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Francesca Poggiolesi

Grounding principles for (relevant) im-
plication

Abstract
Most of the logics of grounding that have so far been proposed contain

grounding axioms, or grounding rules, for the connectives of conjunction,
disjunction and negation, but little attention has been dedicated to the
implication connective. The present paper aims at repairing this situation
by proposing adequate grounding principles for relevant implication. Be-
cause of the interaction between negation and implication, new grounding
principles concerning negation will also arise.

1 Introduction

In the last ten years the notion of grounding has become a vibrant area of
research, with the concept being studied from several different perspectives:
some papers retrace the history of grounding (e.g. see Betti (2010); Roski (2017);
Rumberg (2013)), others deal with the metaphysics of grounding (e.g. see Fine
(2012a); Schaffer (2009)), others analyse the properties enjoyed by the notion
of grounding (e.g. Krämer (2013); de Rosset (2013)). Yet another approach
concerns the logic of grounding: several different logics attempting to identify
the structure underlying the notion of grounding have been developed. These
logics differ in that they treat the notion of grounding either as a connective
(e.g. see Correia (2014); Fine (2012b); Schnieder (2011)), or as a predicate (e.g.
Korbmacher (2017)), or as a meta-linguistic relation (see Poggiolesi (2018)).
They converge in that they present grounding axioms, or grounding rules, for
the classical connectives of conjunction, disjunction and negation. However,
perhaps unsurprisingly, little has been said about the connective of implication.
More precisely, Schnieder (2011) is the only author who has explicitly formulated
the grounding rules for implication, which are the following ones:

B
A→ B because B

→1
¬A

A→ B because ¬A →2

These rules should be read in the following way. Suppose that B is true, then
A→ B is true because of B (or B is the ground of A→ B); suppose that ¬A is
true, then A→ B is true because of ¬A (or ¬A is the ground of A→ B). Thus
the grounds of A→ B are ¬A or B.

Let us confront these formal grounds for implication with some intuitions
that might naturally arise when considering ordinary-language conditionals. Let
us for example take into account the following three sentences:
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1. “If the glass is thrown, then it falls,”

2. “If the ball is pushed, it will roll,”

3. “If snow is white, it is not black.”

What are the reasons for the truth of these sentences which all have the form “if
A, then B”? For the first conditional the answer seems to be the law of gravity:
it is because there is the law of gravity that if the glass is thrown, then it falls.
For the second conditional, the ground seems to be “the ball is a sphere:” it
is because the ball is a sphere that if it is pushed, then it rolls. And for the
third and last condition the answer seems to be “snow only has one color:” it is
because snow only has one color that if it is white, it is not black.

These examples suggest an intuitive pattern, that will be called pattern?,
concerning the grounds of conditionals: the ground of a conditional of the form
“if A, then B” is neither ¬A nor B but a sentence C such that from A and C,
B follows1. These intuitions formulated in a completely non-formal way seem
to be both natural and reasonable. Moreover, they only apply to a certain type
of conditionals, namely indicative conditionals characterized by a connection
between antecedent and consequent. This connection is very important since it
precisely represents that which is grounded.

There is thus a contrast between, on the one hand, Schnieder’s rules accord-
ing to which the grounds of an implication are basically its truth-conditions,
and, on the other hand, the intuitions that the grounds of an implication is a
sentence C such that the consequent (of the implication) follows from the an-
tecedent (of the implication) and C. Instead of arguing which interpretation of
the grounds of a conditional is the most adequate – this might be interesting
task for further research – we will follow an analysis recently put forward in
Poggiolesi (2019) according to which there actually is a way to accommodate
these two divergent approaches at the formal level: indeed while Schnieder’s
rules are suited for the material implication and thus find their natural habi-
tat in classical logic, the insights that we have just illustrated are suited for
relevant implication and should thus be further developed in the framework of
relevance logic (e.g. see Anderson and Belnap (1975); Mares (2014); Poggiolesi
(2020); Dunn and Restall (2002)). The aim of the present work is precisely this,
namely to further develop the insights just exposed and to formulate adequate
grounding principles for relevant implication. To develop our approach, we will
rely on the work of Poggiolesi (2016b), who presents a definition of the notion
of complete and immediate formal grounding, which naturally motivates and
justifies grounding principles for the classical connectives. In this paper we will
modify Poggiolesi’s definition in order to develop natural and justified grounding
principles for the relevant implication.

Another reason for starting from Poggiolesi’s approach is that her way of
treating the grounds of sentences in negative form is in sync with previous

1From now on, we use the term following from in Anderson and Belnap (1975)’s sense. B
follows from A,C if there is a deduction of B from A,C which actually uses A,C (and A,C
alone).
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intuitions about the grounds of indicative conditionals being characterized by a
connection between antecedent and consequent. Indeed, Poggiolesi’s analysis is
faithful to the intuition that the ground of a sentence like “it is not raining” is the
sentence “it is sunny,” which is such that from “it is sunny” and “it is raining”
a contradiction follows. At the formal level, this is captured by grounding
principles that all internalize the following schema: the ground of a formula
¬A is a formula B (having a certain characteristic, called complexity) such that
from A and B a contradiction is (relevantly) derivable.2 This similarity suggests
that Poggiolesi’s framework may be a fruitful starting point for our project.

Note that as the approach of Poggiolesi (2016b) only provides complete3 and
immediate grounds for the classical connectives, our proposal, being based on
it, will only provide complete and immediate grounds for (relevant) implication.
The study of other types of grounds - complete and mediate, partial and imme-
diate, partial and mediate - for implication is left for further research. Finally,
our study being the first framework where negation and (relevant) implication
interact, we will also enhance the complete and immediate grounding princi-
ples governing negation, notably adding principles regulating the complete and
immediate grounds of negation of implication.

The paper is organized as follows. In Section 2 we will briefly remind the
reader the definition of the notion of complete and immediate grounding in
the classical framework developed by Poggiolesi (2016b). In Section 3 we will
adapt this definition for the framework of relevant logic. While in Section 4 we
will discuss the grounding principles concerning implication which emerge from
the account of Section 3, in Section 5 we will discuss the grounding principles
concerning the negation of implication which emerge from the account of Section
3. In Section 6 we will draw some conclusions.

2 A definition of the notion of complete and
immediate formal grounding in the classical
framework

We use this section to briefly recall the definition proposed in Poggiolesi (2016b)
of the notion of complete and immediate formal grounding, which will play an
important role in the sequel. Two very simple ideas motivate it. The first
consists in organizing all formulas of the propositional classical language in a
grounding hierarchy: each level of the hierarchy contains formulas of different
complexity, with complexity increasing from bottom to top. We will call this
complexity g-complexity to differentiate it from the standard notion of logical
complexity.

Once all formulas are organized into the hierarchy, the task is to identify

2Even if Poggiolesi’s approach is developed in classical logic, the derivations she uses for
negative formulas are clearly relevant.

3Note that complete grounds are different from full grounds, which are often advocated in
the literature. On the difference, see Fine (2012b); Poggiolesi (2016a).
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the formulas that stand in a dependence relation. But how is the dependence
relation formally defined? Here it is where the second idea comes in: dependency
is formalized by the two clauses of positive and negative derivability. Positive
derivability states that the conclusion should be derivable from its grounds,
while negative derivability states that the negation of the conclusion should be
derivable from the negation of each ground. Thus, according to Poggiolesi’s
approach, a grounding relation is nothing but a dependence relation (given by
positive and negative derivability) with an asymmetry or directionality, which
is given by the increase of complexity from the grounds to the conclusion.

Note that the account put forward in Poggiolesi (2016b) involves a distinction
between grounds and robust conditions, which can be described briefly on the
example of a disjunction like A∨B, in a situation where the formula A is true.
In this case, A is certainly a ground for A ∨ B; but in order for A to be the
complete ground for A∨B, it is necessary to specify that B is false (i.e. that B
is not also a ground for A∨B); in other terms, it is the falsity of B that ensures
that, or is a (robust) condition for A to be the complete ground for A ∨ B.
Thus, A is the complete and immediate formal ground for A ∨ B under the
robust condition that B is false.4 The reader is referred to Poggiolesi (2016b)
for a detailed explanation and discussion of the idea of robust conditions in a
grounding framework. Robust conditions are denoted by square brackets and
will be introduced in Proposition 2.8.

We now present the formalism inspired by these ideas. We refer the reader
to Poggiolesi (2016b) for an even more detailed explanation of the notions in-
troduced here.

