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Changes in the Earth’s climate have been increasingly ob-
served. Assessing how likely each of these changes have
been caused by human influence is important for decision
making on mitigation and adaptation policy. Due to their
high societal and economical impacts, media attention has
been particularly focused onwhether extreme events have
become more frequent and and more intense, if so, why?
To answer such questions, extreme event attribution (EEA)
has tried to estimate extreme event likelihoods under differ-
ent scenarios. Statistical methods and experimental designs
based on numericalmodels have been developed, tested and
applied during the last decade. In this paper, we review the
basic probability schemes, inference techniques and statisti-
cal hypothesis used in EEA. To implement EEA analysis, the
climate community relies on the use of large ensemble of cli-
matemodels runs. From a statistical perspective, we discuss
how extreme value theory could help to deal with the differ-
ent modeling uncertainties. In terms of interpretation, we
stress that causal counterfactual theory offers an elegant
framework that clarifies the design of event attributions.
Finally, we pinpoint some remaining statistical challenges.
These include the choice of the appropriate spatio-temporal
scales to enhance attribution power, the modeling of con-
comitant extreme events in amultivariate context, and the
coupling of multi ensemble and observational uncertainties.
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1 | INTRODUCTION

Extreme event attribution (EEA) (see, e.g., Stott et al., 2016) aims to evaluate how the likelihood of a specific extreme
climate event has been affected by anthropogenic forcings such as the increase of greenhouse gas concentrations
associated with fossil fuel burning. Themain idea in EEA is to compare the probability of extreme climate events under
a factual scenario of conditions that are close to those observed around the time of the event (e.g., greenhouse gas
concentrations and ocean temperatures) with the probability under a counterfactual scenario in which anthropogenic
emissions had never occurred, (see, e.g., Angélil et al., 2017). Given the random variable of interest, say daily maxima
of temperatures over a given region and a duration, the goal in EEA is to compute the probability that such a random
variable is higher than a given large threshold. One specificity of EEA is that these small probabilities must be inferred
from in silico numerical simulations, under factual and counterfactual scenarios. Another feature of EEA is the choice of
the spatiotemporal domain defining the event. Often, a EEA study is driven by a strong societal need (e.g., a specific
flooding or heatwave) and/or a rare climatological phenomenon (e.g., a record snowstorm). Defining precisely the
duration and spatial spread of such events is key and this leads to various climatological and statistical strategies.

In recent years, there has been a series of review/assessment articles (e.g., Chen et al., 2018; Angélil et al., 2017;
National Academies of Sciences, Engineering andMedicine, 2016; Stott et al., 2016; Shepherd, 2016) that describe
and summarize the main climatological results and challenges about EEA, but these articles did not focus on the
methodological side of the statistical modeling, and have preferred to concentrate on climatological advances, pitfalls
and identified challenges in terms of climate impact modelling. Our work attempts to complement these assessments by
reviewing the different statistical approaches used in EEA and identifying possible bridges between the climatological
and statistical communities. In particular, one goal of this article is to provide to any statistician, not well versed in
geosciences but interested by this topic, themain tools in terms of notation, hypotheses and statisical models. In this
context of describing the EEA statistical blueprint, the so-called story-line approach based on decomposing possible
causal pathways to explain a specific realization (Trenberth et al., 2015) will not be covered.

Section 2 provides the basic setup. In particular, we stress that the comparison of such probabilities can be
mathematically interpreted within the realm of causality theory. In Section 3, we recall the type of data at hand and the
different sources of uncertainties specific to the climate system. Section 4 covers the choice of the event of interest,
whose spatial and temporal scales are key.

Given the data and the event of interest, inference for small probabilities is needed, for which different techniques
have been proposed. Climate data providers have favored non-parametric approaches based on large ensembles of
specific runs, while applied statisticians have preferred parametric models that leverage extreme value theory (EVT)
(see, e.g., Davison and Huser, 2015). In Section 5, we explain these approaches and identify their pros and cons. We
also emphasize a few recent attempts to either integratemulti-errors (e.g., within a Bayesian hierarchical framework),
or spatial dependence ormultivariate extreme value theory. In Section 6, a list of current challenges is identified and
discussed.
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2 | BASIC SETUPS

Amajor difficulty in EEA is the non-stationarity of the climate system, global warming being its most obvious feature.
To deal with this lack of temporal stationarity mainly due to anthropogenic forcings, climatologists have introduced
two stationary worlds: the so-called factual and counterfactual worlds (Stott et al., 2004). The factual world contains
the effect of human influence on the climate, while the counterfactual world does not. It is assumed that independent
random draws from numerical experiments can be obtained for both worlds, and that the pdf of the variable of interest,
e.g., mean seasonal temperatures, can be estimated. To visualise this thought experiment, Figure 1 displays bivariate pdf
contours in the two different worlds, with blue contours for the counterfactual world and red contours for the factual
one. One can imagine that the axes corresponds to two different locations, and the variable to somemean temperatures.
It is clear that themean has shifted from the (blue) counterfactual word toward awarmer (red) factual world. in this
made-up example, a change in variability is also present, but less obvious. Concerning the class of events of interest, the
EEA community typically focuses on sets defined by the upper right corner1 of Figure 1. Tomove from the generic setup

Factual world

Counter−factual world

Set of interest

F IGURE 1 Classical scheme used in EEA: A counterfactual world (solid contours of the bivariate pdf) represents a
world without any anthropogenic influence and a factual world (dotted contours of the bivariate pdf) corresponds to
our actual climate. For example, the x-axis and y-axis could represent mean decadal summer temperatures at two
different locations. Themain EEA question is to compare the probability of being in the set of interest (greenish area)
with respect to the twoworlds. In this figure, the event of interest could be the average temperature between the two
locations being large.

1In this expository graph,wehave chosen todisplay thebivariate framework. Although there is a recent interest in compoundevents andmultivariatemodeling,
most EEA studies have focused on univariate sets of interest, i.e., one variable being above a large threshold. Still, with Figure 1, we want to emphasize that
the choice of the set is not universal in a multivariate context. Instead of {X1 + X2 > u }, one could choose {min(X1,X2) > u } or {max(X1,X2) > u },
leading to different statistical modeling strategies.
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described by Figure 1 to operational case studies, many choices have to bemade.
Stott et al. (2004) published a seminal paper assessing by howmuch human activities may have increased the risk of

the occurrence of heatwaves, like the 2003 heatwave observed over Europe. They did not look at a bivariate problem
like in Figure 1, but focused on the mean June-August temperatures over a European region. Basically, a complex
spatio-temporal temperature field was reduced to its average in time and space, a single scalar random variable, X .
In this case, the so-called event of interest was the set {X > u }where u = 1.6Kelvin was chosen to mimic the 2003
mean European summer anomaly temperatures. The definition ofX (its type, dimension in space and time, and so on) is
paramount. This choice depends on the application at hand, and also on the data available. Before dealing with this
delicate choice ofX in amultivariate framework, it is important to introduce some notation and definitions to discuss
the univariate setup. In this case, one key objective in most EEA analysis is the computation of small tail probabilities

p = P (X > u),

whereu represents a large threshold, andX corresponds to a single summary of some atmospheric randomfield. Instead
of setting u , one can impose the value of p and find u . In hydrology (see, e.g., Katz et al., 2002), this is equivalent to
providing a return period, sayT , and finding the return level uT , defined by P (X > uT ) = 1/T . For example, Luu et al.
(2018) estimated 1-in-1,000-year events of daily Fall rainfall in the South of France, i.e., the random variable was daily
precipitation quantities and the threshold u corresponded to a 1-in-1,000-year return period. At this stage, inference of
such a small p , or equivalently a large u , is classical in terms of statistical analysis. Given a sample of i.i.d. copies ofX , this
estimation problem of large return periods has been tackled by statisticians working on extreme value analysis (see, e.g.,
Davison and Smith, 1990; Coles, 2001; Beirlant et al., 2004; Davison andHuser, 2015). Cooley et al. (2019) summarizes
themain elements of EVT applied to environmental sciences.

To contrast the potential differences between the factual and counterfactual worlds, it is natural to distinguish

p0 = P (X > u), p1 = P (Z > u), (1)

where Z follows the factual pdf F and X represents the same random variable but in the counterfactual world and
consequently may have a different pdf, sayG . To simplify notation and follow common practice in EEA, we drop u in
p0 and p1, but these quantities obviously depend on u . Many authors (see, the bibliography of Stott et al., 2016) have
looked at two types of probability ratio. The so-called fraction of attributable risk (FAR) and the risk ratio (RR) are
defined as

FAR(u) = 1 − p0
p1
, RR(u) = p1

p0
.

