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Abstract
The λ-calculus enjoys the property that each λ-term has at least one fixed point, which is due to the existence of a fixed point
combinator. It is unknown whether it enjoys the ‘fixed point property’ stating that each λ-term has either one or infinitely
many pairwise distinct fixed points. We show that the fixed point property holds when considering possibly open fixed points.
The problem of counting fixed points in the closed setting remains open, but we provide sufficient conditions for a λ-term to
have either one or infinitely many fixed points. In the main result of this paper we prove that in every sensible λ-theory there
exists a λ-term that violates the fixed point property.

We then study the open problem concerning the existence of a double fixed point combinator and propose a proof technique
that could lead towards a negative solution. We consider interpretations of the λY-calculus into the λ-calculus together with
two reduction extension properties, whose validity would entail the non-existence of any double fixed point combinators.
We conjecture that both properties hold when typed λY-terms are interpreted by arbitrary fixed point combinators. We prove
reduction extension property I for a large class of fixed point combinators.

Finally, we prove that the λY-theory generated by the equation characterizing double fixed point combinators is a
conservative extension of the λ-calculus.

1 Introduction

A fundamental result in the λ-calculus is the fixed point theorem [2, Thm. 2.1.5] stating that every λ-
term M has at least one fixed point, i.e. a λ-term X satisfying MX =β X . The λ-calculus also enjoys
the range property [2, Thm. 20.2.5] stating that the range of every combinator (closed λ-term) M
is either a singleton, when M represents a constant function, or infinite, in the sense that it contains
denumerably many pairwise β-distinct λ-terms. It is therefore natural to wonder whether a similar
property, which we call here ‘the fixed point property’, is enjoyed by the set of fixed points of an
arbitrary closed λ-term:

Does every combinator have either one or infinitely many (closed) fixed points?

The above question appears as Problem 25 in the Typed Lambda Calculi and Applications (TLCA)
list of open problems [16] and was first raised by Intrigila and Biasone in [17]; the first part of the
present paper reports progress on this question. We first prove that if one considers open λ-terms,
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832 The fixed point property and a technique to harness double fixed point combinators

then the question has a positive answer (Theorem 4.6). This result is not particularly difficult to
achieve, but we believe it is interesting since it motivates the restriction to combinators and closed
fixed points. For the more difficult question of closed fixed points, in [17] the authors prove that
the fixed point property is satisfied by all combinators having a fixed point that is β-normalizable.
We present several results in the same spirit. For example, we prove that the set of fixed points of
a closed zero1 λ-term is always infinite (Proposition 5.4) and that if a combinator has a fixed point
that is a recurrent2 zero λ-term then it has either one or infinitely many fixed points (Theorem 5.7).

The problem of determining whether the fixed point property or the range property holds radically
changes when considering as equality between λ-terms an arbitrary λ-theory T , i.e. an arbitrary
context-closed extension of β-convertibility. Indeed, a set containing infinitely many β-distinct
λ-terms might become finite modulo T . For instance, it is well known that the range property is
valid in every recursively enumerable λ-theory [2, Thm. 20.2.5] and in every λ-theory equating all
λ-terms having the same Böhm tree (BT) [2, Thm. 20.2.6], while Polonsky recently proved that it
fails in the λ-theory H generated by equating all unsolvables [26]. This last result led Intrigila and
Statman to conjecture in [18] that in the λ-theory H ‘a very complicated example could exist with,
say, exactly two fixed points’. In Corollary 6.3 we show that a λ-term satisfying such a property
exists in every sensible λ-theory T (in particular, in H), thus proving their conjecture. Starting from
this example, we are able to construct for every natural number k > 0 a λ-term having exactly k
pairwise T -distinct fixed points (Proposition 6.6). In [18], the authors also managed to construct in
an ingenious, but complex way, a λ-theory satisfying the range property but not satisfying the fixed
point property. An easy consequence of our result (Corollary 6.5) is that the same holds for the much
more natural λ-theory B generated by equating all λ-terms having the same BT, as it is obviously
sensible and satisfies the range property by [2, Thm. 20.2.6].