Definition 2.1. The classical language Lc is composed of a denumerable stock
of propositional atoms (p, q, r, . . . ), the logical operators ¬, ∧ and ∨, the
parentheses (, ). The connectives → and ↔ are defined as usual; the symbol ⊥
is defined as A ∧ ¬A.

Once the classical language Lc is given, we can standardly define, by means
of the classical Hilbert system C (e.g. see Troelstra and Schwichtenberg (1996)),
the notion of classical derivability. We will write M `C A to denote the fact
that the formula A is derivable in the Hilbert system for classical logic C from
the multiset5 of formulas M .

We now introduce the key notion of g-complexity, which is a way of assigning
a number to each formula of the language Lc. The way that number is calculated
reflects deep grounding-relevant features. As we will see, g-complexity leads to
the identification of the relation of being completely and immediately less g-
complex : if a multiset M is completely and immediately less g-complex than a
formula A, then the sum of the g-complexity of its members is one less than the
g-complexity of A.

Definition 2.2. As it is standard, we call atoms as well as negation of atoms
literals. l, l′, ... denote literals.

4Even if it is not spelled out in these terms, a similar idea can be found in Fine (2010).
5We work with multisets of formulas rather than with sets of formulas because we need to

take into account the number of occurrences of each formula of M.
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Definition 2.3. The g-complexity of a formula A ∈ Lc, gcm(A), is defined in
the following way:

- gcm(l) = 0,

- gcm(¬¬A) = 1+ gcm(A),

- gcm(A ◦B) = gcm¬(A ◦B) = 1 + gcm(A) + gcm(B).

where the symbol ◦ stands for either conjunction or disjunction.
To understand the notion of g-complexity, it must be kept in mind that

grounding is concerned entirely with truths. Accordingly, the appropriate notion
of complexity should track relationships among the truths expressed by the
formulas if they were true. If A and B express truths, then the truth expressed
by A∧B or A∨B is obtained from the previous truths using a single operation,
just as the formulas A∧B and A∨B are constructed from the formulas A and
B using a single connective. Counting the connective in this case is faithful to
the relationship of interest among truths and indeed gcm(A ◦ B) = gcm(A) +
gcm(B) +1.

By contrast, the negation is different, because there is no sense in which if a
formula of the form ¬A expresses a truth, then that truth is constructed from
A itself. Consider for instance the formulas p and ¬p (namely the literals). p
is atomic thus has g-complexity 0, but does that mean that ¬p should count as
having g-complexity 1? That would be justified if the truth ¬p (when it is a
truth) was constructed from the truth p; but this is not the case in general, not
least because when one of the formulas is a truth, the other (often) is not. From
the point of view of grounding, which deals solely in truths, there is no truth
from which ¬p can be formally constructed, so, like p, it is atomic. Similar
points hold for formulas of the form A, ¬A, where A is either a conjunction
or a disjunction: the complexity of the latter cannot be counted as one more
than the complexity of the former, since it is not reducible to it. Therefore
in the formula ¬A (where A does not itself start with a negation), the only
g-complexity to count is that of A. This is precisely what Defintion 2.3 does,
by setting the complexity of A ◦B and ¬(A ◦B) on the same level.

The case of the double negation, however, is different. A formula like ¬¬A,
if true, can be reduced to another, simpler truth, namely A. Moreover, such
reduction is direct: there is no “intermediate” truth that one passes through
to obtain the former from the latter. Thus, it makes sense to count the g-
complexity of ¬¬A as equal to that of A plus one.

Let us now move to the key notion of being completely and immediately less g-
complex. In order to define this notion, we first need to introduce other notions,
namely that of converse of a formula, and the relations of a-c equivalence and
∼=. (The notion of converse of a formula and the relation ∼= will be directly used
to define the relation of “being completely and immediately less g-complex”;
the relation of a-c equivalence serves to define the relation ∼=).

Definition 2.4. Let D be a formula. The converse of D, written D∗, is defined
in the following way
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D∗ =

{
¬n−1E, if D = ¬nE and n is odd
¬n+1E, if D = ¬nE and n is even

where the principal connective of E is not a negation, n > 0 and 0 is taken to
be an even number.6

Note that the advantage of working with the notion of converse of a formula
A rather than the negation of the formula A is that, while negation might
increase the g-complexity of A, the converse of A is a formula B which has the
same g-complexity has A. Let us provide some examples that help to clarify
Definition 2.4. If D = ¬¬¬¬p, then its converse, D∗, is ¬¬¬¬¬p. If D =
¬(A ∧ B), then its converse, D∗, is (A ∧ B); finally, if D = (A ∨ B), then its
converse, D∗, is ¬(A ∨ B). From now on we will use capital letters to refer to
formulas of the language Lc and their converse.

Definition 2.5. Consider a formula A. We will say that A is a-c equiv (for
associatively and commutatively equivalent) to B, if, and only if, A can be ob-
tained from B by applications of associativity and commutativity of conjunction
and disjunction.

Let us provide some examples of formulas that are a-c equiv. If A is of the
form E∧F , then the formula F ∧E is a-c equiv to it. To take another example,
if A is of the form ¬((B ∨ C) ∧ (D ∨ F )) the formulas ¬((C ∨ B) ∧ (D ∨ F )),
¬((B ∨ C) ∧ (F ∨D)), ¬((C ∨B) ∧ (F ∨D)) are a-c equiv to it.

Definition 2.6. For any two formulas A,B, A ∼= B if, and only if:

A is a-c equiv to B or A is a-c equiv to B∗

As extensively discussed in Poggiolesi (2016b), two formulas A and B stand
in the relation denoted by ∼= when they are about, or pertain to, or concern the
same issue. The relation ∼= is thus analogous (though not equivalent) to the
notion of factual equivalence discussed in Correia (2014, 2016).

Definition 2.7. Given a multiset of formulas M and a formula C of the classical
language Lc, we say that M is completely and immediately less g-complex than
C, if, and only if:

- C ∼= ¬¬B and M = {B} or M = {B∗}, or

- C ∼= (B ◦ D) and M = {B,D}, or M = {B∗, D}, or M = {B,D∗}, or
M = {B∗, D∗}.

The multiset M is completely and immediately less g-complex than the for-
mula C since it contains all those ‘subformulas’7 of C which are such that the
sum of their g-complexity is one less than that of C.

6Note that ¬0E is just E. Also we keep the term converse for continuity with Poggiolesi’s
work. However, one should not confuse ∗ with an idempotent operator.

7For the rigorous definition of subformula in a grounding framework see Poggiolesi (2016b).
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Definition 2.8. For any consistent multiset of formulas C ∪M such that C
and M are formulated in the classical language Lc, we say that, under the ro-
bust condition C (that may be empty), M completely and immediately formally
grounds A, in symbols [C] M |∼ A, if and only if:

- M `C A

- C,¬(M) `C ¬A

- C ∪M is completely and immediately less g-complex than A in the sense
of Definition 2.7.

where ¬(M) := {¬B|B ∈M}.8

Under the robust condition C, the multiset M completely and immediately for-
mally grounds A if, and only if, (i) A is derivable from M – positive derivability;
(ii) ¬A is derivable from ¬(M) plus C – negative derivability; (iii) C ∪M is
completely and immediately less g-complex than A.

Note that if this definition, together with the classical language on which it
is based, was extended to cover the grounds of material implication, then such
grounds would seemingly be similar to those for the disjunction connective and
thus in line (though formulated in a different framework) with the grounds put
forward by Schnieder (2011). However, as almost everyone who learns the prin-
ciples of classical logic for the first time experiences a feeling of dissatisfaction
with material implication and thus comes to be convinced that this connective
does not really represent the conditional that we actually use, in an analogous
way, when thinking of the grounds of conditionals in the natural language (see
the Introduction), it seems that these are different from those that emerge in
the classical setting. Because of this difference, the grounds for conditionals
merits further examination and this is precisely what we will do in the rest of
the paper, combining the relevance approach with Poggiolesi’s account.