The FAR(u) has been interpreted as the contribution of the anthropogenic causal factor. The solid line in Figure 2 shows
FAR(u) in two typical setups. The left panel mimics mean temperature anomaly pdfs by assuming thatX is standard
Gaussian, X ∼ N (0, 1) while Z follows a Gaussian distribution with mean 1 (i.e., one degree warmer) and standard
deviation 1.5 (higher climate variability). In the right panel, by choosing a Pareto tail, (1+ ξx/σ)−1/ξ , withσ = 1 forX and
σ = 1.5 for Z , we investigate daily precipitation behavior with a typical shape parameter ξ = 0.2. For both the Gaussian
and Pareto cases, FAR(u) increases as u increases. Themain difference is that, in the Gaussian setup, a rare event in
the factual world (p1 small) would be nearly impossible in the counterfactual world (p0 almost zero). This explains why
FAR(u) goes to unity, as u increases, in the left panel of Figure 2. In contrast, FAR(u) tends to 1 − σ1/ξ = 0.87 in the
Pareto case. Unlike the Gaussian case, in the Pareto case, a very rare event in the factual world remains possible in the
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Gaussian case withX ∼ N (0, 1), Z ∼ N (1, 1.5) Pareto case withX ∼ GP (0, 1, .2), Z ∼ GP (0, 1.5, .2)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

FA
R

(u
)

0.01 0.03 0.06 0.1 0.16 0.25 0.36 0.48 0.59 0.7 0.79 0.87 0.93 0.97 0.99

PS(u) FAR(u)

PNS(u)

0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

FA
R

(u
)

0.01 0.38 0.59 0.73 0.82 0.88 0.92 0.94 0.96 0.97 0.98 0.99

PS(u) FAR(u)

PNS(u)

F IGURE 2 FAR(u) (solid line), probability of sufficient causation (dotted lines) and probability of sufficient and
necessary causation (dashed lines) in function of the threshold u , see Equation (2). The left and right panels correspond
to the Gaussian and Pareto cases, respectively.

counterfactual world. This simple example implies that the distributional assumptionsmade for average temperatures
(rather light tails ) could lead to different EEA conclusions for heavy-tailed atmospheric variables, like heavy rainfall, and
will also affect inferences, especially in terms of confidence intervals.

In classical EEA studies, factual simulations from a given numerical model have to be understood as samples from
today’s world, i.e., of the current climate, as opposed to transient simulations mimicking climate drifts2 over one or two
centuries. This implies that p1 should have a temporal subscript indicating the current year of the event analysis. For
notational simplicity, we do not use such a time indexing3. The EEA strategy recommended in the National Academies
of Sciences, Engineering andMedicine (2016) report is to compare the factual (today) and the counterfactual worlds, so
the comparison is only valid for one fixed climatological instant.

In terms of interpretation, one may wonder if it is better to use FAR(u), or RR(u), or simply look at p1. Despite
its apparent simplicity, the latter may be the most complicated, because the value of p1, say of observing a specific
heatwave, will be certainly different in 2100 than today. From an impact point of view, it is unclear if long-term decisions
(e.g., building dams or planting specific tree species) should bemadewith respect to today’s climate orwith the respect to
the climate of 2100 that will be different. But then, why 2100? Interpreting return levels and periods in non-stationary
situations remains complicated (Rootzén and Katz, 2013; Gilleland et al., 2017), and, although it is a crucial point in
other types of attribution analysis (Kim et al., 2016; Ribes et al., 2016), the statistical modeling of non-stationarities is

2Global climatemodel runs are different fromEEA runs in the sense that the former aim at reproducing transient trajectories over long time periods and at the
global scale. This explains why very few global runs are produced, while counterfactual simulations often consist of thousands of runs.
3The counterfactual world providing p0 is quasi-stationary for the temporal scale of interest of EEA studies, given that natural forcings (such as changes in
solar radiation or major volcanic eruptions) have limited impact at the decadal scale.
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rarely treated in EEA (Ribes et al., 2019, is a recent exception).
As any study of EEA is intertwinedwith the question of attribution, and consequently rooted in the assessment

of causality, it would be of interest to make a bridge between p0 and p1 and some type of causality. Hannart et al.
(2016) were able to make a mathematical link between FAR(u) and the causal counterfactual probability theory of
Pearl (2009). More precisely, increasing and external anthropogenic forcing can be understood as a monotone and
exogenous intervention on the climate system. Running climatemodels with andwithout this intervention allows us to
distinguish between the probabilities of sufficient causation, PS, and of necessary causation, PN. In a general setup,
these are difficult to compute, but the monotonicity and external nature of anthropogenic forcing simplify them to
(Hannart et al., 2016)

Probability of necessary causation: PN(u) = max(FAR(u), 0), (2)
Probability of sufficient causation: PS(u) = max

(
1 −

1 − p1
1 − p0

, 0)

)
,

Probability of necessary and sufficient causation: PNS(u) = max (p1 − p0, 0)

From these definitions, it is clear that, whenever p1 ≥ p0, FAR(u) can be interpreted as the probability of necessary
causation. For the special cases described in Figure 2, PS(u) and PN(u) play opposite roles with respect to u . According
to the dotted lines, sufficient causation is maximized for small values of u , but it goes to zero for large values of u , i.e.,
for extreme events. The reverse holds for necessary causation, see the solid lines. As one may expect, PNS(u), the
probability of necessary and sufficient causation, balances these two effects. One can also notice that the highest value
for PNS(u) appears to be smaller for the Pareto case than the Gaussian case. This can be explained by recalling that
any Gaussian random variable is very unlikely to have values outside three standard deviations from its mean, so it
almost behaves like a random variable with finite support. In contrast, the support of a Pareto random variable cannot
be considered finite. Large realizations in the factual world could also have happened in the counterfactual world. This
effect diminishes whenever the Pareto shape parameter differs strongly between the factual and counterfactual worlds.

Before treating estimation, we need to review the different types of data available for EEA and their associated
uncertainties.

3 | CLIMATE DATA TYPES

To compute the counterfactual p0, one would need a world without anthropogenic forcing, but, as human influence
has been accelerating since the industrial revolution4, data from the counterfactual world are not directly accessible
from observational records. For this reason counterfactual samples inmany EEA studies are produced in silico from a
numerical experiment. For example, the Hadley Centre provided the simulations used in Stott et al. (2004). This leads to
the question of the reliability of such numerical simulations and observational data.

3.1 | Model errors and uncertainty sources

In terms of statistical modeling, the earth’s climate, although an extremely complex dynamical system, is viewed as a
spatio-temporal random process with respect to the variable of interest. This stochastic representation can be applied
to the three pillars of EEA: the factual and counterfactual worlds, say Z andX , and the true observed climate system,

4and few in situ observations are available before the industrial revolution.
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sayY . These three datasets are tainted by errors and the following sources of uncertainty can be listed:

• natural internal variability,
• model uncertainty from approximating the true climate systemwith numerical experiments,
• observational uncertainties due to instrumental errors, homogenization problems andmismatches between data

sources, e.g., merging satellite data with observations by data assimilation,
• sampling uncertainty in space and time,
• statistical modeling error by assuming a specific statistical model, e.g., assuming a generalized extreme value

distribution for independent blockmaxima.

The last three items of this list are commonplace for statisticians, so, we focus on the first two.
Evenwithout any forcing variations, the true climate system is considered as a chaotic dynamical system, which

exhibits its own internal variability. This source of uncertainty, over decadal or longer time scales, can be interpreted as
the inherent noise of a stationary system. In practice, the observed climate is always influenced by some forcings, and is
never at equilibrium, so a stationary version is never observable.

Numerical climatemodels are imperfect due to numerical approximations and parametrizations of a number of
processes. Two numerical climate models from two different teamswill produce different climatological pdfs under the
same forcings. Modeling errors associated to their numerical and physical imperfections should be taken into account by
introducing someclimatemodeling error. This explainswhy theCoupledModel IntercomparisonProject (CMIP) contains
not one but numerous types of experiments (including control runs with no change in forcings, idealized pertubations,
historical simulations, etc.), different initial conditionmembers (sampling variability) and different numerical models
(model uncertainty). In EEA, assessment studies like Angélil et al. (2017) compared multiple methods and multiple
studies (meta-analysis); see their Table 1. Paciorek et al. (2018) also listed the different sources of uncertainty.

