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Single-file transport, where particles cannot bypass each other, has been observed in various
experimental setups. In such systems, the behaviour of a tracer particle (TP) is subdiffusive, which
originates from strong correlations between particles. These correlations are especially marked
when the TP is driven and leads to inhomogeneous density profiles. Determining the impact of this
inhomogeneity when several TPs are driven in the system is a key question, related to the general
issue of bath-mediated interactions, which are known to induce collective motion and lead to the
formation of clusters or lanes in a variety of systems. Quantifying this collective behaviour, the
emerging interactions and their dependence on the amplitude of forces driving the TPs, remains a
challenging but largely unresolved issue. Here, considering dense single-file systems, we analytically
determine the entire dynamics of the correlations and reveal out of equilibrium cooperativity and
competition effects between driven TPs.

The motion of particles in narrow channels in which
particles cannot bypass each other is known as single-
file diffusion. Such systems have been studied in vari-
ous experimental setups with zeolites [1, 2], micro- [3, 4]
and nano-channels [5], and simulations of carbon nan-
otubes [6]. Key features, on the theoretical side, involve
the existence of a subdiffusive scaling for the mean po-
sition of a given particle [7, 8], and strong correlations
between particles [9].

The basic phenomenology of the single-file transport is
well-captured by the symmetric exclusion process (SEP).
In this paradigmatic model of crowded equilibrium sys-
tems, particles perform symmetric random walks on a one
dimensional lattice with the constraint of at most a sin-
gle occupancy of each lattice site. Different facets of the
SEP have been scrutinised (see Refs. [8, 10–15]), includ-
ing several important extensions to out-of-equilibrium
situations. In particular, the mean displacement [16],
as well as all higher-order cumulants [17] of an unbiased
tagged particle (TP) placed initially at the shock point of
a step-like density profile have been determined. More-
over, for a SEP with a single biased TP (due to either
an energy consumption or an external force), the mean
displacement of the latter [18, 19] and the higher-order
cumulants in the dense limit [20] have been calculated,
and shown to grow sublinearly as

√
t. Here, the particles

accumulate in front of the TP and are depleted behind it,
which results in an inhomogeneous, non-stationary spa-
tial distribution of particles.

A general open question concerns situations when sev-
eral biased TPs are introduced in an otherwise quiescent
medium of bath particles. The TPs are then expected to
entrain the bath particles in a directional motion, which
brings the system out-of-equilibrium and gives rise to ef-
fective bath-mediated interactions (BMIs) between the
TPs. Such BMIs potentially lead to self-organisation,
as observed in systems as diverse as colloidal solutions
[21–30], nearly-critical fluid mixtures [31], dusty complex
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FIG. 1: System with two tagged particles (TPs). All particles
perform random walks with unit jump rate, constrained by
hard-core exclusion. Bath particles jump to the left or right
with probability 1/2. The TPs jump with probabilities (1 ±
sj)/2. L is the initial distance between TPs.

plasmas [32] pedestrian counter flows [33].

Quantifying the emerging interactions between biased
TPs and the ensuing collective behaviour is thus a key
issue which however remains largely unresolved. Here,
modeling a host medium as a dense SEP, we analyti-
cally determine the temporal evolution of all correlation
functions, reveal intrinsically out-of-equilibrium coopera-
tivity and competition effects between multiple TPs and
quantify BMIs.

The quiescent host medium is modelled as a SEP which
involves a high density ρ (ρ→ 1) of hard-core bath parti-
cles performing symmetric random walks (with unit jump
rate) on a one-dimensional lattice. We then tag N par-
ticles at initial positions X0

j (see Figure 1). These TPs
are biased: the j-th TP jumps to the left (resp. right)
with probability (1 − sj)/2 (resp. (1 + sj)/2). The bias
sj ∈ (−1, 1) may either be due to an “activity” of the
particle or to an external force fj , in which case one has

the detailed balance condition: eβfj =
1+sj
1−sj , β being the

reciprocal temperature.

We aim at determining the correlations between the
TPs, embodied in the so called cumulant-generating
function ψ(k, t) ≡ ln

〈
eik·Y(t)

〉
, where k = (k1, . . . , kN ),

Y = (Y1, . . . , YN ) and Yj(t) = Xj(t)−X0
j is the displace-
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ment of the j-th TP. The cumulants are denoted by 〈•〉c
and defined by the expansion

ψ(k, t) =

∞∑
p1,...,pN=0

(ik1)p1 . . . (ikN )pN

(p1 + · · ·+ pN )!
〈Y p11 . . . Y pNN 〉c .

(1)

In densely populated single-files (ρ→ 1), the dynamics
of the system can be reformulated in terms of indepen-
dent vacancies. In essence, this amounts to neglecting
events where two vacancies interact simultaneously with
any TP [20, 34]. Our approach is based first on con-
sidering an auxiliary problem involving a single vacancy,
initially at position U . By counting all the interactions
of this vacancy with the TPs, we determine the probabil-
ity pU (Y, t) that the TPs have displacements Y at time
t. Then, for a density of vacancies ρ0 = 1 − ρ → 0, the
cumulant-generating function reads [35]

lim
ρ0→0

ψ(k, t)

ρ0
=

∑
U /∈{X0

i }
[p̃U (k, t)− 1] (2)

where p̃U (k, t) is the Fourier transform of pU (Y, t) and
can be expressed in terms of first-passage quantities of
simple random walks with or without absorbing sites
[36]. Analysis of the explicit expression of the cumulant-
generating function for densely populated single-files [35]
allows us to draw a number of important conclusions,
which we present below.

Bath-mediated binding. As expected, at short times,
the TPs move independently subject to their own biases.
Our first finding is that, at large time and at high particle
density, they are moving as a single TP. More precisely,
in the large-time limit the N -TPs cumulants are given
by 〈Y q11 . . . Y qNN 〉c = 〈Zq1+···+qN 〉c for positive integer qj ,

where Z =
∑N
j=1 Yj/N is the displacement of the center

of mass. At high density, even and odd cumulants of Z
satisfy

〈Z(t)2n〉c
ρ0

=
〈Z(t)2n+1〉c

ρ0S
=

√
2t

π
, (3)

where S = tanh(βF/2) is the effective bias, F =
∑N
j=1 fj

the effective force and the ratio 〈•〉/ρ0 is understood as
the limit ρ0 → 0. Equation (3) implies in particular that
for any number of TPs and arbitrary forces 〈Yj〉 = 〈Z〉,
meaning that at large time all the TPs move like their
center of mass with an effective force F (in agreement
with the hydrodynamic analysis of Ref. [37]).