3 A definition of the notion of complete and im-
mediate formal grounding in a relevant frame-
work

We will use this section to provide a definition of the notion of complete and
immediate grounding that conservatively extends Definition 2.8 and properly
deals with relevant implication. First of all note that one of the main charac-
teristics of Definition 2.8 lies in its flexibility: since grounding is relative to the

8Note that when the multiset M is composed of only one formula, then positive and
negative derivability amounts to an equivalence relation. This is typically the case of the two
formulas A and ¬¬A, which although equivalent, are such that A completely and immediately
grounds ¬¬A and not viceversa. While other accounts of grounding (e.g. Fine (2012b,a)) take
this asymmetry as primitive, Definition 2.8 explains why A grounds ¬¬A and not viceversa:
because only in one case the g-complexity increases from the grounds to the conclusion.
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notion of derivability and g-complexity, grounding is also relative to the logic in
which derivability and g-complexity are defined. Poggiolesi uses classical deriv-
ability and a notion of g-complexity conceived for classical connectives since she
is interested in the grounding analysis of classical connectives. But if in the
definition we use derivability in a relevance logic and a g-complexity conceived
for relevant connectives, we will end up with a grounding relation appropriate
for a relevant framework. In what follows, we will consider a grounding relation
in terms of derivability in the relevant Hilbert system R (see Anderson and Bel-
nap (1975); Mares (2014); Dunn and Restall (2002)); this will naturally provide
grounding principles for the relevant conditional of R. We chose to work with
R since amongst relevance logics it is probably the most well-known.

Definition 3.1. The relevant language Lr is composed of a denumerable stock
of propositional atoms (p, q, r, . . . ), the logical operators ¬, ∧, ∨ and →, the
parentheses (, ). Propositional formulas are standardly constructed and the set
of propositional formulas so defined is denoted by PF.

Once the relevant language Lr, together with a set of propositional formulas
PF, is given, we can introduce the Hilbert system R, whose axioms and rules
are shown in Figure 2. We will write M `R A to denote that “there is a proof in
R that M entails A” in the sense of Anderson and Belnap (1975, p.277).9 An
important property of the relevant system R linked to this notion of entailment
is the Entailment theorem, namely :

Theorem 3.2. For any formula A and multiset M ∈ Lr, we have that: M `R A
if, and only if, `R

∧
M → A

Proof. From left to right using Anderson and Belnap’s theorem and the reason-
ing in its proof, in particular the relation with the natural deduction calculus
for R, see (Anderson and Belnap, 1975, §23.6, §27.2). From right to left, an
immediate application of the rules of the Hilbert calculus.

As explained by Dunn and Restall (2002), the system R has both an al-
gebraic semantics and a frame-semantics. The former has been introduced by
Dunn (1970), whilst the latter has been developed by Urquhart (1972); Fine
(1974) and Routley and Meyer (1973). Routler and Meyer’s approach is proba-
bly the most well-known (see Mares (2014)) and it is based on the idea of inter-
preting the conditional by means of a ternary relation Rijz such that i |= A→ B
if, and only if, ∀j, z ∈ W (if Rijz and j |= A, then z |= B). In this approach,
while the connectives of conjunction and disjunction are treated classically, the
negation connective is treated by an unary operation + on worlds, such that for
each world i, there is a world i+, i |= ¬A if, and only if, i+ 2 A.10 We will not

9This notion corresponds to a derivation from M to A with control indexes (namely M
and A have the same set of indexes) in the natural deduction calculus for R, see Dunn and
Restall (2002).

10Differently from worlds of Kripke semantics, worlds of the relevant approach can be either
inconsistent or incomplete. This is due to fact that formulas as p ∧ ¬p→ q or p→ q ∨ ¬q are
not wanted to be proved to be valid. And for that matter, we need words to be able to satisfy
both p and ¬p, or to not satisfy neither q nor ¬q.
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Figure 1: Truth in a relevant model M
T1 A is true in M if, and only if, ¬¬A is,

T2 A ∧B is true in M if, and only if, A is and B is,

T3 A ∨B is true in M if, and only if, A is or B is.

dwell on details here; a clear and rigorous explanation can be found in Dunn
and Restall (2002). Let us however underline two important points that will be
useful later. First of all, by denoting with R+ the class of relevant frames of
Routley and Meyer (1973), the soundness and completeness theorem is provable
for the logic R.

Theorem 3.3. For any formula A ∈ Lr, we have that: A is provable in the
relevant system R if, and only if, A is valid in the class of frames R+.

Proof. See (Dunn and Restall, 2002, p.70-77).

Secondly, let R+ be a relevant frame and M a model based on that frame.
Then the facts listed in Figure 1 hold in a model M.

In what follows we will formulate a definition of the notion of complete and
immediate formal grounding in a relevant framework. In order to contain the
complexity of the issue, we will restrict our attention on the grounds of those
implicative formulas which contain conjunction, disjunction and negation, but
are not in their turn composed of other implications. We leave the grounding
analysis of these formulas for future research.

Definition 3.4. Given the set PF of all formulas of the language Lr we isolate
the subset PF→ that only contains those formulas that do not contain nested
implications, i.e. if there is an implication, it does not itself contain another.

3.1 Positive and negative derivability in a relevant frame-
work

The first two ingredients of Proposition 2.8 are positive and negative derivability,
with derivability defined in classical logic. Now we are no longer interested in
classical logic but in the relevant system R. As concerns positive derivability, in
the classical framework, following Definition 2.8, the condition for a multiset of
formulas M to completely and immediately ground a formula A, under a robust
condition C (which may be empty), is that A is classically derivable from M .
Now in the relevant framework, the condition becomes that there is a proof that
A is entailed by the conjunction of the elements of M , denoted by

∧
M `R A.

The need for the use of the entailment relation in R is motivated by Entailment
theorem enjoyed by this relation, that will prove helpful later (e.g. see Section
4). The need for the use of the conjunction can be explained with an example.
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Figure 2: Hilbert-style axiomatisation of relevant logic R
A1.1 A→ A A1.2 (A→ ((A→ B))→ (A→ B)

A1.3 A→ ((A→ B)→ B) A1.4 (A → B) → ((B → C) → (A →
C))

A2.1 A ∧B → A A2.2 A ∧B → B

A2.3 ((A→ B) ∧ (A→ C))→ (A→ B ∧ C)

A3.1 A→ A ∨B A3.2 B → A ∨B

A3.3 (A ∨B → C)↔ (A→ C) ∧ (B → C)

A4.1 ¬¬A→ A A4.2 (A→ ¬B)→ (B → ¬A)

A5 ((A ∧B) ∨ C)→ ((A ∧B) ∨ (A ∧ C))

MP A→ B,A `R B

IC A,B `R A ∧B

Consider a true disjunction A ∨ B and suppose that both A and B are true.
Then even in a relevant framework it seems plausible to say that both A and B
completely and immediately ground A ∨ B. This fits with the fact that A ∨ B
is entailed by A, but also by B. However since the relevant logic R does not
contain any weakening axiom, A ∨ B is not entailed by {A,B}. Therefore, to
remedy the situation one simple solution is to use the conjunction A∧B; indeed
we have that A ∧B `R A ∨B.

For negative derivability, the situation is analogous. In the classical frame-
work, following Definition 2.8, the condition for a multiset of formulas M to
completely and immediately ground a formula A, under a robust condition C
(which may be empty), is that ¬A is classically derivable from ¬(M), C, where
¬(M) stands for the negation of each element of M . In the relevant framework,
the condition becomes that there is a proof that ¬A is entailed by C and the con-
junction of the negation of each element of M , denoted by C,

∧
¬(M) `R ¬A.

The motivation for this condition is analogous to that offered for positive deriv-
ability. The need for the use of the entailment relation in R is motivated by the
Entailment theorem enjoyed by this relation, that will prove helpful later (e.g.
see Section 4). The need for the use of the conjunction can be explained with
an example. Consider a true conjunction A ∧B. Even in a relevant framework
it seems plausible to say that both A and B completely ground A∧B. This fit
with the fact that ¬(A∧B) is entailed by ¬A, but also from ¬B. However, since
the relevant logic R does not contain any weakening, ¬(A ∧ B) is not entailed
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by {¬A,¬B}. The solution to this situation is to use the conjunction ¬A∧¬B;
indeed we have that ¬A ∧ ¬B `R ¬(A ∧B).

The proposed versions of positive and negative derivability adapted for a
relevant framework have been intuitively motivated. In Section 3, Theorem
3.12, we will prove that they are adequate to preserve their role in the definition
of the grounding relation.

3.2 G-complexity in a relevant framework

The third ingredient of Definition 2.8 is the notion of being completely and
immediately less g-complex, which provides the directionality or asymmetry
of grounds: in a grounding relation the grounds must always be less g-complex
than their conclusion. As we have seen, in order to define this notion, Poggiolesi
proceeds into two steps. First, she defines the notion of g-complexity, which
assigns to each formula a count of the complexity as appropriate for grounding.
Successively and on the basis of g-complexity, she defines the relation of being
completely and immediately less g-complex between a multiset of formulas M
and a formula A: this relation is a central ingredient of the final account for the
notion of complete and immediate formal grounding.

