible transformation A is also unique up to the group of symmetries (see Defintion 19)
of IMMw,d: if IMMw,d(Ax) = IMMw,d(A′x) then AA′−1 is in the group of symmetries of
IMMw,d. In Section 6, we determine this group and show that IMMw,d is characterized
by it.

3. A related result in [16]: Another useful definition of the iterated matrix multiplication
polynomial is the trace of a product of d w × w symbolic matrices – let us denote this
polynomial by IMM′w,d. Both the variants, IMM′w,d and IMMw,d, are well-studied in the
literature and their circuit complexities are polynomially related. However, an equivalence
test for one does not immediately give an equivalence test for the other. This is partly
because the group of symmetries of IMM′w,d and IMMw,d are not exactly the same in
nature (see Section 6 for a comparison).
Let x1, . . . ,xd be the sets of variables in the d matrices of IMM′w,d respectively. A
polynomial f(x1, . . . ,xd) is said to be multilinearly equivalent to IMM′w,d if there are
invertible w × w matrices A1, . . . , Ad such that f = IMM′w,d(A1x1, . . . , Adxd). Grochow
[16] showed the following result: Given the knowledge of the variable sets x1, . . . ,xd, an
oracle to find roots of univariate polynomials over C and blackbox access to a polynomial
f , there is a randomized algorithm to check whether f is multilinearly equivalent to
IMM′w,d using poly(w, d) operations over C. Due to the issue of representing complex
numbers, the model of computation for this result may be assumed to be the Blum-Shub-
Smale model [10]. Theorem 7 is different from the result in [16] in a few ways: First, the
equivalence test is for IMMw,d instead of IMM′w,d. The algorithm in Theorem 7 operates
without the knowledge of the variable sets x1, . . . ,xd (in fact, without the knowledge of
w). It only “sees” n variables x1, . . . , xn that are input to the blackbox for f . Second,
there is no requirement of a oracle for finding roots of univariates. The base field is Q or
a field with sufficiently large characteristic and the model of computation is the Turing
machine model. Third, Theorem 7 gives a general equivalence test whereas the algorithm
in [16] checks only multilinear equivalence.

1.4 Discussion
To summarize, our main contribution is a polynomial time randomized equivalence test for
IMMw,d, even if w is unknown. Although, equivalence testing is an important problem in
its own right, Theorem 5 does not address the average-case ABP reconstruction problem
quite satisfactorily because of the restriction m ≥ w2d21. Keeping the conjecture [1] on
pseudo-random polynomial family in mind, the more interesting and challenging scenario
is when m� w2d in Problem 3, and this case remains an open problem. We address this
problem partially in an upcoming work (and equivalence tests feature in there too).

A forthcoming work [27]: If the width w of the ABP is a constant, we still need m = Ω(d),
for a random ABP to have full rank and Theorem 5 to be effective. The case of constant
width ABP is interesting in its own right as they capture the complexity of arithmetic

21Besides, the model full rank ABP, although natural and powerful, is nevertheless incomplete – not every
polynomial f can be computed by a full rank ABP even if f is multilinear (see Observation 60).

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:9

formulas. In particular, if a polynomial g is computed by a formula of size s then g can be
computed as the (1, 1)-th entry of a product of sO(1) many 3× 3 matrices with affine form
entries [8], and every polynomial computed by a size s width 3 ABP can be computed by a
formula of size sO(1). With constant width ABP in mind, we study a version of Problem 3
(Problem 8 below) in [27], and make progress in certain cases (particularly for w = 3) under
the restriction m ≥ w2; that is for constant width, m only needs to be larger than a constant.
Problem 8 is also a natural matrix factorization problem.

I Problem 8 (Average-case matrix factorization). Design an algorithm which when given a
d ∈ N and blackbox access to w2 entries of a matrix F = X1 ·X2 . . . Xd, where X1, X2, . . . , Xd

are w × w matrices having entries affine forms in m variables with coefficients chosen
independently and uniformly at random from Sγ , computes d w × w matrices Y1, Y2, . . . , Yd
with affine form entries such that F = Y1 ·Y2 . . . Yd. The desired running time of the algorithm
is poly(m,w, d, γ).

As before, we allow the coefficients of the affine forms in Y1, Y2, . . . , Yd to not belong to Sγ .
In a certain sense, Problem 8 is a relaxed version of Problem 3: We have blackbox access

to all the w2 polynomials occurring as entries of the matrix product in Problem 8, whereas
in Problem 3 we have blackbox access to just a single polynomial which can be thought
of as one entry of a matrix product. Nevertheless, if the coefficients of the affine forms in
X1, X2, . . . , Xd are adversarially chosen in Problem 8 (instead of independently and uniformly
at random from Sγ) then the problem becomes as hard as worst-case formula reconstruction
(by [8]), and this makes the above average-case variant interesting to study.

1.5 Algorithm and proof strategy

An algorithm for reconstructing full rank ABP is given in Algorithm 1. At first, we trace the
steps of this algorithm to show that proving Theorem 6 reduces to proving Theorem 7 using
known methods. Then, we give an equivalence test for IMMw,d in Algorithm 2, which is the
contribution of this work. Some relevant definitions, notations and concepts can be found in
Section 2.

1.5.1 Reduction to equivalence test for IMM

We are given blackbox access to an m variate polynomial f(x̃) in Algorithm 1 where
x̃ = {x1, . . . , xm}. Suppose f = IMMw′,d(B′x̃ + b′) for some unknown w′ ∈ Nd−1, b′ ∈ Fn
and B′ ∈ Fn×m of rank n, where n is the number of variables in IMMw′,d.

Variable reduction (Step 2): The number of essential/redundant variables of a polynomial
remains unchanged under affine projection via full rank transformation. Since IMMw′,d has
no redundant variables22, the number of essential variables of f equals n. The algorithm
eliminates the m − n redundant variables in f by applying Algorithm 8 and constructs a
C ∈ GL(m) such that g = f(Cx̃) has only the essential variables x = {x1, . . . , xn}. It follows
that g = IMMw′,d(A′x + b′), where A′ ∈ GL(n) is the matrix B′ · C restricted to the first n
columns.

22Which follows easily from Claim 26.

CCC 2017

21:10 Reconstruction of Full Rank Algebraic Branching Programs

Equivalence test (Steps 5–9): Since g = IMMw′,d(A′x + b′), its d-th homogeneous com-
ponent g[d] = IMMw′,d(A′x). In other words, g[d] is equivalent to IMMw′,d for an unknown
w′ ∈ Nd−1. At this point, the algorithm calls Algorithm 2 to find a w and an A ∈ GL(n)
such that g[d] = IMMw,d(Ax), and this is achieved with high probability.

Finding a translation (Steps 12–17): As g = IMMw′,d(A′ ·(x+A′−1b′)) = g[d](x+A′−1b′),
g is translation equivalent to g[d]. With high probability, Algorithm 9 finds an a ∈ Fn such
that g = g[d](x + a), implying g = IMMw,d(Ax + Aa). Thus b = Aa is a valid translation
vector.

Final reconstruction (Steps 20–26): From the previous steps, we have g = IMMw,d(Ax+b).
Although the variables {xn+1, . . . , xm} are absent in g, if we pretend that g is a polynomial
in all the x̃ variables then g = IMMw,d(A0x̃ + b), where A0 is an n×m matrix such that the
n×n submatrix formed by restricting to the first n columns of A0 equals A and the remaining
m − n columns of A0 have all zero entries. Hence f = g(C−1x̃) = IMMw,d(A0C

−1x̃ + b)
which explains the setting B = A0C

−1 in step 20. The identity testing in steps 21-23 takes
care of the situation when, to begin with, there are no w′ ∈ Nd−1, b′ ∈ Fn and B′ ∈ Fn×m
of rank n such that f = IMMw′,d(B′x̃ + b′).

1.5.2 Equivalence test for IMM
Algorithm 1 calls Algorithm 2 on a blackbox holding a homogeneous n variate polynomial
f(x) of degree d ≤ n, and expects a w ∈ Nd−1 and an A ∈ GL(n) in return such that
f = IMMw,d(Ax), if such w and A exist. First, we argue that f can be assumed to be an
irreducible polynomial.

Assuming irreducibility of input f in Algorithm 2: The idea is to construct blackbox access
to the irreducible factors of f using the efficient randomized polynomial factorization algorithm
in [22], and compute full rank ABP for each of these irreducible factors. The ABPs are then
connected ‘in series’ to form a full rank ABP for f . This process succeeds with high probability.
The details are as follows: If f is not square-free (which can be easily checked using [22])
then f cannot be equivalent to IMMw,d for any w, as IMMw,d is always square-free. Suppose
f = f1 · · · fk, where f1, . . . , fk are distinct irreducible factors of f . If there are w′ ∈ Nd−1 and
A′ ∈ GL(n) such that f = IMMw′,d(A′x), then the number of essential variables in f is n (as
IMMw′,d has no redundant variables). Also, f1 · · · fk = h1(A′x) · · ·hk(A′x) where h1, . . . , hk
are the irreducible factors of IMMw′,d. The irreducible factors of IMMw′,d are ‘smaller IMMs’
in disjoint sets of variables23. Hence, by uniqueness of factorization, f` is computable by a
full rank ABP for every ` ∈ [k]. Let the degree of f` be d` and n` the number of essential
variables in f`. Then n1 + . . . + nk = n. Now observe that if we invoke Algorithm 1 on
input f`, it calls Algorithm 2 from within on an irreducible polynomial, as f` is homogeneous
and irreducible. Algorithm 1 returns a w` ∈ Nd`−1 and B` ∈ Fn`×n of rank n` such that
f` = IMMw`,d`(B`x) (ignoring the translation vector as f` is homogeneous). Let w ∈ Nd−1

be the vector (w1 1 w2 1 . . . 1 wk)24, and A ∈ Fn×n such that the first n1 rows of A is B1,
next n2 rows is B2, and so on till last nk rows is Bk. Then, f = IMMw,d(Ax). Clearly, A

23Recall, IMMw,d is irreducible if wk > 1 for every k ∈ [d− 1] where w = (w1, . . . , wd−1).
24The notation means the entries of w1 are followed by 1, followed by the entries of w2, then a 1 again,

and so on.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:11

Algorithm 1 Reconstructing a full rank ABP
INPUT: Blackbox access to an m variate polynomial f(x̃) of degree d ≤ m.
OUTPUT: A full rank ABP computing f if such an ABP exists.

1. /* Variable reduction */
2. Use Algorithm 8 to compute n and C ∈ GL(m) such that g = f(Cx̃) has only the

essential variables x = {x1, . . . , xn} of f . If d > n, output ‘f does not admit a full rank
ABP’ and stop.

3.
4. /* Equivalence test: Finding w and A */
5. Construct a blackbox for g[d], the d-th homogeneous component of g (see Section 2.2).
6. Use Algorithm 2 to find a w ∈ Nd−1 and an A ∈ GL(n) such that g[d] = IMMw,d(Ax).
7. if Algorithm 2 outputs ‘no such w and A exist’ then
8. Output ‘f does not admit a full rank ABP’ and stop.
9. end if
10.
11. /* Finding a translation b */
12. Use Algorithm 9 to find an a ∈ Fn such that g = g[d](x + a).
13. if Algorithm 9 outputs ‘g is not translation equivalent to g[d]’ then
14. Output ‘f does not admit a full rank ABP’ and stop.
15. else
16. Set b = Aa.
17. end if
18.
19. /* Identity testing and final reconstruction */
20. Let A0 be the n×m matrix obtained by attaching m− n ‘all-zero’ columns to the right

of A. Set B = A0C
−1.

21. Choose a point a ∈ Sm at random, where S ⊆ F and |S| ≥ poly(n).
22. if f(a) 6= IMMw,d(Ba + b) then
23. Output ‘f does not admit a full rank ABP’ and stop.
24. else
25. Construct a full rank ABP A of width w from B and b. Output A.
26. end if

must be in GL(n) as the number of essential variables of f is n. Thus, it is sufficient to
describe Algorithm 2 on an input f that is irreducible.

A comparison with [25] and our proof strategy: Kayal [25] gave equivalence tests for the
permanent and determinant polynomials by making use of their Lie algebra (see Definition 20).
Algorithm 2 also involves Lie algebra of IMM, but there are some crucial differences in the
way Lie algebra is used in [25] and in here. The Lie algebra of permanent consists of diagonal
matrices and hence commutative. By diagonalizing a basis of gf over C, for an f equivalent
to permanent, we can reduce the problem to the much simpler permutation and scaling (PS)
equivalence problem. The Lie algebra of n×n determinant, which is isomorphic to sln⊕sln, is
not commutative. However, a Cartan subalgebra of sln consists of traceless diagonal matrices.
This then helps reduce the problem to PS-equivalence by diagonalizing (over C) a basis of
the centralizer of a random element in gf , for an f equivalent to determinant. Both the
equivalence tests involve simultaneous diagonalization of matrices over C. It is a bit unclear

CCC 2017

21:12 Reconstruction of Full Rank Algebraic Branching Programs

how to carry through this step if the base field is Q and we insist on low bit complexity. The
Lie algebra of IMM is not commutative. Also, we do not know if going to Cartan subalgebra
helps, as we would like to avoid the simultaneous diagonalization step. Instead of Cartan
subalgebras, we study invariant subspaces (Definition 12) of the Lie algebra gIMM . A detailed
analysis of the Lie algebra (in Section 3) reveals the structure of the irreducible invariant
subspaces of gIMM . It is observed that these invariant subspaces are intimately connected to
the layer spaces (see Definition 15) of any full rank ABP computing f . At a conceptual
level, this connection helps us reconstruct a full rank ABP. Once we have access to the layer
spaces, we can retrieve the unknown width vector w whence the problem reduces to the
easier problem of reconstructing an almost set-multilinear ABP (Definition 29).

We now give some more details on Algorithm 2. Suppose there is a w ∈ Nd−1 such that
f is equivalent to IMMw,d. The algorithm has four main steps:
1. Computing irreducible invariant subspaces (Steps 2–6): The algorithm starts by computing

a basis of the Lie algebra gf . It then invokes Algorithm 3 to compute bases of the d
irreducible invariant subspaces of gf . Algorithm 3 works by picking a random element R′
in gf and factoring its characteristic polynomial h = g1 · · · gs. By computing the closure
of vectors (Definition 14) picked from null spaces of g1(R′), . . . , gs(R′), the algorithm is
able to find bases of the required invariant spaces.

2. Computing layer spaces (Step 9): The direct relation between the irreducible invariant
spaces of gIMM and the layers spaces of any full rank ABP computing f (as shown in
Lemma 49) is exploited by Algorithm 5 to compute bases of these layer spaces. This also
helps establish that all the layer spaces, except two of them, are ’unique’ (see Lemma 48).
The second and second-to-last layer spaces of a full rank ABP are not unique; however
the bigger space spanned by the first two layer spaces (similarly the last two layer spaces)
is unique. Algorithm 5 finds bases for these two bigger spaces along with the d − 2
remaining layer spaces.

3. Reduction to almost set-multilinear ABP (Steps 12–15): The layer spaces are then correctly
reordered in Algorithm 6 using a randomized procedure to compute the appropriate
evaluation dimensions (Definition 16). The reordering also yields a valid width vector
w. At this point, the problem easily reduces to reconstructing a full rank almost set-
multilinear ABP by mapping the bases of the layer spaces to distinct variables. This
mapping gives an Â ∈ GL(n) such that f(Âx) is computable by a full rank almost
set-multilinear ABP of width w. It is ‘almost set-multilinear’ (and not ’set-multilinear’)
as the second and the second-to-last layer spaces are unavailable; instead, two bigger
spaces are available as mentioned above.

4. Reconstructing a full rank almost set-mutlilinear ABP (Steps 18–22): Finally, we recon-
struct a full rank almost set-mutlilinear ABP computing f(Âx) using Algorithm 7. This
algorithm is inspired by a similar algorithm for reconstructing set-multilinear ABP in [29],
but it is a little different from the latter as we are dealing with an ’almost’ set-multilinear
ABP. The reconstructed ABP readily gives an A ∈ GL(n) such that f = IMMw,d(Ax).

A final identity testing (Steps 25–30) takes care of the situation when, to begin with, there is
no w ∈ Nd−1 that makes f equivalent to IMMw,d.

2 Preliminaries

2.1 Notations and definitions
The group of invertible n× n matrices over F is represented by GL(n,F). Since F is fixed
to be the field of rationals, we omit F and write GL(n). Natural numbers are denoted by

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:13

Algorithm 2 Equivalence test for IMM
INPUT: Blackbox access to a homogeneous n variate degree d polynomial f (which can be
assumed to be irreducible without any loss of generality).
OUTPUT: A w ∈ Nd−1 and an A ∈ GL(n) such that f = IMMw,d(Ax), if such w and A
exist.

1. /* Finding irreducible invariant subspaces */
2. Compute a basis of the Lie algebra gf . (See Section 2.2.)
3. Use Algorithm 3 to compute the bases of the irreducible invariant subspaces of gf .
4. if Algorithm 3 outputs ‘Fail’ then
5. Output ‘no such w and A exist’ and stop.
6. end if
7.
8. /* Finding layer spaces from irreducible invariant subspaces */
9. Use Algorithm 5 to compute bases of the layer spaces of a full rank ABP computing f , if

such an ABP exists.
10.
11. /* Reduction to almost set-multilinear ABP: Finding w */
12. Use Algorithm 6 to compute a w ∈ Nd−1 and an Â ∈ GL(n) such that h = f(Âx) is

computable by a full rank almost set-multilinear ABP of width w.
13. if Algorithm 6 outputs ‘Fail’ then
14. Output ‘no such w and A exist’ and stop.
15. end if
16.
17. /* Reconstructing an almost set-multilinear ABP: Finding A */
18. Use Algorithm 7 to reconstruct a full rank almost set-multilinear ABP A’ computing h.
19. if Algorithm 7 outputs ‘Fail’ then
20. Output ‘no such w and A exist’ and stop.
21. end if
22. Replace the x variables in A’ by Â−1x to obtain a full rank ABP A. Compute A ∈ GL(n)

from A.
23.
24. /* Final identity testing */
25. Choose a point a ∈ Sn, where S ⊆ F and |S| ≥ poly(n).
26. if f(a) 6= IMMw,d(Aa) then
27. Output ‘no such w and A exist’ and stop.
28. else
29. Output w and A.
30. end if

N = {1, 2, . . . }. As a convention, we use x,y and z to denote sets of variables, capital letters
A,B,C and so on to denote matrices, calligraphic letters like U ,V,W to denote vector spaces
over F, and bold small letters like u,v,w to denote vectors in these spaces. All vectors
considered in this article are column vectors, unless mentioned otherwise. An affine form
in x = {x1, x2, . . . , xn} variables is a0 +

∑n
i=1 aixi where for i ∈ [0, d] ai ∈ F, and if a0 = 0

then we call it a linear form. The first order partial derivative of the polynomial f(x) with
respect to xi is denoted as ∂xi(f(x)). Below we set up some notations and terminologies.

CCC 2017

21:14 Reconstruction of Full Rank Algebraic Branching Programs

2.1.1 Linear Algebra
I Definition 9 (Direct sum). Let U ,W be subspaces of a vector space V. Then V is said to
be the direct sum of U and W denoted V = U ⊕W, if V = U +W and U ∩W = {0}.

For U ,W subspaces of a vector space V , V = U ⊕W if and only if for every v ∈ V there exist
unique u ∈ U and w ∈ W such that v = u + w. Hence, dim(V) = dim(U) + dim(W).

I Definition 10 (Null space). Null space N of a matrix M ∈ Fn×n is the space of all vectors
v ∈ Fn, such that Mv = 0.

I Definition 11 (Coordinate subspace). Let ei = (0, . . . , 1, . . . , 0) be the unit vector in Fn
with 1 at the i-th position and all other coordinates zero. A coordinate subspace of Fn is a
space spanned by a subset of the n unit vectors {e1, e2, . . . , en}.

I Definition 12 (Invariant subspace). Let M1,M2, . . . ,Mk ∈ Fn×n. A subspace U ⊆ Fn is
called an invariant subspace of {M1,M2, . . . ,Mk} if Mi U ⊆ U for every i ∈ [k]. A nonzero
invariant subspace U is irreducible if there are no invariant subspaces U1 and U2 such that
U = U1 ⊕ U2, where U1 and U2 are properly contained in U .

The following observation is immediate.

I Observation 13. If U is an invariant subspace of {M1,M2, . . . ,Mk} then for every M ∈
L def= spanF{M1, M2, . . . ,Mk}, M U ⊆ U . Hence we say U is an invariant subspace of L, a
space generated by matrices.

I Definition 14 (Closure of a vector). The closure of a vector v ∈ Fn under the action
of a space L spanned by a set of n × n matrices is the smallest invariant subspace of L
containing v.

Here, ‘smallest’ is with regard to dimension of invariant subspaces. Since intersection of
two invariant subspaces is also an invariant subspace of L, the smallest invariant subspace
of L containing v is unique and is contained in every invariant subspace of L containing v.
Algorithm 4 in Section 4.2 computes the closure of a given vector v under the action of L
whose basis is given.