3.2 | Data types

There are three typical datasets in EEA: the observational database, and the numerically simulated factual and coun-
terfactual worlds. In numerous EEA numerical experiments, boundary conditions over a specific region are needed
to simulate large ensemble runs. These given conditions (e.g., sea surface temperatures) are chosen with respect to
the observed extreme event under study. By providing boundaries conditions, the observational database indirectly
drives the factual and counterfactual worlds. For example, Angélil et al. (2017) analyzed two ensembles of 390mem-
bers spanning the period January 2010-December 2013 using the American Community AtmosphereModel. Each
realization was driven by the same external boundary conditions, but with different initial weather states to spread
possible weather trajectories. This type of conditioning based on the extreme event (see also climateprediction.net
(Weather@home) in Otto et al., 2018) constrains the simulation space and reduces confidence intervals, but renders
the result conditional on a given situation. In addition, the setup of the counterfactual runs is not trivial: unobserved
ocean temperatures and other conditions have to be set with respect to unknown preindustrial information. Finally, p1
and p1 become conditional probabilities

pC0 = P (X > u |C0), pC1 = P (Z > u |C1), (3)

whereC0 andC1 are conditions based on the climate system state related to the event of interest.
In summary, numerical experiments based on boundary conditions involves a layer of arbitrary choices (e.g., how
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to findC1 andC0). This setup does not entirely answer to the question of some stakeholders who are not interested
by conditional return periods, but by unconditional ones. Some risks could even become less frequent under some
atmospheric circulation patterns while becomingmore frequent in general. EEA conditional simulations are application
specific, computationally expensive and need high expertise (see, e.g., Otto et al., 2018). On the positive side, they can
produce very large sample sizes, a key feature when dealing with extremes, especially for non-parametric approaches,
and their spatial resolution can be high, a crucial point for some impact studies.

Another data repository is the aforementioned CMIP experiment. This database contains global simulations that
have the advantages of being non-event specific and unconditional. In addition, a lot of models from different research
institutes are available, so numerical model uncertainties can be explored. Their main drawbacks are their small sample
sizes and their spatial resolution, which can be too coarse for many applications. Another complication is the transient
nature of these simulations, which implies that factual runs in CMIP contain some trend that must be taken into account
in the statistical analysis. This issue was absent in classical EEA conditional simulations.

Surprisingly, at least for statisticians, extreme value analysis in attribution studies has been separated into two
independent topics: event attribution and long-term trend attribution. Although the object of interest, comparing
high return periods from two different climatological setups, was identical, the event attribution and trend attribution
research communities have been mostly working separately. For example, early work by Kharin and Zwiers (2000)
who inferred relative changes in return levels and periods at the continental scale, weremostly viewed as outside of
the realm of EEA. Among other differences, long-term trend studies attribute whether observations also exhibit a
significant trend, while EEA provides frequency estimates typically derived from numerical models, often disregarding
the historical record. Another difference is that trend attribution studies (see, e.g., Kharin and Zwiers, 2005; Kharin
et al., 2007) primarily consider the global scale, while EEA studies are triggered by a local event.

3.3 | Variables of interest and their distributions

The Special Report onManaging the Risks of Extreme Events andDisasters to Advance Climate Change Adaptation,
(Field et al., 2012) has reviewed the climate literature on observed global and regional scale changes in climate extremes
(see also the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., 2013). From
these reports, it is clear that various physical variables can be of interest for EEA.Quoting fromChen et al. (2018), typical
extreme indices include the number or fraction of days with maximum temperature (Tmax), minimum temperature (Tmin), or
precipitation, below the first, fifth, or tenth percentile, or above the 90th, 95th, or 99th percentile, as generally defined for given
timeframes (e.g., days, months, seasons, annual) with respect to a reference period (e.g., 1961-1990). Other definitions relate to,
for example, the number of days above specific absolute temperature or precipitation thresholds, or more complex definitions
relate to the length or persistence of climate extremes. Recent studies have also focused on surface wind (Vautard et al.,
2019), extent of sea ice cover (Kirchmeier-Young et al., 2017) and fires (Kirchmeier-Young et al., 2019). For temperatures
averaged in time and space, tracking changes inmeans and variances of Gaussian variables can be enough, but some
important climate variables are not normally distributed. As they are always positive, skewed and heavy tailed, the
distributional features of precipitation differ from those of temperatures. For instance, the response of the distribution
of precipitation to climate change is more complex than a shift: changes in mean precipitation are rather small and
depend on the location, while extremes are expected to undergo amore robust and spatially generalized increase (see,
e.g., Kharin et al., 2007). Unlike for temperatures, both signal (warming climate) and noise (variability) vary with scale
for precipitation. In this context, a natural way tomove away from the normal distribution when looking at extremes is
to apply EVT (see, e.g., Davison and Smith, 1990; Coles, 2001; Beirlant et al., 2004), see Section 5.2.
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4 | EVENT DEFINITIONS

Most EEA studies are performed afterwitnessing an extreme occurrence. Typically, a very unusual “event" like the
2003 European heatwave or the United Kingdom flooding in Autumn2000. attracts a lot of media attention, causes
major damage and may even be responsible for deaths. Such high-impact events also trigger a series of research
articles. For example, the AmericanMeteorological Society in its bulletin produces a yearly special report to assess how
human-caused climate changemay have affected the strength and likelihood of individual extreme events that have
already occurred. The seventh edition of this report included analyses of marine heatwaves in the Tasman Sea off of
Australia in 2017 and 2018 and the summer 2017 heatwave in southern Europe (see, e.g., Kew et al., 2019).

There is no need to observe an extreme realization to compute the probability of extreme occurrences over a
selected spatiotemporal domain. The choice of threshold, defining the extreme quantile under study, can also bemade
independently of any specific realization. For example, Kim et al. (2016) attributed extreme temperature changes
using updated observations andmulti-model CMIP datasets for an extended period of 1951-2010. A regression-based
generalized extreme value (GEV) model was applied to blockmaxima for each grid point and at the global level.

Inmost EEA, the definition of the event itself in termsof duration and spatial footprint is rather physically based than
statistically justified. Mathematically speaking, this step can be viewed as transforming a real-valued spatiotemporal
random field,Y (t , s), where the index t represents time and s the spatial component, into a scalar statistic, say

Y (D , R ) =
∑
t∈D

∑
s∈R

Y (t , s), (4)

whereD corresponds to a duration, usually from a few days to a fewmonths, and R a region of a few hundred square
kilometers. For example, Stott et al. (2004) chose to analyze a 3-month event (June-August) over a region covering
Europe and theMediterranean sea. This choice has an impact of the causal analysis, see Figure 2 and Figure 3 in Cattiaux
and Ribes (2018), who proposed to scan a large spatiotemporal domain with respect to an objective criterion. They
argued that maximizing rarity within the factual world, i.e., minimizing p1 in time and space, will highlight the regions
most prone to extreme events. As quoted in Cattiaux and Ribes (2018) Searching for the spatiotemporal scale at which
a single extreme weather event has been the most extreme (minimum p1) is an academic question that is relevant for climate
monitoring. In other words, journalists and climatologists like to know the spatiotemporal scale that makes the event,
not rare, but exceptional. To apply their method, they estimated p1 and p0 from observations in the following way.
The climate change component was estimated by smoothing spline and removed from temperatures recorded over
1950-2015. For a givenD and R , they expressed Equation (4) as

Y i (D , R ) = h(i ) + Ai (D , R ), i ∈ {1950, . . . , 2015},

where h(i ) is obtained by averaging smoothing splines over R obtained fromCMIP data andAi (D , R ) corresponds to
Gaussian noise for temperatures. The factual and counterfactual samples were then built, respectively, as

Zi (D , R ) =Y i (D , R ) − [h(t ) − h(1950)] , Xi (D , R ) =Y i (D , R ) − [h(t ) − h(2015)] ,

by assuming that 1950 represents the counterfactual world, and 2003 (the date of the event under scrutiny) the factual
world. The optimization problemwas to find

(D̂ , R̂ ) = argmin P (Z (D , R ) > u(D , R )),
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where the threshold u(D , R ) corresponds to the observed temperatures of the 2003 summer for the spatiotemporal
region (D , R ). Cattiaux and Ribes (2018) emphasized that their main objective was to offer a new blueprint for defining
the event and their approach could be improved, especially on the statistical modeling side. For instance, simple
assumptions were used to estimate the occurrence probability p1: the forced response simulated by models was
assumed to be correct, temperatures follow a Gaussian distribution; uncertainty on the computed p1 was not taken into
account and themodeling framework did not cover multivariate events.