We will follow an analogous procedure to extend both the notion of g-
complexity and the relation of being completely and immediately less g-complex,
in such a way that also formulas containing (relevant) implications are taken
into account.

Definition 3.5. The g-complexity of a formula A will take values in a set S
such that each element of S consists of a natural number n and a multiset of
ordered pairs of natural numbers φ1, ..., φn, i.e. each element of S has the form
(n, {φ1, . . . , φm}) and will be called S-element. Define the binary operation
+. : S → S, as follows:

(n, {φ1, . . . , φm}) +. (n′, {φ′1, . . . , φ′m′}) = (n+ n′, {φ1, . . . , φm, φ′1, . . . , φ′m′})

Note that (S,+.) so defined is an algebra with +. an associative and commu-
tative operator, and (0, ∅) the identity (or zero) element (i.e. for all (n, {φ1, . . . , φm}) ∈
S, (n, {φ1, . . . , φm}) +. (0, ∅) = (n, {φ1, . . . , φm}).

As a point of notation, we write

i. n ∈ N as shorthand for (n, ∅),

ii. (k, l) ∈ N2 as shorthand for (0, {(k, l)}).

Finally, define the operator < •, • >: (N × ∅)2 → S (where (N × ∅)2 is the
subset of S consisting of elements of the form (n, ∅) for n ∈ N) by:

< (n, ∅), (m, ∅) >= (0, {(n,m)})
Note that, using the notational convention introduced above, we have< n,m >=
(n,m). Indeed, by i., < (n, ∅), (m, ∅) > can be written as < n,m >; by ii.,
(0, {(n,m)}) can be written as (n,m).
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Definition 3.6. The g-complexity of a formula A ∈ PF→, gcm′(A), is defined
in the following way:

- gcm′(l) = (0, ∅),

- gcm′(¬¬A) = (1, ∅) +. gcm′(A),

- gcm′(A→ B) = gcm′(¬(A→ B)) =< gcm′(A), gcm′(B) >,

- gcm′(A ◦B) = gcm′(¬(A ◦B)) = (1, ∅) +. gcm′(A) +. gcm′(B).

where the symbol ◦ stands for either conjunction or disjunction. Note that,
whenever gcm′(A) = n and gcm′(B) = m, gcm′(A → B) = gcm′(¬(A →
B)) = (n,m) thanks to the definition of the operator < •, • > and notational
conventions i. and ii.

Let us provide some examples of g-complexity before turning to the clarifi-
cation of this notion.11

gcm′((p ∧ q) ∧ ¬¬(q ∨ (r ∨ s))) = (5, ∅) = 5;

gcm′((¬(s ∨ (t ∧ r))→ (p ∧ ¬q))) = (0, {(2, 1)}) = (2, 1);

gcm′(¬¬(¬(s ∨ (t ∧ r))→ (p ∧ ¬q))) = (1, {(2, 1)}).

For formulas that do not contain the connective of implication, this new
notion of g-complexity works analogously to that introduced in the classical
framework, since it amounts to a natural number followed by an empty-set
of ordered pairs of natural numbers, hence, i.e., by condition i., to a natural
number. In view of principles T1-T3, when the implication does not occur in a
formula A, there is no reason to change the way of calculating the g-complexity
of A from the classical to the relevant framework.

Turning to the implication, let us begin by considering the case where an-
tecedent and consequent are atoms, i.e. the implication of the form p → q.
Note that, if this implication is true, unlike say the conjunction p ∧ q, it is not
constructed from the truths p and q. Rather, by the very idea of relevance,
the truth is related to the link between p and q, and that link is not formally
reducible to p nor to q. The use of an ordered pair allows us to capture this
situation, whilst nevertheless keeping track of the fact that p → q involves p
and q rather than other formulas. So, in this case, since the g-complexity of
both p and q is 0, the g-complexity of p → q will be the ordered pair (0, 0).
Generalizing this reflection to any implication of the form A → B, we obtain
as its g-complexity the ordered pair composed of the g-complexity of A and the
g-complexity of B. Indeed, the truth of a relevant implication like A → B is
not built up from the truth of its antecedent and the truth of its consequent

11Note that g-complexity does not respect logical equivalence, since the g-complexity of p, p
is not the same as the g-complexity of p ∧ p. This fact is further developed in the diversified
syntax introduced in Francez (2018).
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(as it is the case for material implication!), yet continues to involve them. The
g-complexity reflects this situation, insofar as it involves the g-complexities of
the A and B without putting them together and adding one.

Note that this notion of g-complexity treats implication in an analogous
way to negation. As we have seen in the previous section, the g-complexity
of a formula of the type ¬A (where A does not contain as main connective a
negation) is equal to the g-complexity of A. This is because, on the one hand,
if true, the truth ¬A does not build upon the truth of A, so we cannot count
its g-complexity as that of A plus one. And, on the other hand, ¬A is still
composed of the elements of A, and thus the elements of A should determine its
g-complexity. The situation is the same for an implication, such as A→ B. On
the one hand, if true, the truth is not constructed up from the truth of A and
the truth of B; hence its g-complexity cannot be counted as the g-complexity
of A plus that of B plus one. On the other hand, A → B is composed by the
elements of A and the elements of B, so they should determine its g-complexity.
Defining the g-complexity of A→ B as the ordered pair of their g-complexities
does just this.

Recall from the previous Section that beyond the notion of g-complexity,
the definition of the relation of being completely and immediately less g-complex
required the notion of converse of a formula, as well as the relations ∼= and a-c
equiv. Whilst the former remains as in Definition 2.4, the relations ∼= and a-c
equiv have to be adapted to the relevant framework, as follows.

Definition 3.7. Consider a formula A ∈ PF→. We will say that A is a-c
equiv ′ (for associatively and commutatively equivalent) to B, if, and only if, A
can be obtained from B by applications of associativity and commutativity of
conjunction and disjunction.

The notion of a-c equiv ′ naturally extends the notion a-c equiv by also
taking into account formulas containing implications. For example, if A is of
the form G→ ((B ∨C)∨ (D∨F )), then the formulas G→ ((B ∨D)∨ (C ∨F )),
G→ ((D ∨B) ∨ (F ∨ C)), G→ ((B ∨ F ) ∨ (D ∨ C)) are all a-c equiv ′ to it.

Definition 3.8. For any A,B ∈ PF→, A ∼=′ B if, and only if:

A is a-c equiv ′ to B or A is a-c equiv ′ to B∗

We finally have all the elements to introduce the notion of completely and
immediately less g-complex, which will be a key notion in the account of the
notion of complete and immediate formal grounding

Definition 3.9. Given a multiset of formulas M and a formula C ∈ PF→, we
say that M is completely and immediately less g-complex than C (in a relevant
framework), if, and only if:

- C ∼=′ ¬¬B and M = {B} or M = {B∗}, or

- C ∼=′ B ◦ D and M = {B,D}, or M = {B∗, D}, or M = {B,D∗}, or
M = {B∗, D∗}, or

13



- C ∼=′ ¬¬B → D or C ∼= ′ B → ¬¬D, and M = {B → D} or M =
{¬(B → D)}, or

- C ∼=′ B ◦D → E and M = {B → E,D → E}, or M = {¬(B → E), D →
E}, or M = {B → E,¬(D → E)}, or M = {¬(B → E),¬(D → E)}, or

- C ∼=′ ¬(B ◦ D) → E and M = {B∗ → E,D∗ → E}, or M = {¬(B∗ →
E), D∗ → E}, or M = {B∗ → E,¬(D∗ → E)}, or M = {¬(B∗ →
E),¬(D∗ → E)}, or

- C ∼=′ B → D ◦ E and M = {B → D,B → E}, or M = {¬(B → D), B →
E}, or M = {B → D,¬(B → E)}, or M = {¬(B → D),¬(B → E)}, or

- C ∼=′ B → ¬(D ◦ E) and M = {B → D∗, B → E∗}, or M = {¬(B →
D∗), B → E∗}, or M = {B → D∗,¬(B → E∗)}, or M = {¬(B →
D∗),¬(B → E∗)}.