By identifying a linear form
∑n
i=1 aixi with the vector (a1, . . . , an) ∈ Fn (and vice versa),

we can associate the following vector spaces with an ABP.

I Definition 15 (Layer spaces of an ABP). Let X1 ·X2 . . . Xd be a full rank ABP A of length
d and width w = (w1, w2, . . . , wd−1), where X1 to Xd are as in Definition 4. Let Xi be the
vector space in Fn spanned by the homogeneous degree 1 parts of the affine forms25 in Xi

for i ∈ [d]; the spaces X1,X2, . . . ,Xd are called the layer spaces of A.

2.1.2 Evaluation dimension
The rank of the partial derivative matrix of a polynomial f was introduced in [34] and
used subsequently in several works on lower bound, polynomial identity testing and circuit
reconstruction (see [39]). The following definition (which makes the notion well defined for
fields of finite characteristic) appears in [14]26.

25 Identify linear forms with vectors in Fn as mentioned above.
26They attributed the definition to Ramprasad Saptharishi.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:15

I Definition 16 (Evaluation dimension). The evaluation dimension of a polynomial g ∈ F[x]
with respect to a set x′ ⊆ x, denoted as Evaldimx′(g), is defined as

dim(spanF{g(x)|∀xj∈x′ xj=αj : αj ∈ F for every xj ∈ x′}).

2.1.3 Affine projection and equivalence testing
Studying polynomials by applying linear transformations (from suitable matrix groups) on
the variables is at the heart of invariant theory.

I Definition 17 (Affine projection). An m variate polynomial f is an affine projection of
a n variate polynomial g, if there exists a matrix A ∈ Fn×m and a b ∈ Fn such that
f(x) = g(Ax + b).

In [25], it was shown that given an m variate polynomial f and an n variate polynomial
g, checking whether f is an affine projection of g is NP-hard, even if f and g are given
in the dense representation (that is as list of coefficients of the monomials). In the above
definition, we say f is an affine projection of g via a full rank transformation, if m ≥ n and
A has rank n. In the affine projection via full rank transformation problem, we are given
an m variate polynomial f and an n variate polynomial g in some suitable representation,
and we need to determine if f is an affine projection of g via a full rank transformation.
[24, 25] studied the affine projection via full rank transformation problem for g coming from
fixed families and gave polynomial time randomized algorithms to check whether a degree d
polynomial f given as blackbox is an affine projection of g via a full rank transformation,
where g is the elementary symmetric polynomial/permanent/determinant/power symmetric
polynomial or sum-of-products polynomial. As observed in [25], variable reduction and
translation equivalence test (described in Section 2.2) help reduce the affine projection via
full rank transformation problem to equivalence testing (see also Section 1.5).

I Definition 18 (Equivalent polynomials). An n variate polynomial f is equivalent to an n
variate polynomial g, if there exists a matrix A ∈ GL(n) such that f(x) = g(Ax).

The equivalence testing problem asks us to check if two n variate polynomials f and g (given
in some suitable representation) are equivalent. This problem is at least as hard as the
graph isomorphism problem even when f and g are cubic forms given in dense representation
[4]. There is a cryptographic application [35] that assumes the problem is hard also in the
average-case for bounded degree f and g given in dense representation. If we restrict to
checking if f and g are equivalent via a permutation matrix A, then the problem is shown to
be in NP ∩ coAM [41].

2.1.4 Group of symmetries and Lie algebra
I Definition 19 (Group of symmetries). The group of symmetries of a polynomial g ∈ F[x]
in n variables, denoted as Gg, is the set of all A ∈ GL(n) such that g(Ax) = g(x).

The proof of Theorem 7 involves an analysis of the Lie algebra of the group of symmetries
of IMMw,d. We will abuse terminology slightly and say the Lie algebra of a polynomial to
mean the Lie algebra of the group of symmetries of the polynomial. We will work with the
following definition of Lie algebra of a polynomial (see [25]).

I Definition 20 (Lie algebra of a polynomial). The Lie algebra of a polynomial f ∈
F[x1, x2, . . . , xn] denoted as gf is the set of all n × n matrices E = (eij)i,j∈[n] in Fn×n
such that

∑
i,j∈[n] eijxj ·

∂f
∂xi

= 0.

CCC 2017

21:16 Reconstruction of Full Rank Algebraic Branching Programs

Remark: Observe that gf is a subspace of Fn×n. It can also be shown that the space gf

satisfies the Lie bracket property: For any E1, E2 ∈ gf , [E1, E2] def= E1E2 − E2E1 is also in
gf . We would not be needing this property, but would just use the vector space feature of gf .
The proof of the following well known fact is given in [25], see also Section 7.1 for a proof.

I Claim 21. If f(x) = g(Ax), where f and g are both n variate polynomials and A ∈ GL(n),
then the Lie algebra of f is a conjugate of the Lie algebra of g via A, i.e. gf = {A−1EA : E ∈
gg} =: A−1ggA.

The following observation relates the invariant subspaces of the Lie algebras of two equivalent
polynomials.

I Observation 22. Suppose f(x) = g(Ax), where x = {x1, x2, . . . , xn} and A ∈ GL(n).
Then U ∈ Fn is an invariant subspace of gg if and only if A−1U is an invariant subspace of
gf .

Proof. U is an invariant subspace of gg implies, for all E ∈ gg, E U ⊆ U . Consider E′ ∈ gf ,
using Claim 21 we know there exists E ∈ gg such that AE′A−1 = E. Since U is an invariant
subspace of AE′A−1, A−1U is an invariant subspace of E′. The proof of the other direction
is similar. J

2.2 Algorithmic preliminaries
We record some of the basic algorithmic tasks on polynomials that can be performed efficiently
and which we require at different places in our algorithms and proofs.

2.2.1 Computing homogeneous components of f
The i-th homogeneous component (or the homogeneous degree i part) of a degree d polynomial
f , denoted as f [i] is the sum of the degree i monomials with coefficients as in f . Clearly,
f = f [d] + f [d−1] + · · ·+ f [0]. Given an n variate degree d polynomial f as a blackbox, there
is an efficient algorithm to compute blackboxes for the d homogeneous components of f .
The idea is to multiply each variable by a new formal variable t, and then interpolate the
coefficients of t0, t1, . . . , td; the coefficient of ti is f [i].

2.2.2 Computing derivatives of f
Given a polynomial f(x1, x2, . . . , xn) of degree d as a blackbox, we can efficiently construct
blackboxes for the derivatives ∂xif , for all i ∈ [n]. The following observation suggests that it
is sufficient to construct blackboxes for certain homogeneous components.

I Observation 23. If g(x1, x2, . . . , xn) is a homogeneous polynomial of degree d then for all
i ∈ [n] ∂xig =

∑d
j=1 j · x

j−1
i [g(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)][d−j].

For every i ∈ [n], constructing a blackbox for ∂xif is immediate from the above observation
as ∂xif = ∂xif

[d] + ∂xif
[d−1] + · · ·+ ∂xif

[1].

2.2.3 Space of linear dependencies of polynomials
Let f1, f2, . . . , fm be n variate polynomials in F[x] with degree bounded by d. The set
U = {(a1 a2 . . . am)T ∈ Fm |

∑
j∈[m] ajfj = 0}, called the space of F-linear dependencies

of f1, f2, . . . , fm is a subspace of Fm. We would like to find a basis of the space U given

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:17

blackbox access to f1, f2, . . . , fm. Suppose the dimension of the F-linear space spanned by
the polynomials f1, f2, . . . , fm is m− r then dim(U) = r. An algorithm to find a basis of U
can be derived from the following claim.

I Claim 24. With probability at least 1− 1
poly(n) , the rank of the matrix M = (fj(bi))i,j∈[m]

is m − r where b1,b2, . . . ,bm are chosen independently and uniformly at random from
Sn ⊂ Fn with |S| = dm · poly(n).

The proof of the claim which involves an application of the Schwartz-Zippel lemma is given
in Section 7.1. The space U equals the null space of M with high probability.

2.2.4 Eliminating redundant variables
I Definition 25 (Essential and redundant variables). We say an n variate polynomial f has s
essential variables if there exists an A ∈ GL(n) such that f(Ax) is an s variate polynomial
and there exists no A′ ∈ GL(n) such that f(A′x) is a t variate polynomial where t < s. An n
variate polynomial has r redundant variables if it has s = n− r essential variables.

If the number of essential variables in a polynomial f(x1, x2, . . . , xn) is s then without loss of
generality we can assume that the first s variables x1, x2, . . . , xs are essential variables and the
remaining variables are redundant. An algorithm to eliminate the redundant variables of a
polynomial was considered in [12], and it was shown that if the coefficients of a polynomial are
given as input then we can eliminate the redundant variables in polynomial time. Further, [24]
gave an efficient randomized algorithm to eliminate the redundant variables in a polynomial
given as blackbox. For completeness, we give the algorithm in [24] as part of the following
claim.

I Claim 26. Let r be the number of redundant variables in an n variate polynomial f of
degree d. Then the dimension of the space U of F-linear dependencies of {∂xif | i ∈ [n]}
is r. Moreover, we can construct an A ∈ GL(n) in randomized poly(n, d, β) time such that
f(Ax) is free of the set of variables {xn−r+1, xn−r+2, . . . , xn}, where β is the bit length of
the coefficients of f .

The proof is given in Section 7.1.

2.2.5 Efficient translation equivalence test
Two n variate degree d polynomials f, g ∈ F[x] are translation equivalent (also called shift
equivalent in [13]) if there exists a point a ∈ Fn such that f(x + a) = g(x). Translation
equivalence test takes input blackbox access to two n variate polynomials f and g, and
outputs an a ∈ Fn such that f(x + a) = g(x) if f and g are translation equivalent else
outputs ‘f and g are not translation equivalent’. As before, let β be the bit lengths of the
coefficients of f and g. A randomized poly(n, d, β) time algorithm is presented in [13] to test
translation equivalence and find an a ∈ Fn such that f(x + a) = g(x), if such an a exists.
Another randomized test was mentioned in [25], which we present as proof of the following
lemma in Section 7.1.

I Lemma 27. There is a randomized algorithm that takes input blackbox access to two
n variate, degree d polynomials f and g, and with probability at least 1 − 1

poly(n) does the
following: if f is translation equivalent to g, outputs an a ∈ Fn such that f(x + a) = g(x),
else outputs ‘f and g are not translation equivalent’. The running time of the algorithm is
poly(n, d, β), where β is the bit length of the coefficients of f and g.

CCC 2017

21:18 Reconstruction of Full Rank Algebraic Branching Programs

s t

1 1

w1 wd−1

2 2x
(1)
1

x
(1)
2

x(1)
w1

x
(l)
iji

j

1 1

wl−1 wl

Figure 1 Naming of variables in IMMw,d.

2.2.6 Computing basis of Lie algebra
The proof of the following lemma is given in [25], for completeness we include a proof in
Section 7.1.

I Lemma 28. There is a randomized algorithm which when given blackbox access to an n
variate degree d polynomial f , computes a basis of gf with probability at least 1− 1

poly(n) in
time poly(n, d, β) where β is the bit length of the coefficients in f .

2.3 Iterated matrix multiplication polynomial
Let w = (w1, w2, . . . , wd−1) ⊆ Nd−1. Suppose Q1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1), QTd = (x(d)

1 x
(d)
2 . . .

x
(d)
wd−1) be row vectors, and for k ∈ [2, d − 1], Qk = (x(k)

ij)i∈[wk−1],j∈[wk] be a wk−1 × wk
matrix, where for i ∈ [w1] x(1)

i , for i ∈ [wd−1] x(d)
i and for i ∈ [wk−1], j ∈ [wk] x(k)

ij are
distinct variables. The iterated matrix multiplication polynomial IMMw,d is the entry of the
1× 1 matrix obtained from the product

∏d
i=1 Qi. When d and w are clear from the context,

we drop the subscripts and simply represent it by IMM. For all k ∈ [d], we denote the set
of variables in Qk as xk; Figure 1 depicts an ABP computing IMMw,d when the width is
uniform, that is w1 = w2 = · · · = wd−1.

Ordering of variables in IMMw,d: From here on we will assume that the variables x1]x2]
· · ·]xd are ordered as follows: For i < j, the xi variables have precedence over the xj variables.
Among the xl variables, we follow column-major ordering, i.e x(l)

11 � · · · � x
(l)
wl−11 � · · · �

x
(l)
1wl � · · · � x

(l)
wl−1wl . We would also refer to the variables of IMM as x = {x1, x2, . . . , xn}

where xi is the i-th variable according to this ordering27, and n = w1 +
∑d−1
k=2 wk−1wk +wd−1

is the total number of variables in IMM. For A ∈ Fn×n we can naturally index the rows and
columns of A by the x variables such that the i-th row or column is indexed by the i-th
variable.

2.4 Almost set-multilinear ABP and a canonical representation
In the proof of Theorem 7, we eventually reduce the equivalence test problem to checking
whether there exists an A ∈ GL(n), such that an input polynomial h(x) (given as blackbox)

27The justification for identifying the variables x of f with the variables of IMMw,d in this order is as
follows: If f is equivalent to IMMw,d then f is also equivalent to IMMw,d(x) whose variables {x1, . . . , xn}
are ordered as above. That w is a priori unknown to Algorithm 2 does not matter here.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:19

equals IMMw,d(Ax), where w is known, x is the variables of IMMw,d, and A satisfies the
following properties:
1. For all k ∈ [d]\{2, d−1}, the rows indexed by xk variables contain zero entries in columns

indexed by variables other than xi.
2. The rows indexed by x2 and xd−1 variables contain zero entries in columns indexed by

variables other than x1] x2 and xd−1] xd respectively.
If there exists such a block-diagonal matrix A then we say h is computed by a full rank
almost set-multilinear ABP as defined below.

I Definition 29 (Full rank almost set-multilinear ABP). A full rank almost set-multilinear
ABP of width w = (w1, w2, . . . , wd−1) and length d is a product of d matrices, X1 ·X2 . . . Xd,
where Xk’s are as in Definition 4 but with linear forms as entries. The linear forms in Xk

are in xk variables, for all k ∈ [d] \ {2, d− 1}, and for X2 and Xd−1 the linear forms are in
x1] x2 and xd−1] xd variables respectively, where x1] x2 · · ·] xd is the set of variables in
IMMw,d.

Conventionally, in the definition of set-multilinear ABP, the entries of Xi are linear forms
in just xi variables – the ABP in the above definition is almost set-multilinear as matrices
X2 and Xd−1 violate this condition. An efficient randomized reconstruction algorithm for
set-multilinear ABP follows from [29]. In order to apply a similar reconstruction algorithm
to full rank almost set-multilinear ABPs, we fix a canonical representation for the first two
and the last two matrices as explained below.

Canonical form or representation: We say a full rank almost set-multilinear ABP of width
w is in canonical form if the following hold:
(1a) X1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1),

(1b) the linear forms in X2 are such that for l, i ∈ [w1] and l < i, the variable x(1)
l has a

zero coefficient in the (i, j)-th entry (linear form) of X2, where j ∈ [w2].
(2a) Xd = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1)T ,

(2b) the linear forms in Xd−1 are such that for l, j ∈ [wd−1] and l < j, the variable x(d)
l has

a zero coefficient in the (i, j)-th entry (linear form) of Xd−1, where i ∈ [wd−2].
The following claim states that for every full rank almost set-multilinear ABP there is another
ABP in canonical form computing the same polynomial, and the latter can be computed
efficiently.

I Claim 30. Let h be an n variate, degree d polynomial computable by a full rank almost
set-multilinear ABP of width w = (w1, w2, . . . , wd−1) and length d. There is a randomized
algorithm that takes input blackbox access to h and the width vector w, and outputs a full
rank almost set-multilinear ABP of width w in canonical form computing h, with probability
at least 1− 1

poly(n) . The running time of the algorithm is poly(n, β), where β is the bit length
of the coefficients of h.

We prove the claim in Section 5.3. The algorithm is similar to reconstruction of set-multilinear
ABP in [29], except that the latter needs to be adapted suitably as we are dealing with
almost set-multilinear ABP.

3 Lie algebra of IMM

Dropping the subscripts w and d, we refer to IMMw,d as IMM. We show that the Lie algebra,
gIMM consists of well-structured subspaces and by analysing these subspaces we are able to
identify all the irreducible invariant subspaces of gIMM .

CCC 2017

21:20 Reconstruction of Full Rank Algebraic Branching Programs

3.1 Structure of the Lie algebra gIMM

Recall that x = x1] x2] · · ·] xd are the variables of IMM which are also referred to as
{x1, x2, . . . , xn}28 for notational convenience.

I Lemma 31. Let W1,W2,W3 be the following sets (spaces) of matrices:
1. W1 consists of all matrices D = (dij)i,j∈[n] such that D is diagonal and

n∑
i=1

diixi ·
∂IMM
∂xi

= 0.

2. W2 consists of all matrices B = (bij)i,j∈[n] such that

∑
i,j∈[n]

bijxj ·
∂IMM
∂xi

= 0,

where in every summand bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].
3. W3 consists of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM
∂xi

= 0,

where in every summand cij 6= 0 only if either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd.
Then gIMM =W1 ⊕W2 ⊕W3.

The proof of Lemma 31 is given in Section 7.2.

Elaboration on Lemma 31: An element E = (eij)i,j∈[n] of gIMM is an n×n matrix with rows
and columns indexed by variables of IMM following the ordering mentioned in Section 2.3.
Since

∑
i,j∈[n] eijxj ·

∂IMM
∂xi

= 0, E appears as shown in Figure 2, where the row indices
correspond to derivatives and column indices correspond to shifts29.

The proof will show that E is a sum of three matrices D ∈ W1, B ∈ W2 and C ∈ W3
such that
1. D contributes to the diagonal entries.
2. B contributes to the block-diagonal entries of E corresponding to the locations:

(x(1)
i , x

(1)
j) where i, j ∈ [w1] and i 6= j

(x(d)
i , x

(d)
j) where i, j ∈ [wd−1] and i 6= j

(x(l)
ij , x

(l)
pq) where i, p ∈ [wl−1] and j, q ∈ [wl] for l ∈ [2, d− 1], and (i, j) 6= (p, q).

3. C contributes to the two corner rectangular blocks corresponding to:
rows labelled by x2 variables and columns labelled by x1 variables
rows labelled by xd−1 variables and columns labelled by xd variables.

In order to get a finer understanding of gIMM and its dimension we look at the spaces W1,W2
and W3 closely, and henceforth call them the diagonal space, the block-diagonal space and
the corner space respectively.

28Following the ordering mentioned in Section 2.3.
29Borrowing terminology from the shifted partial derivatives measure [26].

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:21

x
(1)
1 x(1)

w1 x
(2)
11 x

(2)
21 x(2)

w1w2

xdxd−1

x
(1)
1

x(1)
w1

x
(2)
11

x
(2)
21

x(2)
w1w2

xd

xd−1

derivatives

shifts

: contributed by a matrix in W1

: contributed by a matrix in W2

: contributed by a matrix in W3

Figure 2 A matrix E in gIMM .

Corner space W3

I Lemma 32 (Corner space). The spaceW3 =W(a)
3 ⊕W

(b)
3 whereW(a)

3 = A1⊕A2⊕· · ·⊕Aw2

and W(b)
3 = A′1 ⊕ A′2 ⊕ · · · ⊕ A′wd−2 such that for every i ∈ [w2] Ai is isomorphic to

the space of w1 × w1 anti-symmetric matrices over F, and for every j ∈ [wd−2] A′j is
isomorphic to the space of wd−1 × wd−1 anti-symmetric matrices over F. Hence dim(W3) =
1
2 [w1w2(w1 − 1) + wd−1wd−2(wd−1 − 1)].

The proof is in Section 7.2. We briefly elaborate on the statement here.

Elaboration on Lemma 31: Every element C ∈ W3 can be expressed as a sum of two n×n
matrices C(a) ∈ W(a)

3 and C(b) ∈ W(b)
3 . C(a) looks as shown in Figure 3, where for every

i ∈ [w2] C(a)
i is an anti-symmetric matrix. The structure of C(b) is similar30 to that of C(a)

30Once we rearrange the rows in C(b) indexed by variables in xd−1 according to row major ordering
(instead of column major ordering) of variables in xd−1.

CCC 2017

21:22 Reconstruction of Full Rank Algebraic Branching Programs

x1

x
(2)
11

x
(2)
w11

x
(2)
1w2

x(2)
w1w2

x1

C
(a)
1

C(a)
w2

all entries outside
the bordered region

are zero

Figure 3 A matrix C(a) in W(a)
3 .

with non zero entries restricted to the rows indexed by xd−1 variables and columns indexed
by xd variables.

Block-diagonal space W2

In the following lemma, Zwk denotes the space of wk × wk matrices with diagonal entries
zero for k ∈ [d− 1]. Also, for notational convenience we assume that w0 = wd = 1. We will
also use the tensor product of matrices: if A = (ai,j) ∈ Fr×s and B ∈ Ft×u, then A⊗B is
the (rt)× (su) matrix given by

A⊗B =

a1,1B · · · a1,sB
...