Another approach, motivated by the fact that onewishes to evidence a causal link, was proposed by Hannart and
Naveau (2018). By taking advantage of counterfactual theory, these authors proposed tomaximize the probability of
necessary and sufficient causation (PNS) defined by Equation (2) with p0 = P (MX > u) and p1 = P (MZ > u), and

(M̂ , û) = argmin PNS(u),

where u is a scalar and Z represents a multivariate vector of size d , concatenating the spatiotemporal data from the
factual world, andX from the counterfactual one. Here the vectorM of size d indicates that the aim is to find the best
linear combination with respect to PNS. The event has to be understood as {MX > u }, and not as {X (D , R ) > u(D , R )}
like in Cattiaux and Ribes (2018). The linear projection,MX, reduces themultivariate vectorX into a univariate random
variable, while ensuring that the projected data contains themost information in terms of causality. In the hierarchical
Gaussian framework, Hannart and Naveau (2018) were able to integrate climate internal variability, model uncertainty,
observational error and sampling within a single model. This approach was applied to data from the HadCRUT4
observational dataset forY and runs of the IPSL-CM5A-LRmodel for factual and counterfactual world, Z andX, showed
that anthropogenic forcings have virtually certainly caused the observed evolution of temperature at the global scale.
More precisely, the probability that the observed evolution of temperature is not caused by anthropogenic forcings is
then one in ten thousand (1:10 000) instead of one in twenty (1:20).

4.1 | Events based onweather types

The variability of the large-scale atmospheric circulation plays an essential role in EEA. Conditioning on the atmospheric
circulation can help to interpret the differences between the factual and counterfactual worlds. For example, Yiou et al.
(2017) explained p1 and p0 as a function of a dynamical component and a thermodynamical one. They assumed that
extreme values of a climate variable are generally reached for given patterns of atmospheric circulation. More precisely,
given an observed circulationC , the authors introduced the notion of neighborhood circulation trajectories, defined as
either the distance to a knownweather regime that is computed independently of the event itself, or from the distance
to the observed trajectory of circulation. So, neighborhoods aroundC were defined in the counterfactual and factual
worlds. Using Bayes’ formula, the relative ratio p0/p1 was decomposed as

P (X > u)

P (Z > u)
= ρt hermodynami cal × ρdynami cal

with

ρt hermodynami cal =
P (X > u |C1)

P (Z > u |C0)
, ρdynami cal =

P (C1)

P (C0)
×
P (C0 |Z > u)

P (C1 |X > u)
.

This approachwas applied to a record precipitation event that hit southern United Kingdom in January 2014. This is
similar to the “additive” decomposition of Shepherd (2016), who also introduced a non-dynamical term. Climatologically,
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such a decomposition helps practitioners to understand the event at hand and to focus the interpretation on specific
circulation patterns. Statistically, some criticismsmade in Section 3.2 can be repeated. In particular, one of themain
caveats in EEA remains the uncertainty in the counterfactual world in terms of conditioning, how to defineC0 andwhat
is the error associated with wrongly definingC0.

4.2 | Record events

In terms of event definitions, the basic ingredient has, so far, been the probability of exceedances, i.e., the probability
that a well-chosen univariate random variable exceeds a large threshold. Still, many EEA studies have beenmotivated,
not by a large observed value, but by a record (see, e.g., King, 2017). Breaking a record simplymeans that the current
observation exceeds all past measurements (see, e.g., Resnick, 1987). In this context, climatologists are often asked by
media outlets if the frequency of record breaking has increased. Mathematically, the year r , say in the counterfactual
world, can be defined as a record year if

p0,r = P (Xr > max(X1, . . . ,Xr−1)), r = 1, 2, . . . .

Naveau et al. (2018) noted that, if the counterfactual world time series can be assumed exchangeable, a reasonable
hypothesis in the counterfactual world, then p0,r is exactly known, equal to 1/r and does not need to be estimated.
Hence, one can compare this probability with

p1,r = P (Zr > max(X1, . . . ,Xr−1)), (5)

to assess the chance that the factual observation Zr is a record in the counterfactual world. These authors applied their
approach to two datasets of annual maxima of daily temperaturemaxima: observations recorded in Paris and output
from theMeteo-France climatemodel. In the sameway that no specific realizations need to be observed to compute
changes in the frequencies of being above a threshold, one does not need to observe a record at year r to compute p1,r
(in fact, it is likely that the record in the observed sample won’t occur at year r ). In general, EEA studies do not compare
a specific realization occurrence, sayX = x , in the factual and counterfactual world but rather evaluate probabilities of
an event likeX > u or like Zr > max(X1, . . . ,Xr−1) for records.

5 | STATISTICAL METHODS

In this section, we review and discuss common statistical models used in EEA. To see how these different techniques can
be applied in practice, we refer to Yiou et al. (2019), who compared different approaches to the analysis of the Northern
European summer heatwave of 2018.

5.1 | Non-parametric approaches

To our knowledge, there have been very few studies in EEA concerning the convergence of any type of non-parametric
estimators of p0 and p1, especially with respect to the different uncertainties listed in Section 3.1. A popular current
approach is tomodel exceedance numbers as a simple binomial count, with a success corresponding being above the
threshold u , and computing the ratio of these counts in the factual and counterfactual worlds. Climatologists are clearly
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aware that large sample sizes are needed to estimate small probabilities in this case. For example, theWeather@home
experiment (see climateprediction.net and Otto et al., 2018) produces thousands ormore samples of counterfactual
and factual realizations, although these experiments are conditional. As the sample sizes are large, simply counting
exceedances above a high threshold is valid, but it is computationally expensive if u is large. It is easy to study the
properties of the natural estimator of the FAR5

F̂ARn (u) = 1 −
(
n∑
i=1

É(Xi > u)

)
/

(
n∑
i=1

É(Zi > u) +
1

2

)
,

where É(A) represents the indicator function, and (X1, . . . ,Xn )T and (Z1, . . . , Zn )T are our independent counterfactual
and factual samples of size n . The fraction 1/2 is there to avoid dividing by zero. For large n , F̂ARn (u) is asymptotically
unbiased and its distribution can be approximated by a Gaussian law (for a fixed u)

√
n

(
F̂ARn (u) − FAR(u)

)
∼ N

(
0,σ2(u)

)
, σ2(u) =

p20(u)

p21(u)

[
1 − p0(u)

p0(u)
+
1 − p1(u)

p1(u)

]
. (6)

This provides an asymptotic confidence interval at level α , F̂ARn (u) ± z1−α/2 σ̂(u)√n ,where z1−α/2 represents the standard
normal quantile at 1 − α/2 and σ̂(u) is the version of σ(u)where p1(u) and p0(u) have been replaced by their empirical
estimators. The drawback of non-parametric estimators like F̂ARn (u) can be seen by considering the standard deviation
σ(u). Whenever lim np0(un ) = 0 and lim p0(un )/p1(un ) ∈ (0, 1] for large n , σ(un )will explode and the confidence interval
will be useless. Consequently, the sample size n should be alwaysmuch greater than the return period of interest. This is
particularly relevant whenever the tail behavior of the random variable of interest, say extreme rainfall, is heavy-tailed,
and becomes paramount if the time and spatial scales are fine. Practitioners are acquaintedwith such problems and
exhaustive numerical sensitivity analysis have been done in this context. To increase the sample size, one simple solution
is to raise computer capacities and producemore simulations with appropriate boundary conditions. This brute-force
option changes the estimation goal, i.e., inferring (3) instead of (1). To get confidence intervals for (1) from estimators of
(3), one need tomodel the error in estimating P (C0) and P (C1), and to include this uncertainty in σ(u).

Paciorek et al. (2018) compared ten statistical methods (Wilson’s method, Koopman’s asymptotic score test
inversion,Wang-Shan exact test inversion, normal-theory with delta method, likelihood-ratio test inversion, bootstrap
normal, percentile bootstrap, basic bootstrap, bootstrap-t and BCa bootstrap) to build confidence intervals for the
relative ratio p1/p0 . When using non-parametric binomial counting, they recommended, based on numerical simulations,
either the Koopman orWang-Shanmethods. They also concluded that existing statistical methods not yet in use for event
attribution have several advantages over the widely-used bootstrap, including better statistical performance in repeated samples
and robustness to small estimated probabilities.

If one wants tomove away from conditional analysis based on the numerical simulation of very large samples at a
high computational cost, a possible avenue is to impose parametric forms on distributions. As p0 and p1 correspond to
rare events, especially in the counterfactual world, EVT represents an attractive alternative to go beyond the range of
the observations.