Let gcm′(M) amount to the operation +. applied to the g-complexity of each
of the members of M . Both gcm′(C) and gcm′(M) are S-elements. Thanks to
the form of S-elements, there are three ways in which gcm′(M) can be reasonably
compared to gcm′(C) and seen as immediately lower:

(i) gcm′(C) is equal to (n, {φ1, ..., φn}) and gcm′(M) is equal to (n−1, {φ1, ..., φn}).

(ii) gcm′(C) is equal to (n, {φ1, ..(m, p).., φn}) and gcm′(M) is either equal to
(n, {φ1, ..(m− 1, p).., φn}) or to (n, {φ1, ..(m, p− 1).., φn}).

(iii) gcm′(C) is equal to (n, {φ1, ..(m, p).., φn}) and gcm′(M) is either equal to
(n, {φ1, ..(m′, p), (m′′, p).., φn}), wherem = m′+m′′+1, or to (n, {φ1, ..{(m, p′),
(m, p′′)}.., φn}), where p = p′ + p′′ + 1.

In each of the cases where the multiset M is completely and immediately less g-
complex than C, see Definition 3.9, gcm′(M) is immediately lower than gcm′(C)
according to one of (i)-(iii).12 Hence, as it was the case in the classical frame-
work, the multiset M is completely and immediately less g-complex than the
formula C since it contains all those ‘subformulas’ of C which are such that the
sum of their g-complexity is immediately lower that of C.

Let us provide some examples that help to clarify this point.

- the multisets {(p ∧ q) ∧ r}, {¬((q ∧ p) ∧ r)} are both completely and
immediately less g-complex than the formulas ¬¬(r∧(q∧p)) and ¬¬¬(r∧
(q ∧ p));

- the multisets {(p∨ q), r}, {¬(p∨ q), r}, {(p∨ q),¬r}, {¬(p∨ q),¬r} are all
completely and immediately less g-complex than the formulas (p ∨ q) ∧ r
and (q ∨ p) ∧ r, as well as than the formulas ¬((p ∨ q) ∧ r), ¬((q ∨ p) ∧ r).

12Note that in the last five items of Definition 3.9, the natural number in the S-element
corresponding to the g-complexity of C is 0.
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- the multisets {s → p, s → r}, {¬(s → p), s → r}, {s → p,¬(s → r)},
{¬(s → p),¬(s → r)} are all completely and immediately less g-complex
than the formulas s→ p◦r, ¬(s→ p◦r), as well as the formulas s→ r◦p,
¬(s→ r ◦ p), where ◦ = {∧,∨}.

3.3 The definition of complete and immediate formal ground-
ing in a relevant framework

We now have all the elements to introduce a definition for the notion of complete
and immediate grounding in a relevant framework.

Definition 3.10. For any formula A ∈ PF→, and for any consistent multiset
of formulas C ∪ M such that C and M ∈ PF→, we say that, under the ro-
bust condition C (that may be empty), M completely and immediately formally
grounds A in a relevant framework, in symbols [C] M |∼ R A, if and only if:

-
∧
M `R A,

- C,
∧
¬(M) `R ¬A,

- {C,M} is completely and
immediately less g-complex
than A according to Defini-
tion 3.9.

This definition of complete and immediate formal grounding adapts Pog-
giolesi’s Definition 2.8 to the relevant framework. The notion of g-complexity
describes the grounding hierarchy in which formulas, including relevant impli-
cations, are organized, while the notions of positive and negative derivability
tell us which formulas in each step of this hierarchy enter into a dependence
relation. The fact that in both positive and negative derivability the premises
are in conjunctive form is motivated by the issue of relevance as discussed in
the previous section.

We will now prove that Definition 3.10 conservatively extends Definition 2.8:
the principles concerning negation, conjunction and disjunction in the classical
framework remain the same in the relevant framework. In the next section we
will study the grounding principles governing relevant implication and negation
of relevant implication that emerge from Definition 3.10.

Lemma 3.11. Given a multiset M and a formula A such that both only contain
the connectives of conjunction, disjunction and negation, we have that M is
completely and immediately less g-complex than A according to Definition 2.7
if, an only if, M is completely and immediately less g-complex than A according
to Definition 3.9.

Proof. By a straightforward analysis of cases.
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Theorem 3.12. For any consistent multiset of formulas M ∪C and a formula
A, both M∪C and A only containing the connectives of conjunction, disjunction
and negation, we have that, under the robust condition C (which may be empty),
M completely and immediately grounds A according to Definition 2.8 if, and
only if, under the robust condition C (which may be empty), M completely and
immediately grounds A according to Definition 3.10.

Proof. Let us consider first the right-to-left direction. Suppose that under the
robust condition C, M completely and immediately grounds A according to
Definition 3.10. Then we have that: (i)

∧
M `R A; (ii) C,

∧
¬(M) `R ¬(A),

and (iii) {C,M} is completely and immediately less g-complex than A according
to Definition 3.9. If

∧
M `R A, then by logic we also have

∧
M `C A. From

that and M `C
∧
M , by transitivity we have (i)′ M `C A. From (ii) by

logic we have that C,
∧
¬(M) `C ¬(A); from such result and M `C

∧
M , by

transitivity, we have that (ii)′ C,¬(M) `C ¬(A). From (iii) by Lemma 3.11,
we have that (iii)′ {C,M} is completely and immediately less g-complex than
A according to Definition 2.7. From (i)′, (ii)′ and (iii)′, we have that, under
the robust condition C, M completely and immediately grounds A according to
Definition 2.8.

Let us now consider the left-to-right direction. Suppose that under the
robust condition C, M completely and immediately grounds A according to
Defintion 2.8. Then we have that: (i) M `C A; (ii) C,¬(M) `C ¬(A), and
(iii) {C,M} is completely and immediately less g-complex than A, according to
Definition 2.7. Consider (i); by analysis of cases, we have two possible situations:
either M `R A or there exist two disjoint subsets M ′, M ′′ such that M ′∪M ′′ =
M and M ′ `R A and M ′′ `R A. In either of these cases, given that

∧
M `R B,

where B ∈ M , by transitivity that by inspection of cases can be applied, we get
(i)′

∧
M `R A.

By applying an analogous procedure on (ii), we get (ii)′ C,
∧
¬M `R A.

From (iii), by Lemma 3.11, we have that (iii)′ {C,M} is completely and imme-
diately less g-complex than A according to Definition 3.9. From (i)′, (ii)′ and
(iii), we have that, under the robust condition C, M completely and immediately
ground A according to Definition 3.10.

4 Grounding principles for relevant implication

The goal of this section is to examine the grounding principles for relevant
implication that arise from Definition 3.10.

Recall that, beyond the account of grounding for implication contained in
Definition 3.10, we also have the informal intuition, called pattern?, with which
this paper began: the ground of an ordinary-language conditional of the form “if
A, then B” is a sentence C such that from A and C, B follows. It may be seen
as a test of any account of grounding for implication – and hence for the formal
account developed in the previous sections – that it matches pattern?. The
aim will thus be to check whether the grounds M for formulas containing the
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relevant implication of the form A→ B emerging from Definition 3.10 are such
that from M and A, B follows. Of course, such a match can only corroborate
the adequacy of the account.

Recall furthermore that, under Definition 3.10 (just as for Definition 2.8),
the complete and immediate grounds of a formula of the form ¬A depends on the
form of the formula A. For instance, ¬p, the negation of an atom, has no formal
grounds, since ¬p has g-complexity 0. By contrast, negations of conjunctions
or disjunctions – formulas of the form ¬(A ∨ B) or ¬(A ∧ B) – have different
formal grounds. It seems safe to claim that this way of treating the grounds of
formulas whose main connective is a negation is accepted in the contemporary
literature, e.g. see Correia (2010); Fine (2012a).

According to Definition 3.10, what holds for formulas of the form ¬A also
holds for implications of the form A→ B. The complete and immediate formal
grounds of these formulas will depend on what type of formulas A and B are.
In cases where both A and B are literals, which is to say A→ B might have the
form p→ q, then no formal ground can be formulated; p→ q has g-complexity
(0,{0, 0}). All the other cases are of one of the following types:

1. ¬¬A→ B 2. A→ ¬¬B

3. A→ B ∧ C 4. A→ ¬(B ∨C) 5. A ∨B → C 6. ¬(A ∧B)→ C

7. A ∧B → C 8. ¬(A∨B)→ C 9. A→ B ∨ C 10. A→ ¬(B ∧ C)

To analyze the complete and immediate formal grounds that emerge from Defi-
nition 3.10 for each of the types of implication 1-10, we begin with the following
Lemma.