...
...

ar,1B · · · ar,sB

 .
I Lemma 33 (Block-diagonal space). The space W2 = B1 ⊕ B2 ⊕ · · · ⊕ Bd−1 such that for
every k ∈ [d− 1], Bk is isomorphic to the F-linear space spanned by tk × tk matrices of the
form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1). (1)

Hence, dim(W2) =
∑d−1
k=1(w2

k − wk).

The proof is in Section 7.2.

Elaboration on Lemma 33: An element B ∈ W2 is a sum of d−1, n×n matrices B1, B2, . . . ,

Bd−1 such that for every k ∈ [d− 1], Bk ∈ Bk and the non zero entries of Bk are restricted to
the rows and columns indexed by xk] xk+1 variables. The submatrix in Bk corresponding
to these rows and columns looks as shown in Equation (1).

Diagonal space W1

In the next lemma, Ywk denotes the space of wk × wk diagonal matrices for k ∈ [d− 1]. As
before we assume w0 = wd = 1.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:23

I Lemma 34 (Diagonal Space). The space W1 contains the space D1⊕D2⊕ · · · ⊕Dd−1 such
that for every k ∈ [d− 1], Dk is isomorphic to the F-linear space spanned by tk × tk matrices
of the form[

−Y ⊗ Iwk−1 0
0 Iwk+1 ⊗ Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1). (2)

Hence, dim(W1) ≥
∑d−1
k=1 wk.

The proof (still given in Section 7.2) is similar to that of Lemma 33.

Elaboration on Lemma 34: An element D ∈ D1⊕D2⊕ · · · ⊕Dd−1 is a sum of d− 1, n×n
matrices D1, D2, . . . , Dd−1 such that for every k ∈ [d− 1], Dk ∈ Dk and the non zero entries
of Dk are restricted to the rows and columns indexed by xk] xk+1 variables. The submatrix
in Dk corresponding to these rows and columns looks as shown in Equation (2).

3.2 Random elements of gIMM

The algorithm in Theorem 7 involves picking a random matrix R′ in gf and computing its
characteristic polynomial h(x). To ensure the correctness of the algorithm, h(x) will have to
be square free over F. In Lemma 36 we show that the characteristic polynomial of a random
matrix R in gIMM is square free with high probability. From Claim 21 this implies that if f
is equivalent to IMM then the characteristic polynomial of R′ is also square free with high
probability.

I Claim 35. There is a diagonal matrix D ∈ gIMM with all entries distinct.

Proof. From Lemma 34, we know that for k ∈ [d− 1] the submatrix of Dk ∈ Dk defined by
the rows and columns indexed by the variables in xk] xk+1 is[

−Yk ⊗ Iwk−1 0
0 Iwk+1 ⊗ Yk

]
,

where Yk ∈ Yk. Let the (i, i)-th entry of Yk be y(k)
i and pretend that these entries are

distinct formal variables, say y variables. Consider the matrix D =
∑d−1
i=1 Di and observe

the following:
(a) For k ∈ [2, d − 1], the (x(k)

ij , x
(k)
ij)-th entry of D is y(k−1)

i − y(k)
j where i ∈ [wk−1] and

j ∈ [wk].
(b) The (x(1)

i , x
(1)
i)-th and (x(d)

j , x
(d)
j)-th entry of D are −y(1)

i and y(d−1)
j respectively, where

i ∈ [w1] and j ∈ [wd−1].
In particular, all the diagonal entries of D are distinct linear forms in the y variables. Hence,
if we assign values to the y variables uniformly at random from a set S ⊆ F such that
|S| ≥ n2 then with non zero probability D has all diagonal entries distinct after the random
assignment. J

I Lemma 36. If {L1, L2, . . . , Lm} is a basis of the Lie algebra gIMM then the characteristic
polynomial of an element L =

∑m
i=1 riLi, where ri ∈R F is picked independently and uniformly

at random from [2n3], is square free with probability at least 1− 1
poly(n) .

Proof. Pretend that the ri’s are formal variables. The characteristic polynomial hr(x)
of L is a polynomial in x with coefficients that are polynomial of degree at most n in
r = {r1, r2, . . . , rm} variables.

CCC 2017

21:24 Reconstruction of Full Rank Algebraic Branching Programs

I Observation 37. The discriminant of hr(x), disc(hr(x)) := resx(hr,
∂hr
∂x), is a non zero

polynomial in r variables of degree at most n2, where resx(hr,
∂hr
∂x) is the resultant of hr and

∂hr
∂x when treated as univariates in x.

Proof. hr = Det(xIn − r1L1 − . . . − rωLω) is a degree n homogeneous polynomial in the
variables x, r1, . . . , rω. Let S ∈ F[r](2n−1)2 be the Sylvester matrix of hr and ∂hr

∂x with respect
to x, i.e.

Si,j =
{

[xn+i−j]hr if 1 ≤ i ≤ n− 1
[xi−j]∂hr

∂x otherwise

where [xδ]g is the coefficient of the monomial xδ in the polynomial g. Moreover, by homo-
geneity of hr, [xδ]hr (resp. [xδ]∂hr

∂x) is a homogeneous polynomial of degree (n − δ) (resp.
(n − 1 − δ)) with respect to the variables r. Then, if σ is a permutation of [2n − 1] then∏2n−1

i=1 Si,σ(i) is a homogeneous polynomial in r of degree

n−1∑
i=1
−i+ σ(i) +

2n−1∑
i=n

n− 1− i+ σ(i) = n(n− 1)−
(2n−1∑

i=1
i

)
+
(2n−1∑

i=1
σ(i)

)
= n(n− 1).

Consequently, disc(hr(x)) is homogeneous and of degree n(n−1). If resx(hr,
∂hr
∂x) is identically

zero as a polynomial in r then for every setting of r to field elements gcd(hr,
∂hr
∂x) 6= 1

implying hr is not square free. This would contradict Claim 35 as we can set the r variables
appropriately such that L is a diagonal matrix with distinct diagonal entries, and hr for such
a setting of the r variables is square free. J

Since disc(hr(x)) is not an identically zero polynomial in the r variables and has degree less
than 2n2, if we set every r variable uniformly and independently at random to a value in [2n3]
then using Schwartz-Zippel lemma with probability at least 1− 1

poly(n) , gcd(hr,
∂hr
∂x) = 1.

This implies with probability at least 1− 1
poly(n) , hr(x) is square free. J

3.3 Invariant subspaces of gIMM

The ordering of the variables in IMM allows us to identify them naturally with the unit
vectors e1, e2, . . . , en in Fn – the vector ei corresponds to the i-th variable in the ordering.
We will write ex to refer to the unit vector corresponding to the variable x. Let U1,2 represent
the coordinate subspace spanned by the unit vectors corresponding to the variables in x1]x2.
Similarly Uk represents the coordinate subspace spanned by the unit vectors corresponding to
the variables in xk for k ∈ [2, d− 1], and Ud−1,d represents the coordinate subspace spanned
by the unit vectors corresponding to the variables in xd−1] xd. In Lemma 39, we establish
that U1,2,U2, . . . ,Ud−1,Ud−1,d are the only irreducible invariant subspaces of gIMM .

I Claim 38. Let U be a nonzero invariant subspace of gIMM . If u = (u1, u2, . . . , un)T ∈ U
and uj 6= 0 then ej ∈ U , implying U is a coordinate subspace.

Proof. Claim 35 states that there is a diagonal matrix D ∈ gIMM with distinct diagonal entries
λ1, λ2, . . . , λn. Since U is invariant for D, if u = (u1, u2, . . . , un)T ∈ U then (λi1u1, λ

i
2u2, . . . ,

λinun) ∈ U for every i ∈ N. Let Su := {j ∈ [n] | uj 6= 0} be the support of u 6= 0. As
λ1, λ2, . . . , λn are distinct, the vectors (λi1u1, λ

i
2u2, . . . , λ

i
nun) are F-linearly independent for

0 ≤ i < |Su|. Hence, the unit vector ej ∈ U for every j ∈ Su. It follows that U is the
coordinate subspace spanned by those ej for which j ∈ Su for some u ∈ U . J

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:25

I Lemma 39. The only irreducible invariant subspaces of gIMM are U1,2, U2, . . . , Ud−1,
Ud−1,d.

Proof. It follows from Lemma 31 and Figure 2 that U1,2, U2, . . . , Ud−1, Ud−1,d are invariant
subspaces. We show in the next two claims that the spaces U1,2, U2, . . . , Ud−1, Ud−1,d are
irreducible. The proofs are given in Section 7.2.

I Claim 40. No invariant subspace of gIMM is properly contained in Uk for k ∈ [2, d− 1].

I Claim 41. The invariant subspaces U1,2 and Ud−1,d are irreducible, and the only invariant
subspace properly contained in U1,2 (respectively Ud−1,d) is U2 (respectively Ud−1).

We in fact show in the proof of Claim 40 that the closure of ex under the action of gIMM is Uk
for any x ∈ xk, where k ∈ [2, d− 1]. Similarly, in the proof of Claim 41 we show that the
closure of ex under the action of gIMM is U1,2 (respectively Ud−1,d) for any x ∈ x1 (respectively
x ∈ xd). This observation helps infer that the spaces U1,2, U2, . . . , Ud−1, Ud−1,d are the
only irreducible invariant subspaces of gIMM : Suppose V is an irreducible invariant subspace.
If ex ∈ V for some x ∈ xk where k ∈ [2, d − 1], then Uk ⊆ V as Uk is the closure of ex. If
ex ∈ V for some x ∈ x1 (respectively x ∈ xd) then U1,2 ⊆ V (respectively Ud−1,d ⊆ V) as
U1,2 (respectively Ud−1,d) is the closure of ex. Therefore V is a direct sum of some of the
irreducible invariant subspaces U1,2, U2, . . . , Ud−1, Ud−1,d. Since V is irreducible, it is equal
to one of these irreducible invariant subspaces. J

I Corollary 42 (Uniqueness of decomposition). The decomposition,

Fn = U1,2 ⊕ U3 ⊕ · · · ⊕ Ud−2 ⊕ Ud−1,d

is unique in the following sense; if Fn = V1⊕V2⊕· · ·⊕Vs, where V ′is are irreducible invariant
subspaces of gIMM , then s = d− 2 and for every i ∈ [s], Vi is equal to U1,2 or Ud−1,d, or some
Uk for k ∈ [3, d− 2].

Proof. Since Vi’s are irreducible invariant subspaces, from Lemma 39 it follows that for
every i ∈ [s] Vi equals one among U1,2, U2, . . . , Ud−1, Ud−1,d. Since V1,V2, . . . ,Vs span the
entire Fn, the only possible decomposition is Fn = U1,2 ⊕ U3 ⊕ · · · ⊕ Ud−2 ⊕ Ud−1,d. J

4 Lie algebra of f equivalent to IMM

Let f be an n variate polynomial such that f = IMMw,d(Ax), where w = (w1, w2, . . . , wd−1)
∈ Nd−1 and A ∈ GL(n). It follows, n = w1 +

∑d−1
i=2 wi−1wi + wd−1. From Observation 22

and Lemma 39 we know A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d are the only irreducible
invariant subspaces of gf , and A−1U2 (respectively A−1Ud−1) is the only invariant subspace
properly contained in A−1U1,2 (respectively A−1Ud−1,d). Also from Corollary 42 it follows
that Fn = A−1U1,2 ⊕ A−1U3 ⊕ · · · ⊕ A−1Ud−2 ⊕ A−1Ud−1,d. In this section, we give an
efficient randomized algorithm to compute a basis of each of the spaces A−1U1,2, A−1U2, . . . ,
A−1Ud−1, A−1Ud−1,d given only blackbox access to f (but no knowledge of w or A).

4.1 Computing invariant subspaces of the Lie algebra gf

First, we efficiently compute a basis {L′1, L
′

2, . . . , L
′

m} of gf using the algorithm stated in
Lemma 28. By Claim 21, L1 = AL

′

1A
−1, L2 = AL

′

2A
−1, . . . , Lm = AL

′

mA
−1 form a basis

of gIMM . Suppose R′ =
∑m
i=1 riL

′

i is a random element of gf , chosen by picking the ri’s
independently and uniformly at random from [2n3]. Then R = AR

′
A−1 =

∑m
i=1 riLi is a

CCC 2017

21:26 Reconstruction of Full Rank Algebraic Branching Programs

R1

R2

R3

Rd

Rd−1

Rd−2

x1

x2

x3

xd

xd−1

xd−2

x1 x2 x3 xdxd−1xd−2

all entries outside
the bordered region

are zero

Figure 4 Random element R in gIMM .

random element of gIMM and it follows from Lemma 36 that the characteristic polynomial
of R is square free with probability at least 1 − 1

poly(n) . So assume henceforth that the
characteristic polynomial of R (and hence also of R′) is square free.

Moreover, from Figure 2 it follows that R has the structure as shown in Figure 4.
Let h(x) =

∏d
i=1 hi(x) be the characteristic polynomial of R and R′ , where hi(x) is the

characteristic polynomial of Ri, and g1(x), g2(x), . . . , gs(x) be the distinct irreducible factors
of h(x) over F. Suppose N ′i is the null space of gi(R

′). Thus Ni, the null space of gi(R)
(equal to A · gi(R

′) · A−1), is AN ′i for i ∈ [s]. We study the null spaces N1,N2, . . . ,Ns in
the next two claims and show how to extract out the irreducible invariant subspaces of gf
from N ′1,N

′

2, . . . ,N
′

s (as specified in Algorithm 3). The proofs of these claims (using simple
linear algebra) can be found in Section 7.3.

I Claim 43. For all i ∈ [s], let Ni and N
′

i be the null spaces of gi(R) and gi(R
′). Then:

1. Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns = N ′1 ⊕N
′

2 ⊕ · · · ⊕ N
′

s.
2. For all i ∈ [s], dim(Ni) = dim(N ′i) = degx(gi).

I Claim 44. Suppose gi(x) is an irreducible factor of the characteristic polynomial hk(x) of
Rk (depicted in Figure 4) for some k ∈ [d]. Then the following holds:
1. If k ∈ [2, d− 1] then Ni ⊆ Uk (equivalently N ′i ⊆ A−1Uk).
2. If k = 1 then Ni ⊆ U1,2 (equivalently N ′i ⊆ A−1U1,2), and if k = d then Ni ⊆ Ud−1,d

(equivalently N ′i ⊆ A−1Ud−1,d).

I Claim 45.
1. If gl1(x), gl2(x), . . . , glr(x) are all the irreducible factors of hk(x) for k ∈ [2, d− 1] then

A−1Uk = N ′l1 ⊕N
′

l2
⊕ · · · ⊕ N ′lr .

2. If gl1(x), gl2(x), . . . , glr (x) are all the irreducible factors of h1(x)h2(x) (respectively hd−1(x)
hd(x)) then A−1U1,2 = N ′l1⊕N

′

l2
⊕· · ·⊕N ′lr (respectively A

−1Ud−1,d = N ′l1⊕N
′

l2
⊕· · ·⊕N ′lr).

Proof. If k ∈ [2, d− 1] then N ′l1 +N ′l2 + · · ·+N ′lr is a direct sum and

dim(A−1Uk) = degx(hk) =
r∑
j=1

degx(glj) =
r∑
j=1

dim(N
′

lj), which follow from Claim 43.

Hence from Claim 44, A−1Uk = N ′l1 ⊕ N
′

l2
⊕ · · · ⊕ N ′lr . The proof for the second part is

similar. J

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:27

Algorithm 3 Computing irreducible invariant subspaces of gf
INPUT: A basis {L′1, L′2, . . . , L′m} of gf .
OUTPUT: Bases of the irreducible invariant subspaces of gf .

1. Pick a random element R′ =
∑m
j=1 rjL

′
j in gf , where rj ∈R [2n3].

2. Compute the characteristic polynomial h(x) of R′.
3. if h(x) is not square free then
4. Output ‘Fail’ and stop.
5. end if
6. Factor h(x) = g1(x) · g2(x) . . . gs(x) into irreducible factors over F.
7. Find bases of the null spaces N ′1,N ′2, . . . ,N ′s of g1(R′), g2(R′), . . . , gs(R′) respectively.
8. For every N ′i , pick a vector v in the basis of N ′i and compute the closure of v with

respect to gf using Algorithm 4 given in Section 4.2.
9. Let {V1,V2, . . . ,Vs} be the list of the closure spaces; check for all i 6= j and i, j ∈ [s],

whether Vi = Vj to remove repetitions from the above list and get the pruned list
{V1,V2, . . . ,Vd}31.

10. Output the set {V1,V2, . . . ,Vd}.

I Lemma 46. Given as input bases of the null spaces N ′1, N
′

2, . . . , N
′

s we can compute bases
of the spaces A−1U1,2, A

−1U2, . . . , A
−1Ud−1, A

−1Ud−1,d in deterministic polynomial time.

Proof. Recall N ′i is the null space of gi(R
′), where gi(x) is an irreducible factor of hk(x) for

some k ∈ [d].

Case A: k ∈ [2, d− 1]: From Claim 44 it follows that N ′i ⊆ A−1Uk. Pick a basis vector
v in N ′i and compute the closure of v under the action of gf using Algorithm 4 given in
Section 4.2. Since the closure of v is the smallest invariant subspace of gf containing v, by
Claim 40 the closure of v equals A−1Uk.

Case B: k = 1 or k = d: The arguments for k = 1 and k = d are similar. We prove it for
k = 1. From Claim 44 we have N ′i ⊆ A−1U1,2. Pick a basis vector v of N ′i and compute its
closure under the action of gf using Algorithm 4. Similar to case A, this gives us an invariant
subspace of gf contained in A−1U1,2 and by Claim 41 this invariant subspace is either A−1U2
or A−1U1,2. However, N ′i ∩ A−1U2 (by Corollary 45) is empty, as gi(x) is an irreducible
factor of h1(x) (not h2(x)). Hence v /∈ A−1U2 and the closure of v must be A−1U1,2. J

To summarize, first we pick a random element R′ in gf , find its characteristic polynomial h(x)
and factorize h(x) to get the irreducible factors g1(x), g2(x), . . . , gs(x). Then we compute the
null spaces N ′1,N ′2, . . . ,N ′s of g1(R′), g2(R′), . . . , gs(R′) respectively. By applying Claim 46,
we find the invariant subspaces of gf , A−1U1,2, A−1U2, . . . , A−1Ud−1, A−1Ud−1,d from these
null spaces. We present this formally in Algorithm 3.

Comments on Algorithm 3

(a) Observe that in step 6 of the algorithm we need F to be Q (as assumed) or a finite field
because univariate factorization can be done effectively over such fields [31, 9, 11].

31Reusing symbols.

CCC 2017

21:28 Reconstruction of Full Rank Algebraic Branching Programs

Algorithm 4 Computing the closure of v under the action of L
INPUT: v ∈ Fn and a basis {M1,M2, . . . ,Mm} of L.
OUTPUT: Basis of the closure of v under the action of L.

1. Let V(0) = {v} and V(1) = spanF{v,M1v, . . . ,Mmv}.
2. Set i = 1.
3. Compute a basis of V(1) and let T1 = {v1,v2, . . . ,vq1} be this basis.
4. while V(i−1) 6= V(i) do
5. Set i = i+ 1.
6. Compute a basis for V(i) = spanF{Ti−1 ∪ L · Ti−1} and let Ti = {v1,v2, . . . ,vqi} be

this basis.
7. end while
8. Output Ti.

(b) When Algorithm 3 is invoked in Algorithm 2 for an n variate degree d polynomial f ,
there may not exists a w ∈ Nd−1 and an A ∈ GL(n) such that f = IMMw,d(Ax). We
point out a few additional checks that need to be added to the above algorithm to
handle this case. In step 9, if the pruned list (after removing repetitions) has size other
than d then output ‘Fail’. Also from Claim 41, exactly two subspaces in the pruned list
{V1,V2, . . . ,Vd}, say V2 and Vd−1, should be subspaces of other vector spaces, say V1
and Vd respectively. We can find these two spaces by doing a pairwise check among the
d vector spaces. If such subspaces do not exist among V1,V2, . . . ,Vd then output ‘Fail’.
Further, if Fn 6= V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd (assuming V2 ⊆ V1 and Vd−1 ⊆ Vd) then
output ‘Fail’.

(c) It follows from the above discussion , if f = IMMw,d(Ax) then we can assume V3,V4, . . . ,

Vd−2 are the spaces A−1U3, A
−1U4, . . . , A

−1Ud−2 in some unknown order. The spaces
V1,V2 and Vd,Vd−1 are either the spaces A−1U1,2, A

−1U2 and A−1Ud−1,d, A
−1Ud−1

respectively, or the spaces A−1Ud−1,d, A
−1Ud−1 and A−1U1,2, A

−1U2 respectively.

4.2 Closure of a vector under the action of gf
Algorithm 4 computes the closure of v ∈ Fn under the action of a space L spanned by n× n
matrices. Let {M1,M2, . . . ,Mm} be a basis of L where Mi ∈ Fn×n. For a set of vectors
T = {v1,v2, . . . ,vq} ⊆ Fn, let L · T denote the set {Mavb | a ∈ [m] and b ∈ [q]}.