In the following, we determine the full dynamics of
the correlations between TPs, and focus for simplicity
reasons on the case of two TPs.

Bath-mediated entrainment. We examine the case of a
single biased TP (s2 6= 0) followed by an unbiased TP
(s1 = 0), initially separated by a distance L (see Figure
2, top), which allows us to quantify the perturbation in-
duced by a biased tracer in a quiescent medium. While
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FIG. 2: Entrainment of the bath particles by a biased TP for
ρ0 = 10−2. Only the right TP is biased. (a) Evolution of the
mean displacements, different symbols corresponding to L =
10, 50, s2 = −0.2, 0.8. The black lines are the predictions
from Eq. (4). (b) Cumulants 〈Y1Y2〉c and 〈Y1Y

2
2 〉c/s2 for the

same set of parameters. The black line corresponds to Eq. (6).
Inset of (a): variances for L = 10, s2 = 0.8,−0.8 (solid,
dashes). Predictions in black [35]. Inset of (b): law of the
variation of distance D = Y2 − Y1 at times 10, 102, 103, 104

(blue to red) for L = 10, s = 0.8, ρ0 = 0.05. The squares
are the numerical results, the colored lines are the theoretical
predictions, the black line is the asymptotic prediction [35].

the behaviour of 〈Y2〉 is known [20], we unveil an in-
teresting scaling behaviour of 〈Y1〉 beyond the large-time
regime. Indeed, in the limit t → ∞ with t/L2 constant,
one finds

〈Y2(t)〉
ρ0

= s2

√
2t

π
,

〈Y1(t)〉
ρ0

= s2

√
2t

π
g

(
L√
2t

)
, (4)

g(u) = e−u
2 −√π u erfc(u). (5)

This provides the dynamics of the entrainment of the
TP1 by TP2, which admits a typical time scale L2 and
leads to the final bound state discussed above (see Fig. 2).

The evolution towards the final regime can further be
quantified by the dynamics of the two-TPs even (resp.
odd) cumulants κe = 〈Y p1 Y q2 〉c (resp. κo = 〈Y p1 Y q2 〉c)
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FIG. 3: Cooperativity and competition (ρ0 = 10−2). (i) The two TPs have identical biases s1 = s2 = 0.8. (ii) The biases are
in opposed directions s1 = −0.6, s2 = 0.8. The rescaled velocities A are plotted on (i.a) and (ii.a) with the displacements in
the inset, two initial distances are plotted: L = 50 and 200. At short time, the rescaled velocities are s1 and s2, at large time
they are both equal to S. The variances and some cumulants are plotted on (i.b) and (ii.b) (initial distances L = 10 and 20).
In the case (ii), the velocity of the first TP changes sign at rescaled time τ∗ = t∗/L2 (gray square in ii.a). We plotted the
prediction τ∗ as a function of s1/s2 for s2 = 0.8. The dashed line are the asymptotic behaviors from Eq. (12), the grey square
corresponds to the one in (ii.a).

with p+ q even (resp. odd), p, q ≥ 1. They obey

κe

ρ0
=

κo

ρ0s2
=

√
2t

π
g

(
L√
2t

)
. (6)

Several comments are in order. (i) Equations (4) and
(6) are similar to the expressions found for the random
average process [38, 39], which points towards their uni-
versality. (ii) The same scaling function g is involved
in the expressions of 〈Y1(t)〉 and 〈Y1Y2(t)〉c (Eqs (4) and
(6)). This leads to the generalized fluctuation-dissipation
relation

lim
f2→0

2

β

〈Y1 (f1 = 0, f2)〉
f2

= 〈Y1Y2〉c(f1 = f2 = 0). (7)

Note that this relation holds in the opposite limit of a
dilute (ρ→ 0) SEP [40]. (iii) Our approach provides the
time dependence of all cumulants of individual particles
and the law of the distance between TPs (insets of Fig. 2
and [35]). The time, initial distance between TPs, and
driving force dependences from numerical simulations are

unambiguously captured by our theoretical expressions
(Fig. 2).

Bath-mediated cooperatively and competition. We now
turn to the general case in which both TPs are biased (see
Figure 3, top). The dynamics of effective interactions be-
tween TPs at the level of averages is conveniently anal-
ysed by introducing the rescaled instantaneous velocities

Aj(t) =

√
2πt

ρ0

d〈Yj〉
dt

, (8)

which satisfy Aj(t) = sj at small time and Aj(t) =

S =
s1 + s2
1 + s1s2

at large time. The full time dependency is

found [35] to be given by A1 = Hs1,s2(1+s1),−s1s2(L/
√

2t)

and A2 = Hs2,s1(1−s2),s1s2(L/
√

2t) with

Hβ0,β1,β2(u) =

∞∑
n=0

(−s1s2)n
2∑

m=0

βme
−[(2n+m)u]2 (9)
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while higher order cumulants follow

κe

ρ0
=

κo

ρ0S
=

√
2t

π
Gs1s2

(
L√
2t

)
, (10)

Gσ(u) = (1 + σ)

∞∑
n=0

(−σ)ng([2n+ 1]u). (11)

These results fully quantify the dynamics of the BMIs
between two biased TPs and reveal striking behaviors. (i)
In the case of same sign biases, the TPs cooperate [37]
(Fig 3 left). At large times a pair of biased TPs moves
faster than a single TP- in agreement with the asymptotic
result Eq. (3). Note that such an accelerated dynamics
has been numerically observed in two-dimensional sys-
tems [22, 24]. At intermediate times, we unveil an over-
shoot of the rescaled velocity of the trailing TP. (ii) When
the biases act in opposite directions (say 0 < −s1 < s2),
each TP starts to move in the direction of its own force,
and eventually both TPs move in the direction of the
largest force (Figure 3 left). This competing stage can be
quantified from Eq. (9) by determining the U-turn time
t∗ at which the velocity of TP1 changes its sign. This
time t∗ vanishes when s1 is small, and diverges when s1
is close to −s2 according to the scaling laws

t∗

L2
∼

s1→0

1

2 log(−s2/s1)
;

t∗

L2
∼

s1→−s2

γ

1 + s1/s2
(12)

with γ = 2(1 + s2)2/(1 − s2). Figure 3 shows an excel-
lent quantitative agreement between the analytical pre-
dictions and the numerical simulations.

Our approach can be extended to determine the dy-
namics of correlations in the case of an arbitrary number
of driven TPs. Cooperativity and competition involve a
complex cascade of time scales associated with the initial
distances between TPs, fully captured by our approach,
as exemplified in the case of 3 TPs in Figure 4 and [35].