Lemma 4.1. The following formula A→ ¬¬A is provable in the Hilbert system
R.

Proof. The proof is the following.

a. (¬¬¬A→ ¬A)→ (A→ ¬¬¬¬A) A4.2
b. (¬¬¬A→ ¬A) A4.1
c. (A→ ¬¬¬¬A) MP(a, b)
d. ¬¬¬¬A→ ¬¬A A4.1
e. A→ ¬¬A A1.4 + MP(c, d)

Now let us consider each of the types of implication 1-10 in turn.

1-2. We only examine 1; the analysis of 2 is analogous. Consider the sentence
“if it is not the case that it is not raining, then the road will be wet.” It seems
intuitively reasonable - it fits pattern? - to claim that the complete and imme-
diate ground of this conditional is the sentence “if it is raining, the road will
be wet.” Indeed from this ground and “it is not the case that it is not raining”
(namely the antecedent of the implication), “the road will be wet” (namely the
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consequent of the implication) follows. But this is precisely what emerges from
Definition 3.10. Indeed, formalizing “if it is not the case that it is not rain-
ing, the road will be wet” by ¬¬A → B, and “if it is raining, the road will be
wet” by A → B, we now show that the multiset {A → B} and the formula
¬¬A→ B enjoys positive and negative derivability,13 as well as the relation of
being completely and immediately less g-complex.

Positive derivability. We need to prove that A → B `R ¬¬A → B. Assume
A → B. Then by applying MP to axiom A4.1, ¬¬A → A, and axiom A1.4
(¬¬A→ A)→ ((A→ B)→ (¬¬A→ B)), we obtain (A→ B)→ (¬¬A→ B).
By applying again MP to (A→ B)→ (¬¬A→ B) and the assumption A→ B,
we obtain ¬¬A→ B.

Negative derivability. We need to prove ¬(A → B) `R ¬(¬¬A → B). By the
Entailment theorem, i.e. Theorem 3.2, and axiom A4.2, this is the same as
proving ¬¬A → B `R A → B. Assume ¬¬A → B. Then by applying MP
to the formula A → ¬¬A (see Lemma 4.1) and axiom A1.4, (A → ¬¬A) →
((¬¬A → B) → (A → B)), we obtain (¬¬A → B) → (A → B). By applying
again MP to the assumption ¬¬A→ B and (¬¬A→ B)→ (A→ B), we obtain
A→ B.

G-complexity. It is straightforward to verify that {A → B} is completely and
immediately less g-complex than ¬¬A→ B according to Definition 3.9.

Hence the multiset {A → B} is the complete and immediate formal ground of
the formula ¬¬A→ B according to Definition 3.10. This matches our intuitions.

3-4. We only examine 3; the analysis of 4 is analogous. Consider the sentence
“if it is raining, then the road will be wet and slippery.” It sounds intuitively
acceptable - it fits pattern? - to claim that the complete and immediate formal
grounds of this implication are the sentences “if it is raining, then the road will
be wet” and “if it is raining, then the road will be slippery.” Indeed, from these
grounds and “it is raining” (namely the antecedent of the implication),“the road
will be wet and slippery” (namely the consequent of the implication) follows.
But this is precisely what emerges from Definition 3.10. Let us indeed formalize
the sentence “if it is raining, then the road will be wet and slippery” with the
formula A→ B∧C; then the sentence “if it is raining, then the road will be wet”
with the formula A→ B, and finally the sentence “if it is raining, then the road
will be slippery” with the sentence A → C. We now show that the multiset
{A → B,A → C} and the formula A → B ∧ C enjoy positive and negative
derivability as well as the relation of being completely and immediately less
g-complex.

Positive derivability. We need to show that A → B ∧ A → C `R A → B ∧ C.
Assume A → B ∧ A → C. By applying MP to this assumption and the axiom

13For each proof of positive and negative derivability of this and the next section, it is
straightforward to check that they are proofs of entailment in the sense of (Anderson and
Belnap, 1975, p.277), that is that they correspond to derivations with control indexes in the
natural deduction calculus for R, or that is that stars may be prefixed to the steps of the proofs,
satisfying the conditions set up by Anderson and Belnap. Not to burden the presentation, we
omit to prefix formulas with stars.
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A2.3, (A→ B ∧A→ C)→ (A→ B ∧ C), we obtain A→ B ∧ C.

Negative derivability. We need to show that ¬(A→ B)∧¬(A→ C) `R ¬(A→
B ∧ C). By the Entailment theorem, i.e. Theorem 3.2, and axiom A4.2, this is
the same as proving A→ B ∧C `R A→ B ∨A→ C. Assume A→ B ∧C. By
applying MP to this assumption and axiom A1.4, (A → B ∧ C) → ((B ∧ C →
B)→ (A→ B)), we obtain (B ∧ C → B)→ (A→ B). By applying again MP
to axiom 2.1, B∧C → B, and (B∧C → B)→ (A→ B), we obtain A→ B. By
applying MP to A → B and axiom A3.1, (A → B) → ((A → B) ∨ (A → C)),
we obtain (A→ B) ∨ (A→ C).

G-complexity. It is straightforward to verify that {A→ B,A→ C} is completely
and immediately less g-complex than A→ B ∧ C according to Definition 3.9.

Hence the multiset {A → B,A → C} is the complete and immediate formal
ground of the formula A → B ∧ C according to Definition 3.10. This matches
our intuitions.

5-6. We only examine 5; the analysis of 6 is analogous. Consider the sentence
“if it is raining or it is snowing, then the road will be wet.” It seems intuitively
acceptable - it fits pattern? - to claim that the complete and immediate grounds
of this implication are “if it is raining, then the road will be wet” and “if it
is snowing, then the road will be wet.” Indeed, from these grounds and “it
is raining or it is snowing” (namely the antecedent of the implication), “the
road will be wet” (namely the consequent of the implication) follows. But this
is precisely what emerges from Definition 3.10. Let us indeed formalize the
sentence “if it is raining or it is snowing, then the road will be wet” with the
formula A ∨ B → C; the sentence “if it is raining, then the road will be wet”
with the formula A → C, and finally the sentence “if it is snowing, then the
road will be slippery” with the formula B → C. We now show that the multiset
{A → C,B → C} and the formula A ∨ B → C enjoy positive and negative
derivability as well as the relation of being completely and immediately less
g-complex.

Positive derivability. We need to show that A → C ∧ B → C `R A ∨ B → C.
Assume A → C ∧ B → C. By applying MP to this assumption and (one side
of) the axiom A3.3, (A→ C ∧B → C)→ (A∨B → C), we obtain A∨B → C.

Negative derivability. We need to show that ¬(A→ C) ∧ ¬(B → C) `R ¬(A ∨
B → C). By the Entailment theorem, i.e. Theorem 3.2, and axiom A4.2, this
is the same as proving A ∨ B → C `R A → C ∨ B → C. Assume A ∨ B → C.
By applying MP to this assumption and (one side of) axiom A3.3, (A ∨ B →
C)→ ((A→ C) ∧ (B → C)), we obtain (A→ C) ∧ (B → C). By applying MP
to this and the formula ((A→ C)∧ (B → C))→ ((A→ C)∨ (B → C)) (which
is easily shown to be provable in R), we get the desired result.

G-complexity. It is straightforward to verify that {A→ C,B → C} is completely
and immediately less g-complex than A ∨B → C according to Definition 3.9.

Hence the multiset {A → C,B → C} is the complete and immediate formal
ground of the formula A ∨ B → C according to Definition 3.10. This matches
our intuitions.

19



Figure 3: Complete and immediate formal grounds for relevant implication
Conclusion Complete and Immedi-

ate Formal Grounds
¬¬A→ B A→ B
A→ ¬¬B A→ B
A→ B ∧ C {A→ B,A→ C}
A→ ¬(B ∨ C) {A→ B∗, A→ C∗}
A ∨B → C {A→ C,B → C}
¬(A ∧B)→ C {A∗ → C,B∗ → C}

For cases 1-6, the grounding principles emerging from Definition 3.10 corre-
spond to pre-theoretical intuitions; moreover, this is also the case for formulas
that are a-c equiv ′ to those in 1-6. So Definition 3.10 captures adequately the
grounds for a large spectrum of cases. We now consider the more subtle 7-10.