I Claim 47. Algorithm 4 computes the closure of v ∈ Fn under the action of L in time
polynomial in n and the bit length of the entries of v and M1,M2, . . . ,Mm.

Proof. The closure of v under the action of L is the F-linear span of all vectors of the form µ.v,
where µ is a non-commutative monomial in M1,M2, . . . ,Mm (including unity). Algorithm 4
computes exactly this set and hence the closure of v. Moreover, dim(V(i)) ≤ n and in every
iteration of the while loop dim(V(i)) > dim(V(i−1)), until V(i) = V(i−1). Hence, Algorithm 4
runs in time polynomial in n and the bit length of the entries of v and M1,M2, . . . ,Mm. J

5 Reconstruction of full rank ABP for f

Let f be a polynomial equivalent to IMMw,d for some (unknown) w ∈ Nd−1. In this section,
we show that the invariant subspaces of gf let us compute a w ∈ Nd−1 and an A ∈ GL(n)
such that f = IMMw,d(Ax). Since f is equivalent to IMMw,d, it is computable by a full
rank ABP X1 · X2 . . . Xd−1 · Xd of width w and length d with linear form entries in the

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:29

matrices. We call this full rank ABP A which, as explained below, is not the only full rank
ABP computing f .

Many full rank ABPs for f : The full rank ABP X ′1 ·X ′2 · · ·X ′d resulting from each of the
following three transformations on A still computes f ,
1. Transposition: Set X ′k = XT

d+1−k for k ∈ [d].
2. Left-right multiplications: Let A1, . . . , Ad−1 be matrices such that Ak ∈ GL(wk) for every

k ∈ [d− 1]. Set X ′1 = X1 ·A1, X
′

d = A−1
d−1 ·Xd, and X

′

k = A−1
k−1 ·Xk ·Ak for k ∈ [2, d− 1].

3. Corner translations: Suppose {C11, C12, . . . , C1w2} and {Cd1, Cd2, . . . , Cdwd−2} are two
sets containing anti-symmetric matrices in Fw1×w1 and Fwd−1×wd−1 respectively. Let
Y2 ∈ F[x]w1×w2 (respectively Yd−1 ∈ F[x]wd−2×wd−1) be a matrix with its i-th column
(respectively i-th row) equal to C1i · XT

1 (respectively XT
d · Cdi). Set X ′2 = X2 + Y2,

X
′

d−1 = Xd−1 + Yd−1, and X
′

k = Xk for k ∈ [d] \ {2, d− 1}.
In each of the above three cases f = X ′1 ·X ′2 · · ·X ′d; this is easy to verify for cases 1 and 2,
in case 3 observe that X1 · C1i ·XT

1 = XT
d · Cdi ·Xd = 0.

It turns out that the full rank ABPs obtained by (repeatedly) applying the above three
transformations on A are the only full rank ABPs computing f . This would follow from the
discussion in Section 6. Although there are multiple full rank ABPs for f , the layer spaces of
these ABPs are unique (Lemma 48). This uniqueness of the layer spaces essentially facilitates
the recovery of a full rank ABP for f . Let us denote the span of the linear forms32 in X1
and X2 (respectively Xd−1 and Xd) by X1,2 (respectively Xd−1,d).

I Lemma 48 (Uniqueness of the layer spaces of full rank ABP for f). Suppose X1 ·X2 · · ·Xd

and X ′1 · X ′2 · · ·X ′d are two full rank ABPs of widths w = (w1, w2, . . . , wd−1) and w′ =
(w′1, w′2, . . . , w′d−1) respectively, computing the same polynomial f . Then one of the following
two cases is true:
(a) w′k = wk for k ∈ [d − 1], and the spaces X ′1,X ′1,2,X ′3, . . . , X ′d−1,d,X ′d are the spaces
X1,X1,2,X3, . . . ,Xd−1,d,Xd respectively.

(b) w′k = wd−k for k ∈ [d − 1], and the spaces X ′1,X ′1,2,X ′3, . . . , X ′d−1,d,X ′d are the spaces
Xd,Xd−1,d,Xd−2, . . . ,X1,2,X1 respectively.

The lemma would help characterize the group of symmetries of IMM in Section 6; the proof
would follow readily from Claim 50 in Section 5.2. With an eye on Section 6 and for better
clarity in the reduction to almost set-multilinear ABP in Section 5.2, we take a slight detour
and show next how to compute these ‘unique’ layer spaces of A.

5.1 Computing layer spaces from invariant subspaces of gf
Algorithm 3 outputs bases of the irreducible invariant subspaces {Vi | i ∈ [d]} of gf .
Recall, we assumed without loss of generality that V2 and Vd−1 are subspaces of V1 and
Vd respectively. The spaces V1,V2 and Vd,Vd−1 are either the spaces A−1U1,2, A

−1U2 and
A−1Ud−1,d, A

−1Ud−1 respectively, or the spaces A−1Ud−1,d, A
−1Ud−1 and A−1U1,2, A

−1U2
respectively. Every other Vk is equal to A−1Uσ(k) for some permutation σ on [3, d− 2] (σ is
not known at the end of Algorithm 3). Hence,

Fn = V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd. (3)

32 Identify linear forms with vectors in Fn as mentioned in Definition 15.

CCC 2017

21:30 Reconstruction of Full Rank Algebraic Branching Programs

Algorithm 5 Computing the layer spaces of A

INPUT: Bases of the irreducible invariant subspaces of gf .
OUTPUT: Bases of the layer spaces of A.

1. Form an n×n matrix V by concatenating the columns of the matrices V1, V3, . . . , Vd−2, Vd
in order, that is V = [V1 | V3 | . . . | Vd−2 | Vd].

2. Compute V −1. Number the rows of V −1 by 1 to n.
3. Let Y1 be the space spanned by the first u1 − u2 rows of V −1, and Y1,2 be the space

spanned by the first u1 rows of V −1. Let Yd−1,d be the space spanned by the last ud
rows of V −1 and Yd be the space spanned by the last ud−ud−1 rows of V −1. Finally, for
every k ∈ [3, d−2], let Yk be the space spanned by the rows of V −1 that are numbered by
tk−1 + 1 to tk−1 + uk. Output the bases of the spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd
in order.

Since V2 ⊆ V1, we can start with a basis of V2 and fill in more elements from the basis of V1
to get a new basis of V1. Thus we can assume the basis of V2 is contained in the basis of V1.
Likewise, the basis of Vd−1 is contained in the basis of Vd.

Order the basis vectors of V1 such that the basis vectors of V2 are at the end and order the
basis vectors of Vd such that the basis vectors of Vd−1 are at the beginning. For k ∈ [3, d− 2],
the basis vectors of Vk are ordered in an arbitrary way. Let uk denote the dimension of Vk
for k ∈ [d]. We identify the space Vk with an n× uk matrix Vk, where the i-th column in Vk
is the i-th basis vector of Vk in the above specified order. Algorithm 5 computes the layer
spaces of A using V1 to Vd. Let t2 = u1 and tk = uk + tk−1 for k ∈ [3, d− 2].

Comments on Algorithm 5: Algorithm 2 invokes Algorithm 5 only after Algorithm 3,
which returns ‘Fail’ if Fn 6= V1 ⊕ V3 ⊕ · · · ⊕ Vd−2 ⊕ Vd (see comments after Algorithm 3).
This ensures Equation (3) is satisfied and so V −1 exists in step 2 of the above algorithm,
even if there are no w ∈ Nd−1 and A ∈ GL(n) such that f = IMMw,d(Ax).

I Lemma 49. If f = X1 ·X2 · · ·Xd and Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd is the output of
Algorithm 5 then there is a permutation σ on [3, d− 2] such that the following hold:
1. For every k ∈ [3, d− 2], Yk = Xσ(k).
2. Either Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively, or Y1,Y1,2 and
Yd, Yd−1,d are Xd,Xd−1,d and X1,X1,2 respectively.

The proof is given in Section 7.4.

5.2 Reduction to almost set-multilinear ABP
The outline: Once the invariant spaces of gf are computed, the reduction proceeds like this:
As observed in the proof of Lemma 49, the matrix V in Algorithm 5 equals A−1E where
E looks as shown in Figure 14. If f = IMMw,d(Ax) then f(V x) = IMMw,d(Ex). Owing to
the structure of E, f(V x) is computed by a full rank almost set-multilinear ABP, except
that the ordering of the groups of variables occurring in the different layers of the ABP is
unknown as σ is unknown. The ‘correct’ ordering along with a width vector can be retrieved
by applying evaluation dimension, thereby completing the reduction. For a slightly neater
presentation of the details (and with the intent of proving Lemma 48), we deviate from this
strategy a little bit and make use of the layer spaces that have already been computed by
Algorithm 5.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:31

Algorithm 6 Reduction to full rank almost set-multilinear ABP
INPUT: Bases of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd from Algorithm 5.
OUTPUT: A w ∈ Nd−1 and an Â ∈ GL(n) such that f(Âx) is computable by a full rank
almost set-multilinear ABP of width w.

1. Reorder the layer spaces to X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and obtain w (using
Claim 50). /* This step succeeds with high probability if f is equivalent to IMMw,d for
some w. */

2. Find Â ∈ GL(n) from the reordered spaces and w (using Claim51).

The details: Algorithm 5 computes the spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd which (ac-
cording to Lemma 49) are either the spaces X1,X1,2,Xσ(3), . . . ,Xσ(d−2),Xd−1,d,Xd respect-
ively, or the spaces Xd,Xd−1,d,Xσ(3), . . . , Xσ(d−2),X1,2,X1 respectively, for some unknown
permutation σ on [3, d− 2]. The claim below (proved in Section 7.4) shows how to correctly
reorder these layer spaces.

I Claim 50. There is a randomized polynomial time algorithm that takes input the bases
of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd and with probability at least 1− 1

poly(n)
reorders these layer spaces and outputs a width vector w′ such that the reordered sequence of
spaces and w′ are:
1. either X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and (w1, w2, . . . , wd−1) respectively,
2. or Xd,Xd−1,d,Xd−2, . . . , X3,X1,2,X1 and (wd, wd−1, . . . , w1) respectively.

Note: Until the algorithm in the claim is applied to reorder the spaces, Algorithm 2 is
totally oblivious of the width vector w (it has been used only in the analysis thus far). So,
due to the legitimacy of the transposition transformation mentioned at the beginning of this
section, we may as well assume that the w′ in the above claim is in fact our w, and the
output ordered sequence of spaces is X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd.

I Claim 51. Given bases of the spaces X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and w, we can
find an Â ∈ GL(n) in polynomial time such that f(Âx) is computable by a full rank almost
set-multilinear ABP of width w.

Proof. Identify the variables x1, . . . , xn with the variables x1] . . .] xd of IMMw,d following
the ordering prescribed in Section 2.3. The map x 7→ Âx should satisfy the following
conditions:
(a) For every k ∈ [3, d− 2], the linear forms corresponding33 to the basis vectors of Xk map

to distinct variables in xk.
(b) The linear forms corresponding to the basis vectors in X1 (similarly, Xd) map to distinct

variables in x1 (similarly, xd).
(c) The linear forms corresponding to the basis vectors in X1,2 (similarly, Xd−1,d) map to

distinct variables in x1] x2 (similarly, xd−1] xd).
Conditions (b) and (c) can be simultaneously satisfied as the basis of X1 (similarly, Xd) is
contained in the basis of X1,2 (similarly, Xd−1,d) by construction. Such an Â can be easily
obtained. J

We summarize the discussion in Algorithm 6.

33Recall, linear forms in x variables and vectors in Fn are naturally identified with each other.

CCC 2017

21:32 Reconstruction of Full Rank Algebraic Branching Programs

Comments on Algorithm 6: The proof of Claim 50 includes Observation 67 which helps
Algorithm 6 in step 1 to reorder the layer spaces. If f is not equivalent to IMMw,d for some
w then Algorithm 6 may fail in step 1, as at some stage it may not be able to find a variable
set zk such that Evaldimyj]zk(h) < |zk| (see proof of Observation 67). When Algorithm 2
invokes Algorithm 6, if step 1 fails then the latter outputs ‘Fail’ and stops.

5.3 Reconstructing almost set-multilinear ABP
We prove Claim 30 in this section. Let h = f(Âx); identify x with the variables x1]. . .]xd of
IMMw,d as before. From Claim 51, h is computable by a full rank almost set-multilinear ABP
of width w. Algorithm 2 uses Algorithm 7 to reconstruct a full rank almost set-multilinear
ABP for h and then it replaces x by Â−1x to output a full rank ABP for f . The correctness
of Algorithm 7 is presented as part of the proof of Claim 30. We begin with the following
two observations the proofs of which appear in Section 7.4.

I Observation 52. If h is computable by a full rank almost set-multilinear ABP of width w
then there is a full rank almost set-multilinear ABP of width w in canonical form computing
h.

I Observation 53. Let X1 ·X2 · · ·Xd be a full rank almost set-multilinear ABP, and Ck =
Xk · · ·Xd for k ∈ [2, d]. Let the l-th entry of Ck be hkl for l ∈ [wk−1] . Then the polynomials
{hk1, hk2, · · · , hkwk−1} are F-linearly independent.

Notations for Algorithm 7: For k ∈ [d − 1], let tk = |x1] x2] · · ·] xk| and mk =
|xk+1] xk+2] · · ·] xd|. The (i, j)-th entry of a matrix X is denoted by X(i, j), and ewk,i
denotes a vector in Fwk with the i-th entry 1 and other entries 0. Let yi denote the following
partial assignment to the x1 variables: x(1)

i , . . . , x
(1)
w1 are kept intact, while the remaining

variables are set to zero. Similarly, zj denotes the following partial assignment to the xd
variables: x(d)

j , . . . , x
(d)
wd−1 are kept intact, while the remaining variables are set to zero. The

notation h(ai,xk,bj) means the variables x1] . . .]xk−1 are given the assignment ai ∈ Ftk−1

and the variables xk+1] . . .] xd are given the assignment bj ∈ Fmk . The connotations
for h(yi,x2,bj) and h(ai,xd−1, zj) are similar. The function poly(n) is a suitably large
polynomial function in n, say n7.

Proof of Claim 30. By Observation 52, there is a full rank ABP X ′1 ·X ′2 · · ·X ′d in canonical
form computing h. HenceX1 = X ′1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1) andXd = X ′d = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1).

We show next that with probability at least 1− 1
poly(n) , Algorithm 7 constructs X2, X3, . . . ,

Xd−1 such that X2 = X ′2 · T2, Xd−1 = T−1
d−2 · X ′d−1 and Xk = T−1

k−1 · X ′k · Tk for every
k ∈ [3, d− 2], where Ti ∈ GL(wi) for i ∈ [2, d− 2].

Steps 3–13: The matrix X2 is formed in these steps. By Observation 53, the polynomials
h31, . . . , h3w2 are F-linearly independent. Since b1,b2, . . . ,bw2 are randomly chosen in step
3, the matrix T2 with (r, c)-th entry h3r(bc) is in GL(w2) with high probability. Let X ′2T2(i, j)
be the (i, j)-th entry of X ′2T2. Observe that

h(yi,x2,bj) = X ′2T2(i, j) · x(1)
i + . . .+X ′2T2(w1, j) · x(1)

w1
.

As h(yi,x2,bj) is a quadratic polynomial, we can compute it from blackbox access using
the sparse polynomial interpolation algorithm in [30]. By induction on the rows, X2(p, j) =
X ′2T2(p, j) for every p ∈ [i+ 1, w1] and j ∈ [w2]. So in step 8, gj = X ′2T2(i, j) · x(1)

i leading
to X2(i, j) = X ′2T2(i, j) in step 9.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:33

Algorithm 7 Reconstruction of full rank almost set-multlinear ABP
INPUT: Blackbox access to an n variate polynomial h and the width vector w.
OUTPUT: A full rank almost set-multilinear ABP of width w in canonical form computing
h.

1. Set X1 = (x(1)
1 x

(1)
2 . . . x

(1)
w1) and Xd = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1)T .

2.
3. Choose w2 random points {b1,b2, . . . ,bw2} from Sm2 such that S ⊂ F and |S| = poly(n).

4. Set i = w1.
5. while i ≥ 1 do
6. for every j ∈ [w2] do
7. Interpolate the quadratic h(yi,x2,bj).
8. Set gj = h(yi,x2,bj)−

∑w1
p=i+1 X2(p, j) · x(1)

p .
9. If gj is not divisible by x(1)

i , output ‘Fail’. Else, set X2(i, j) = gj/x
(1)
i .

10. end for
11. Set i = i− 1.
12. end while
13. If the linear forms in X2 are not F-linearly independent, output ‘Fail’.
14.
15. Set k = 3.
16. while k ≤ d− 2 do
17. Find wk−1 evaluations, {a1,a2, . . . ,awk−1} ⊂ Ftk−1 , of x1] x2] · · ·] xk−1 variables

such that X1 ·X2 · · ·Xk−1 evaluated at ai equals ewk−1,i.
18. Choose wk random points {b1,b2, . . . ,bwk} from Smk such that S ⊂ F and |S| =

poly(n).
19. Interpolate the linear forms h(ai,xk,bj) for i ∈ [wk−1], j ∈ [wk].
20. Set Xk(i, j) = h(ai,xk,bj) for i ∈ [wk−1], j ∈ [wk].
21. If the linear forms in Xk are not F-linearly independent, output ‘Fail’.
22. Set k = k + 1.
23. end while
24.
25. Find wd−2 evaluations, {a1,a2, . . . ,awd−2} ⊂ Ftd−2 , of x1]x2] · · ·]xd−2 variables such

that X1 ·X2 · · ·Xd−2 evaluated at ai equals ewd−2,i .
26. Set j = wd−1.
27. while j ≥ 1 do
28. for every i ∈ [wd−2] do
29. Interpolate the quadratic h(ai,xd−1, zj).
30. Set gi = h(ai,xd−1, zj)−

∑wd−1
q=j+1 Xd−1(i, q) · x(d)

q .
31. If gi is not divisible by x(d)

j , output ‘Fail’. Else, set Xd−1(i, j) = gi/x
(d)
j .

32. end for
33. Set j = j − 1.
34. end while
35. If the linear forms in Xd−1 are not F-linearly independent, output ‘Fail’.
36.
37. Output X1 ·X2 · · ·Xd−1 ·Xd as the full rank almost set-multilinear ABP for h.

CCC 2017

21:34 Reconstruction of Full Rank Algebraic Branching Programs

Steps 15–23: The matrices X3, . . . , Xd−2 are formed in these steps. By the time the
algorithm reaches step 17, it has already computed X2, . . . , Xk−1 such that X2 = X ′2T2 and
Xq = T−1

q−1X
′
qTq for q ∈ [3, k − 1], where Tq ∈ GL(wq). So, X ′1 . . . X ′k−1 = X1 . . . Xk−1T

−1
k−1.

As the linear forms inX1, . . . , Xk−1 are F-linearly independent (otherwise the algorithm would
have terminated in step 13 or 21), we can easily compute points {a1,a2, . . . ,awk−1} satisfying
the required condition in step 17. By Observation 53, the polynomials h(k+1)1, . . . , h(k+1)wk
are F-linearly independent. Since b1,b2, . . . ,bwk are randomly chosen in step 18, the matrix
Tk with (r, c)-th entry h(k+1)r(bc) is in GL(wk) with high probability. Now observe that
h(ai,xk,bj) is the (i, j)-th entry of T−1

k−1X
′
kTk, which implies Xk = T−1

k−1X
′
kTk from step 20.

Steps 25–35: In these steps, matrix Xd−1 is formed. The argument showing Xd−1 =
T−1
d−2X

′
d−1 is similar to the argument used for steps 3–13, except that now we induct on

columns instead of rows.
The output ABP X1 . . . Xd is in canonical form as X ′1 . . . X ′d is also in canonical form.

It is clear that the total running time of the algorithm is poly(n, β), where β is the bit
length of the coefficients of h which influences the bit length of the values returned by the
blackbox. J

6 Symmetries of IMM

Recall from Section 2.3, IMMw,d (for brevity IMM) is the n variate polynomial computed by
the full rank ABP Q1 ·Q2 · · ·Qd where the set of variables in Qk is xk for every k ∈ [d]. In
this section, we determine the group of symmetries of IMM (denoted by GIMM) and show that
IMM is characterized by its symmetries. We make a note of a few notations and terminologies
below.

Notations

Calligraphic letters H, C,M and T denote subgroups of GIMM . Let C and H be subgroups
of GIMM such that C ∩ H = In and for every H ∈ H and C ∈ C, H · C ·H−1 ∈ C. Then
C oH denotes the semidirect product of C and H34.
For every A ∈ GIMM the full rank ABP obtained by replacing x by Ax in Q1 ·Q2 · · ·Qd is
termed as the full rank ABP determined by A. This full rank ABP also computes IMM.
Let X be a matrix with entries as linear forms in y] z variables. We break X into
two parts X(y) and X(z) such that X = X(y) + X(z). The (i, j)-th linear form in
X(y) (respectively X(z)) is the part of the (i, j)-th linear form of X in y (respectively z)
variables.

