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Chapter 1
Finite Volume Method for a System of
Continuity Equations Driven by Nonlocal
Interactions

Anissa El Keurti and Thomas Rey

Abstract We present a new finite volume method for computing numerical approx-
imations of a system of nonlocal transport equation modeling interacting species.
This method is based on the work [F. Delarue, F. Lagoutire, N. Vauchelet, Con-
vergence analysis of upwind type schemes for the aggregation equation with pointy
potential, Ann. Henri. Lebesgue 2019], where the nonlocal continuity equations are
treated as conservative transport equations with a nonlocal, nonlinear, rough veloc-
ity field. We analyze some properties of the method, and illustrate the results with
numerical simulations.

Key words: Upwind finite volume method, system of aggregation equations, pop-
ulation dynamics, continuity equations, measure-valued solutions.

MSC (2010): 45K05, 65M08, 65L20, 92D25.

1.1 A Nonlocal Predator-Prey Model

We consider a system of nonlocal equations modeling the swarming dynamics of
species which interact with each others through attractive/repulsive potentials (such
as predators and preys). The system is an extension of the well-known aggregation
equation [1], and can be written in the following form:{

∂tρ1 +div(ρ1(∇W1 ∗ρ1 +∇K ∗ρ2)) = 0, ρ1(0, ·) = ρ
in
1 ,

∂tρ2 +div(ρ2(∇W2 ∗ρ2−β∇K ∗ρ1)) = 0, ρ2(0, ·) = ρ
in
2 ,

(1.1)
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where ρ1(t,x) and ρ2(t,x) are probability measures that model the density of species
1 and 2 (respectively predators and preys), for x ∈ Rd , t ∈ R. This model was intro-
duced in [5], where it was derived from a system of N interacting particles. It has
since been mathematically studied in [2, 6].

The functions Wα , K :Rd→R+, α ∈{1,2} denote respectively the intra-specific
interaction potentials of the species α , and the inter-specific interaction potential.
The intra-specific potential Wα can be of attractive (namely radial with a nonnega-
tive derivative) or repulsive type (radial with a nonpositive derivative), depending on
the gregarious behavior of species α . The potential K is of attractive type, modeling
the fact that species 2 flees species 1 whereas species 1 is attracted by species 2. The
parameter β ∈ [0,1) expresses the mobility of species 1.

1.2 Cauchy Theory

Definition 1. A function W : Rd → R is called a pointy potential if it satisfies the
following properties:

1. W is Lipschitz continuous, symmetric and W (0) = 0;
2. W is λ -convex for some λ ≤ 0 (namely W − λ

2 | · |
2 is convex);

3. W ∈ C 1(Rd \{0}).

Let us assume that Wα , α ∈ {1,2}, and K are pointy potentials as in Def. 1. These
potentials being Lipschitz, there exist ωα,∞ and κ∞ such that for all x 6= 0:

|∇Wα(x)| ≤ ωα,∞, |∇K(x)| ≤ κ∞. (1.2)

Let us also define the macroscopic velocities âρ1 and âρ2 as

âρ1(t,x) :=−
∫
Rd

(
∇̂W α(x− y) ρ1(t,y)+ ∇̂K(x− y) ρ2(t,y)

)
dy, (1.3)

âρ2(t,x) :=−
∫
Rd

(
∇̂W α(x− y) ρ2(t,y)−β ∇̂K(x− y) ρ1(t,y)

)
dy, (1.4)

where we denoted for a pointy potential W the following extension:

∇̂W (x) =

{
∇Wα(x) for x 6= 0,

0 for x = 0.

Existence theory for problem (1.1) has been studied in [5] in the case of C 1

pointy potentials. Uniqueness was obtained in [7] by introducing duality solutions.
This approach will allow to prove the convergence of our numerical scheme (1.7).
Using the theory of Filippov characteristics, one can also prove the following gen-
eral result:
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Theorem 1 (From [3]). Let Wα , α ∈ {1,2}, and K be pointy potential that satisfy
(1.2), and ρ in

α ∈P2(Rd). There exist unique probability measures ρα that are global
distributional solutions to the following system of transport equations:{

∂ tρ1 +div(âρ1ρ1) = 0, ρ1(0, ·) = ρ
in
1 ,

∂ tρ2 +div(âρ2ρ2) = 0, ρ2(0, ·) = ρ
in
2 .

(1.5)

1.3 Numerical Scheme

We shall now apply the numerical scheme introduced in [4] for approximating so-
lutions to the classical (single species) aggregation equation to the system (1.1).
Let us introduce a cartesian mesh (CJ)J∈Zd of Rd , with step ∆xi in the direction
i ∈ {1, . . . ,d}, and ∆x = max∆xi. The center of a given cell CJ will then be defined
by x j := (J1∆x1, . . . ,Jd∆xd). Let also ei := (0, . . . ,0,1,0, . . . ,0) be the ith vector of
the canonical basis.