Bath-mediated interactions. The BMIs between two
bound biased TPs can be further analysed by associating
the probability distribution of the variation of distance
D = Y2 − Y1 to an effective potential U(D) via P (D) =
exp(−βU(D)) [41]. For identical forces (f1 = f2 = f)
and D sufficiently close to its average value, the two TPs
are effectively bound by an harmonic potential

U(D) ∼ κ

2
(D − 〈D〉)2 , 〈D〉

ρ0L
=

(
1

cosh (βf)
− 1

)
, (13)

where the constant κ is explicitly given by

κ =
cosh (βf)

βρ0L (1 + cosh (βf))
. (14)

In the regime, D � 〈D〉, the potential displays a weaker
dependence on the distance U(D) ∼ D(lnD + ν)/β
(see [35] for the value of ν). We remark that this qualita-
tive change of regimes has been observed in 2d in numer-
ical simulations of two biased TPs in a quiescent colloidal
bath [24].

L
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0
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FIG. 4: Rescaled velocity of three TPs for biases s1 =
0.9, s2 = 0.3, s3 = −0.6, total distance L = X0

3 − X0
1 = 60

with X0
2 − X0

1 = 45, ρ0 = 10−2. The colored circles corre-
spond to the numerical simulations while the dashed lines are
the theoretical predictions [35]. Inset: average displacements
of the TPs in linear rescaled time. The behavior of the second
TP displays several regimes: it first moves to the right, then
under the influence of the third TP it goes to the left and fi-
nally the first TP pushed it back to the right. Note that this
complex dynamics is captured by our theoretical approach.

Altogether, we determined the full dynamics of cor-
relation functions in a paradigmatic model of non equi-
librium statistical physics and entirely characterized the
corresponding bath-mediated interactions.
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[28] T. Glanz and H. Löwen, Journal of Physics: Condensed
Matter 24, 464114 (2012).

[29] A. Poncet, O. Bénichou, V. Démery, and G. Oshanin,
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Appendix A: Details of the calculations

1. Model and approximation

a. Model

Our model is based on the well known Symetric Exclusion Principle (SEP). Let us consider particles on a discrete
one-dimensional line (the sites correspond to the integers). The mean density is denoted ρ ∈ [0, 1]. The particles
follow a symmetric random walk with hard-core exclusions in continuous time. The rate of jumps of these particles
to the left / right is 1/2. In addition to these particles, we consider two biased tagged particles (TPs), initially at
positions X0

1 = 0 and X0
2 = L. They can jump to the right with probability pj = (1 + sj)/2 and to the left with

probability p−j = (1− sj)/2, where s1 and s2 are the biases on the two TPs. See Fig. 1 on the article for a sketch of
the system.

For simplicity reasons, we choose to present only the computations for two TPs. The treatement of three or more
TPs is very similar but it leads to heavier computations. Results for three TPs will be presented in the next section.

b. Approximation and consequences

We focus on the limit of a dense system (ρ → 1) and we follow the evolution of the vacancies as was done in
Ref. [20]. In this limit of small number of vacancies, one can approximate the motion of the TPs as being generated
by the vacancies interacting independantly (i.e. not simultaneously) with them: in the large density limit the events
corresponding to two vacancies interacting simultaneously with the TPs happen only with negligible probability.

Let us consider a system of size N with M vacancies and denote by Y(t) = (X1(t) −X0
1 , X2(t) −X0

2 ) the vector
of the displacements of the two tracers. The probability P (t)(Y|{Zj}) of having displacements Y at time t knowning
that the M vacancies started at sites Z1 . . . ZM is exactly given by :

P (t)(Y|{Zj}) =
∑

Y1,...,YM

δY,Y1+···+YM
P(t)({Yj}|{Zj}) (S1)

where P(t)({Yj}|{Zj}) is the probability of displacements Yj due to the vacancy j, for all j, knowing the initial
positions of all the vacancies.

Making the approximation that we described above, we can link it to the probability p
(t)
Z (Y) that the tracers have

moved by Y at time t due to a single vacancy that was initially at site Z:

P(t)({Yj}|{Zj}) ∼
ρ→1

M∏
j=1

p
(t)
Zj

(Yj) (S2)

We then have :

P (t)(Y|{Zj}) ∼
ρ→1

∑
Y1,...,YM

δY,Y1+···+YM

M∏
j=1

p
(t)
Zj

(Yj) (S3)

We take the Fourier transform and we average over the initial positions of the vacancies:

p̃(t)(k) ≡ 1

N − 2

∑
Z 6=0,L

∑
Y

p
(t)
Z (Y)eik·Y (S4)

and mutatis mutandis for P̃ (t)(k). We obtain

P̃ (t)(k) ∼
ρ→1

[
p̃(t)(k)

]M
=

 1

N − 2

∑
Z 6=0,L

p̃
(t)
Z (k)

M . (S5)

Furthermore we write p̃
(t)
Z (k) = 1 + q̃

(t)
Z (k) (qZ corresponds to the deviation from a Dirac centered in 0) to get

P̃ (t)(k) ∼
ρ→1

1 +
1

N − 2

∑
Z 6=0,L

q̃
(t)
Z (k)

M . (S6)
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We now take the limit N,M →∞ with ρ0 ≡ 1− ρ = M/N (density of vacancies) remaining constant. The second
characteristic function reads

ψ(t)(k) ≡ ln
[
P̃ (t)(k)

]
≈ ρ0

∑
Z 6=0,L

q̃
(t)
Z (k). (S7)

ψ gives all the cumulants : the cumulant associated to Y q1 Y
r
2 is 〈Y q1 Y r2 〉 = i−(q+r) ∂q+r

∂kq1k
r
2
ψ
∣∣∣
k=0

.

Our goal is now to find an expresion for ψ(t)(k).

2. Resolution

The approximation (S3) that leads to (S6) tells us that the case of a vanishing density of vacancies can be deduced
from the case of a single vacancy. We first focus on the latter before using (S7) to get the cumulants.

a. Single vacancy

We consider the situation with a single vacancy. In the following we shall denote by ν = −1,+1,−2,+2 the “special
sites” respectively to the left of TP1, to the right of TP1, to the left of TP2, to the right of TP2. We use the vectors
e±1 = (±1, 0) and e±2 = (0,±1).

The key is to introduce (conditional) first-passage time quantities F
(t)
η,A denotes the probability that the vacancy

that started from site A (A can be a special site) at time 0 arrives for the first time to the position of one of the
tracers at time t conditionned on the fact that it was on the special site η at time t− 1.