6.1 The group GIMM

Three subgroups of GIMM : As before, let w = (w1, w2, . . . , wd−1) and wk > 1 for every
k ∈ [d− 1]. In Theorem 54 below, we show that GIMM is generated by three special subgroups.
1. Transposition subgroup T : If wk 6= wd−k for any k ∈ [d− 1] then T is the trivial group

containing only In. Otherwise, if wk = wd−k for every k ∈ [d− 1] then T is the group
consisting of two elements In and T . The matrix T is such that the full rank ABP
determined by T is QTd ·QTd−1 · · ·QT1 . Clearly, T is a permutation matrix and T 2 = In.

34 C oH is the set CH which can be easily shown to be a subgroup of GIMM , and it also follows that C is a
normal subgroup of C oH.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:35

2. Left-right multiplications subgroup M: An M ∈ GL(n) is in M if and only if the full
rank ABP X1 · X2 · · ·Xd determined by M has the following structure: There are
matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every k ∈ [d− 1], such that X1 = Q1 ·A1,
Xd = A−1

d−1 ·Qd, and Xk = A−1
k−1 ·Qk ·Ak for k ∈ [2, d− 1]. It is easy to verify thatM is

a subgroup of GIMM and is isomorphic to the direct product GL(w1)× . . .× GL(wd−1).
3. Corner translations subgroup C: A C ∈ GL(n) is in C if and only if the full rank

ABP X1 · X2 · · ·Xd determined by C has the following structure: There are two sets
{C11, C12, . . . , C1w2} and {Cd1, Cd2, . . . , Cdwd−2} containing anti-symmetric matrices in
Fw1×w1 and Fwd−1×wd−1 respectively such that X2 = Q2 + Y2 and Xd−1 = Qd−1 + Yd−1,
where Y2 ∈ F[x1]w1×w2 (respectively Yd−1 ∈ F[xd]wd−2×wd−1) is a matrix with its i-th
column (respectively i-th row) equal to C1i ·QT1 (respectively QTd · Cdi). For every other
k ∈ [d] \ {2, d− 1}, Xk = Qk. Observe that Q1 ·C1i ·QT1 = QTd ·Cdi ·Qd = 0. It can also
be verified that C is an abelian subgroup of GIMM and is isomorphic to the direct product
Aw2
w1
× Awd−2

wd−1 , where Aw is the group of w × w anti-symmetric matrices under matrix
addition and Akw is the k times direct product of this group.

I Theorem 54 (Symmetries of IMM). GIMM = C oH, where H =Mo T .

We prove Theorem 54 below. Following are a couple of remarks on it.

Remarks

(a) Characterization: Let f be an n variate degree d polynomial satisfying the following: For
any n variate degree d polynomial g, Gf = Gg if and only if f = α · g for some nonzero
α ∈ F. Then f is said to be characterized by Gf . We prove IMM is characterized by GIMM

in Lemma 59. The groupsM and C generate the ‘continuous symmetries’ of IMM.
(b) Comparison with a related work: In [15] a different choice of the IMM polynomial is

considered, namely the trace of a product of d square symbolic matrices – let us call
this polynomial IMM′35. The group of symmetries of IMM′ is determined in [15] and it
is shown that IMM′ is characterized by GIMM′ . The group of symmetries of IMM′, like
IMM, is generated by the transposition subgroup, the left-right multiplication subgroup,
and (instead of the corner translations subgroup) the circular transformations subgroup
– an element in this subgroup cyclically rotates the order of the matrices and hence does
not change the trace of the product.

Proof of Theorem 54
We begin with the following observation which is immediate from Lemma 48.

I Observation 55. If X1 · X2 · · ·Xd is a width w′ = (w′1, w′2, . . . , w′d−1) full rank ABP
computing IMMw,d then either
1. w′k = wk for k ∈ [d − 1], and the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces
Q1,Q1,2, Q3, . . . ,Qd−1,d,Qd respectively, or

2. w′k = wd−k for k ∈ [d − 1], and the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces
Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1 respectively.

35The complexities of IMM and IMM′ are polynomially related to each other, in particular both are
complete for algebraic branching programs under p-projections. But their groups of symmetries are
slightly different.

CCC 2017

21:36 Reconstruction of Full Rank Algebraic Branching Programs

x1

x2

x3

xd

xd−1

x1 x2 x3 xdxd−1

all entries outside
the shaded region

are zero

Figure 5 Matrix A in GIMM .

From the definitions of T , M and C it follows that C ∩M = C ∩ T = M∩ T = In. The
claim below shows GIMM is generated by C,M and T .

I Claim 56. For every A ∈ GIMM , there exist C ∈ C, M ∈ M and T̃ ∈ T such that
A = C ·M · T̃ .

Proof. Let X1 ·X2 · · ·Xd be the full rank ABP A of width w determined by A. If wk = wd−k
for k ∈ [d− 1] then the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are either equal to Q1,Q1,2,Q3,

. . . ,Qd−1,d,Qd respectively or Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1 respectively (from Observa-
tion 55). Otherwise if wk 6= wd−k for any k ∈ [d − 1] then the spaces X1,X1,2,X3, . . . ,

Xd−1,d,Xd have only one choice and are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd respectively.
We deal with these two choices of layer spaces separately.

Case A: Suppose X1,X1,2,X3, . . . , Xd−1,d,Xd are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd
respectively. Hence A looks as shown in Figure 5.

The linear forms in X2, Xd−1 are in variables x1] x2,xd−1] xd respectively. Further,

d∏
k=1

Xk = X1 · (X2(x1) +X2(x2)) ·
(
d−2∏
k=3

Xk

)
· (Xd−1(xd−1) +Xd−1(xd)) ·Xd = IMM.36

Since A is a full rank ABP and each monomial in IMM contains one variable from each set
xk,

X1 ·X2(x2) ·
(
d−2∏
k=3

Xk

)
·Xd−1(xd−1) ·Xd = IMM, and also

X1 ·X2(x1) ·
∏d−2
k=3 Xk ·Xd−1(xd−1) ·Xd = 0 and X1 ·X2(x2) ·

∏d−2
k=3 Xk ·Xd−1(xd) ·Xd = 0

implying

X1 ·X2(x1) = 0Tw2
and Xd−1(xd) ·Xd = 0wd−2 , (4)

where 0w is a zero (column) vector in Fw. Observation 57, the proof of which is in Section 7.5,
proves the existence of a matrix M ∈M such that the full rank ABP determined by M is
X1 ·X2(x2) ·X3 · · ·Xd−2 ·Xd−1(xd−1) ·Xd.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:37

I Observation 57. There are matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every k ∈ [d− 1],
such that X1 = Q1 · A1, X2(x2) = A−1

1 · Q2 · A2, Xd−1(xd−1) = A−1
d−2 · Qd−1 · Ad−1,

Xd = A−1
d−1 ·Qd, and Xk = A−1

k−1 ·Qk ·Ak for k ∈ [3, d− 2].

We now show the existence of a C ∈ C such that the full rank ABP determined by C ·M
is X1 ·X2 · · ·Xd, from which the claim follows by letting T̃ = In. Since the linear forms in
X1 are F-linearly independent, there are w1 × w1 matrices {C11, C12, . . . , C1w2} such that
the i-th column of X2(x1) is C1iX

T
1 . So from Equation (4), X1 · C1i ·XT

1 = 0 (equivalently
Q1 · C1i · QT1 = 0) implying C1i is an anti-symmetric matrix for every i ∈ [w2]. Similarly,
there are wd−1 × wd−1 anti-symmetric matrices {Cd1, Cd2, . . . , Cdwd−2} such that the i-th
row of Xd−1(xd) is XT

d Cdi. Let C ∈ GL(n) be such that the ABP determined by it is
Q1Q

′
2Q3 · · ·Qd−2Q

′
d−1Qd where Q′2 = Q2 + Y2 and Q′d−1 = Qd−1 + Yd−1, the i-th column

(respectively i-th row) of Y2 (respectively Yd−1) is C1iQ
T
1 (respectively QTd−1Cdi). By

construction, C ∈ C and the ABP determined by C ·M is X1 ·X2 · · ·Xd.

Case B: Suppose X1,X1,2,X3, . . . , Xd−1,d,Xd are the spaces Qd,Qd−1,d,Qd−2, . . . ,Q1,2,Q1
respectively. This implies wk = wd−k for k ∈ [d− 1] and hence the full rank ABP determined
by T is QTd ·QTd−1 · · ·QT1 . From here the existence of M ∈M and C ∈ C such that the full
rank ABP determined by M ·C ·T is X1 ·X2 · · ·Xd follows just as in Case A. This completes
the proof of the claim. J

Observe that if T ∈ T then for every M ∈M, T ·M · T−1 ∈M. Let H =Mo T . Clearly,
C ∩H = In. The following claim along with Claim 56 then conclude the proof of Theorem 54.

I Claim 58. For every C ∈ C and H ∈ H, H · C ·H−1 ∈ C.

Proof. Let H = M · T where M ∈ M and T ∈ T , and A = MT · C · T−1M−1. Suppose
X1 ·X2 · · ·Xd−1 ·Xd is the ABP determined by A. The matrices T and T−1 in A together
ensure that the spaces X1,X1,2,X3, . . . , Xd−1,d,Xd are equal to Q1,Q1,2,Q3, . . . ,Qd−1,d,Qd
respectively. Also the matricesM andM−1 together ensure thatXi = Qi for i ∈ [d]\{2, d−1},
X2(x2) = Q2 and Xd−1(xd−1) = Qd−1. Arguing as in Claim 56, we can infer that A ∈ C. J

6.2 Characterization of IMM by GIMM0
For every f = α · IMM, where α ∈ F and α 6= 0, it is easily observed that Gf = GIMM . We
prove the converse in the following lemma for any homogeneous degree d polynomial in the
x variables.

I Lemma 59. Let f be a homogeneous degree d polynomial in n variables x = x1] . . .] xd.
If |F| > d+ 1 and the left-right multiplications subgroupM of GIMM is contained in Gf then
f = α · IMM for some nonzero α ∈ F.

Proof. First, we show that such an f is set-multilinear in the sets x1, . . . ,xd: Every monomial
in f has exactly one variable from each of the sets x1, . . . ,xd. As |F| > d + 1, there is a
nonzero ρ ∈ F that is not an e-th root of unity for any e ≤ d. Every element inM is defined
by d−1 matrices A1, . . . , Ad−1 such that Ak ∈ GL(wk) for every k ∈ [d−1]. For a k ∈ [d−1],
consider the element M ∈ M that is defined by Ak = ρ · Iwk and Al = Iwl for l ∈ [d − 1]
and l 6= k. Then, f(M · x) = f(x1, . . . , ρxk, ρ−1xk+1, . . . ,xd), which by assumption is f .
Comparing the coefficients of the monomials of f(M · x) and f , we observe that in every
monomial of f the number of variables from xk and xk+1 must be the same as ρ is not an
e-th root of unity for any e ≤ d. Since k is chosen arbitrarily and f is homogeneous of degree
d, f must be set-multilinear in the sets x1, . . . ,xd.

CCC 2017

21:38 Reconstruction of Full Rank Algebraic Branching Programs

The proof is by induction on the degree of f . For i ∈ [w1], let x2i be the set of variables
in the i-th row of Q2, and Q2i be the 1 × w2 matrix containing the i-th row of Q2. Let
IMMi be the degree d− 1 iterated matrix multiplication polynomial computed by the ABP
Q2i ·Q3 · · ·Qd. As f is set-multilinear, it can be expressed as

f = g1 · x(1)
1 + . . .+ gw1 · x(1)

w1
, (5)

where g1, . . . , gw1 are set-multilinear polynomials in the sets x2, . . . ,xd. Moreover, we can
argue that gi is set-multilinear in x2i,x3, . . . ,xd as follows: Consider an N ∈ M that is
defined by a diagonal matrix A1 ∈ GL(w1) whose (i, i)-th entry is ρ and all other diagonal
entries are 1; every other Al = Iwl for l ∈ [2, d− 1]. The transformation N scales the variable
x

(1)
i by ρ and the variables in x2i by ρ−1. By comparing the coefficients of the monomials of
f(N ·x) and f , we can conclude that gi is set-multilinear in x2i,x3, . . . ,xd for every i ∈ [w1].

Let M′ be the subgroup of M containing those M ∈ M for which A1 = Iw1 . From
Equation (5), we can infer that gi(M · x) = gi for M ∈ M′, and hence the left-right
multiplications subgroup of GIMMi

is contained in the group of symmetries of gi. As degree of
gi is d− 1, by induction37 gi = αi · IMMi for some nonzero αi ∈ F and

f = α1 · IMM1 · x(1)
1 + . . .+ αw1 · IMMw1 · x(1)

w1
. (6)

Next we show that α1 = . . . = αw1 thereby completing the proof.
For an i ∈ [2, w1], let A1 ∈ GL(w1) be the upper triangular matrix whose diagonal entries

are 1, the (1, i)-th entry is 1 and remaining entries are zero. Let U be the matrix in M
defined by A1 and Al = Iwl for l ∈ [2, d− 1]. The transformation U has the following effect
on the variables:

x
(1)
i 7→ x

(1)
1 + x

(1)
i and

x
(2)
1j 7→ x

(2)
1j − x

(2)
ij for every j ∈ [w2],

every other x variable maps to itself. Applying U to f in Equation (6) we get

f = f(U · x) = α1 · (IMM1 − IMMi) · x(1)
1 + . . .+ αi · IMMi · (x(1)

1 + x
(1)
i) + . . .+

αw1 · IMMw1 · x(1)
w1

= f + (αi − α1) · IMMi · x(1)
1 ,

⇒ αi − α1 = 0.

Since this is true for any i ∈ [2, w1], we have α1 = . . . = αw1 . J

7 Proof of claims and lemmas from previous sections

In this section we give proofs of claims and lemmas from the above sections. We begin by
proving the incompleteness of the full rank ABP.

I Observation 60. For every sufficiently large m ∈ N there is an m variate multilinear
polynomial that is not computable by full rank ABP.

Proof. A full rank ABP computing an m variate polynomial f has both its width and length
bounded by m, so f can also be computed by an ABP (not full rank) of width and length
exactly m. Hence, it is sufficient to show that there is an m variate multilinear polynomial

37The base case d = 1 is trivial to show.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:39

that is not computable by the latter kind of ABP. The number of edges in an ABP of
width m and length m is n = m2(m − 2) + 2m. Let these n edges be e1, e2, . . . , en and
suppose the edge ei is labelled by the affine form li =

∑m
j=1 cijxj + ci0. Treat cij ’s as formal

variables. Then each of the
(2n
n

)
coefficients of the polynomial f computed by such an ABP

is a polynomial in these n(m + 1) formal variables. Since n(m + 1) < 2m for sufficiently
large m, the coefficients of f restricted to just the multilinear monomials m1,m2, . . . ,m2m

are algebraically dependent. Let h 6= 0 be an annihilating polynomial of these coefficients.
Since h is nonzero, there is a point a = (a1, . . . , a2m) ∈ F2m such that h(a) 6= 0. It follows
that the multilinear polynomial g def=

∑2m
i=1 aimi is not computable by an ABP of width m

and length m, which means g is not computable by a full rank ABP. J

7.1 Proof of lemmas and claims in Section 2
I Claim 21 (restated). If f(x) = g(Ax), where f and g are both n variate polynomials
and A ∈ GL(n), then the Lie algebra of f is a conjugate of the Lie algebra of g via A,
i.e. gf = {A−1EA : E ∈ gg} =: A−1ggA.

Proof. Let Q = (qi,j)i,j∈[n] ∈ gf . Hence,

∑
i,j∈[n]

qijxj ·
∂f

∂xi
= 0 ⇒

∑
i,j∈[n]

qijxj ·
∂g(Ax)
∂xi

= 0 . (7)

Let A = (aki)k,i∈[n]. Using chain rule of derivatives,

∂g(Ax)
∂xi

=
∑
k∈[n]

∂g

∂xk
(Ax) · aki .

Let A−1 = (bjl)j,l∈[n] and (Ax)l be the l-th entry of Ax. Then xj =
∑
l∈[n] bjl(Ax)l. From

Equation (7),

∑
i,j∈[n]

qij ·

∑
l∈[n]

bjl(Ax)l

 ·
∑
k∈[n]

∂g

∂xk
(Ax) · aki

 = 0 ,

⇒
∑
k,l∈[n]

(Ax)l ·
∂g

∂xk
(Ax) ·

 ∑
i,j∈[n]

akiqijbjl

 = 0 ,

⇒
∑
k,l∈[n]

xl ·
∂g

∂xk
·

 ∑
i,j∈[n]

akiqijbjl

 = 0 (Substituting x by A−1x).

Observe that
∑
i,j∈[n] akiqijbjl is the (k, l)-th entry of AQA−1. Hence, AQA−1 ∈ gg implying

gf ⊆ A−1ggA. Similarly, gg ⊆ AgfA−1 as g = f(A−1x), implying gf = A−1ggA. J

I Claim 24 (restated). With probability at least 1− 1
poly(n) , the rank of the matrixM = (fj(bi))

where i, j ∈ [m], is m− r where b1,b2, . . . ,bm are chosen independently and uniformly at
random from Sn ⊂ Fn with |S| = dm · poly(n).

Proof. Recall, we assumed that the dimension of the F-linear space spanned by the n variate
polynomials f1, f2, . . . , fm is m−r. Without loss of generality assume f1, f2, . . . , fm−r form a
basis of this linear space. Clearly, the rank ofM = (fj(bi))i,j∈[m] is less than or equal tom−r.
LetMm−r = (fj(bi))i,j∈[m−r]. That Det(Mm−r) 6= 0 with probability at least 1− 1

poly(n) over

CCC 2017

21:40 Reconstruction of Full Rank Algebraic Branching Programs

the random choices of b1,b2, . . . ,bm can be argued as follows: Let yi = {y(i)
1 , y

(i)
2 , . . . , y

(i)
n }

for i ∈ [m − r] be disjoint sets of variables. Rename the x = {x1, x2, . . . , xn} variables
in fj(x) to yi and call these new polynomials fj(yi) for i, j ∈ [m − r]. Let Y be an
(m − r) × (m − r) matrix whose (i, j)-th entry is (fj(yi))i∈[m−r]. Since f1, f2, . . . , fm−r
are F-linearly independent, Det(Y) 6= 0 – this can be argued easily using induction. As
deg(Det(Y)) = d(m− r) ≤ dm, by Schwartz-Zippel lemma, Det(Mm−r) 6= 0 with probability
at least 1− 1

poly(n) . J

I Claim 26 (restated). Let r be the number of redundant variables in an n variate polynomial
f of degree d. Then the dimension of the space U of F-linear dependencies of {∂xif | i ∈ [n]}
is r. Moreover, we can construct an A ∈ GL(n) in randomized poly(n, d, β) time such that
f(Ax) is free of the set of variables {xn−r+1, xn−r+2, . . . , xn} with high probability, where β
is the bit length of the coefficients of f .

Proof. Let B = (bij)i,j∈[n] ∈ GL(n) such that f(Bx) is a polynomial in x1, x2, . . . , xs, where
s = n− r. For n− r + 1 ≤ j ≤ n

∂f(Bx)
∂xj

= 0

⇒
n∑
i=1

bij ·
∂f

∂xi
(Bx) = 0 (by chain rule)

⇒
n∑
i=1

bij ·
∂f

∂xi
= 0 (substituting x by B−1x).

Since B ∈ GL(n), we conclude dim(U) ≥ r. Let {(a1j a2j . . . anj)T : (n−dim(U)+1) ≤ j ≤ n}
be a basis of U . Then,

n∑
i=1

aij ·
∂f

∂xi
= 0.

Let A ∈ GL(n) such that for (n− dim(U) + 1) ≤ j ≤ n, the j-th column of A is (a1j a2j . . .

anj)T and the remaining columns of A are arbitrary vectors that make A a full rank matrix.
Then,

n∑
i=1

aij ·
∂f

∂xi
= 0 ⇒

n∑
i=1

aij ·
∂f

∂xi
(Ax) = 0 ⇒ ∂f(Ax)

∂xj
= 0.

This implies f(Ax) is a polynomial free of xj variable for (n− dim(U) + 1) ≤ j ≤ n. Hence,
dim(U) ≤ r.

Blackbox for polynomials ∂x1f, ∂x2f, . . . , ∂xnf can be constructed in poly(n, d, β) time
from blackbox access to f and a basis for the space U of F-linear dependencies of polynomials
∂x1f, ∂x2f, . . . , ∂xnf can also be constructed in randomized poly(n, d, β) time (see Section 2.2).
Thus, we can construct an A ∈ GL(n) (similar to the construction shown above) from a
blackbox access to f in randomized poly(n, d, β) time such that f(Ax) is free of the set of
variables {xn−r+1, xn−r+2, . . . , xn}. We summarize this in Algorithm 8. J

I Lemma 27 (restated). There is a randomized algorithm that takes input blackbox access to
two n variate, degree d polynomials f and g, and with probability at least 1− 1

poly(n) does the
following: if f is translation equivalent to g, outputs an a ∈ Fn such that f(x + a) = g(x),
else outputs ‘f and g are not translation equivalent’. The running time of the algorithm is
poly(n, d, β), where β is the bit length of the coefficients of f and g.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:41

Algorithm 8 Eliminating redundant variables
INPUT: Blackbox access to an n variate polynomial f(x).
OUTPUT: An r and an A ∈ GL(n) such that r is the number of redundant variables in f
and f(Ax) is free of the variables xn−r+1, xn−r+2, . . . , xn.