For an initial probability measure ρ in
α ∈P2(Rd), α ∈ {1,2}, we define ρ0

α,J as
the cell average values of ρ in

α over the cell CJ :

ρ
0
α,J =

1
m(CJ)

∫
CJ

ρ
ini
1 (dx)≥ 0. (1.6)

Given an approximation (ρα
n
J)J∈Zd of the cell averages of ρα(tn, ·) at a given time

tn = n∆ t, we compute ρα
n+1
J as:

ρ1
n+1
J = ρ1

n
J−

d

∑
i=1

∆ t
∆xi

(
(a1

n
i J)

+
ρ1

n
J− (a1

n
i J+ei

)−ρ1
n
J+ei

− (a1
n
i J−ei

)+ρ1
n
J−ei

+(a1
n
i J)
−

ρ1
n
J

)
,

ρ2
n+1
J = ρ2

n
J−

d

∑
i=1

∆ t
∆xi

(
(a2

n
i J)

+
ρ2

n
J− (a2

n
i J+ei

)−ρ2
n
J+ei

− (a2
n
i J−ei

)+ρ2
n
J−ei

+(a2
n
i J)
−

ρ2
n
J

)
.

(1.7)

where the discrete macroscopic velocities are defined as{
a1

n
i J =−∑L∈Zd

(
ρ1

n
LDiW1

L
J +ρ2

n
LDiKL

J
)
,

a2
n
i J =−∑L∈Zd

(
ρ2

n
LDiW2

L
J −βρ1

n
KDiKL

J
)
,

(1.8)

with DiW K
J := ∂xiŴ (xJ− xK) for a pointy potential W .

Lemma 1. If Wα , α ∈ {1,2}, and K are pointy potentials and the following CFL
condition holds:
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(ωα,∞ +κ∞)
d

∑
i=1

∆ t
∆xi
≤ 1, (1.9)

one has the following properties for the scheme (1.7):

1. For ρ in
α ∈P2(Rd) and ρ0

α,J given by (1.6), the sequences (ρn
α,J)J∈Zd ,n∈N and

(aα
n
i J)J∈Zd ,n∈N,i=1,..,d satisfy:

ρ
n
α,J ≥ 0, |aα

n
i J | ≤ (ωα,∞ +κ∞), i = 1, . . . ,d,

and for all n ∈ N,

∑
J∈Zd

ρ
n
α,Jm(CJ) =

∫
R

ρ
in
α (dx).

2. Conservation of the weighted center of mass:

∑
J∈Zd

xJ(βρ
n
1,J +ρ

n
2,J) = ∑

J∈Zd

xJ(βρ
0
1,J +ρ

0
2,J).

Proof. 1. By summing the two equations of (1.7) over all J ∈ Zd , one obtains the
mass conservation. Then, writing both identities in (1.7) as:

ρα
n+1
J = ρα

n
J
[
1−

d

∑
i=1
|aα

n
i J |
]
+

d

∑
i=1

∆ t
∆xi

(aα
n
i J+ei

)−ρα
n
J+ei

+
d

∑
i=1

∆ t
∆xi

(aα
n
i J−ei

)+ρα
n
J−ei

,

one proves by induction on n that ρn
α,J ≥ 0 for all J ∈ Zd , n ∈ N under the CFL

condition (1.9). Indeed, by using the definition (1.8), one has

|an
αi,J
| ≤ (ω∞ +κ∞) ∑

J∈Zd

ρ
n
α,J = (ω∞ +κ∞) ∑

J∈Zd

ρ
0
α,J , i ∈ {1, ..,d},

which concludes the proof by a convexity argument.
2. Using a discrete integration by parts and (1.7), one has:

∑
J∈Zd

xJρ
n+1
α,J = ∑

J∈Zd

xJρ
n
α,J−

d

∑
i=1

∆ t
∆xi

∑
J∈Zd

(
(aα

n
i J)

+
ρα

n
J(xJ− xJ+ei)

− (aα
n
i J)
−

ρα
n
J(xJ−ei − xJ)

)
.

Since xJ denote the cell centers, one has
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∑
J∈Zd

xJ

(
βρ

n+1
1,J +ρ

n+1
2,J

)
= ∑

J∈Zd

xJ
(
βρ

n
1,J +ρ

n
2,J
)

+∆ t
d

∑
i=1

∑
J∈Zd

(βa1
n
i Jρ1

n
J +a2

n
i Jρ2

n
J) . (1.10)

Summing over all the cells in (1.8), and since ∇Wα and ∇K are odd, one obtains
after reindexing:

∑
J∈Zd

βa1
n
i Jρ1

n
J +a2

n
i Jρ2

n
J = ∑

J∈Zd
∑

L∈Zd

(
βρ1

n
Jρ1

n
LDiW1

L
J +ρ2

n
Jρ2

n
LDiW2

L
J
)

=− ∑
J∈Zd

∑
L∈Zd

(
βρ1

n
Jρ1

n
LDiW1

J
L +ρ2

n
Jρ2

n
LDiW2

J
L
)

= 0

which yields the conclusion when plugged into (1.10).

