PatchNet: A Tool for Deep Patch Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

PatchNet: A Tool for Deep Patch Classification

Résumé

This work proposes PatchNet, an automated tool based on hierarchical deep learning for classifying patches by extracting features from commit messages and code changes. PatchNet contains a deep hierarchical structure that mirrors the hierarchical and sequential structure of a code change, differentiating it from the existing deep learning models on source code. PatchNet provides several options allowing users to select parameters for the training process. The tool has been validated in the context of automatic identification of stable-relevant patches in the Linux kernel and is potentially applicable to automate other software engineering tasks that can be formulated as patch classification problems. A video demonstrating PatchNet is available at https://goo.gl/CZjG6X. The PatchNet implementation is available at https://github.com/hvdthong/PatchNetTool.
Fichier principal
Vignette du fichier
2019_ICSE_PatchNetTool_paper.pdf (364.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02408347 , version 1 (13-12-2019)

Identifiants

Citer

Thong Hoang, Julia L. Lawall, Richard J. Oentaryo, Yuan Tian, David Lo. PatchNet: A Tool for Deep Patch Classification. ICSE-Companion 2019 - IEEE/ACM 41st International Conference on Software Engineering, May 2019, Montreal, Canada. pp.83-86, ⟨10.1109/ICSE-Companion.2019.00044⟩. ⟨hal-02408347⟩
200 Consultations
500 Téléchargements

Altmetric

Partager

More