5.2 | Univariate extreme value theory

Davison and Huser (2015) gave an exhaustive review of the main modeling and estimation strategies to describe

5The same reasoning could bemade for RR(u).
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univariate andmultivariate extremes. In the univariate case (e.g., Coles, 2001; Embrechts et al., 1997), the probability
that some random variable exceeding a well-chosen cutoff level v is larger than x can be approximated by a Generalized
Pareto (GP) tail defined as

P (X > x |X > v ) = H ξ

( x − v
σ

)
,

where x > v , σ > 0, and

H ξ (x ) =

{
(1 + ξx )

−1/ξ
+ , ξ , 0,

exp(−x ), ξ = 0,
(7)

with a+ = max(a, 0). The shape parameter ξ provides provides key information about the tail behavior. A zero shape
parameter corresponds to an exponential tail, while ξ > 0 characterizes heavy tails and ξ < 0 implies a bounded support.
For example, most daily rainfall (e.g., Katz et al., 2002) appear to be slightly heavy-tailed. The GP tail has the important
property of being invariant to thresholding. If X follows a GPDwith shape parameter ξ, then X − v |X > v will also
follow aGDPwith the same shape parameter (the scale parameter σ will vary linearly with the threshold v ). As the GP is
the only continuous distribution with this feature, this explains why exceedances above a high threshold u are likely to
follow aGPD (see, Beirlant et al., 2004; de Haan and Ferreira, 2006, for theoretical aspects). For similar reasons, the
only distribution stable for rescaledmaxima is the so-called generalized extreme value distribution (GEV)

GEV (x ; µ,σ, ξ) = exp
(
−H ξ

( x − µ
σ

))
, (8)

where the new scalar µ corresponds to a location parameter. If the variable of interest corresponds to blockmaxima,
say annual maxima of daily rainfall maxima, a GEV fit can be tested. For exceedances, the GP should be preferred.

The GP andGEV distributions can be viewed as building blocks. For example, in the analysis of record frequency
changes in annual maxima, Naveau et al. (2018) were able, by leveraging the GEV distribution, to simplify the FAR
expression for records (under an easily testable hypothesis) into

f ar (r ) = 1 −
p0,r

p1,r
= (1 − θ)

(
1 −

1

r

)
, θ =

1

E (G (Z ))
− 1,

where the single parameter θ, although a function of the GEV factual and counterfactual parameters, can be estimated
without fitting GEVs.

There aremanyways to estimate the GPD andGEV parameters. For example, likelihood based approaches (e.g.,
Davison and Smith, 1990), methods-of-moments (e.g., Hosking and Wallis, 1987; Diebolt et al., 2008) or Bayesian
inference (e.g., Coles and Tawn, 1996) can be implemented. As noticed by Davison and Huser (2015), the incorporation of
external information and borrowing strength across related time series may require a Bayesian approach; a Markov chain Monte
Carlo approximation to the posterior density of the GEV parameters based on independent maxima is implemented in the R
package evdbayes. Suchmethods are widely used in more complex problems (see, e.g., Cooley et al., 2007; Sang and Gelfand,
2009; Shaby and Reich, 2012; Reich et al., 2013).

EVT techniques that could help tomodel the different source of uncertainties in event attributions have not yet
been fully implemented in EEA. Most EEA studies, via various numerical experiments, are based on simple binomial
counting approaches, sometimes complemented by to a GP fit with covariates (see, e.g., van derWiel et al., 2017; van
Oldenborgh et al., 2017). But, even recent papers comparing statistical methods can bring confusingmessages about
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EVT. For example, Paciorek et al. (2018)wroteWhile EVA is often used for estimating probabilities of extreme events, . . . simple
nonparametric estimators are often a good choice. . . .we focus more on the binomial approach because of its greater generality.
As the main goal of EVT is to extrapolate beyond the range of the data sample, a binomial approach will always put
zero as the inferred value of p for extremes beyond the largest values. As already pointed out, the variance in the
convergence in law for the non-parametric estimator of FAR(u) described by (6) clearly indicates that a non-parametric
approach will not work for very large u . Three possible reasons can be invoked to explain why the EEA community has
not relied on EVT in a systematic way and not yet developed complex EVTmodels.

The first one is that a so-called extreme in EEAmay not be considered as an extreme event by the EVT community.
The latter focuses on very high quantiles, 0.99, 0.999 or even 0.9999,e.g., 10000 year return levels for nuclear safety
design. In such context, it is impossible to use a non-parametric approach to estimate very high quantiles and one needs
to apply the EVT basic principle, i.e., P (X > u) = P (X > u |X > v ) × P (X > v ) for any large v and any u > v can be
approximated by

H ξ

(u − v
σ

)
× P (X > v ).

Given estimates of σ and ξ obtained for the sampled data above the cutoff v , the above equivalence leads to the
estimator

p̂0 = H ξ̂

(u − v
σ̂

)
×
1

n

n∑
i=1

É(Xi > v ).

Here, a non-parametric estimator,∑n
i=1 É(Xi > v ), has been used to estimate P (X > v ) for a large but still moderate

cutoff v , i.e., there are some observations above v . So, classical EVT techniques complement countingmethods when
interpolation above very large observations becomes impossible. Advocating a choice between the binomial and GP
distributions (see, e.g., Paciorek et al., 2018) misses the inherent flexibility of the EVT approach that bridges both.

The second reason for the preference of basic binomial approaches over EVT in most EEA studies may be the
delicate question of the cutoff choice v . If the threshold u is not too large and comparable to v , then a EVT analysis
may not bring strong added value. A large v ensures that the GP approximation is likely to be valid but very few data
points may be available for its fit. A smaller v provides more exceedances, but the GP approximationmay be incorrect.
Many papers discuss this (see, e.g., Bader et al., 2018). In particular, de Haan et al. (2015) offered a general theoretical
framework to explore relative risk ratios in function of the convergence rate towards the GPD. The main objective
of de Haan et al. (2015) was to detect trends, but the proposed methodology could be adapted to the EEA context.
Another possibility is to bypass threshold choice completely and replace it by a smooth transition. This approach has
been applied to hourly and daily rainfall times series (see, e.g., Tencaliec et al., 2019; Naveau et al., 2016).

A third reason is the sample size. Depending on the data at hand, there is a tradeoff between the short length
of instrumental time series (or small ensembles of existing global climate models) and large samples of conditional
simulations. As previously mentioned, there has recently been a strong push to continuously generate numerical
experiments over a small domain with prefixed boundary conditions. Although computationally expensive and tainted
by errormodeling uncertainties due to the choice of the domain size and of the boundary conditioning, these simulations
can produce very large samples (see, e.g., climateprediction.net (Weather@home) in Otto et al., 2018). Provided that
these data correctly mimic the factual and counterfactual worlds, moderately extreme conditional quantiles can be
estimated by binomial count techniques.

In the last two years, some authors have tried to explore a different path based on non-stationary statistical
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methods. In spirit, themain idea is replace large ensemble conditional simulations by transient datasets. For example,
the existing CMIP-style database is readily available for a wide range of global coupledmodels with different forcing
scenarios. These global models do not depend on a prefixed oceanic state. In addition, historical measurements can be
used. Ribes et al. (2019) showed how event attribution can be implemented through the application of non-stationary
statistics to transient simulations, typically covering the 1850-2100 period. They developed techniques for handling a
multi-model synthesis, but relied on a Gaussian assumption. Approaches based on transient global simulations go back
to Kharin and Zwiers (2000, 2005) andKharin et al. (2007) who even leveraged theGEV frameworkwithin a hierarchical
model.

5.3 | Hierarchical modeling

To our knowledge, no comprehensive statistical models dealing with all identified sources of uncertainties have yet been
developed within the EEA and EVT communities. Still, a promising avenue could be the hierarchical modeling of the
different sources of uncertainties. In amultivariateGaussian setup adapted to spatially averaged temperatures, Katzfuss
et al. (2017) used a regression-based attribution Bayesian hierarchical approach tomodel the uncertainty in the true
climate signal under different forcing scenarios and that associatedwith estimating the climate variability covariance
matrix. This Bayesian errors-in-variable model coupled with PCA truncations based on Bayesian model averaging
enabled the authors to incorporate a large spectrum of uncertainties into inference on the regression coefficients, (see,
e.g., Hannart et al., 2014, for attribution errors-in-variable models). This approach does not address the question of
estimating PN, PS and PNS probabilities, see Equation (2). One step in this direction is Hannart and Naveau (2018) who,
under the same type of linearmodel with a built-in hierarchy of uncertainties, were able to improve the quantification of
causal probabilities. One key ideawas to project the signal of interest into a linear subset in order tomaximize the causal
evidence. This strategy appears to bring a significant gain when themodel was assumed to be normally distributed, but
may be challengedwhen the variable of interest departs from normality.