A subtelty is that this probability shall depend on a quantity called L∗ = L∗η,Z which is the distance between the

tracers when a vacancy can arrive at site η when it was at site Z at the very begining. Let us denote z = I(0 < Z < L),
Z being the inital position of the vacancy. Example: we consider η = +1, the vacancy has to be between the two
tracers to get to this special site before any other. Now if z = 0 (vacancy started outside of the tracers) the distance
between the tracers is L∗ = L + 1 (if z = 1, it would be L∗ = L). In any case, we always have L∗ = L + α(z, η),

α ∈ {−1, 0, 1}. In the following F
(j),z
η,A ≡ F (j)

η,A(L+ α(η, z)). Note that if Z is the initial position of the vacancy, there

is no ambiguity: F
(j)
η,Z = F

(j)
η,Z(L∗ = L).

One can partition over the first passage of the vacancy to the site of one of the tracers to get an expression for q̃Z
which is the main quantity involved in (S7):

p
(t)
Z (Y) = δY,0

1−
t∑

j=0

∑
ν=±1,±2

F
(j)
ν,Z

+

t∑
j=0

∑
ν=±1,±2

p
(t−j)
−ν (Y − eν)F

(j)
ν,Z (S8)

p̃
(t)
Z (k) = 1−

t∑
j=0

∑
ν=±1,±2

F
(j)
ν,Z +

t∑
j=0

∑
ν=±1,±2

p̃
(t−j),z
−ν (k)eik·eνF (j)

ν,Z , (S9)

q̃
(t)
Z (k) = −

t∑
j=0

∑
ν=±1,±2

[
1−

(
1 + q̃

(t−j),z
−ν (k)

)
eik·eν

]
F

(j)
ν,Z . (S10)

An exponant z to a quantity means that this quantity is computed taking into account z = I(0 < Z < L).
We now need an expression for q̃zη where η is a special site. To do so we decompose the propagator of the

displacements over the successive passages of the vacancy to the position of one of the tracers:

p(t),zη (Y) = δY,0

1−
t∑

j=0

∑
µ

F (j),z
µ,η


+

∞∑
p=1

∞∑
m1,...,mp=1

∞∑
mp+1=0

δt,
∑
imi

∑
ν1,...,νp

δY,
∑
ieνi

1−
mp+1∑
j=0

∑
µ

F
(j),z
µ,−νp

F
(mp),z
νp,−νp−1

. . . F
(m2),z
ν2,−ν1F

(m1),z
ν1,η (S11)

the sums on µ and νi run over the special sites (±1,±2).
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The discrete Laplace transform of a function of time g(t) is ĝ(ξ) ≡∑∞t=0 g(t)ξt. We can now take both the Laplace
and Fourier transforms of (S11) to get:

p̂zη(Y, ξ) =
1

1− ξ

δY,0
(

1−
∑
µ

F̂ zµ,ν

)
+

∞∑
p=1

∑
ν1,...,νp

δY,
∑
ieνi

∑
µ

(
1− F̂ zµ,−νp

)
F̂ zνp,−νp−1

. . . F̂ zν2,−ν1 F̂
z
ν1,η

 (S12)

ˆ̃qzη(k, ξ) ≡ ˆ̃pzη(k, ξ)− 1

1− ξ =
1

1− ξ
∑
µ,ν

{[1− T z(k, ξ)]−1}νµ ×
(
1− e−ikeν

)
eikeµ F̂ zµη(ξ) (S13)

The matrix T is defined by T z(k, ξ)νµ = F̂ zν,−µ(ξ)eikeν .

b. Multiple vacancies

Introducing (S10) into (S7), one gets an expression for the Laplace transform of the second characteristic function:

ψ̂(k, ξ) =− ρ0
{ ∑
ν=−1,2

[
1

1− ξ −
(

1

1− ξ + ˆ̃q
(z=0)
−ν (k, ξ)

)
eikeν

]
hν(ξ)

+
∑
ν=1,2

[
1

1− ξ −
(

1

1− ξ + ˆ̃q
(z=1)
−ν (k, ξ)

)
eikeν

]
hν(ξ)

}
(S14)

hν(ξ) =
∑
Z 6=0,L

F̂ν,Z(ξ) (S15)

where ˆ̃qzν is given by (S13).

At the end of the day, the only quantities that need to be computed are : F̂−1,−1, F̂2,2 (returning to the left of TP1

/ to the right of TP2), F̂1,1, F̂−2,−2 (returning to the left of TP1 without touching TP2, and vice-versa), F1,−2, F−2,1
(arriving to the right of TP2 starting from the left of TP1 without returning, and vice-versa), and the sums h−1, h2,
h1, h−2.

a. Computation of the “outside” quantities We call “outside” quantities the ones related to the sites −1 and 2:
F̂−1,−1(ξ), F̂2,2(ξ), h1(ξ) and h2(ξ). In this case, we do not care about the fact that there are two tracers: we simply
consider a random walk on a half line in which site 1 is biased. Note that in this case, we do not care either about
the distance between the tracers (ie the value of z).

We first compute F2,2: this amounts to the probability to return for the first time to the origin at time t and being
on site 1 at time t− 1 knowing that one was at site 1 at time 0. We can partition on the first step of the walk.

For η a “special site”, we call p̃η = 1/(2pη + 1) the probability for the vacancy to jump to the left (ν = 1) or right
(ν = −1) of a tracer when it is next to it.

F2,2(t) = (1− p̃2) δt,1 + p̃2

t∑
j=1

f1(j − 1)F2,2(t− j) (S16)

where fl(t) the first-passage time density at the origin at time t of a symmetric Polya walk starting from site l. One

knowns f̂l(ξ) = α|l| with α = ξ−1(1−
√

1− ξ2) [36].
We take the Laplace transform and obtain:

F̂2,2(ξ) =
(1− p̃2)ξ

1− p̃2αξ
(S17)

Similarly

F̂−1,−1(ξ) =
(1− p̃−1)ξ

1− p̃−1αξ
(S18)
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h−1 and h2 are easily computed from the former quantities:

F+2,Z(t) = Θ(Z − (L+ 1))

t∑
j=0

fZ−1(j)F2,2(t− j) (S19)

F̂+2,Z(ξ) = Θ(Z − (L+ 1))f̂Z−L−1(ξ)F̂2,2(ξ) = Θ(Z − (L+ 1))F̂2,2(ξ)αZ−L−1 (S20)

h2(ξ) =
∑
Z 6=0,L

F̂+2,Z(ξ) = F̂2,2

∞∑
Z′=0

αZ
′

=
F̂2,2(ξ)