1. Compute blackbox access to ∂x1f, ∂x2f, . . . , ∂xnf (see Section 2.2).
2. Compute a basis {v1,v2, . . . ,vr} of the space of F-linear dependencies of ∂x1f, ∂x2f, . . . ,

∂xnf (using the random substitution idea in Claim 24). /* This step succeeds in
computing the required basis with high probability. */

3. Construct an A ∈ GL(n) such that the last r columns of A are v1,v2, . . . ,vr and the
remaining columns of A are chosen arbitrarily to make A a full rank matrix.

4. Return r and A.

Proof. We present the algorithm formally in Algorithm 9. If it succeeds in computing a
point a ∈ Fn in the end (in step 20), it performs a randomized blackbox polynomial identity
test (PIT) to check whether f(x + a) = g(x) (in step 22). If f and g are not translation
equivalent, this final PIT finds it with probability at least 1− 1

poly(n) . So, for the analysis of
the algorithm we can assume there is an a = (a1 a2 . . . an)T ∈ Fn such that f(x +a) = g(x).
The strategy outlined below helps to argue the correctness of Algorithm 9.

Strategy: Suppose f(x+a) = g(x). By equating the degree d and degree d−1 homogeneous
components of f and g we get the following equations,

f [d] = g[d] and

f [d−1] +
n∑
i=1

ai ·
∂f [d]

∂xi
= g[d−1] ⇒

n∑
i=1

ai ·
∂f [d]

∂xi
= g[d−1] − f [d−1]. (8)

Let fi = ∂f [d]

∂xi
for i ∈ [n]. Blackbox access to the homogeneous components of f : f [0], f [1], . . . ,

f [d], the homogeneous components of g: g[0], g[1], . . . , g[d] and f1, f2, . . . fn can be constructed
from blackbox access to f and g in poly(n, d, β) time (see Section 2.2). If f1, f2, . . . , fn are
F-linearly independent then with high probability over the random choices of b1,b2, . . . ,bn
∈ Fn the matrix (fj(bi))i,j∈[n] has full rank (from Claim 24). Hence, we can solve for
a1, a2, . . . , an uniquely from Equation (8). In the general case (when f1, f2, . . . , fn may
be F-linearly dependent), the algorithm repeatedly applies variable reduction and degree
reduction (as described below) to compute a.

Variable reduction. We construct a transformation A ∈ GL(n) such that f [d](Ax) has only
the essential variables x1, . . . , xm (see Claim 26). Let f̃ = f(Ax), g̃ = g(Ax). It is sufficient
to compute a point b = (b1 b2 . . . bn)T ∈ Fn such that f̃(x + b) = g̃(x) as

f̃(x + b) = g̃(x) ⇒ f(Ax +Ab) = g(Ax) ⇒ f(x +Ab) = g(x).

So we can choose a = Ab. As in Equation (8),

f̃ [d] = g̃[d] and
m∑
i=1

bi ·
∂f̃ [d]

∂xi
= g̃[d−1] − f̃ [d−1]. (9)

The derivatives ∂xi f̃ [d] for i > m are zero as f̃ [d] = f [d](Ax) has only the essential variables
x1, x2, . . . , xm. Also the polynomials {∂xi f̃ [d] : i ∈ [m]} are F-linearly independent (by
Claim 26). Hence, we can solve for unique b1, b2, . . . , bm satisfying Equation (9) as before.

CCC 2017

21:42 Reconstruction of Full Rank Algebraic Branching Programs

Degree reduction. To compute bm+1, bm+2, . . . , bn we reduce the problem to finding a
point that asserts translation equivalence of two degree d − 1 polynomials. Let b′ =
(b1 b2 . . . bm 0 . . . 0)T , f̂ = f̃(x + b′). Further, let e ∈ Fn such that f̂(x + e) = g̃(x). Then
the first m coordinates of e must be zero38 and we can choose b = b′ + e. We have the
following equations,

f̂ [d](x + e) + (f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃ − g̃[d])(x)

⇔ f̃ [d](x + e) + (f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃ − g̃[d])(x) (as f̂ [d] = f̃ [d]).

Since f̃ [d] has only x1, x2, . . . , xm variables and the first m coordinates of e are zero, the
above statement is equivalent to

f̃ [d](x) + (f̂ − f̂ [d])(x + e) = g̃[d](x) + (g̃ − g̃[d])(x)

⇔ (f̂ − f̂ [d])(x + e) = (g̃ − g̃[d])(x) (from Equation (9)).

The polynomials f̂ − f̂ [d] and g̃− g̃[d] have degree at most d−1 and blackboxes for these poly-
nomials can be constructed in poly(n, d, β) time. Therefore the problem reduces to computing
a point e ∈ Fn that asserts translation equivalence of two degree (d− 1) polynomials.

Correctness of Algorithm 9: In steps 4–11, the algorithm carries out variable reduction and
computes a part of the translation b that we call b′ in the above argument. The remaining
part of b (which is the vector e above) is computed by carrying out degree reduction in step
12 and then inducting on lower degree polynomials. These parts are then added appropriately
in step 17, and finally an a is recovered in step 20. J

I Lemma 28 (restated). There is a randomized algorithm which when given blackbox access to
an n variate degree d polynomial f , computes a basis of gf with probability at least 1− 1

poly(n)
in time poly(n, d, β) where β is the bit length of the coefficients in f .

Proof. Recall, the Lie algebra of f is the set of all matrices E = (eij)i,j∈[n] such that∑
i,j∈[n] eijxj ·

∂f
∂xi

= 0. Hence, gf is the space of linear dependencies of the polynomials
xj · ∂f∂xi for i, j ∈ [n]. Using Claim 23, we can derive blackboxes for these n2 polynomials
and then compute a basis of the space of linear dependencies with high probability using
Claim 24. J

7.2 Proof of lemmas and claims in Section 3
I Lemma 31 (restated). Let W1,W2,W3 be the following sets (spaces) of matrices:
1. W1 consists of all matrices D = (dij)i,j∈[n] such that D is diagonal and

n∑
i=1

diixi ·
∂IMM
∂xi

= 0.

2. W2 consists of all matrices B = (bij)i,j∈[n] such that∑
i,j∈[n]

bijxj ·
∂IMM
∂xi

= 0,

where in every summand bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d].

38As b1, b2, . . . , bm can be solved uniquely.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:43

Algorithm 9 Translation equivalence test
INPUT: Blackbox access to two n variate, degree d polynomials f and g.
OUTPUT: A point a ∈ Fn such that f(x + a) = g(x), if such an a exists.

1. Set ` = d, p = f and q = g.
2.
3. while ` > 0 do
4. Using Algorithm 8 find an m and an A` ∈ GL(n) such that the variables

xm+1, xm+2, . . . , xn do not appear in p[`](A`x). /* With high probability m is the
number of essential variables in p[`]. */

5. Let p̃ = p(A`x) and q̃ = q(A`x). Construct blackbox access to p̃[`], p̃[`−1], q̃[`], q̃[`−1]

and ∂xi p̃[`] for i ∈ [m].
6. Check if p̃[`] = q̃[`]. If not, output ‘f and g are not translation equivalent’ and stop. /*

The check succeeds with high probability. */
7. Solve for unique b1, b2, . . . , bm satisfying

m∑
i=1

bi ·
∂p̃[`]

∂xi
= q̃[`−1] − p̃[`−1] (using the random substitution idea in Claim 24).

If the solving fails, output ‘f and g are not translation equivalent’. /* This step
succeeds with high probability if m is the number of essential variables in p[`] in step
4. */

8. if m = n then
9. Set b` = (b1 b2 . . . bn) and exit while loop.
10. else
11. Set b` = (b1 b2 . . . bm 0 . . . 0) ∈ Fn.
12. Construct blackbox access to (p̃− p̃[`])(x+b`) and (q̃− q̃[`])(x). Set p = (p̃− p̃[`])(x+

b`), q = (q̃ − q̃[`])(x) and ` = `− 1.
13. end if
14. end while
15.
16. while ` < d do
17. Set b`+1 = b`+1 +A`b`.
18. Set ` = `+ 1.
19. end while
20. Set a = Adbd.
21.
22. Pick a point c uniformly at random from Sn ⊂ Fn with |S| = d.poly(n) and check

whether f(c + a) = g(c). /* With high probability f(c + a) 6= g(c) if f and g are not
translation equivalent.*/

23. if f(c + a) = g(c) then
24. Output the point a.
25. else
26. Output ‘f and g are not translation equivalent’.
27. end if

CCC 2017

21:44 Reconstruction of Full Rank Algebraic Branching Programs

3. W3 consists of all matrices C = (cij)i,j∈[n] such that∑
i,j∈[n]

cijxj ·
∂IMM
∂xi

= 0,

where in every summand cij 6= 0 only if either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd.
Then gIMM =W1 ⊕W2 ⊕W3.

Proof. Since W1 ∩W2 = (W1 +W2) ∩W3 = {0n}, where 0n is the n × n all zero matrix,
it is sufficient to show gIMM = W1 +W2 +W3. By definition, W1 +W2 +W3 ⊆ gIMM . We
now show that gIMM ⊆ W1 +W2 +W3. Let E = (eij)i,j∈[n] be a matrix in gIMM . Then∑
i,j∈[n] eijxj ·

∂IMM
∂xi

= 0. We focus on a term xj · ∂IMM
∂xi

and observe the following:
(a) If xi = xj then the monomials of xi · ∂IMM

∂xi
are also monomials of IMM. Such monomials

do not appear in any term xj · ∂IMM
∂xi

, where xi 6= xj .
(b) If xi 6= xj and xi, xj belong to the same xl then every monomial in xj · ∂IMM

∂xi
has exactly

one variable from every xk for k ∈ [d]. Such monomials do not appear in a term xj · ∂IMM
∂xi

,
where xi ∈ xl and xj ∈ xk and l 6= k.

Due to this monomial disjointness, an equation
∑
i,j∈[n] eijxj ·

∂IMM
∂xi

= 0 corresponding to E
can be split into three equations:
1.
∑n
i=1 diixi ·

∂IMM
∂xi

= 0.
2.
∑
i,j∈[n] bijxj ·

∂IMM
∂xi

= 0, where bij 6= 0 in a term only if xi 6= xj and xi, xj ∈ xl for
some l ∈ [d].

3.
∑
i,j∈[n] cijxj ·

∂IMM
∂xi

= 0, where cij 6= 0 in a term only if xi ∈ xl and xj ∈ xk for l 6= k.

Hence every E = (eij)i,j∈[n] in gIMM equals D +B + C where
D ∈ W1 is a diagonal matrix,
B ∈ W2 is a block-diagonal39 matrix with diagonal entries zero,
C is a matrix with nonzero entries appearing outside the above block-diagonal.

To complete the proof of the lemma we show the following.

I Claim 61. Except those entries of C whose rows and columns are indexed by x2 and x1
variables respectively, or xd−1 and xd variables respectively, all the other entries are zero.

Proof. In a term x
(l)
pq · ∂IMM

∂x
(k)
ij

where l 6= k, every monomial has two variables from xl and no
variable from xk. Hence from the equation corresponding to C we get separate equations for
every pair (l, k) due to monomial disjointness:∑

p∈[wl−1],q∈[wl]

∑
i∈[wk−1],j∈[wk]

cpq,ijx
(l)
pq ·

∂IMM
∂x

(k)
ij

= 0, where l 6= k.

Collecting coefficients corresponding to ∂IMM
∂x

(k)
ij

in the above equation we get

∑
i∈[wk−1],j∈[wk]

`
(k)
ij ·

∂IMM
∂x

(k)
ij

= 0, where `(k)
ij is a linear form in the variables from xl. (10)

Figure 6 depicts a term `
(k)
ij · ∂IMM

∂x
(k)
ij

using an ABP that computes it. So the LHS of the above
equation can be computed by an ABP B that has edge labels identical to that of the ABP
for IMM, except for the edges in layer k. The (i, j)-th edge of layer k in B is labelled by `(k)

ij .

39An entry is in the block-diagonal if and only if the variables labelling the row and column of the entry
are in the same xl for some l ∈ [d].

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:45

`
(k)
ij

s t

Figure 6 An ABP computing the term `
(k)
ij ·

∂IMM
∂x

(k)
ij

.

Suppose `(k)
ij 6= 0 and the coefficient of the variable x(l)

pq in `(k)
ij is nonzero, i.e. cpq,ij 6= 0.

If (l, k) is neither (1, 2) nor (d, d− 1) then the assumption cpq,ij 6= 0 leads to a contradiction
as follows.

Consider an s to t path P in B that goes through the (i, j)-th edge of layer k (which is
labelled by `(k)

ij) but excludes the (p, q)-th edge of layer l (which is labelled by x(l)
pq), the

(p, i)-th edge of layer k − 1 if l = k − 1 and the (j, q)-th edge of layer k + 1 if l = k + 1 (we
can notice this is always possible since (l, k) is neither (1, 2) nor (d, d − 1)). Then, if we
retain the variables labelling the edges of P ouside the layer k and the variable x(l)

pq , and set
every other variable to zero then P becomes the unique s to t path in B with nonzero weight
(since cpq,ij 6= 0). But this contradicts the fact that ABP B is computing an identically zero
polynomial (by Equation (10)). J

Therefore, gIMM ⊆ W1 +W2 +W3 implying gIMM =W1 ⊕W2 ⊕W3. J

I Lemma 32 (restated). The space W3 =W(a)
3 ⊕W(b)

3 where W(a)
3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2

and W(b)
3 = A′1 ⊕ A′2 ⊕ · · · ⊕ A′wd−2 such that for every i ∈ [w2] Ai is isomorphic to

the space of w1 × w1 anti-symmetric matrices over F, and for every j ∈ [wd−2] A′j is
isomorphic to the space of wd−1 × wd−1 anti-symmetric matrices over F. Hence dim(W3) =
1
2 [w1w2(w1 − 1) + wd−1wd−2(wd−1 − 1)].

Proof. Recall, W3 is the space of all matrices C = (cij)i,j∈[n] such that

∑
i,j∈[n]

cijxj ·
∂IMM
∂xi

= 0, (11)

where in every nonzero summand either xi ∈ x2, xj ∈ x1 or xi ∈ xd−1, xj ∈ xd. In
Equation (11) every monomial in a term x

(1)
p · ∂IMM

∂x
(2)
qr

has two variables from x1. Similarly,

every monomial in a term x
(d)
p · ∂IMM

∂x
(d−1)
qr

has two variables from xd respectively. Owing to
monomial disjointness, Equation (11) gives two equations∑

r∈[w2]

∑
p,q∈[w1]

c(1)
pqrx

(1)
p ·

∂IMM
∂x

(2)
qr

= 0, and (12)

∑
q∈[wd−2]

∑
p,r∈[wd−1]

c(d)
pqrx

(d)
p ·

∂IMM
∂x

(d−1)
qr

= 0. (13)

Thus W3 =W(a)
3 ⊕W(b)

3 where W(a)
3 consists of matrices satisfying Equation (12) and W(b)

3
consists of matrices satisfying Equation (13). We argue the following about W(a)

3 .

CCC 2017

21:46 Reconstruction of Full Rank Algebraic Branching Programs

q
x(1)
q

x(1)
p r

s t

Figure 7 An ABP computing the term x
(1)
p · ∂IMM

∂x
(2)
qr

.

x(1)
p

x(1)
q

p

r

s t

Figure 8 An ABP computing the term x
(1)
q · ∂IMM

∂x
(2)
pr

.

I Claim 62. W(a)
3 = A1 ⊕ A2 ⊕ · · · ⊕ Aw2 where every Ai is isomorphic to the space of

w1 × w1 anti-symmetric matrices over F.

Proof. Figure 7 depicts an ABP computing the term x
(1)
p · ∂IMM

∂x
(2)
qr

. Every monomial in

c
(1)
pqrx

(1)
p · ∂IMM

∂x
(2)
qr

is divisible by x(1)
p x

(1)
q .

The only other term in Equation (12) that contains monomials divisible by x(1)
p x

(1)
q is

c
(1)
qprx

(1)
q · ∂IMM

∂x
(2)
pr

. Figure 8 depicts an ABP computing x(1)
q · ∂IMM

∂x
(2)
pr

.
Since the terms in Figures 7 and 8 have no monomials in common with any other term

in Equation (12) it must be that c(1)
pqr = −c(1)

qpr. Moreover, if p = q then c
(1)
pqr = 0. Thus

Equation (12) gives an equation for every r ∈ [w2]

∑
p,q∈[w1],p6=q

c(1)
pqrx

(1)
p ·

∂IMM
∂x

(2)
qr

= 0, (14)

such that the matrix Cr = (c(1)
pqr)p,q∈[w1] ∈ Fw1×w1 is anti-symmetric. Further any anti-

symmetric matrix can be used to get an equation like Equation (14). Thus, as shown in
Figure 9, every matrix C(a) ∈ W(a)

3 is such that for every r ∈ [w2], the w1 × w1 submatrix
(say C(a)

r) defined by the rows labelled by the x(2)
qr variables and the columns labelled by the

x
(1)
p variables for p, q ∈ [w1] is anti-symmetric.
Also, any matrix satisfying the above properties belongs to W(a)

3 . Naturally, if we define
Ar to be the space of n× n matrices such that the w1 × w1 submatrix defined by the rows
labelled by the x(2)

qr variables and the columns labelled by the x(1)
p variables for p, q ∈ [w1] is

anti-symmetric and all other entries are zero then W(a)
3 = A1 ⊕A2 ⊕ · · · ⊕ Aw2 . J

Similarly, it can be shown thatW(b)
3 = A′1⊕A′2⊕· · ·⊕A′wd−2 where everyA′i is isomorphic to

the space of wd−1×wd−1 anti-symmetric matrices. This completes the proof of Lemma 32. J

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:47

x1

x
(2)
11

x
(2)
w11

x
(2)
1w2

x(2)
w1w2

x1

C
(a)
1

C(a)
w2

all entries outside
the bordered region

are zero

Figure 9 A matrix C(a) in W(a)
3 .

I Lemma 33 (restated). The space W2 = B1⊕B2⊕· · ·⊕Bd−1 such that for every k ∈ [d−1],
Bk is isomorphic to the F-linear space spanned by tk × tk matrices of the form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1).

Hence, dim(W2) =
∑d−1
k=1(w2

k − wk).

Proof. Recall w0 = wd = 1 and Zwk denotes the space of wk × wk matrix with diagonal
entries 0, and W2 is the space of all matrices B = (bij)i,j∈[n] such that∑

i,j∈[n]

bijxj ·
∂IMM
∂xi

= 0, (15)

where in every term bij 6= 0 only if xi 6= xj and xi, xj ∈ xl for some l ∈ [d]. The following
observation is easy to verify.

I Observation 63. Suppose l ∈ [2, d − 1]. A term x
(l)
i1j1
· ∂IMM
∂x

(l)
i2j2

where i1 6= i2 and j1 6= j2

does not share a monomial with any other term in Equation (15).

Hence for l ∈ [2, d− 1], terms of the kind x(l)
i1j1
· ∂IMM
∂x

(l)
i2j2

where i1 6= i2 and j1 6= j2 are absent

in Equation (15). A monomial appearing in a nonzero term of Equation (15) is of the form
x

(1)
i1
· x(2)

i1i2
· · ·x(k)

ik−1ik
· x(k+1)

i
′
k
ik+1
· · · x(d−1)

id−1id
· x(d)

id
where ik 6= i

′

k, for some k ∈ [d − 1]. We say
such a monomial is broken at the k-th interface. Observe the following.

I Observation 64. The terms x(k)
pr · ∂IMM

∂x
(k)
pq

where p ∈ [wk−1], q, r ∈ [wk], q 6= r, and

x
(k+1)
mj · ∂IMM

∂x
(k+1)
ij

where i,m ∈ [wk], j ∈ [wk+1], i 6= m are the only two whose monomials are
broken at the k-th interface.

Thus from Equation (15) we get (d − 1) equations one for each interface by considering
cancellations of monomials broken at that interface. For k ∈ [2, d− 2], let Bk be the space of
all n× n matrices Bk such that
1. the entry corresponding to the row labelled by x(k)

pq and the column labelled by x(k)
pr is

b
(k)
pq,pr ∈ F for p ∈ [wk−1], q, r ∈ [wk] and q 6= r,

2. the entry corresponding to the row labelled by x(k+1)
ij and the column labelled by x(k+1)

mj

is b(k+1)
ij,mj ∈ F for i,m ∈ [wk], j ∈ [wk+1] and i 6= m,

CCC 2017

21:48 Reconstruction of Full Rank Algebraic Branching Programs

3. all other entries of Bk are zero, and
4. ∑
p∈[wk−1], q,r∈[wk], q 6=r

b(k)
pq,prx

(k)
pr ·

∂IMM
∂x

(k)
pq

+
∑

i,m∈[wk], j∈[wk+1], i 6=m

b
(k+1)
ij,mj x

(k+1)
mj · ∂IMM

∂x
(k+1)
ij

= 0.