7-8. We analyze in detail case 7; case 8 can be treated analogously. Consider
first the sentence: “if Andrew is a man and Andrew is unmarried, then Andrew
is a bachelor.” Note that the sentences “if Andrew is a man, then Andrew is a
bachelor” and “if Andrew is unmarried, then Andrew is a bachelor” cannot serve
as its grounds, since they are quite simply not true: Andrew is a bachelor if both
conditions – being a man and being unmarried – are realized, not if only one
is. Indeed, the ground of “if Andrew is a man and Andrew is unmarried, then
Andrew is a bachelor” does not seem to be expressible by one of its subsentences;
rather, it would seem to depend on the meaning of the word ‘bachelor’ itself.

Now consider the sentence: “if John recycles and uses public transport, he
acts ecologically.” By contrast with the previous case, “if John recycles, he
acts ecologically” and “if John uses public transport, he acts ecologically” do
intuitively appear to be the complete and immediate grounds of this sentence.

Both of the sentences in these examples can be formalized in the same way
in the language of relevance logic, namely by A ∧ B → C. But only in the
second example do A → C,B → C seem to be grounds; in the first example,
they are not. Thus it would seem that whether or not they are the grounds of
a specific instance of A ∧B → C depends not only on the form of the formula,
but on the content of the particular formula in question. Hence A→ C,B → C
cannot be formal grounds of A ∧ B → C since, although in specific cases,
these formulas are the grounds, in other examples, they are not. Definition 3.10
faithfully reflects this conclusion. Although {A → C,B → C} is completely
and immediately less g-complex than A∧B → C, and A∧B → C is relevantly
derivable from A → C ∧ B → C, ¬(A ∧ B → C) is not relevantly derivable
from ¬(A→ C)∧¬(B → C).14 Thus negative derivability is not respected and
{A → C,B → C} is not the complete and immediate ground for A ∧ B → C
according to Definition 3.10.

Note in passing that one might have the intuition that the two examples
involve two different readings of conjunction: in the first case, intensional, and in
the second, extensional (e.g. see Doŝen (1993)). This leaves open the possibility

14It is classically derivable but in the derivation weakening is used.
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that in a richer logic (see e.g. Francez (2019)), with a richer language containing
two conjunctions, with sentences involving different readings being formalized
with different conjunctions, {A→ C,B → C}may be the grounds for A∧B → C
for one of the conjunctions but not for the other. We leave the exploration of
such a possibility for future research, focussing in this paper on the standard
relevant logic R, for a language containing a single conjunction.

9-10. We analyze in detail case 9; case 10 can be treated analogously. Con-
sider first the sentence “if John is your grandfather, then he is the father of
your father or the father of your mother.” Note that the sentences “if John is
your grandfather, then he is the father of your father,” and “if John is your
grandfather, then he is the father of your mother” cannot serve as its grounds,
since they are quite simply not true: if John is your grandfather, then the whole
disjunction - he is the father of your father or the father of your mother - is a
consequence of it, not just one disjunct. Indeed, the ground of “if John is your
grandfather, then he is the father of your father or the father of your mother”
does not seem to be expressible by one of its subsentences; rather it would seem
to depend on the meaning of the word ‘grandfather’ itself.

Now consider the sentence “if it rains, then the road will be slippery or wet.”
By contrast with the previous case, “if it rains, the road will be slippery” and
“if it rains, the road will be wet” do intuitively appear to be the complete and
immediate grounds of this sentence.

Both of the sentences in these examples can be formalized in the same way
in the language of relevance logic, namely by A → B ∨ C. But only in the
second example do A→ B,A→ C seem to be its grounds; in the first example,
they are not. Thus it would seem that whether or not they are the grounds of
a specific instance of A→ B ∨ C depends not only on the form of the formula,
but on the content of the particular formula in question. Hence A→ B,A→ C
cannot be formal grounds of A→ B∨C (since, although in specific cases, these
formulas are the grounds, in other examples, they are not). Definition 3.10
faithfully reflects this conclusion. Although {A → B,A → C} is completely
and immediately less g-complex than A→ B ∨C, and A→ B ∨C is relevantly
derivable from A → B ∧ A → C, ¬(A → B ∨ C) is not relevantly derivable
from ¬(A→ B)∧¬(A→ C).15 Thus negative derivability is not respected and
{A → B,A → C} is not the complete and immediate ground for A → B ∨ C
according to Definition 3.10.

Note again that one might have the intuition that the two examples involve
two different readings of disjunction: in the first case, intensional, and in the
second, extensional. This leaves open the possibility that in a richer logic, with
a richer language containing two disjunctions, with sentences involving different
readings being formalized with different disjunctions, {A→ B,A→ C} may be
the grounds for A → B ∨ C for one of the disjunctions but not for the other.
We leave the exploration of such a possibility for future research, focussing in
this paper on the standard relevant logic R, for a language containing a single
disjunction.

15It is classically derivable but in the derivation weakening is used.
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5 Grounding principles for negated relevant im-
plication

As pointed out at the beginning of the previous section, according to Definition
3.10 (but also to Definition 2.8), the complete and immediate grounds of a
formula of the form ¬A depends on the form of the formula A. The existing
literature on grounding, when considering the grounds of ¬A, focus on the cases
of A being an atom, a negation, a conjunction or a disjunction. Since implication
is generally not examined, neither is its negation. By contrast, here, given that
we treat the grounds of relevant implication, we also need to treat the grounds
of the negation of a relevant implication. But since, as we have seen in the
previous section, the grounds of a relevant implication depend in their turn on
the form of the antecedent and the consequent, the same goes for the complete
and immediate grounds of the negation of a relevant implication. The cases are
analogous to those analyzed previously. If both antecedent and consequent are
literals, so the implication might have the form ¬(p→ q), then it has no formal
ground, since ¬(p → q) has g-complexity (0,{0, 0}). All the other cases are of
one of the following types:

1′. ¬(¬¬A→ B) 2′. ¬(A→ ¬¬B)

3′. ¬(A→ B ∧ C) 4′. ¬(A→ ¬(B ∨ C))

5′. ¬(A ∨B → C) 6′. ¬(¬(A ∧B)→ C)

7′. ¬(A ∧B → C) 8′. ¬(¬(A ∨B)→ C)

9′. ¬(A→ (B ∨ C)) 10′. ¬(A→ ¬(B ∧ C)

As we have underlined at the beginning of this paper, according to Pog-
giolesi’s account, when we analyze the grounds of ordinary-language sentences
featuring the negation, an intuitive pattern emerges: the ground of a formula
of the form “it is not the case that A” is a sentence B such that from A and
B, a contradiction follows. Our approach extends that of Poggiolesi; hence,
the complete and immediate grounds M for a negative implication of the form
¬(A→ B) emerging from Definition 3.10 will be such that from M and A→ B
a contradiction follows.16 This is actually the case but not to burden the paper,
we omit an extended discussion.

Let us now analyze in detail cases 1′-10′.

1′-2′. We only examine 1′; the analysis of 2′ is analogous. Consider the sentence
“it is not the case that if it is not the case that it is not sunny, then the road
will be slippery.” It seems intuitively reasonable to claim that the complete and
immediate ground of this conditional is the sentence “it is not the case that if

16We still use follow in Anderson and Belnap (1975)’s sense. A contradiction follows from
M,A → B if there is a deduction of the contradiction from M,A → B which actually uses
M,A→ B (and M,A→ B alone).
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it is sunny, then the road will be slippery.” This is precisely what emerges from
Definition 3.10. Indeed, formalizing “it is not the case that if it is not the case
that it is not sunny, then the road will be slippery” by ¬(¬¬A→ B), and “it is
not the case that if it is sunny, then the road will be slippery” by ¬(A → B),
we can show that {¬(A→ B)} and ¬(¬¬A→ B) enjoys positive and negative
derivability, as well as the relation of being completely and immediately less
g-complex. The proof of such fact can be developed in the same way as the
proof of case 1 of the previous section. Hence the multiset {¬(A → B)} is the
complete and immediate formal ground of the formula ¬(¬¬A→ B) according
to Definition 3.10 and this seems to match our intuitions.

3′-4′. We only examine 3′; the analysis of 4′ is analogous. Consider the following
three sentences:

(i) “it is not the case that if it is snowing, then the road will be dry and
safe,”

(ii) “it is not the case that if it is snowing, then the road will be wet and
safe,”

(iii) “it is not the case that if it is snowing, then the road will be dry and
dangerous.”