1− α (S21)

h−1(ξ) =
F̂−1,−1(ξ)

1− α (S22)

b. Computation of the “inside” quantities We first solve the case with no bias s1 = s2 = 0. There are only two
quantity to compute: F̂ (=) ≡ F̂+1,+1 = F̂−2,−2 and F̂ ( 6=) ≡ F̂+1,−2 = F̂−2,+1. We also compute (for 0 < Z < L)

F̂ ◦Z ≡ F̂+1,Z = F̂−2,L−Z . (L is the distance between the tracers)
We recall the formula for the first passage time (of a Polya random walk) at site s1 starting from s0 and considering

s2 as an absorbing site [36],

f̂†(s1|s0, ξ) =
f̂s1−s0(ξ)− f̂s1−s2(ξ)f̂s2−s0(ξ)

1− f̂s1−s2(ξ)2
(S23)

with f̂l(ξ) = α|l| in our 1-dimensional case. This gives us:

F̂ (=)(ξ, L) =
α− α2L−1

1− α2L
(S24)

F̂ ( 6=)(ξ, L) =
αL−1 − αL+1

1− α2L
(S25)

F̂ ◦Z(ξ, L) =
αZ − α2L−Z

1− α2L
(S26)

The case s1 6= 0, s2 6= 0 can be deduced from the unbiased case for a distance L − 2 by partioning on the first
passage of the vacancy to either +1 or -2:

F1,1(t, L) =(1− p̃1)δt,1

+ p̃1

 t∑
j=1

F (=)(j − 1, L− 2)F1,1(t− j, L) +

t∑
j=1

F ( 6=)(j − 1, L− 2)F1,−2(t− j, L)

 (S27)

F̂1,1(ξ, L) =(1− p̃1)ξ + p̃1ξ
(
F̂ (=)(L− 2)F̂1,−2(L) + F̂ (6=)(L− 2)F̂1,−2(L)

)
(S28)

The first term corresponds to a return to 1, the second to a passage to −2.
This leads us to a system of 2× 2 equations with 2× 2 unknowns.

(
ξp̃1F̂

(=)(L− 2)− 1
)
F̂1,1 +

(
ξp̃1F̂

( 6=)(L− 2)
)
F̂1,−2 +(1− p̃1)ξ = 0(

ξp̃−2F (=)(L− 2)− 1)
)
F̂1,−2 +

(
ξp̃−2F ( 6=)(L− 2)

)
F̂1,1 = 0(

ξp̃−2F̂ (6=)(L− 2)− 1
)
F̂−2,−2 +

(
ξp̃−2F̂ ( 6=)(L− 2)

)
F̂−2,1 +(1− p̃−2)ξ = 0(

ξp̃1F
(=)(L− 2)− 1)

)
F̂−2,1 +

(
ξp̃1F

(6=)(L− 2)
)
F̂−2,−2 = 0

(S29)

The solution is: 

F̂1,1 =
(1− ξp̃−2F̂ (=))(1− p̃1)ξ

(1− ξp̃1F̂ (=))(1− ξp̃−2F̂ (=))− ξ2p̃1p̃−2(F̂ ( 6=))2

F̂1,−2 =
ξ2p̃−2(1− p̃1)F̂ ( 6=)

(1− ξp̃1F̂ (=))(1− ξp̃−2F̂ (=))− ξ2p̃1p̃−2(F̂ ( 6=))2

F̂−2,−2 =
(1− ξp̃1F̂ (=))(1− q−B)ξ

(1− ξp̃1F̂ (=))(1− ξp̃−2F̂ (=))− ξ2p̃1p̃−2(F̂ ( 6=))2

F̂−2,1 =
ξ2p̃1(1− p̃−2)F̂ (6=)

(1− ξp̃1F̂ (=))(1− ξp̃−2F̂ (=))− ξ2p̃1p̃−2(F̂ ( 6=))2

(S30)
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with F̂ (=) and F̂ (6=) evaluted for L− 2.
For 0 < Z < L, one can again partion on the first passage of the vacancy to +1 or −2.

F+1,Z(t, L) =

t∑
j=1

F ◦Z−1(j, L− 2)F1,1(t− j, L) +

t∑
j=1

F ◦L−Z−1(j, L− 2)F−2,−2(t− j, L) (S31)

F̂+1,Z(ξ, L) = F̂ ◦Z−1(L− 2)F̂1,1(L) + F̂ ◦L−Z−1(L− 2)F̂−2,−2(L) (S32)

Using (S26), we obtain:

h1(ξ) =

L−1∑
Z=1

F̂+1,Z =
(1− αL−2)(1− αL−1)

1− α2(L−2)

(
F̂+1,+1 + F̂+1,−2

)
(S33)

h−2(ξ) =

L−1∑
Z=1

F̂−2,Z =
(1− αL−2)(1− αL−1)

1− α2(L−2)

(
F̂−2,−2 + F̂−2,+1

)
(S34)

3. Results

a. Symbolic calculation

We use a symbolic calculation software (Mathematica) to put all the bricks together according to the following
graph. An asterix (∗) indicates that one should be careful about which value of L (distance between the TPs) should
be used.

ψ̂(k, ξ)
(S14)

q̂zν
(S13)

hν
(S21, S22, S33, S34)

F̂−1,−1, F̂2,2

(S17, S18)

F̂α,β (α, β ∈ {1,−2})
(S30)

∗

F̂ (=), F̂ 6=

(S24, S25)
∗

α =
1−
√

1−ξ2
ξ

p̃ν = 1
2pν+1

b. Scaling limit

We define a continuous Laplace variable p = 1− ξ. When p goes to zero, α = (1−
√

1− ξ2)/ξ = 1−√2p+O(p).
We will be interested in the limit of large time t and large distance L, with τ = t/L2 constant. This amounts

to writing p = p̃/L2 with L → ∞ and p̃ constant. The inverse Laplace transform of a function f̂(p, L) = L2ĝ(p̃) is
f(t, L) = g(τ) with g the inverse Laplace transform of ĝ.

Finally, our scaling limit in Laplace space amounts to the following substitutions that can be performed with a
numerical software (in this order).

1− ξ 7→ p̃/L2 1− α 7→
√

2p̃/L αL ≈
(

1−
√

2p̃/L
)L
7→ e−

√
2p̃ α 7→ 1 (S35)

Appendix B: Detailed results

1. One TP

We start by recalling the results of Ref. [20] for a single TP of bias s in the limit of high density (fraction of vacancies
ρ0 → 0), at large time (small p).

lim
ρ0→0

ψ̂(k, p)

ρ0
=

1√
2p3/2

{cos k − 1 + s sin k} (S1)

lim
ρ0→0

ψ(k, t)

ρ0
=

√
2t

π
{cos k − 1 + s sin k} (S2)
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The even (resp odd) cumulants of the displacement Y are equal.