(16)

We can define spaces B1 and Bd−1 similarly considering monomials broken at the first and
the last interface respectively. As Equation (15) can be split into (d− 1) equations, one for
every interface, W2 = B1 + B2 + · · ·+ Bd−1. Since the spaces B1, . . . ,Bd−1 control different
entries of n× n matrices, W2 = B1 ⊕ B2 ⊕ · · · ⊕ Bd−1.

I Claim 65. For k ∈ [2, d − 2], Bk is isomorphic to the F-linear space spanned by tk × tk
matrices of the form[

−ZT ⊗ Iwk−1 0
0 Iwk+1 ⊗ Z

]
tk×tk

where Z ∈ Zwk and tk = wk(wk−1 + wk+1).

Proof. Collecting same derivative terms in Equation (16) we get∑
p∈[wk−1],q∈[wk]

`(k)
pq ·

∂IMM
∂x

(k)
pq

+
∑

i∈[wk],j∈[wk+1]

`
(k+1)
ij · ∂IMM

∂x
(k+1)
ij

= 0, (17)

where `(k)
pq is a linear form containing variables x(k)

pr such that r 6= q, and `(k+1)
ij is a linear form

containing variables x(k+1)
mj such that m 6= i. Here is a succinct way to write Equation (17):

Q1 ·Q2 · · ·Q
′

k ·Qk+1 ·Qk+2 · · ·Qd−1 ·Qd + Q1 ·Q2 · · ·Qk ·Q
′

k+1 ·Qk+2 · · ·Qd−1 ·Qd = 0, (18)

where Q1, . . . , Qd are matrices as in Section 2.3, Q′k = (`(k)
pq)p∈[wk−1],q∈[wk] and Q

′

k+1 =
(`(k+1)
ij)i∈[wk],j∈[wk+1]. This implies

Q
′

k ·Qk+1 + Qk ·Q
′

k+1 = 0,

as Q1, . . . , Qd have distinct sets of variables, and the variables appearing in Q′k and Q′k+1
are the same as in Qk and Qk+1 respectively. The variable disjointness of Qk and Qk+1
can be exploited to infer Q′k+1 = Z ·Qk+1 and Q′k = −Qk · Z where Z is in Fwk×wk (even
if Qk, Qk+1 may not be square matrices). As the linear form `

(k)
pq is devoid of the variable

x
(k)
pq , it must be that Z ∈ Zwk . Moreover, any Z ∈ Zwk can be used along with the relations
Q
′

k+1 = Z ·Qk+1 and Q′k = −Qk · Z to satisfy Equation (18) and hence also Equations (16)
and (17).

Let Z = (zim)i,m∈[wk]. Since Q
′

k+1 = Z ·Qk+1, the coefficient of x(k+1)
mj in `(k+1)

ij is zim
for every j ∈ [wk+1]. Hence in Equation (16), b(k+1)

ij,mj = zim for every j ∈ [wk+1]. Similarly,
since Q′k = −Qk · Z the coefficient of x(k)

pr in `
(k)
pq is −zrq for every p ∈ [wk−1]. Hence in

Equation (16) b(k)
pq,pr = −zrq for every p ∈ [wk−1]. Thus the submatrix of Bk defined by the

rows and columns labelled by the variables in xk and xk+1 looks like[
−ZT ⊗ Iwk−1 0

0 Iwk+1 ⊗ Z

]
tk×tk

where tk = wk(wk−1 +wk+1) and all other entries in Bk are zero. Hence Bk is isomorphic to
the space generated by tk × tk matrices of the above kind. This proves the claim. J

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:49

We can similarly show that B1 is isomorphic to the space generated by square matrices of
the form[

−ZT 0
0 Iw2 ⊗ Z

]
t1×t1

where Z ∈ Zw1 and t1 = w1 + w1w2,

and Bd−1 is isomorphic to the space generated by square matrices of the form[
−ZT ⊗ Iwd−2 0

0 Z

]
td−1×td−1

where Z ∈ Zwd−1 and td−1 = wd−1wd−2 + wd−1.

This completes the proof of Lemma 33. J

I Lemma 34 (restated). The space W1 contains the space D1 ⊕D2 ⊕ · · · ⊕ Dd−1 such that
for every k ∈ [d− 1], Dk is isomorphic to the F-linear space spanned by tk × tk matrices of
the form[

−Y ⊗ Iwk−1 0
0 Iwk+1 ⊗ Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1).

Hence, dim(W1) ≥
∑d−1
k=1 wk.

Proof. The proof is similar to the proof of Lemma 33. Recall w0 = wd = 1 and Ywk denotes
the space of wk ×wk diagonal matrices. Every D ∈ W1 satisfies an equation of the following
form∑

i∈[w1]

d
(1)
i x

(1)
i ·

∂IMM
∂x

(1)
i

+
d−1∑
k=2

∑
i∈[wk−1],j∈[wk]

d
(k)
ij x

(k)
ij ·

∂IMM
∂x

(k)
ij

+
∑

i∈[wd−1]

d
(d)
i x

(d)
i ·

∂IMM
∂x

(d)
i

= 0.

A succinct way to write the above equation is
d∑
k=1

Q1Q2 · · ·Qk−1Q
′

kQk+1 · · ·Qd = 0, (19)

where Q′1 = (d(1)
i x

(1)
i)i∈[w1] is a row vector, Q′d = (d(d)

i x
(d)
i)Ti∈[wd−1] is a column vector,

Q
′

k = (d(k)
ij x

(k)
ij)i∈[wk−1],j∈[wk], and Q1, . . . , Qd are matrices as in Section 2.3. For every

k ∈ [d−1], let us focus on those Dk ∈ W1 for which the matrices Q′1, . . . , Q′k−1, Q
′
k+2, . . . , Q

′
d

are zero in Equation (19). Such a Dk satisfies the following equation,

Q1 ·Q2 · · · ·Q
′

k ·Qk+1 · · ·Qd +Q1 ·Q2 · · ·Qk ·Q
′

k+1 · · ·Qd = 0. (20)

Using a similar argument as in the proof of Lemma 33 we get Q′k+1 = Y · Qk+1 and
Q
′

k = −Qk · Y where Y ∈ Ywk . Further, any Y ∈ Ywk can be used along with the relations
Q
′

k+1 = Y ·Qk+1 and Q′k = −Qk · Y to satisfy Equation (20). The set of Dk ∈ W1 satisfying
Equation (20) forms an F-linear space; call it Dk. Every Dk ∈ Dk is such that the submatrix
defined by the rows and the columns labelled by the variables in xk and xk+1 looks like[

−Y ⊗ Iwk−1 0
0 Iwk+1 ⊗ Y

]
tk×tk

where Y ∈ Ywk and tk = wk(wk−1 + wk+1),

and all other entries in Dk are zero. Moreover, any n× n matrix with this structure is in Dk.
Thus Dk is isomorphic to the space of all tk × tk matrices of the form shown above. It can
also be easily verified that every matrix in D1 + . . .+Dd−1 can be expressed uniquely as a
sum of matrices in these spaces. Hence W1 ⊇ D1 ⊕D2 ⊕ · · · ⊕ Dd−1 completing the proof of
Lemma 34. J

CCC 2017

21:50 Reconstruction of Full Rank Algebraic Branching Programs

x
(k)
11 x

(k)
w1 x

(k)
1j x

(k)
wj

x
(k)
ij

x(k)
wwk

x
(k)
1wk

x
(k)
11

x
(k)
w1

x
(k)
1j

x
(k)
wj

x
(k)
ij

x
(k)
1wk

x(k)
wwk

1w Iw Iw Iw

Iw 1w Iw Iw

Iw Iw 1w Iw

Iw Iw Iw 1w

Figure 10 Submatrix of L restricted to rows/columns indexed by xk.

I Claim 40 (restated). No invariant subspace of gIMM is properly contained in Uk for k ∈
[2, d− 1].

Proof. Let U ⊆ Uk be an invariant subspace of gIMM . From Claim 38 it follows that U is
a coordinate subspace. For t ∈ N, let 1̃t

def= 1t − It, where 1t is the t × t all one matrix.
From Lemma 33, there are matrices Bk−1 and Bk in gIMM such that the submatrix of Bk−1
restricted to the rows and the columns labelled by the variables in xk−1] xk looks like[

−1̃wk−1 ⊗ Iwk−2 0
0 Iwk ⊗ 1̃wk−1

]
, and

the submatrix in Bk restricted to the rows and the columns labelled by the variables in
xk] xk+1 looks like[

1̃wk ⊗ Iwk−1 0
0 Iwk+1 ⊗−1̃wk

]
.

From Lemma 34, there is a diagonal matrix Dk−1 in gIMM such that the submatrix restricted
to the rows and the columns labelled by the variables in xk−1] xk looks like[

−Iwk−1 ⊗ Iwk−2 0
0 Iwk ⊗ Iwk−1

]
.

Let L = Bk−1 + Bk + Dk−1. The submatrix of L restricted to the rows and the columns
labelled by the variables in xk looks as shown in Figure 10.

For notational simplicity we write wk−1 as w in Figure 10. If ex is a unit vector in U ,
where x = x

(k)
ij is a variable in xk then the matrix L maps ex to Lex which is the column of L

labelled by the variable x. This column vector has all entries zero except for the rows labelled
by the variables in xk. Restricting to these rows and looking at Figure 10, we infer that the

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:51

x
(1)
1 x

(2)
11 x

(2)
12 x

(2)
13 x

(2)
1w2

x(2)
ww2

x
(1)
1

x
(2)
11

x
(2)
12

x
(2)
13

x
(2)
1w2

x(2)
ww2

−1w

1w

1w

1w

Iw

Iw Iw

Iw

Iw Iw

C

C

C

0’s

Figure 11 Submatrix of M matrix restricted to rows/columns indexed by x1] x2.

rows of Lex labelled by the variables x(k)
1j , x

(k)
2j , . . . , x

(k)
wk−1j

are 1 (in particular, these entries
are nonzero). We use this knowledge and that Lex ∈ U to make the following observation,
the proof of which is immediate from Claim 38.

IObservation 66. If ex ∈ U , where x = x
(k)
ij then ex′ ∈ U for every x′ ∈ {x(k)

1j , x
(k)
2j , . . . , x

(k)
wk−1j

}.

Moreover, it follows from the presence of Iw matrices in Figure 10 that for every j′ ∈ [wk]
there is the variable y = x

(k)
ij′ such that the row labelled by y in Lex is 1, implying40 ey ∈ U .

Hence from Observation 66, ey′ ∈ U for every y′ ∈ {x(k)
1j′ , . . . , x

(k)
wk−1j′

}. Since this is true for
every j′ ∈ [wk], ey ∈ U for every variable y ∈ xk implying U = Uk. J

I Claim 41 (restated). The invariant subspaces U1,2 and Ud−1,d are irreducible, and the only
invariant subspace properly contained in U1,2 (respectively Ud−1,d) is U2 (respectively Ud−1).

Proof. We prove the claim for U1,2, the proof for Ud−1,d is similar. Suppose U1,2 = V ⊕W
where V ,W are invariant subspaces of gIMM (and so also coordinate subspaces). A unit vector
ex, where x ∈ x1 is either in V or W . Suppose ex ∈ V ; we will show that V = U1,2. Without
loss of generality, let x = x

(1)
1 . Arguing as in the proof of the previous claim, we infer that

there is a matrix M ∈ gIMM such that the submatrix of M restricted to the rows and the
columns labelled by the variables in x1 and x2 looks as shown in Figure 11, in which w = w1
and C is a w1 × w1 anti-symmetric matrix with all non-diagonal entries nonzero. All the
other entries of M are zero.

The vector Mex is the first column of M and it is zero everywhere except for the rows
labelled by the variables in x1] x2. Among these rows, unless y ∈ {x(2)

11 , x
(2)
12 , . . . , x

(2)
1w2
}

the row of Mex labelled by y is nonzero. Thus (from Claim 38), ey ∈ V for y ∈ x1 and
y = x

(2)
ij where i ∈ [2, w1] and j ∈ [w2]. Let y = x

(2)
ij for some i ∈ [2, w1] and j ∈ [w2].

From Figure 11, the row of Mey labelled by x(2)
1j is nonzero and so, for y′ = x

(2)
1j , ey′ is also

in V. Hence, V = U1,2 and U1,2 is irreducible. To argue that the only invariant subspace
properly contained in U1,2 is U2, let V ⊂ U1,2 be an invariant subspace of gIMM . From the
above argument it follows that ex /∈ V for every x ∈ x1 (otherwise V = U1,2). This implies
V ⊆ U2 and from Claim 40 we have V = U2. J

40Follows again from Claim 38.

CCC 2017

21:52 Reconstruction of Full Rank Algebraic Branching Programs

7.3 Proof of claims in Section 4
I Claim 43 (restated). For all i ∈ [s], let Ni and N

′

i be the null spaces of gi(R) and gi(R
′).

Then
1. Fn = N1 ⊕N2 ⊕ · · · ⊕ Ns = N ′1 ⊕N

′

2 ⊕ · · · ⊕ N
′

s.
2. For all i ∈ [s], dim(Ni) = dim(N ′i) = degx(gi).

Proof. Since N ′i = A−1Ni and A−1 ∈ GL(n), it is sufficient to show Fn = N1⊕N2⊕· · ·⊕Ns
and dim(Ni) = degx(gi). Further, observe that each subspace Ni is non-trivial – if N1 = {0}
then for all v ∈ Fn, h(R) · v = g1(R)g2(R) · · · gs(R) · v = 0 implying g2(R) · · · gs(R) · v = 0.
As the characteristic polynomial and the minimal polynomial have the same irreducible
factors this gives a contradiction.

To show the sum of Ni’s is a direct sum it is sufficient to show the following: if
∑s
l=1 ul = 0

where ul ∈ Nl then ul = 0 for l ∈ [s]. Define for i ∈ [s]

ĝi :=
s∏

j=1,j 6=i
gj(x) = h(x)

gi(x) . (21)

Since ĝi(R) · uj = 0 for j 6= i,

ĝi(R) ·
(

s∑
l=1

ul

)
= ĝi(R) · ui = 0. (22)

As gi(x) and ĝi(x) are coprime polynomials, there are pi(x), qi(x) ∈ F[x] such that

pi(x)gi(x) + qi(x)ĝi(x) = 1 ⇒ pi(R)gi(R) + qi(R)ĝi(R) = In

⇒ (pi(R)gi(R)) · ui + (qi(R)ĝi(R)) · ui = ui.

Both (pi(R)gi(R)) · ui = 0 (as ui ∈ Ni) and (qi(R)ĝi(R)) · ui = 0 (by Equation (22)). Hence
ui = 0 for all i ∈ [s].

Let R̃ be the linear the linear map R restricted to the subspace Ni (this is well defined
as Ni is an invariant subspace of R). Then, gi(R̃) = 0. Since gi is irreducible, from Cayley-
Hamilton theorem it follows that gi divides the characteristic polynomial of R̃ implying
degx(gi) ≤ dim(Ni). As a consequence, we have

n =
s∑
i=1

degxgi ≤
s∑
i=1

dimNi ≤ dimFn = n. (23)

Each inequality is an equality, which proves the claim. J

I Claim 44 (restated). Suppose gi(x) is an irreducible factor of the characteristic polynomial
hk(x) of Rk (depicted in Figure 4) for some k ∈ [d]. Then the following holds:
1. If k ∈ [2, d− 1] then Ni ⊆ Uk (equivalently N ′i ⊆ A−1Uk).
2. If k = 1 then Ni ⊆ U1,2 (equivalently N ′i ⊆ A−1U1,2), and if k = d then Ni ⊆ Ud−1,d

(equivalently N ′i ⊆ A−1Ud−1,d).

Proof. Figure 12 depicts the matrix hk(R) and as shown in it, call the submatrix restricted
to the rows labelled by variables in x2 and columns labelled by variables in x1] x2, Mk,2;
define Mk,d−1 similarly.

Let v ∈ Ni. For every j ∈ [d], let vj be the subvector of v restricted to the rows labelled
by variables in xj , and v1,2 (respectively vd−1,d) be the subvector of v restricted to the rows

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:53

hk(R1)

hk(R2)

hk(Rd)

hk(Rd−1)

x1

x2

xd

xd−1

x1 x2 xdxd−1

Mk,2

Mk,2

Mk,d−1

Mk,d−1

Figure 12 Matrix hk(R).

labelled by variables in x1]x2 (respectively xd−1]xd). Since v ∈ Ni, gi(R) ·v = 0 implying
hk(R) · v = 0. Thus we have the following set of equations:

hk(R1) · v1 = 0
Mk,2 · v1,2 = 0
hk(Rj) · vj = 0 for j ∈ [3, d− 2]

Mk,d−1 · vd−1,d = 0
hk(Rd) · vd = 0.

(24)

Case A: k ∈ [2, d − 1]: Since hj(x) is the characteristic polynomial of Rj , hj(Rj) = 0
implying hj(Rj) · vj = 0 for every j ∈ [d]. As k 6= 1, hk(x) and h1(x) are coprime and from
Equation (24) hk(R1) ·v1 = 0. Hence, v1 = 0 and for a similar reason vd = 0 as k 6= d. Thus
in Equation (24) we have

Mk,2 · v1,2 = hk(R2) · v2 = 0
Mk,d−1 · vd−1,d = hk(Rd−1) · vd−1 = 0.

Therefore for every j ∈ [d], hk(Rj) · vj = 0. If j 6= k then hj(x) and hk(x) are coprime, thus
from hj(Rj) · vj = 0 we infer vj = 0 and hence v ∈ Uk.

Case B: k = 1 or k = d: Let k = 1, the proof for k = d is similar. Since hk(Rd) · vd = 0,
hd(Rd) · vd = 0, and hk(x), hd(x) are coprime, we get vd = 0. Hence from Equation (24),

Mk,d−1 · vd−1,d = hk(Rd−1) · vd−1 = 0.

Again for j ∈ [3, d], hk(Rj) · vj = 0 and hj(x), hk(x) are coprime for every j 6= k. Hence
vj = 0 for j ∈ [3, d] implying v ∈ U1,2. J

7.4 Proof of lemma and claim in Section 5
I Lemma 49 (restated). If f = X1 ·X2 · · ·Xd and Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd is the
output of Algorithm 5 then there is a permutation σ on [3, d − 2] such that the following
hold:

CCC 2017

21:54 Reconstruction of Full Rank Algebraic Branching Programs

E1 Ed Ek

x1

x2

x3

xd

x1 x2

xd

xd−1

xd−2

x1

xd−1 xd xσ(k)

xσ(k)

B1,2

Bd−1,d

Bσ(k)

Figure 13 Matrices E1, Ed and Ek.

1. For every k ∈ [3, d− 2], Yk = Xσ(k).
2. Either Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively, or Y1,Y1,2 and
Yd, Yd−1,d are Xd,Xd−1,d and X1,X1,2 respectively.

Proof. Assume V1 and Vd are the spaces A−1U1,2 and A−1Ud−1,d respectively. In this
case we will show Y1,Y1,2 and Yd,Yd−1,d are X1,X1,2 and Xd,Xd−1,d respectively41. Hence,
u1 = w1 +w1w2, u2 = w1w2, ud−1 = wd−2wd−1 and ud = wd−1 +wd−2wd−1. From the order
of the columns in V1 and Vd we have V1 = A−1E1 and Vd = A−1Ed, where E1 and Ed are
n× u1 and n× ud matrices respectively and they look as shown in Figure 13.

The rows of E1 and Ed are labelled by n variables in x1 to xd, whereas the columns of
E1 are labelled by variables in x1 and x2 and the columns of Ed are labelled by variables in
xd−1 and xd. Moreover, the nonzero entries in these matrices are restricted to the shaded
region in Figure 13.

For k ∈ [3, d − 2], Vk = A−1Uσ(k) where σ is a permutation on [3, d − 2]. Hence,
uk = wσ(k)−1wσ(k) and Vk = A−1Ek where Ek is a n × uk matrix and looks as shown in
Figure 13. Again the rows of Ek are labelled by the variables x1 to xd, whereas the columns
of Ek are labelled by variables in xσ(k). The nonzero entries in Ek are restricted to the
shaded region in Figure 13 whose rows are labelled by variables in xσ(k). Let E be the
concatenation of these matrices, E = [E1 | E3 | E4 | . . . | Ed−2 | Ed]. The rows of E
are labelled by x1,x2, . . . ,xd as usual , but now the columns are labelled by x1,x2,xσ(3),

. . . ,xσ(d−2),xd−1,xd in order as shown in Figure 14. Then V = A−1E implying V −1 = E−1A.
Owing to the structure of E, E−1 looks as shown in Figure 14.

The rows of E−1 are labelled by x1,x2,xσ(3), . . . ,xσ(d−2),xd−1,xd in order, whereas the
columns are labelled by the usual ordering x1,x2, . . . ,xd. The submatrix of E−1 restricted
to the rows and columns labelled by the variables in x1 and x2 is B−1

1,2 and that labelled by
the variables in xd−1 and xd is B−1

d−1,d. For k ∈ [3, d − 2] the submatrix restricted to the
rows and columns labelled by xσ(k) is B−1

σ(k). We infer the following facts:
(I) The space spanned by the first u1 − u2 (that is w1) rows of V −1 is equal to the space

spanned by the first w1 rows of A, the latter space is X1.