The fixed point theorem of λ-calculus is a consequence of the existence of fixed point combinators
that are λ-terms Y satisfying YX =β X (YX ) for all λ-terms X . Clearly, every fixed point combinator
Y satisfies the equation δY =β Y where δ is the λ-term SI =β λyx.x(yx). Moreover, Böhm noticed
that if Y is a fixed point combinator then Yδ is also. This consideration led Statman to raise in
[29] the question of whether there exists a double fixed point combinator, namely a fixed point
combinator Y satisfying Yδ =β Y . Intuitively, the application of δ has the effect of ‘slowing down’
the head reduction of Y and this should entail that Yδ and Y cannot have a common reduct. For this
reason Statman conjectured that double fixed point combinators do not exist. A proof of Statman’s
conjecture has been suggested by Intrigila in [15]. However, in 2011, Endrullis [8] has discovered a
gap in a crucial case of the argument. The problem is therefore considered open.

The second part of the paper is devoted to presenting a proof technique that we believe will
be useful in settling Statman’s conjecture. The main technical tool that we use is the λY-calculus
[1, Section 6.1], a classic extension of the λ-calculus with a unary constant Y behaving as a fixed
point combinator. We first show that the λY-calculus can be soundly interpreted in the λ-calculus,
by replacing a fixed point operator for each occurrence of Y in a λY-term M . We then define two
properties of such an interpretation map, which we call ‘reduction extension properties’, and we
analyse under what circumstances they actually hold. On the one hand, we are able to prove that
property I holds for a large class of reducing fixed point combinators (Corollary 7.31), including
all putative double fixed point combinators. On the other hand, it is not difficult to check that
property II fails in the untyped setting because the interpretation map is not injective. We conjecture

1Intuitively, zero λ-terms are λ-terms that cannot be converted to an abstraction. We refer to Section 5.2 for a more
thorough discussion about this terminology.

2A λ-term M is recurrent if, for all λ-terms N , M �β N entails N �β M (this notion is due to M. Venturini-Zilli).
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The fixed point property and a technique to harness double fixed point combinators 833

however that a generalized version of both properties (Definition 7.27) holds for all fixed point
combinators in the simply typed setting, and we show that this would entail the non-existence of
double fixed point combinators (as discussed at the end of Section 7).

Finally, we analyse the question of whether the λY-theory δ∗ generated by the equation Yx = Yδx
(the equation characterizing double fixed point combinators) is a conservative extension of the
λ-calculus. Indeed, as discussed in Section 8, a negative answer would entail the non-existence of
double fixed point combinators. Unfortunately, it turns out that the answer is positive, as shown in
Theorem 8.9.

2 Preliminaries

In this preliminary section we introduce some notions and notations that are used in the rest of the
article.

2.1 Lambda calculus

For the λ-calculus we mainly use the notations of Barendregt’s first book [2].
Let us fix an infinite set Var of variables. The set Λ of λ-terms is generated by

Λ : M , N := x | λx.M | MN (for x ∈ Var).

As usual we assume that application associates to the left and has a higher precedence than
λ-abstraction. For instance, we write λxyz.xyz for λx.(λy.(λz.((xy)z))).

NOTATION 2.1
We write MnN for M(· · · (MN) · · · ) and NM∼n for (· · · (NM) · · · )M (n times). In particular, for
n = 0, we have M0N = N = NM∼0.

The set FV(M) of free variables of M and α-conversion are defined as in [2, Section 2.1]. We say
that a λ-term M is closed whenever FV(M) = Ø and we denote by Λo the set of all closed λ-terms.
The set of positions, denoted pos(M), in a λ-term M is the subset of {0, 1}∗ defined inductively by
pos(x) = {ε}, pos(λx.M) = {ε} ∪ 0 · pos(M) and pos(MN) = {ε} ∪ 0 · pos(M) ∪ 1 · pos(N). If M is
a λ-term and p is a position in M , the subterm of M at p is defined in the obvious way.

CONVENTION

Hereafter, we consider λ-terms up to α-conversion and we adopt Barendregt’s variable convention
[2, Conv. 2.1.13].

By historical tradition, any binary relation on Λ is called a notion of reduction on Λ. We say that a
notion of reduction r ⊆ Λ × Λ is compatible (or contextual) whenever it is compatible with respect
to the operations of application and lambda abstraction. A reduction relation on Λ is any compatible
notion of reduction.