As for (i), the complete and immediate grounds seem to be “it is not the case
that if it is snowing, then the road will be dry” and “it is not the case that if
it is snowing, then the road will be safe;” as for (ii), under the robust condition
that “if it is snowing, then the road will be wet,” “it is not the case that if it is
snowing, the road will be safe” is the complete and immediate ground for “it is
not the case that if it is snowing, then the road will be wet and safe.” Finally
as for (iii), under the robust condition that “if it is snowing, the road will be
dangerous”, “it is not the case that if it is snowing, the road will be dry” is
the complete and immediate ground for “it is not the case that if it is snowing,
the road will be dry and dangerous.” At the formal level, the formula to be
grounded is an implication of the form ¬(A→ B ∧ C): in (i) the complete and
immediate ground is the multiset {¬(A→ B), ¬(A→ C)}; in (ii) the ground is
the multiset {¬(A→ C)} under the robust condition A→ B; in (iii) the ground
is the multiset {¬(A→ B)} under the robust condition A→ C. We will verify
that in case (ii) the ground {¬(A → C)} together with the robust condition
A→ B satisfy positive and negative derivability, but also the relation of being
completely and immediately less g-complex with the conclusion ¬(A→ B ∧C).
The analysis of cases (i) and (iii) is analogous.

Positive derivability. We need to show that ¬(A → B) `R ¬(A → B ∧ C). By
the Entailment theorem, i.e. Theorem 3.2, and axiom A4.2, this is equivalent
to showing A → B ∧ C `R A → B. Assume A → B ∧ C. By applying MP to
this assumption and axiom A1.4, (A→ B ∧ C)→ ((B ∧ C → B)→ (A→ B)),
we obtain (B ∧C → B)→ (A→ B). By applying MP to this and axiom A.2.1,
B ∧ C → B, we obtain A→ B.
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Negative derivability. We need to show that A → C,¬¬(A → B) `R ¬¬(A →
B ∧C). Because in relevant logic R, we have that A↔ ¬¬A, this is equivalent
to show A → C,A → B `R A → B ∧ C. Assume A → C,A → B; by applying
the rule IC, we get A → C ∧ A → B. By applying modus ponens to this
formula and the axiom A2.3, ((A→ C) ∧ (A→ B))→ (A→ B ∧ C) we obtain
A→ B ∧ C.

G-complexity. It is straightforward to verify that {¬(A → B), A → C} is
completely and immediately less g-complex than {¬(A→ B ∧C)} according to
Definition 3.9.

Hence, under the robust condition A → C, the multiset {¬(A → B)} is the
complete and immediate formal ground of the formula ¬(A→ B∧C) according
to Definition 3.10. It is straightforward to verify that this matches our intuitions.

5′-6′. We only examine 5′; the analysis of 6′ is analogous. Consider the following
three sentences:

(i) “it is not the case that if it is raining or cold, then we will go to the
sea,”

(ii) “it is not the case that if it is sunny or cold, then we will go to the
sea,”

(iii) “it is not the case that if it is raining or hot, then we will go to the
sea.”

As for (i), the complete and immediate grounds seem to be “it is not the case
that if it is raining, then we will go to the sea” and “it is not the case that if it
is cold, then we will go to the sea;” as for (ii), under the robust condition that
“if it is sunny, then we will go to the sea,” “it is not the case that if it is cold, we
will go to the sea” is the complete and immediate ground for “it is not the case
that if it is sunny or cold, then we will go to the sea.” Finally, as for (iii), under
the robust condition that “if it is hot, we will go to the sea”, “it is not the case
that if it is raining, we will go to the sea” is the complete and immediate ground
for “it is not the case that if it is raining or hot, we will go to the sea.” At the
formal level, in (i) - (iii) the formula to be grounded is an implication of the
form ¬(A ∨B → C): in (i) the complete and immediate ground is the multiset
{¬(A → C),¬(B → C)}; in (ii) the complete and immediate ground is the
multiset {¬(A→ C)} under the robust condition B → C; in (iii) the complete
and immediate ground is the multiset {¬(B → C)} under the robust condition
A → C. We will verify that in case (ii) the ground {¬(A → C)} together
with the robust condition B → C satisfy positive and negative derivability, but
also the relation of being completely and immediately less g-complex with the
conclusion ¬(A ∨B → C). The analysis of cases (i) and (iii) is analogous.

Positive derivability. We need to show that ¬(A → C) `R ¬(A ∨ B → C). By
the Entailment theorem, i.e. Theorem 3.2, and axiom A4.2, this is the same as
proving A ∨ B → C `R A → C. Assume A ∨ B → C. By applying MP to this
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Figure 4: Complete and immediate formal grounds for negation of relevant
implication

Conclusion Complete and Immediate
Formal Grounds

¬(¬¬A→ B) ¬(A→ B)

¬(A→ ¬¬B) ¬(A→ B)

¬(A→ B ∧ C) {¬(A→ B),¬(A→ C)}
{¬(A→ B)}[A→ C]
{¬(A→ C)}[A→ B]

¬(¬(A ∧B)→ C) {¬(A∗ → C),¬(B∗ → C)}
{¬(A∗ → C)}[B∗ → C]
{¬(B∗ → C)}[A∗ → C]

¬(A ∨B → C) {¬(A→ C),¬(B → C)}
{¬(A→ C)}[B → C]
{¬(B → C)}[A→ C]

A→ ¬(B ∨ C) {¬(A→ B∗),¬(A→ C∗)}
{¬(A→ B∗)}[A→ C∗]
{¬(A→ C∗)}[A→ B∗]

assumption and (one side of) axiom A3.3, (A∨B → C)→ ((A→ C)∧(B → C)),
we obtain A→ C∧B → C. By applying modus ponens to this and axiom A2.1,
((A→ C) ∧ (B → C))→ (A→ C), we obtain A→ C.

Negative derivability. We need to show that B → C,¬¬(A → C) `R ¬¬(A ∨
B → C). Because in relevant logic R, we have that A↔ ¬¬A, this is equivalent
to show A → C,B → C `R A ∨ B → C. Assume A → C,B → C; by applying
the rule IC, we get A→ C ∧B → C. By applying MP to this formula and (one
side of) the axiom A3.3, ((A → C) ∧ (B → C)) → (A ∨ B → C), we obtain
A ∨B → C.

G-complexity. It is straightforward to verify that {¬(A → C), B → C} is
completely and immediately less g-complex than {¬(A∨B → C)} according to
Definition 3.9.

Hence, under the robust condition B → C, the multiset {¬(A → C)} is the
complete and immediate formal ground of the formula ¬(A→ B∧C) according
to Definition 3.10. It is straightforward to verify that this matches our intuitions.

For cases 1′-6′, the grounding principles emerging from Definition 3.10 cor-
respond to pre-theoretical intuitions; moreover, this is also the case for formulas
that are a-c equiv ′ to those in 1′-6′. So Definition 3.10 captures adequately
the grounds for a large spectrum of cases. Items 7′-10′ are more difficult to
treat and present the same problems as the corresponding cases 7-10.17 On

17We omit here all the details that we have developed for cases 7-10, since they are quite
similar to them. The interested reader can straightforwardly reconstruct them on her own.
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the one hand, at the intuitive level, it seems hard to settle the questions of
what grounds formulas of the form 7-10 since the connectives of conjunction
and disjunction can received an extensional as well as an intentional readings,
and this double reading leads to the identification of different grounds. On the
other hand, following Definition 3.10, there is no formula which is completely
and immediately less g-complex than formulas of the form 7′-10′ and also enjoys
positive and negative derivability with them. Therefore, at the intuitive level,
as well as according to Definition 3.10, it does not seem possible to formulate
formal grounds for this type of negative relevant implications.

6 Conclusions

This paper tackles an issue that has been largely ignored in the literature on
grounding, namely that of the grounds of non-material implications. We have
put forward grounding principles for relevant implications and negations of rel-
evant implications, which faithfully capture some basic intuitions concerning
natural-language conditionals. Moreover, these principles naturally follow from
a definition of the notion of complete and immediate formal grounding which
conservatively extends the notion put forward by Poggiolesi (2016b) for classi-
cal logic without implication. Therefore, the grounding principles are not only
justified by the formal context provided by the Definition, but they also reflect
some natural insights.

It seems to us that this work opens up some interesting questions. Let us
just mention two. On the one hand it calls for a logic validating the principles
for relevant implication and negation of relevant implication that we have put
forward in this paper. In this direction, on the semantic side, interesting links
could emerge with truth-making semantics for relevant logics, as in Jago (2019).
On the other hand, it calls for a wider reflection on the way the grounds of the
main connectives vary from one logic to another.
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