41 If V1 and Vd are the spaces A−1Ud−1,d and A−1U1,2 respectively, then Y1,Y1,2 and Yd,Yd−1,d are
Xd,Xd−1,d and X1,X1,2 respectively – the proof of this case is similar.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:55

x1

x2

x3

xσ(3)

xd−2

xd

xd−1

x1 x2 xσ(3) xσ(d−2) xdxd−1

0’s

0’s

E

B1,2

Bd−1,d

Bσ(3)

x1

x2

xσ(3)

xσ(d−2)

xd

xd−1

x1 x2 x3 xσ(3) xdxd−1

0’s

0’s

E−1

B−1
1,2

B−1
d−1,d

B−1
σ(3)

Figure 14 Matrices E and E−1.

(II) The space spanned by the first u1 (that is w1 +w1w2) rows of V −1 is equal to the space
spanned by the first w1 + w1w2 rows of A, the latter space is X1,2.

(III) The space spanned by the last ud (that is wd−1 + wd−2wd−1) rows of V −1 is equal to
the space spanned by the last wd−1 + wd−2wd−1 rows of A, the latter space is Xd−1,d.

(IV) The space spanned by the last ud − ud−1 (that is wd−1) rows of V −1 is equal to the
space spanned by the last wd−1 rows of A, the latter space is Xd.

(V) For k ∈ [3, d− 2] the space spanned by the rows of V −1 that are numbered by tk−1 + 1
to tk−1 + uk is equal to the space spanned by the rows of A labelled by xσ(k), the latter
space is Xσ(k). J

I Claim 50 (restated). There is a randomized polynomial time algorithm that takes input
the bases of the layer spaces Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd and with probability at least
1− 1

poly(n) reorders these layer spaces and outputs a width vector w′ such that the reordered
sequence of spaces and w′ are:
1. either X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd and (w1, w2, . . . , wd−1) respectively,
2. or Xd,Xd−1,d,Xd−2, . . . , X3,X1,2,X1 and (wd, wd−1, . . . , w1) respectively.

Proof. The algorithm employs evaluation dimension to uncover the permutation σ. Assume
that Y1,Y1,2,Y3, . . . ,Yd−2,Yd−1,d,Yd are the spaces X1,X1,2,Xσ(3), . . . ,Xσ(d−2),Xd−1,d,Xd
respectively42. In this case, the algorithm reorders the spaces to a sequence X1,X1,2,X3, . . . ,

Xd−2,Xd−1,d,Xd and outputs w′ = w. For every k ∈ [3, d − 2], let zk be a set of dim(Yk)
many variables. Let z1 (similarly, zd) be a set of dim(Y1) (similarly, dim(Yd)) variables, and
let z2 (similarly, zd−1) be a set of dim(Y1,2)− dim(Y1) (similarly, dim(Yd−1,d)− dim(Yd))
variables. Finally, let z = z1] . . .] zd be the set of these n fresh variables.

Compute a linear map µ that maps x variables to linear forms in z variables such that
the following conditions are satisfied:
(a) For every k ∈ [3, d− 2], the linear forms corresponding43 to the basis vectors of Yk map

to distinct variables in zk.
(b) The linear forms corresponding to the basis vectors in Y1 (similarly, Yd) map to distinct

variables in z1 (similarly, zd).

42The proof of the other case is similar.
43Recall, linear forms in x variables and vectors in Fn are naturally identified with each other.

CCC 2017

21:56 Reconstruction of Full Rank Algebraic Branching Programs

(c) The linear forms corresponding to the basis vectors in Y1,2 (similarly, Yd−1,d) map to
distinct variables in z1] z2 (similarly, zd−1] zd).

Conditions (b) and (c) can be simultaneously satisfied as the basis of Y1 (similarly, Yd) is
contained in the basis of Y1,2 (similarly, Yd−1,d) by their very constructions in Algorithm 5.
As f = IMMw,d(Ax), the map µ takes f to a polynomial h(z) that is computed by a full
rank ABP A′ of width w and length d such that the sets of variables appearing in the d layers
of A′ from left to right are z1, z1] z2, zσ−1(3), . . . , zσ−1(d−2), zd−1] zd, zd in order.

The following observation, the proof of which is given later, helps find σ−1 incrementally
from blackbox access to h(z). Let y2 = z1] z2 and yj = z1] z2] zσ−1(3)] · · ·] zσ−1(j), for
j ∈ [3, d− 2].

I Observation 67. For every j ∈ [2, d− 3] and k ∈ [3, d− 2] such that zk 6⊂ yj,
1. Evaldimyj]zk(h) < |zk|, if k = σ−1(j + 1), and
2. Evaldimyj]zk(h) > |zk|, if k 6= σ−1(j + 1).

The proof of the observation also includes an efficient randomized procedure to compute
Evaldimyj]zk(h).

Finally, the algorithm outputs the reordered layer spaces Y1,Y1,2,Yσ−1(3), . . . ,Yσ−1(d−2),

Yd−1,d,Yd which is the ordered sequence of spaces X1,X1,2,X3, . . . ,Xd−2,Xd−1,d,Xd. The
width vector w′ can be readily calculated now by inspecting the dimensions:

w′1 = dim(X1) = w1,

w′2 = dim(X1,2)− w1

w1
= w2,

w′k = dim(Xk)
wk−1

= wk, for k ∈ [3, d− 2],

w′d = dim(Xd) = wd, and

w′d−1 = dim(Xd−1,d)− wd
wd

= wd−1.

This gives w′ = w. J

Proof of Observation 67. Let Z1 · Z2 · · ·Zd be equal to A′, the full rank ABP of width
w = (w1, w2, . . . , wd−1) computing h, where the linear forms in Zi are in zσ−1(i) variables
for i ∈ [3, d− 2], the linear forms in Z1, Zd are in variables z1, zd respectively, and the linear
forms in Z2, Zd−1 are in z1] z2, zd−1] zd variables respectively.

Case 1: Suppose k = σ−1(j + 1), implying |zk| = wjwj+1. Let G = Zj+2 ·Zj+3 · · ·Zd
and the t-th entry of G be gt for t ∈ [wj+1]. As the linear forms in Z1, Z2, . . . , Zj+1 are
F-linearly independent, for every t ∈ [wj+1] there is a partial evaluation of h at yj] zk
variables that makes h equal to gt . Also, every partial evaluation of h at yj] zk variables
can be expressed as an F-linear combination of g1, g2, . . . , gwj+1 . Hence, from Observation 53
it follows, Evaldimyj]zk(h) = wj+1 < |zk|.

Case 2: Suppose k 6= σ−1(j + 1). The variables zk appear in the matrix Zσ(k), so
|zk| = wσ(k)−1wσ(k). Let G = Zσ(k)+1 · Zσ(k)+2 · · ·Zd and the t-th entry of G be gt for
t ∈ [wσ(k)]. Further, let P = (plm)l∈[wj],m∈[wσ(k)−1] be equal to Zj+1 · Zj+2 · · ·Zσ(k)−1. As
the linear forms in Z1, Z2, . . . , Zj and Zσ(k) are F-linearly independent, there is a partial
evaluation of h at the yj]zk variables that makes h equal to plmgt for l ∈ [wj],m ∈ [wσ(k)−1]
and t ∈ [wσ(k)]. By Observation 53, {gt | t ∈ [wσ(k)]} are F-linearly independent; using
a proof similar to that of Observation 53 we can show that the polynomials {plm | l ∈

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:57

[wj],m ∈ [wσ(k)−1]} are also F-linearly independent. This implies the set of polynomials
{plmgt | l ∈ [wj],m ∈ [wσ(k)−1] and t ∈ [wσ(k)]} are F-linearly independent, as plm and gt
are on disjoint sets of variables. Since every partial evaluation of h at yj] zk variables can
be expressed as an F-linear combination of the set of polynomials {plmgt | l ∈ [wj],m ∈
[wσ(k)−1] and t ∈ [wσ(k)]}, Evaldimyj]zk(h) = wjwσ(k)−1wσ(k) = wj · |zk| > |zk|.

A randomized procedure to compute Evaldimyj]zk(h): Choose evaluation points a1, . . . ,

an2 for the variables yj] zk independently and uniformly at random from a set S|yj]zk| ⊂
F|yj]zk| with |S| = poly(n). Output the dimension of the F-linear space spanned by the
polynomials h(a1), . . . , h(an2) using Claim 24.

We argue that the above procedure outputs Evaldimyj]zk(h) with probability at least
1− 1

poly(n) . Let Evaldimyj]zk(h) = e. Observe that in both Case 1 and 2, e ≤ n2. Also, in
both the cases h can be expressed as

h =
∑
i∈[e]

fi(yj] zk) · qi, (25)

where fi and qi are variable disjoint. The polynomials q1, . . . , qe are the polynomials
g1, . . . , gwj+1 in Case 1; they are the polynomials {plmgt | l ∈ [wj],m ∈ [wσ(k)−1] and t ∈
[wσ(k)]} in Case 2. Just as we argue that q1, . . . , qe are F-linearly independent, we can show
that f1, . . . , fe are also F-linearly independent. So, by Claim 24 the rank of the matrix
M = (fc(ar))r,c∈[e] is e with high probability. This implies the polynomials h(a1), . . . , h(ae)
are F-linearly independent also with high probability. The correctness of the procedure follows
from the observation that the dimension of the F-linear space spanned by h(a1), . . . , h(an2)
is upper bounded by e (from Equation (25)). J

I Observation 52 (restated). If h is computable by a full rank almost set-multilinear ABP
of width w then there is a full rank almost set-multilinear ABP of width w in canonical form
computing h.

Proof. Suppose X1 · X2 · · ·Xd is a full rank almost set-multilinear ABP of width w =
(w1, w2, . . . , wd−1) computing h. Let X ′1 = (x(1)

1 x
(1)
2 . . . x

(1)
w1) and X ′d = (x(d)

1 x
(d)
2 . . . x

(d)
wd−1).

We show there are matrices X ′2 and X ′d−1 satisfying conditions (1b) and (2b) respectively
of canonical form (defined in Section 2.4) such that h = X ′1 ·X ′2 ·X3 · · ·Xd−2 ·X ′d−1 ·X ′d.
We prove the existence of X ′2 = (l′ij)i∈[w1],j∈[w2]; the proof for X ′d−1 is similar. It is sufficient
to show that there is such an X ′2 satisfying X1 · X2 = X ′1 · X ′2. Denote the j-th entry of
the 1× w2 matrix X1 ·X2 as X1 ·X2(j). Similarly X ′1 ·X ′2(j) represents the j-th entry of
X ′1 ·X ′2. Let gi be the sum of all monomials in X1 ·X2(j) of the following types: x(1)

i x
(1)
k for

k ∈ [i, w1], and x(1)
i x

(2)
pq for p ∈ [w1], q ∈ [w2]. Clearly,

X1 ·X2(j) = g1 + g2 + · · ·+ gw1 .

If l′ij
def= gi/x

(1)
i then

X1 ·X2(j) = x
(1)
1 l′1j + x

(1)
2 l′2j + · · ·+ x(1)

w1
l′w1j .

Since l′ij is the (i, j)-th entry of X ′2, we infer X1 ·X2(j) = X ′1 ·X ′2(j). By definition, x(1)
k

does not appear in l′ij for k < i, and thus condition (1b) is satisfied by X ′2. J

I Observation 53 (restated). Let X1 ·X2 · · ·Xd be a full rank almost set-multilinear ABP,
and Ck = Xk · · ·Xd for k ∈ [2, d]. Let the l-th entry of Ck be hkl for l ∈ [wk−1] . Then the
polynomials {hk1, hk2, · · · , hkwk−1} are F-linearly independent.

CCC 2017

21:58 Reconstruction of Full Rank Algebraic Branching Programs

Proof. Suppose
∑wk−1
p=1 αp · hkp = 0 such that αp ∈ F for p ∈ [wk−1], and not all αp = 0.

Assume without loss of generality α1 6= 0. Since the linear forms in Xk, . . . , Xd are F-linearly
independent, there is an evaluation of the variables in xk]· · ·]xd to field constants such that
hk1 = 1 and every other hkp = 0 under this evaluation. This implies α1 = 0, contradicting
our assumption. J

7.5 Proof of observation in Section 6
I Observation 57 (restated). There are matrices A1, . . . , Ad−1 with Ak ∈ GL(wk) for every
k ∈ [d−1], such that X1 = Q1 ·A1, X2(x2) = A−1

1 ·Q2 ·A2, Xd−1(xd−1) = A−1
d−2 ·Qd−1 ·Ad−1,

Xd = A−1
d−1 ·Qd, and Xk = A−1

k−1 ·Qk ·Ak for k ∈ [3, d− 2].

Proof. To simplify notations, we write X2(x2), Xd−1(xd−1) as X2, Xd−1 respectively. We
have

X1 ·X2 · · ·Xd−1 ·Xd = Q1 ·Q2 · · ·Qd−1 ·Qd = IMM,

where the dimensions of the matrices Xk and Qk are the same, and the set of variables
appearing in both Xk and Qk is xk, for every k ∈ [d]. Since the linear forms in X1 are
F-linearly independent, there is an A1 ∈ GL(w1) such that X1 = Q1 ·A1, implying

Q1 · [A1 ·X2 · · ·Xd−1 ·Xd − Q2 · · ·Qd−1 ·Qd] = 0
⇒ X2 · · ·Xd−1 ·Xd = A−1

1 ·Q2 · · ·Qd−1 ·Qd,

as the formal variable entries of Q1 do not appear in the matrices Xk, Qk for k ∈ [2, d]. The
rest of the proof proceeds inductively: Suppose for some k ∈ [2, d− 1],

Xk · · ·Xd−1 ·Xd = A−1
k−1 ·Qk · · ·Qd−1 ·Qd, where Ak−1 ∈ GL(wk−1).

Let pk =
∑d
i=k+1 |xi|. Since the linear forms in Xk+1, . . . , Xd−1, Xd are F-linearly independ-

ent, for every l ∈ [wk] there is a point al ∈ Fpk such that the wk×1 matrix Xk+1 · · ·Xd−1 ·Xd

evaluated at al has 1 at the l-th position and all its other entries are zero. Let Ak be the
wk × wk matrix such that the l-th column of Ak is equal to Qk+1 · · ·Qd−1 ·Qd evaluated at
al. Then, Xk = A−1

k−1 ·Qk ·Ak. As the linear forms in Xk and Qk are F-linearly independent,
it must be that Ak ∈ GL(wk). Putting this expression for Xk in the equation above and
arguing as before, we get a similar equation with k replaced by k+ 1. The proof then follows
by induction. J

References
1 Scott Aaronson. Arithmetic natural proofs theory is sought. http://www.scottaaronson.

com/blog/?p=336, 2008.
2 Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In FSTTCS

2005: Foundations of Software Technology and Theoretical Computer Science, 25th Inter-
national Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pages 92–105,
2005.

3 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for RO-
ABP and Sum of Set-Multilinear Circuits. SIAM J. Comput., 44(3):669–697, 2015.

4 Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In STACS
2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille,
France, February 23-25, 2006, Proceedings, pages 115–126, 2006.

5 Dana Angluin. Queries and concept learning. Machine Learning., 2(4):319–342, 1988.

http://www.scottaaronson.com/blog/?p=336
http://www.scottaaronson.com/blog/?p=336

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:59

6 Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New Results on Non-
commutative and Commutative Polynomial Identity Testing. In Proceedings of the 23rd
Annual IEEE Conference on Computational Complexity, CCC 2008, 23-26 June 2008, Col-
lege Park, Maryland, USA, pages 268–279, 2008.

7 Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano
Varricchio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–
530, 2000.

8 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number
of registers. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 254–257, 1988.

9 Elwyn Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46:1853–1859, 1967.

10 Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation over the Real
Numbers; NP Completeness, Recursive Functions and Universal Machines (Extended Ab-
stract). In 29th Annual Symposium on Foundations of Computer Science, White Plains,
New York, USA, 24-26 October 1988, pages 387–397, 1988.

11 David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, 36:587–592, 1981.

12 Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry
and geometric modelling, Mathematics and Visualization, Springer, pages 237–247, 2006.

13 Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing equivalence of poly-
nomials under shifts. In Automata, Languages, and Programming – 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
pages 417–428, 2014.

14 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berke-
ley, CA, USA, pages 243–252, 2013.

15 Fulvio Gesmundo. Gemetric aspects of iterated matrix multiplication. Journal of Algebra,
461:42–64, 2016.

16 Joshua A. Grochow. Symmetry and equivalence relations in classical and geometric com-
plexity theory. PhD thesis, The University of Chicago, 2012.

17 Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient Reconstruction of
Random Multilinear Formulas. In IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 778–787,
2011.

18 Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Reconstruction of depth-4
multilinear circuits with top fan-in 2. In Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19-22, 2012, pages
625–642, 2012.

19 Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random Arithmetic Formulas Can Be
Reconstructed Efficiently. In Proceedings of the 28th Conference on Computational Com-
plexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 1–9, 2013.

20 Johan Håstad. Tensor Rank is NP-Complete. In Automata, Languages and Program-
ming, 16th International Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceed-
ings, pages 451–460, 1989.

21 Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to Compute
(Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA, pages 262–272, 1980.

CCC 2017

21:60 Reconstruction of Full Rank Algebraic Branching Programs

22 Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black Boxes
for Their Evaluation: Greatest Common Divisors, Factorization, Separation of Numerators
and Denominators. In 29th Annual Symposium on Foundations of Computer Science, White
Plains, New York, USA, 24-26 October 1988, pages 296–305, 1988.

23 Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Proceedings of the 24th Annual IEEE Conference
on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 274–285,
2009.

24 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence
problem. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
1409–1421, 2011.

25 Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19-22, 2012, pages 643–662, 2012.

26 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012.

27 Neerak Kayal, Chandan Saha, and Sébastien Tavenas. An Average-Case Matrix Factoriza-
tion Problem. Work in progress, 2017.

28 Adam Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing Hard Functions
Using Learning Algorithms. In Proceedings of the 28th Conference on Computational Com-
plexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 86–97, 2013.

29 Adam Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives. In
Computational Learning Theory and Kernel Machines, 16th Annual Conference on Compu-
tational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC,
USA, August 24-27, 2003, Proceedings, pages 463–476, 2003.

30 Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001.

31 A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

32 Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.
Chicago J. Theor. Comput. Sci., 1997, 1997.

33 Daniel Minahan and Ilya Volkovich. Complete Derandomization of Identity Testing and Re-
construction of Read-Once Formulas. Electronic Colloquium on Computational Complexity
(ECCC), 23:171, 2016.

34 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991.

35 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In Advances in Cryptology – EUROCRYPT’96,
International Conference on the Theory and Application of Cryptographic Techniques, Sar-
agossa, Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996.

36 Alexander A. Razborov and Steven Rudich. Natural proofs. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 204–213, 1994.

37 Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 284–293, 2007.

N. Kayal, V. Nair, C. Saha, and S. Tavenas 21:61

38 Amir Shpilka and Ilya Volkovich. Improved Polynomial Identity Testing for Read-Once For-
mulas. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 12th International Workshop, APPROX 2009, and 13th International
Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, pages
700–713, 2009.

39 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010.

40 Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference
on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
31:1–31:53, 2016.

41 Thomas Thierauf. The isomorphism problem for read-once branching programs and arith-
metic circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.

42 Ilya Volkovich. A guide to learning arithmetic circuits. In Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 1540–1561,
2016.

CCC 2017

	Introduction
	Circuit reconstruction
	Motivation and model
	Our result
	Discussion
	Algorithm and proof strategy
	Reduction to equivalence test for IMM
	Equivalence test for IMM

	Preliminaries
	Notations and definitions
	Linear Algebra
	Evaluation dimension
	Affine projection and equivalence testing
	Group of symmetries and Lie algebra

	Algorithmic preliminaries
	Computing homogeneous components of f
	Computing derivatives of f
	Space of linear dependencies of polynomials
	Eliminating redundant variables
	Efficient translation equivalence test
	Computing basis of Lie algebra

	Iterated matrix multiplication polynomial
	Almost set-multilinear ABP and a canonical representation

	Lie algebra of IMM
	Structure of the Lie algebra g-IMM
	Random elements of g-IMM
	Invariant subspaces of g-IMM

	Lie algebra of f equivalent to IMM
	Computing invariant subspaces of the Lie algebra G-f
	Closure of a vector under the action of G-f

	Reconstruction of full rank ABP for f
	Computing layer spaces from invariant subspaces of G-f
	Reduction to almost set-multilinear ABP
	Reconstructing almost set-multilinear ABP

	Symmetries of IMM
	The group G-IMM
	Characterization of IMM by G-IMM

	Proof of claims and lemmas from previous sections
	Proof of lemmas and claims in Section 2
	Proof of lemmas and claims in Section 3
	Proof of claims in Section 4
	Proof of lemma and claim in Section 5
	Proof of observation in Section 6