5.4 | Multivariate EVT

Another important step will be to integrate the latest multivariate EVT advances in the EEA context, because most
studies in atmospheric sciences rely on independence. This latter is rarely tenable either in space or time. In addition,
it will underestimate systemic risks and/or miss compound events. More precisely, let Y = (Y1, . . . ,Yd )

T denote a
multivariate random vector with cumulative distribution function F andmarginal cumulative distribution functions
F1, . . . , Fd . In the bivariate case, one could wonder how extreme events are correlated. The classical tail dependence
coefficient χ measures the probability of F1(Y1) being large given that F2(Y2) is large as the quantile level q increases,

χ = lim
q↑1

P [F1(Y1) > q | F2(Y2) > q ] . (9)

To study such summaries, univariate theory based on an asymptotic argument (the block maxima length going to
infinity) has to generalize to amultivariate framework (Coles, 2001; Beirlant et al., 2004; de Haan and Ferreira, 2006).
To do so, let Yi = (Yi1, . . . ,Yi d )T , i ∈ {1, . . . , n }, be n independent and identically distributed (iid) copies of Y. Let
Mn := (Mn,1, . . . ,Mnd ) with Mnj := max(Y1j , . . . ,Ynj ) for j = 1, . . . , d . The cdf F is said to be in the max-domain of
attraction of an extreme-value distributionG if there exist sequences of normalizing constants an = (an1, . . . , and )T > 0
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and bn = (bn1, . . . , bnd )T such that

P
[Mn − bn

an
≤ x

]
= F n (anx + bn ) → G (x), n →∞. (10)

The convergence in (10) implies that themargins F1, . . . , Fd of F are in themax-domain of attraction of the univariate
GEV extreme-value distributionsG1, . . . ,Gd . Let l = (l1, . . . , ld ) denote the vector of lower endpoints ofG . If (10) holds,
we have

max
{
Y − bn
an

, l
}
| Y � bn

d
→ V, n →∞, (11)

where V = (V1, . . . ,Vd )
T is said to follow a multivariate generalized Pareto distribution (Rootzén and Tajvidi, 2006;

Rootzén et al., 2018b). For j ∈ {1, . . . , d }, the conditional random variablesVj | Vj > 0 are univariate GPDs with
parameters σj > 0 and ξj . The properties of themultivariate GPD have been studied in detail by Tajvidi (1996), Rootzén
and Tajvidi (2006), Falk and Guillou (2008), Ferreira and de Haan (2014), and Rootzén et al. (2018b,a), while statistical
modelling is quite recent (Huser et al., 2016; Kiriliouk et al., 2019). In terms of simulation and inference, a key property
is that every standardizedMGP vectorV∗ with σj = 1 and ξj = 0 can be represented as

V∗ = E + U − max
1≤j≤d

Uj , (12)

where E is a unit exponential random variable andU is a d -dimensional random vector independent of E . To illustrate
the variety of extremes generated by such a model, Figure 3 displays the case where U corresponds to a bivariate
Gaussian random vector such thatU1 −U2 ∼ N(β1 − β2, τ2) for some τ > 0. Given the sameGaussianmarginal behavior
with ξ = (0, 0), σ = (1, 1), β = (0, 0), the three panels of Figure 3 show the impact of τ on the dependence strength. In
particular, the tail dependence coefficient (9) can be expressed as

χ = 2

(
1 −

1

1 + 2eτ
2/2Φ(−τ)

)
. (13)

From the three panels, one sees that, as χ increases, the dependence among the bivariate samples increases along the
diagonal for extremes. More complex extremal dependence structures (asymmetric, etc.) can be obtained bymodifying
with the Gaussianmarginal structure.

To explore how quantities like (2) change in a multivariate context, one possibility is to project the multivariate
MGPD vector into a one-dimensional object. If V follows a multivariate GPD with marginal parameters σ and ξ =
(ξ, . . . , ξ)T , then any linear projection with positive coefficients w satisfies wT V | wT V > 0 ∼ GPD(wT σ, ξ). This
property was fundamental to compute and study probabilities of necessary and sufficient causation (Kiriliouk and
Naveau, 2019).

In terms of statistical inference and modeling, the recent work of de Fondeville and his colleagues (see, e.g.,
de Fondeville and Davison, 2019, 2018; Engelke et al., 2019) could also help to build multivariate Pareto processes in
time, space or both.

A drawback ofMGPDmodeling is that, in some important cases like the Gaussian bivariate situation, the coefficient
χ is equal to zero, so the dependence is then hidden in the rate of convergence to zero. To handle this so-called
asymptotic independence, Ledford and Tawn (1996, 1997) measured the speed of the decay toward independence at
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F IGURE 3 Scatterplots and density contours for the bivariate GaussianMGPDmodel (12) with ξ = (0, 0), σ = (1, 1),
β = (0, 0). From left to right, the tail dependence coefficient (13) equals to χ = 0.2, χ = 0.5 and χ = 0.8.

high levels via the coefficient of tail dependence, η ∈ (0, 1] under themodel

P [Y1 > y | Y2 > y ] ∼ L(y )y
1−1/η

whereL(y ) is slowly varying, i.e., L(v y )/L(y ) → 1 for anyv > 0 and y large. If η = 1, then the variables are asymptotically
dependent and asymptotically independent otherwise. As quoted in Davison andHuser (2015)Hence, if an asymptotic
dependence model is wrongly assumed to be valid, probabilities of extremely rare events will be overestimated, and conversely,
potentially leading to serious misestimation of risk . . . In practice, however, the coefficient of tail dependence is difficult to
estimate, as it relates to the joint behavior of the data at infinity. Thus, careful assessment of the plausibility of asymptotic
independence is required. Still, the class of asymptotic independentmodels offers additional tools that have yet to be
used in a EEA context.

6 | CONCLUSIONS

Fromastatistical point of view, thefieldof EEA represents rich territory. It combines various sourcesof uncertainties and
datasets. To enhance causality and to reduce the noise/signal ratio, the need for appropriate definitions of the extreme
event of interest is essential. Themain difficulty is that the classical setup used by EVA statisticians in environmental
studies, one dataset and one statistical model can be too narrow. A research push to frame a generic blueprint (maybe
a Bayesian hierarchical model or a meta-analysis) that integrates different data sources (transient and conditional
simulations, numerical and observational datasets, etc.) appears necessary. The use of numerical models and reanalysis
products in the climate community, with higher accuracy in terms of the spatial and temporal resolution, will likely
increase in the coming years. Still, as the object of interest is the analysis of rare and even very rare events, the
computational costs will stay high and the extreme value community should invent statistical concepts and tools to
deal the estimation of very small p0 and p1. In particular, if p1 is very small, then the corresponding event may be nearly
impossible in the counterfactual world, and one has tomodel extremely raremultivariate events in the counterfactual
setting. Another aspect of causality is the setup of climate numerical experiments with respect tomultiple factors. As
global climate model runs are expensive in terms of resources and computational time, few numerical experiments
can be done in CMIP. From a counterfactual theory point of view, we advocate all-but-one simulations. In terms of
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estimation, only relying on binomial countsmay limit the study of very rare events (going beyond the largest values).
Recent multivariate extreme value advances could help to tackle this issue in a spatio-temporal context.

The following list highlights some challenges and points that needmore statistical development:

• Combining all known sources of uncertainties for extreme climate event analysis. For example, Bayesianmodel
averaging for multivariate extremes (see, e.g., Sabourin et al., 2013) could be a first step. Extending some ideas
of Gaussian hierarchical modeling of Katzfuss et al. (2017) and Hannart and Naveau (2018) to a multivariate
EVA framework could be another direction. Hammerling et al. (2019) laid solid foundations to explore this in the
attribution context.

• Developing statistical strategies to automatically define the extreme event, i.e., relevant spatio-temporal scales of
interest with a given non-stationary random field, remains a key and fundamental problem in EEA.

• Finding a needle in an haystack, i.e., finding some particular event with low probability of occurrence (but with
important impacts) may be particularly sensitive in a non-stationary climate system.

• Summarizing the uncertainty of p0 and p1 with one number. This is particularly important for impact studies and
communication with stakeholders.

Future issues can complement this list and some statistical techniques could be leveraged to address them.

• Compound events (such as simultaneous precipitation deficit and high temperatures), concomitant and concurrent
extremes (see, e.g., Zscheischler et al., 2018) may have a strong impact in hazard and risk assessment. This combina-
tion of causes could lead to underestimation of risk because drivers of extreme events often interact in space and
time. There is a large need for research development in this area.