〈Y 2n〉c
ρ0

=

√
2t

π

〈Y 2n+1〉c
ρ0

= s

√
2t

π
(S3)

The fraction 〈•〉 is understood as a limit ρ0 → 0.

2. Two TPs

We now focus on the case of two TPs with biases s1 and s2, initially separated by a distance L. The Laplace
transform of the cumulant generating function reads

lim
ρ0→0

ψ̂(k, p = p̃/L2)

ρ0
=

L3

√
2p̃3/2

{
K̂e,2(p̃)(cos(k1 + k2)− 1) + K̂o,2(p̃) sin(k1 + k2)

+

2∑
i=1

[
K̂e,1
i (p̃)(cos ki − 1) + K̂o,1

i (p̃) sin ki

]}
. (S4)

with K̂α,j given in the following. In real time, this gives

1

L
lim
ρ0→0

ψ(k, t = L2τ)

ρ0
=

√
2τ

π

{
Ke,2(τ)(cos(k1 + k2)− 1) +Ko,2(τ) sin(k1 + k2)

+

2∑
i=1

[
Ke,1
i (τ)(cos ki − 1) +Ko,1

i (τ) sin ki

]}
. (S5)

Note that K(τ) is related but not equal to the inverse Laplace transform of K̂(p̃).

From the previous expression one can deduce all the cumulants (i = 1, 2), including those of the variation of distance
D = Y2 − Y1.

〈Y j1 Y 2n−j
2 〉c
ρ0L

= Ke,2(τ)

√
2τ

π

〈Y j1 Y 2n+1−j
2 〉c
ρ0L

= Ko,2(τ)

√
2τ

π
(S6)

〈Y 2n
i 〉c
ρ0L

= [Ke,2(τ) +Ke,1
i (τ)]

√
2τ

π

〈Y 2n+1
i 〉c
ρ0L

= [Ko,2(τ) +Ko,1
i (τ)]

√
2τ

π
(S7)

〈D2n〉c
ρ0L

= [Ke,1
1 (τ) +Ke,1

2 (τ)]

√
2τ

π

〈D2n+1〉c
ρ0L

= [Ko,1
2 (τ)−Ko,1

1 (τ)]

√
2τ

π
(S8)

Again, these results correspond to a limit ρ0 → 0.

We now give the expressions of the quantities K̂(p) and K(t) both in the cases s1 = 0, s2 6= 0 and s1, s2 6= 0.

Case s1 = 0, s2 6= 0 Case s1, s2 6= 0

K̃e,2(p̃) v (1 + s1s2)v/d2
K̃o,2(p̃) s2v (s1 + s2)v/d2
K̃e,1

1 (p̃) (1− v)(1 + s2v) (1− v)(1 + s2v)/d2
K̃o,1

1 (p̃) 0 s1(1− v)(1 + s2v)/d2
K̃e,1

2 (p̃) 1− v (1− v)(1− s1v)/d2
K̃o,1

2 (p̃) s2(1− v) s2(1− v)(1− s1v)/d2

with v = e−
√
2p̃ and d2 = 1 + s1s2v

2.
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Case s1 = 0, s2 6= 0 Case s1, s2 6= 0

Ke,2(τ) g1(τ) G0,s1s2,0(τ)
Ko,2(τ) s2g1(τ) G0,s1+s2,0(τ)

Ke,1
1 (τ) 1 + (s2 − 1)g1(τ) + s2g2(τ) G1,s2−1,−s2(τ)

Ko,1
1 (τ) 0 Gs1,s1(s2−1),−s1s2(τ)

Ke,1
2 (τ) 1− g1(τ) G1,−s1−1,s1(τ)

Ko,1
2 (τ) s2(1− g1(τ)) Gs2,−s2(1+s2),s1s2(τ)

with

g(u) = e−u
2 −√πu erfcu (S9)

gn(τ) = g(n/
√

2τ) (S10)

Gα,β,γ(τ) =

∞∑
n=0

(−s1s2)n [αg2n(τ) + βg2n+1(τ) + γg2n+2(τ)] (S11)

Note that at small τ , Gα,β,γ = α while at large τ , Gα,β,γ = (α+ β + γ)/(1 + s1s2).
The time evolution of the cumulants is given by Eqs. (S6), (S7). The rescaled velocities studied in the main text

are obtained by taking the time derivative of the average displacements.

3. U-turn time for two TPs with opposite biases

We consider two TPs with biases s2 > 0 and −s2 < s1 < 0. We focus on the rescaled velocity of particle 1 defined
as.

A1(t) ≡
√

2πt

ρ0

d〈Yj〉
dt

(S12)

From (S7),

〈Y1〉
ρ0L

=
[
G0,s1+s2,0(τ) +Gs1,s1(s2−1),−s1s2(τ)

]√2τ

π
= Gs1,s2(1+s1),−s1s2(τ)

√
2τ

π
(S13)

From this we deduce that

A1(τ) = Hs1,s2(1+s1),−s1s2(1/
√

2τ) (S14)

Hβ0,β1,β2(u) =

∞∑
n=0

(−s1s2)n
{
β0e
−[2nu]2 + β1e

−[(2n+1)u]2 + β2e
−[(2n+2)u]2

}
(S15)

At short time A1 = s1 < 0 while at large time A1 = (s1 + s2)/(1 + s1s2) > 0. There exists a rescaled time τ∗ such
that A1(τ∗) = 0. One can solve numerically for τ∗. Here we derive the asymptotic behavior of τ∗ when s1/s2 → 0
and when s1/s2 → −1.