We are now ready to prove the convergence of the scheme (1.7).

Theorem 2. Let us assume that Wα , α ∈ {1,2} and K are pointy potentials, and
that the following CFL condition holds on the mesh (CJ):

(ωα,∞ +κ∞)
d

∑
i=1

∆ t
∆xi
≤ 1.

Let ρ in
α ∈P2(Rd) and ρ0

α,J given by (1.6) for all J ∈ Zd and define the empirical
distribution as

ρ
n
α,∆x = ∑

J∈Zd

ρ
n
α,JδxJ , n ∈ N,

where ((ρn
α,J)J∈Zd )n∈N is given by (1.7).

Then ρ1,∆x and ρ2,∆x converge weakly in Mb([0,T ]×Rd) towards respectively
ρ1 and ρ2 which are the solutions to (1.5) as ∆x goes to 0.

Proof. Let us give the ideas behind this convergence proof, in the unidimensional
case (inspired from [7]).

1. Extraction of a convergent subsequence.
The total variation of ρα,∆x is bounded and we can thus extract a subsequence of
ρα,∆x that converges weakly towards ρα ∈Mb([0,T ]×R).

2. Modified equations and Taylor expansion.
We write the modified equation satisfied by ρα,∆x in terms of distributions. Let
us consider φ ∈C∞

c ([0,T ]×R). By using the dual product in sense of distribution
< ·, ·>, one has

< ∂tρα,∆x,φ >+< âα,∆xρα,∆x,∂xφ >= 0,
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where âα,∆x = ∑
NT
n=0 ∑J∈Z ân

α,J1[tn,tn+1[(t)δxJ (x). Taylor expanding φ allows to
rewrite this equation in terms of distributions. One then bounds the different
terms by using a straightforward adaptation of [7, Lemma 6.2] to this model.

3. Passing to the limit.
We finaly use [7, Lemma 3.2] to pass to the limit. The limit ρα thus satisfies
(1.5). By uniqueness from Theorem 1, ρα is the unique solution of (1.1).

1.4 Numerical simulations in 2D

We implemented the scheme in 2 dimensions for a square grid and potentials such
as the Newtonian potential N (x) = |x| (pointy and 0–convex) , or W = 1− e−|x|

(pointy and −1–convex). The grid in all the simulations is composed of 50× 50
points, with ∆ t = 0.005 (according to the CFL condition (1.9)).

Test 1. Evading preys.

In Figure 1.1, we present simulations made with a Dirac delta as initial data to model
a single predator, and a uniform distribution for preys:

ρ
in
1 = δ0(x), ρ

in
1 = 111B(0.2,0.1). (1.11)

We use Newtonian potentials W1 =W2 = 0.1N , K =N for inter and intra-specific
interactions, with a mobility β = 0.3. At the beginning of the simulation, we observe
that the predator is getting closer to the preys. When the group of preys is close, the
preys create a circular pattern around the the predators in order to run away from
him.

Test 2. A more realistic potential for inter-specific interaction.

In [6], the authors introduced a potential K that is more relevant in terms of model-
ing:

K(x) = 1− (|x|+1)e−|x|. (1.12)

When the predator is far from the preys, the inter-specific interaction depends very
weakly on the distance between preys and predator, and is almost constant. When
the predator becomes closer to the preys, they become paralyzed, the potential being
the close to 0. We performed simulations with an initial data given by (1.11) in
Figure 1.2. We observe a similar behavior than in Figure 1.1 in short time, but a
convergence toward a single Dirac delta (The predator has gathered all the prey
together) in large time.
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Fig. 1.1 Test 1. Newtonian potentials W1(x) = W2(x) = 0.1|x|,K(x) = |x|, β = 0.3. with a single
predator at the origin, and an uniform distribution of preys as initial data.

Acknowledgements TR was partially funded by Labex CEMPI (ANR-11-LABX-0007-01) and
ANR Project MoHyCon (ANR-17-CE40-0027-01).
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Fig. 1.2 Test 2. Newtonian potentials W1(x) =W2(x) = 0.1|x|, “fly-and-regroup” potential K(x) =
1− (|x|+1)e−|x|, β = 0.3. with a single predator at the origin, and an uniform distribution of preys
as initial data.