• Return times of compound events can be tricky to interpret and can lead tomisleading risk assessments. Serinaldi
(2016) listed important points to reduce suchmisinterpretation.

• In statistical environmental studies, the modeling of subasymptotic multivariate extremes described in Section
5.4 has been coupledwith the idea of conditional extremal models, i.e., modeling of themultivariate vector given
than one component is large (see, e.g., Tawn et al., 2018; Huser andWadsworth, 2019; Shooter et al., 2019). This
regression-based approach for extremes, to our knowledge, has not been used in EEA. This could offer newways to
improve causality assessment.

• Instead of sampling all trajectories with a numerical climatemodel, there has been recent interest in coupling large
deviation algorithms within the climate numerical code itself. For example, Ragone et al. (2018) developed rare
event algorithms to compute probabilities of events that could not be observed in direct numerical simulations.
This strategy reduced the computational cost of expensive numerical models for the study of heatwaves in climate
models.

• Model misspecification andmultiple testing in space (see, e.g., Risser et al., 2019) have rarely been addressed by the
EEA community and further development of these tools is needed.

• Another line of approach, not addressed in this review, is the physical explanation of the event itself, i.e., evidencing
the causal mechanistic chain of causation (Trenberth et al., 2015). How to integrate such an approach within
statistical reasoning remains open.



NAVEAU, HANNART AND RIBES 19

ACKNOWLEDGMENTS

Wewould like to Soulivanh Thao and Julien Cattiaux for their helpful comments and discussions. Part of this work
was supported by the French national program FRAISE-LEFE/INSU, Melody-PRC-ANR, Eupheme, FUSIMET (PEPS
I3A), DAMOCLES-COST-ACTION on compound events. Finally, the insightful remarks from the reviewer have greatly
improved the scope and the clarity of this work.

REFERENCES

Angélil, O., Stone, D. andWehner, M. (2017) An independent assessment of anthropogenic attribution statements for recent
extreme temperature and rainfall events. Journal of Climate, 30, 5–16.

Bader, B., Yan, J. and Zhang, X. (2018) Automated threshold selection for extreme value analysis via ordered goodness-of-fit
tests with adjustment for false discovery rate. The Annals of Applied Statistics, 12, 310–329.

Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004) Statistics of Extremes: Theory and Applications. Wiley : Hoboken,
ISBN:978-0-471-97647-9, 522 pages.

Cattiaux, J. and Ribes, A. (2018) Defining single extreme weather events in a climate perspective. Bulletin of the American
Meteorological Society, 99, 1557–1568.

Chen, Y., Moufouma-Okia, W., Masson-Delmotte, V., Zhai, P. and Pirani, A. (2018) Recent progress and emerging topics on
weather and climate extremes since the fifth assessment report of the intergovernmental panel on climate change. Annual
Review of Environment and Resources, 43, 35–59. URL: https://doi.org/10.1146/annurev-environ-102017-030052.

Coles, S. G. (2001) An Introduction to Statistical Modeling of Extreme Values. New York: Springer.
Coles, S. G. and Tawn, J. A. (1996) A bayesian analysis of extreme rainfall data. Applied Statistics, 45, 463–478.
Cooley, D., Hunter, B. D. and Smith, R. L. (2019)Handbook of Environmental and Ecological Statistics, chap. Univariate andMulti-
variate Extremes for the Environmental Sciences. Chapman &Hall/CRCHandbooks ofModern Statistical Methods.

Cooley, D., Nychka, D. and Naveau, P. (2007) Bayesian spatial modeling of extreme precipitation return levels. Journal of The
American Statistical Association, 102, 824–840.

Davison, A. C. and Huser, R. G. (2015) Statistics of extremes. Annual Review of Statistics and Its Application, 2, 203–235. URL:
https://doi.org/10.1146/annurev-statistics-010814-020133.

Davison, A. C. and Smith, R. L. (1990) Models for exceedances over high thresholds (with comments). Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 52, 393–442.

Diebolt, J., Guillou, A., Naveau, P. andRibereau, P. (2008) Improving probability-weightedmomentmethods for the generalized
extreme value distribution. REVSTAT - Statistical Journal, 6, 33–50.

Embrechts, P., Klüppelberg, C. andMikosch, T. (1997)Modelling Extremal Events for Insurance and Finance, vol. 33 of Applications
of Mathematics. Springer-Verlag, Berlin.

Engelke, S., de Fondeville, R. andOesting,M. (2019) Extremal behaviour of aggregated datawith an application to downscaling.
Biometrika, 106, 127–144.

Falk, M. and Guillou, A. (2008) Peaks-over-threshold stability of multivariate generalized Pareto distributions. Journal of Mul-
tivariate Analysis, 99, 715–734.

Ferreira, A. F. and deHaan, L. (2014) The generalized Pareto process; with a view towards application and simulation. Bernoulli,
20, 1717–1737.



20 NAVEAU, HANNART AND RIBES

Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D. and al. (2012)Managing the Risks of Extreme Events and Disasters to Advance
Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate. Cambridge,
UK: Cambridge Univ. Press.

de Fondeville, R. and Davison, A. C. (2018) High-dimensional peaks-over-threshold inference. Biometrika, 105, 575–592.
— (2019) Functional peaks-over-threshold analysis and generalized r-Pareto processes. Submitted.
Gilleland, E., Katz, R. W. and Naveau, P. (2017) Quantifying the risk of extreme events under climate change. CHANCE, 30,
30–36.

de Haan, L. and Ferreira, A. F. (2006) Extreme Value Theory: an Introduction. Springer-Verlag NewYork.
de Haan, L., Tank, A. and Neves, C. (2015) On tail trend detection: modeling relative risk. Extremes, 18, 141–178.
Hammerling, D., Katzfuss, M. and Smith, R. L. (2019)Handbook of Environmental and Ecological Statistics, chap. Climate Change
Detection and Attribution. Chapman &Hall/CRCHandbooks ofModern Statistical Methods.

Hannart, A. and Naveau, P. (2018) Probabilities of causation of climate changes. Journal of Climate, 31, 5507–5524.
Hannart, A., Pearl, J., Otto, F. E. L., Naveau, P. andGhil,M. (2016)Counterfactual causality theory for the attribution ofweather
and climate-related events. Bulletin of the AmericanMeteorological Society, 97, 99–110.

Hannart, A., Ribes, A. andNaveau, P. (2014)Optimalfingerprinting undermultiple sources of uncertainty. Geophysical Research
Letters, 41, 1261–1268.

Hosking, J. R.M. andWallis, J. R. (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technomet-
rics, 29, 339–49.

Huser, R. G., Davison, A. C. and Genton,M. G. (2016) Likelihood estimators for multivariate extremes. Extremes, 19, 79–103.
Huser, R. G. andWadsworth, J. L. (2019) Modeling spatial processes with unknown extremal dependence class. Journal of the

American Statistical Association, 114, 434–444.
Katz, R. W., Parlange, M. B. and Naveau, P. (2002) Statistics of extremes in hydrology. Advances in Water Resources, 25, 1287–
1304.

Katzfuss, M., Hammerling, D. and Smith, R. L. (2017) A Bayesian hierarchical model for climate change detection and attribu-
tion. Geophysical Research Letters, 44, 5720–5728.

Kew, S. F., Philip, S. Y., Jan vanOldenborgh, G., van der Schrier, G., Otto, F. E. L. and Vautard, R. (2019) The exceptional summer
heat wave in Southern Europe 2017. Bulletin of the AmericanMeteorological Society, 100, S49–S53. URL: https://doi.org/
10.1175/BAMS-D-18-0109.1.

Kharin, V. V. and Zwiers, F. W. (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled
atmosphere–ocean GCM. Journal of Climate, 13, 3760–3788.

— (2005) Estimating extremes in transient climate change simulations. Journal of Climate, 18, 1156–1173.
Kharin, V. V., Zwiers, F. W., Zhang, X. and Hegerl, G. C. (2007) Changes in temperature and precipitation extremes in the
IPCC ensemble of global coupled model simulations. Journal of Climate, 20, 1419–1444. URL: https://doi.org/10.1175/
JCLI4066.1.

Kim, Y. H., Min, S. K., Zhang, X., Zwiers, F., Alexander, L. V., Donat, M. G. and Tung, Y.-S. (2016) Attribution of extreme tempera-
ture changes during 1951–2010. Climate Dynamics, 46, 1769–1782.

King, A. D. (2017) Attributing changing rates of temperature record breaking to anthropogenic influences. Earth’s Future, 5,
1156–1168.



NAVEAU, HANNART AND RIBES 21

Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. and Anslow, F. (2017) Attribution of extreme events in arctic
sea ice extent. Journal of Climate, 30, 553–571.