When s1/s2 is small, τ∗ is small so (τ∗)−1/2 is large. We can keep only the first two terms in the sum (S15),

A1(τ∗) ≈ s1 + s2(1 + s1)e−
1

2τ∗ ≈ s1 + s2e
− 1

2τ∗ = 0, (S16)

τ∗ ≈
[
2 ln

(
s2
−s1

)]−1
. (S17)

In the opposite limit, we write s1 = −s2(1− ε) with ε� 1. We guess that (2τ∗)−1 = ηε with η depending only on
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s2. The expansion gives

A1 =

∞∑
n=0

(−s1s2)n
{
s1(e−1/(2τ))(2n)

2

+ s2(1 + s1)(e−1/(2τ))(2n+1)2 − s1s2(e−1/(2τ))(2n+2)2
}

(S18)

=

∞∑
n=0

s2n2 (1− nε)×{
−s2(1− ε)(1− (2n)2ηε) + s2(1− s2 + s2ε)(1− (2n+ 1)2ηε) + s22(1− ε)(1− (2n+ 2)2ηε)

}
(S19)

= 0 + ε

∞∑
n=0

s2n2
{
s2(1 + (2n)2η) + s22 − s2(1− s2)(2n+ 1)2η − s22 − s22(2n+ 2)2η

}
(S20)

= ε

∞∑
n=0

s2n+1
2 + ηε

∞∑
n=0

s2n2
{
s2(2n)2 − s2(1− s2)(2n+ 1)2 − s22(2n+ 2)2

}
(S21)

= ε

{
s2

1− s22
− η s2(1 + s2)

(1− s2)2

}
(S22)

A1 = 0 gives

η =
s2

1− s22
(1− s2)2

s2(1 + s2)
=

1− s2
(1 + s2)2

. (S23)

At the end of the day,

τ∗ ≈ 1

2ηε
=

(1 + s2)2

2(1− s2)

1

1 + s1
s2

. (S24)

Eqs (S17) and (S24) correspond to the asymptots of the inset of Fig. 3, (b.ii) of the main text.

4. Single trajectories

We note that for large time and large distances, our results for cooperativity and competition (Eqs. (4) and (9) of
the main text) actually hold at the very level of a single trajectory. Numerical evidence is shown on Fig. S1).

5. Three TPs

We now turn to the case of three TPs with biases s1, s2, s3. We denote L1 = X0
2 − X0

1 and L2 = X0
3 − X0

2 and
L = L1 + L2. Our result for the Laplace transform of the cumulant-generating function is

lim
ρ0→0

ψ̂(k, p = p̃/L2)

ρ0
=

L3

√
2p̃3/2

{
K̂e,3(p̃)(cos(k1 + k2 + k3)− 1) + K̂o,3(p̃) sin(k1 + k2 + k3)

+

2∑
i=1

[
K̂e,2
i,i+1(p̃)(cos(ki + ki+1)− 1) + K̂o,1

i (p̃) sin(ki + ki+1)
]

+

3∑
i=1

[
K̂e,1
i (p̃)(cos ki − 1) + K̂o,1

i (p̃) sin ki

]}
. (S25)

with

Kα,n(p̃) =

∑2
a,b=0Q

α,n(a, b)va1v
b
2

1 + s1s2v21 + s2s3v22 + s1s3v21v
2
2

(S26)
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FIG. S1: Single realizations of the TP trajectories (ρ0 = 0.1). (a) Entrainment: s1 = 0, s2 = 0.8. (b) Competition: s1 = −0.4,
s2 = 0.8. Circles: L = 1000, triangles: L = 2000, black lines: theoretical predictions from Eqs. (4) and (9) in the main text.
We see that our approach is relevant even for individual realizations.

with v1 = e−(L1/L)
√
2p̃, v2 = e−(L2/L)

√
2p̃. For completeness, we give the 12 matrices Q of coefficients.

Qe,3 = (1 + s1s2 + s2s3 + s1s3)

0 0 0
0 1 0
0 0 0

 Qo,3 = (s1 + s2 + s3 + s1s2s3)

0 0 0
0 1 0
0 0 0

 (S27)

Qe,21,2 = (1 + s1s2)

0 0 0
1 s3 − 1 −s3
0 0 0

 Qo,21,2 =
s1 + s2
1 + s1s2

Q2,e
1,2 (S28)

Qe,22,3 = (1 + s2s3)

0 1 0
0 −1− s1 0
0 s1 0

 Qo,22,3 =
s2 + s3
1 + s2s3

Q2,e
2,3 (S29)

Qe,11 =

 1 0 s2s3
s2 − 1 0 s3(1− s2)
−s2 0 −s3

 Qo,11 = s1Q
1,e
1 (S30)

Qe,12 =

 1 s3 − 1 −s3
−1− s1 1 + s1 − s3 − s1s3 s3(1 + s1)
s1 s1(s3 − 1) −s1s3

 Qo,12 = s2Q
1,e
2 (S31)

Qe,13 =

 1 −1− s2 s2
0 0 0

s1s2 −s1(1 + s2) s1

 Qo,13 = s3Q
1,e
3 (S32)

The Laplace transform (S25) can be inverted numerically to obtain the time evolution of the cumulants.
One notices that the sum of all the coefficients of the matrices Q1 and Q2 is zero. This means that for p̃→ 0, (S25)

simplifies into

lim
ρ0→0

ψ̂(k, p)

ρ0
=

1√
2p̃3

{
cos(k1 + k2 + k3)− 1 +

s1 + s2 + s3 + s1s2s3
1 + s1s2 + s1s3 + s2s3

sin(k1 + k2 + k3)

}
(S33)



15

This corresponds to a single TP with effective bias S = s1+s2+s3+s1s2s3
1+s1s2+s1s3+s2s3

. This behavior generalises to an arbitrary
number of TPs, the effective bias being

S =

∏N
i=1(1 + si)−

∏N
i=1(1− si)∏N

i=1(1 + si)−
∏N
i=1(1− si)

= tanh

(
1

2

N∑
i=1

fi

)
(S34)

with si = tanh(fi/2).

6. Law of the distance between two TPs

a. Two TPs

We denote D = Y2−Y1 the variation of distance between two TPs. The cumulant-generating function of D is given
by

ψD(q, t) ≡ ln
〈
eiqD(t)

〉
= ψ(k1 = −q, k2 = q, t) (S35)

with ψ given by Eq. (S5). Thus the Laplace transform of ψD reads:

lim
ρ0→0

ψ̂D(q, p = p̃/L2)

ρ0
=

L3

√
2p̃3/2

{[
K̂e,1

1 (p̃) +Ke,2
1 (p̃)

]
(cos q − 1) +

[
K̂o,1

2 (p̃)− K̂o,1
1 (p̃)

]
sin q

}
(S36)

=
L3

√
2p̃3/2

1− v
1 + s1s2v2

{[2 + (s2 − s1)v] (cos q − 1) + i [s2 − s1 − 2s1s2u] sin q} . (S37)

At very-large time, ie when p̃→ 0, v = e−
√
2p̃ ≈ 1−√2p̃. This lead us to the following stationnary law ψstat

D at large
time:

lim
ρ0→0

ψ̂stat
D (q, p)

ρ0
=
L

p

[2 + s2 − s1] (cos q − 1) + i [s2 − s1 − 2s1s2] sin q

1 + s1s2
(S38)

lim
ρ0→0

ψstat
D (q)

ρ0
= L

[2 + s2 − s1] (cos q − 1) + i [s2 − s1 − 2s1s2] sin q

1 + s1s2
(S39)

= L

{
(1− s1)(1 + s2)

1 + s1s2
(eiq − 1) + (e−iq − 1)

}
(S40)

= L

{
2

eβf1 + e−βf2
(eiq − 1) + (e−iq − 1)

}
. (S41)

We recall that the forces are defined by eβfi = (1 + si)/(1− si). Eq. (S41) corresponds to a Skellam distribution PD
with parameters µ1 = 2ρ0L/(e

βf1 + e−βf2) and µ2 = ρ0L.