Kirchmeier-Young, M. C., Zwiers, F.W. and Gillett, N. (2019) Attribution of the influence of human-induced climate change on
an extreme fire season. Earth’s Future, 7, 2–10.

Kiriliouk, A. and Naveau, P. (2019) Climate extreme event attribution using multivariate peaks-over-thresholds modeling and
counterfactual theory. Submitted, https://arxiv.org/abs/1908.03107.

Kiriliouk, A., Rootzén, H., Segers, J. andWadsworth, J. L. (2019) Peaks over thresholdsmodellingwithmultivariate generalized
Pareto distributions. Technometrics, 61, 123–135.

Ledford, A. and Tawn, J. A. (1996) Statistics for near independence inmultivariate extreme values. Biometrika, 83, 169–187.
— (1997)Modelling dependencewithin joint tail regions. Journal of the Royal Statistical Society: Series B (StatisticalMethodology),
59, 475–499.

Luu, L. N., Vautard, R., Yiou, P., van Oldenborgh, G. J. and Lenderink, G. (2018) Attribution of extreme rainfall events in the
south of france using euro-cordex simulations. Geophysical Research Letters, 45, 6242–6250.

National Academies of Sciences, Engineering and Medicine (2016) Attribution of Extreme Weather Events in the Context of Cli-
mate Change. Washington, DC: The National Academies Press. URL: https://www.nap.edu/catalog/21852/attribution-
of-extreme-weather-events-in-the-context-of-climate-change.

Naveau, P., Huser, R. G., Ribereau, P. and Hannart, A. (2016) Modelling jointly low, moderate and heavy rainfall intensities
without a threshold selection. Water Resources Research, 52, 2753–2769.

Naveau, P., Ribes, A., Zwiers, F.W., Hannart, A., Tuel, A. andYiou, P. (2018)Revising return periods for record events in a climate
event attribution context. Journal of Climate, 31, 3411–3422.

van Oldenborgh, G. J., van derWiel, K., Sebastian, A., Singh, R., Arrighi, J., Otto, F., Haustein, K., Li, S., Vecchi, G. and Cullen, H.
(2017) Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 12, 124009.
URL: https://doi.org/10.1088%2F1748-9326%2Faa9ef2.

Otto, F., Philip, S., Kew, S., Li, S., King, A. and Cullen, H. (2018) Attributing high-impact extreme events across timescales—a
case study of four different types of events. Climatic Change, 149, 399–412.

Paciorek, C. J., Stone, D. A. andWehner, M. F. (2018) Quantifying statistical uncertainty in the attribution of human influence
on severe weather. Weather and Climate Extremes, 20, 69 – 80. URL: http://www.sciencedirect.com/science/article/
pii/S2212094717300841.

Pearl, J. (2009) Causality: Models, Reasoning, and Inference. Cambridge University Press, second edn.
Ragone, F., Wouters, J. and Bouchet, F. (2018) Computation of extreme heat waves in climate models using a large deviation
algorithm. Proceedings of the National Academy of Sciences, 115, 24–29. URL: https://www.pnas.org/content/115/1/24.

Reich, B. J., Shaby, B. A. and Cooley, D. (2013) A hierarchical model for serially dependent extremes: a study of heat waves in
the western US. Journal of Agricultural, Biological and Environmental Statistics, 19, 119–135.

Resnick, S. I. (1987) Extreme Values, Regular Variation, and Point Processes. Springer-Verlag NewYork Berlin Heideberg.
Ribes, A., Thao, S. and Cattiaux, J. (2019) Describing the relationship between a weather event and climate change: a new
statistical approach. Submitted.

Ribes, A., Zwiers, F.W., Azaïs, J.M. andNaveau, P. (2016)Anewstatistical approach to climate changedetectionandattribution.
Climate Dynamics, 29–56.



22 NAVEAU, HANNART AND RIBES

Risser,M. D., Paciorek, C. J. and Stone, D. A. (2019) Spatially dependentmultiple testing undermodelmisspecification, with ap-
plication to detection of anthropogenic influence on extreme climate events. Journal of the American Statistical Association,
114, 61–78. URL: https://doi.org/10.1080/01621459.2018.1451335.

Rootzén, H. and Katz, R. W. (2013) Design life level: Quantifying risk in a changing climate. Water Resources Research, 49,
5964–5972.

Rootzén, H., Segers, J. and Wadsworth, J. L. (2018a) Multivariate generalized Pareto distributions: parametrizations, repre-
sentations and properties. Journal of Multivariate Analysis, 165, 117–131.

— (2018b)Multivariate peaks over thresholds models. Extremes, 21, 115–145.
Rootzén, H. and Tajvidi, N. (2006)Multivariate generalized Pareto distributions. Bernoulli, 12, 917–930.
Sabourin, A., Naveau, P. andFougères, A. L. (2013)Bayesianmodel averaging formultivariate extremes. Extremes,16, 325–350.
Sang, H. and Gelfand, A. (2009) Hierarchical modeling for extreme values observed over space and time. Environmental and

Ecological Statistics, 16, 407–426.
Serinaldi, F. (2016) Canwe tellmore thanwe can know? the limits of bivariate drought analyses in theUnited States. Stochastic

Environmental Research and Risk Assessment, 30, 1691–1704.
Shaby, B. A. and Reich, B. J. (2012) Bayesian spatial extreme value analysis to assess the changing risk of concurrent high
temperatures across large portions of European cropland. Environmetrics, 23, 638–48.

Shepherd, T. G. (2016) A common framework for approaches to extreme event attribution. Current Climate Change Reports, 2,
28–38.

Shooter, R., Ross, E., Tawn, J.A. and Jonathan, P. (2019)Onspatial conditional extremes forocean stormseverity. Environmetrics,
1–18.

Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S. and et al. (2013) Climate Change 2013: The Physical Science Basis. Contri-
bution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:
Cambridge Univ. Press.

Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J. P., van Oldenborgh, G., Vautard, R., von Storch, H., Walton,
P., Yiou, P. and Zwiers, F. W. (2016) Attribution of extreme weather and climate-related events. WIREs Climate Change, 7,
23–41.

Stott, P. A., Stone, D. A. and Allen, M. R. (2004) Human contribution to the European heatwave of 2003. Nature, 432, 610–613.
Tajvidi, N. (1996)Characterisation andSomeStatistical Aspects ofUnivariate andMultivariateGeneralizedParetoDistributions. Ph.D.
thesis, Department ofMathematics, Chalmers, Göteborg.

Tawn, J. A., Shooter, R., Towe, R. and Lamb, R. (2018)Modelling spatial extreme eventswith environmental applications. Spatial
statistics, 28, 39–58.

Tencaliec, P., Favre, A., Naveau, P., Prieur, C. andNicolet, G. (2019) Flexible semiparametric generalized Paretomodeling of the
entire range of rainfall amount. Environmetrics, https://doi.org/10.1002/env.2582, 1–20.

Trenberth, K. E., Fasullo, J. T. and Shepherd, T. G. (2015) Attribution of climate extreme events. Nature Climate Change, 5, 725–
730.

Vautard, R., van Oldenborgh, G. J., Otto, F. E. L., Yiou, P., de Vries, H., vanMeijgaard, E., Stepek, A., Soubeyroux, J. M., Philip, S.,
Kew, S. F., Costella, C., Singh, R. and Tebaldi, C. (2019) Human influence on european winter wind storms such as those of
january 2018. Earth SystemDynamics, 10, 271–286.



NAVEAU, HANNART AND RIBES 23

van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S., Vecchi, G. A., Singh, R. K., Arrighi, J. and Cullen, H.
(2017) Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change.
Hydrology and Earth System Sciences, 21, 897–921. URL: https://www.hydrol-earth-syst-sci.net/21/897/2017/.

Yiou, P., Cattiaux, J., Faranda, D., Kadygrov, N., Jézéquel, A., Naveau, P., Ribes, A., Robin, Y., Thao, S., van Oldenborgh, G. J.
and Vrac, M. (2019) Analyses of the northern european summer heatwave of 2018. Bulletin of the American Meteorological
Society, in review.

Yiou, P., Jezequel, A., Naveau, P., Otto, F. E. L., Vautard, R. and Vrac, M. (2017) A statistical framework for conditional extreme
event attribution. Advances in Statistical Climatology, Meteorology and Oceanography, 3, 17–31.

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N.,
Leonard, M., Wahl, T. and Zhang, X. (2018) Future climate risk from compound events. Nature Climate Change, 8, 469–477.
URL: https://doi.org/10.1038/s41558-018-0156-3.