PD(D) = e−(µ1+µ2)

(
µ1

µ2

)k/2
Ik(2
√
µ1µ2) (S42)

The average of D is µ1 − µ2 and the variance is µ1 + µ2.

b. Effective potential and Gaussian limit

We focus on the case f1 = f2 = f : µ1 = ρL[cosh(βf)]−1, µ2 = ρ0L. In this case, we can associate an effective
potential U(D) to the probability law as

PD(D) ∼ e−βU(D). (S43)

For D close to its average value µ1 − µ2, the Skellam law is well approximated by a Gaussian

PD(D) ≈ 1

(µ1 + µ2)
√

2π
e
− (D−µ1+µ2)2

2(µ1+µ2) ∼ e−βU(D) (S44)



16

with the effective potential U(D) given by

U(D) ≈ κ

2
(D − 〈D〉)2 (S45)

κ =
1

β(µ1 + µ2)
=

cosh(βf)

βρ0L[1 + cosh(βf)]
. (S46)

c. Large deviation function and large distance scaling

Now, we want to derive the behavior of U(D) at large D. We first determine the large deviation function of the
problem. We have

P stat
D (D) = e−ρ0L(µ̃1+1)µ̃

D/2
1 ID(2ρ0L

√
µ̃1), (S47)

lnP stat
D (D) = −ρ0L(µ̃1 + 1) +

D

2
ln µ̃1 + ln ID(2ρ0L

√
µ̃1) (S48)

with µ̃1 = µ1/(ρ0L) = cosh(βf)−1. We use the expansion of the Bessel function at large order and large argument
(here large D ∼ ρ0L).

ID(Dz) ≈ 1√
2πD

eηD

(1 + z2)1/4
η =

√
1 + z2 + ln

z

1 +
√

1 + z2
(S49)

ln ID(Dz) ≈ ηD ln I2ρ0Lx(2ρ0Lxz) ≈ 2ρ0Lxη (S50)

Here z =
√
µ̃1/x. Thus

η = z

√
1 +

1

z2
− ln

(
1

z
+

√
1 +

1

z2

)
=

1

x

√
x2 + µ̃1 − ln(x+

√
x2 + µ̃1) +

1

2
ln(µ̃1) (S51)

At the end of the day,

lnP stat
D (D = 2ρ0Lx)

2ρ0L
= − µ̃1 + 1

2
+
x

2
ln µ̃1 + xη (S52)

= − µ̃1 + 1

2
+
√
x2 + µ̃1 + x ln µ̃1 − x ln(x+

√
x2 + µ̃1) (S53)

≡ φ(x) (S54)

φ(x) is a large deviation function. The large D behavior corresponds to the limit x→∞.

φ(x) ≈ −x lnx+ (1− ln 2 + ln µ̃1)x, (S55)

lnP stat
D (D) ≈ D

(
1− ln

D

ρ0Lµ̃1

)
≈ D

(
1− ln

D cosh(βf)

ρ0L

)
(S56)

U(D) = − 1

β
lnP stat

D (D) ≈ D

β

[
lnD + ln

cosh(βf)

ρ0L
− 1

]
≡ D

β
[lnD + ν] (S57)

with ν = ln cosh(βf)
ρ0L

− 1.

d. Three TPs and non-additivity of the interactions

We consider three TPs undergoing forces f1, f2 and f3. We denote L1 = X2(t = 0)−X1(t = 0) the initial distance
between TPs 1 and 2. Let us call D12 = Y2−Y1 the variation of distance between TPs 1 and 2. From (S25), we show
that its cumulant generating function at large time reads

ψD12(q) ≡ ln〈eiqD12〉 (S58)

ψstat
D12

(q)

ρ0
, = L1

{
2

eβf1 + e−β(f2+f3)
(eiq − 1) + (e−iq − 1)

}
. (S59)
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This still corresponds to a Skellam law. The presence of a force f3 modifies the stationnary law. We see that the
interactions between TPs are not additive.

Similarly, if we denote L2 = X3(t = 0)−X2(t = 0) and D23 = Y3 − Y2, we have

ψstat
D23

(q)

ρ0
= L2

{
2

eβ(f1+f2) + e−βf3
(eiq − 1) + (e−iq − 1)

}
. (S60)

Appendix C: Numerical simulations

1. Simulations

We do simulations of the SEP as follow. We consider a periodic line of N sites. We first place n = 1, 2 or 3 tagged
particles (TPs) at initial deterministic positions. Then, we place M − n bath particles uniformly at random on the
remaining sites. For the figures of the main text we used N = 2500, M = 2475 (ρ0 = M/N = 0.01).

At each time step we draw a particle at random and try to move it either to the left or to the right according to
its probability p = (1 + s)/2 for the TPs, p = 1/2 for the bath particles. The continuous time is then incremented
with a exponentially distributed random number with characteristic time 1/M . This accounts for the exponentially
distributed jump rates of the particles. At equally spaced continuous times we compute the observables: the moments
with 1 to n TPs.

We perform the average over multiple simulations to get good statistics. Typically we perform 50000 simulations
(except for the Figure for a single realization).

2. Numerical effective biases

We now discuss how to obtain the numerical curves for the rescaled velocities defined as

A(t) =
√

2πt
dX

dt
(S1)

from the numerical data X versus t. Let us define

B(t) ≡
√
π

2t
X(t) (S2)

which is easy to compute from the data. One sees that

A(t) = B(t) + 2t
dB

dt
. (S3)

Now, we write w = ln t which gives us

A(w) = B(w) + 2
dB

dw
. (S4)

Our procedure is as follow: we first gather the data into bins of logarithmic size over which we average. This gives
us B(w). We then compute the derivative dB/dw using a Savisky-Golay filter. We finally obtain A(w) that we can
plot on our graphs.
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