The main compatible relation of the λ-calculus is the β-relation →β , which is the compatible
closure of the following notion of reduction:

(λx.M)N → M[N/x], (β)

where M[N/x] denotes the λ-term obtained by simultaneously substituting all free occurrences
of x in M for N , subject to the usual proviso of avoiding capture of free variables in N . The
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834 The fixed point property and a technique to harness double fixed point combinators

η-relation →η is the compatible closure of

λx.Mx → M (for x /∈ FV(M)). (η)

Concerning specific combinators we fix the following notations:

I = λx.x, K = λxy.x, F = λxy.y, B = λfgx.f (g(x)), S = λxyz.xz(yz),
Δ = λx.xx, Ω = ΔΔ, Δ3 = λx.xxx, Ω3 = Δ3Δ3, δ = λyx.x(yx),

where I is the identity, K and S are the combinators of combinatory logic, F is the second projection,
B the functional composition, Ω the paradigmatic looping λ-term and Ω3 the ‘garbage’ producing
looping λ-term. It is easy to check that δ is the β-normal form of SI. We denote the n-th Church
numeral by cn [2, Def. 6.4.4]. The symbol = denotes definitional equality (possibly modulo
α-conversion).

The pairing is encoded in the λ-calculus as follows (for x /∈ FV(MN)):

[M , N] = λx.xMN , with projections π1 = λx.xK and π2 = λx.xF.

For instance, π1[M1, M2] →β [M1, M2]K →β KM1M2 →β (λy.M1)M2 →β M1.

2.2 Rewriting

Given a reduction relation →r, we denote its transitive and ref lexive closure by �r and its transitive,
symmetric and ref lexive closure by =r. The relation �r is called multistep r-reduction, while =r is
called r-conversion. We write r← (resp. r�) for the relational inverse of →r (resp. �r) and ↔r for
the symmetric closure of →r, i.e. →r ∪ r←. Given two reduction relations →r and →r′ , we write
→rr′ for the relation →r ∪ →r′ . Similarly, we denote by =rr′ the least contextual relation including
=r ∪ =r′ .

DEFINITION 2.2
We recall the following standard auxiliary definitions.

• Given a notion of reduction →, a redex is any term R such that R → P for some term P. For
any term M , a redex in M is a pair (C[], R) where C[] is a one-hole context such that M = C[R]
and R is a redex.

• Given a reduction relation →r and two terms M and N such that M �r N , we call any witness
M = M0 →r M1 →r · · · →r Mn = N of M �r N a reduction sequence from M to N .
Par abus de langage, we shall occasionally refer to M �r N as a reduction sequence without
specifying the witness.

• Given a term M and a reduction relation →r, the reduction graph of M , denoted Gr(M) is the
directed graph whose nodes are all terms N such that M �r N and there is an edge from node
P to node Q if P →r Q.

• A finite or infinite sequence

M = M0 →r M1 →r M2 →r · · ·

is called cofinal in Gr(M) if, for every node P of Gr(M), there is a directed path in Gr(M) from
P to some Mi.
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The fixed point property and a technique to harness double fixed point combinators 835

• As usual, for a step M →β N , the residual relation maps every set F of β-redexes in M to a set
of β-redexes in N , the set of residuals of F across the step;3 the relation extends transitively to
reduction sequences M �β N in the obvious way.

• A development of a set of redexes F in M is a reduction sequence M →β M1 →β M2 →β · · ·
such that every step in the sequence is the contraction of a residual of a redex in F .

• A development of a set of redexes F in a term M is complete if it is finite and its final term
has an empty set of residuals of F across the sequence. By standard results, all maximal
developments of F are complete, hence finite, and all complete developments of F end in
the same term. Furthermore, if F and G are sets of redexes in a term M , the set of residuals of
G is the same across any complete development of F , and is denoted G/F .

• A reduction sequence M = M0 →β M1 →β M2 →β · · · is standard if, for all i, j with j < i,
the redex contracted in the step Mi →β Mi+1 is not a residual across Mj →β · · · →β Mi of any
redex to the left (in Mj) of the redex contracted in Mj →β Mj+1 (i.e. intuitively in a standard
reduction, leftmost-outermost redexes are contracted first).

• Permutation equivalence is the smallest equivalence relation ≡ on reduction sequences
such that

1. ρ; σ ; τ ≡ ρ; σ ′; τ whenever σ ≡ σ ′ and
2. if F and G are sets of redexes of the same term, then σ ≡ τ whenever σ is obtained by

first performing a complete development of F followed by a complete development of
G/F , and τ is obtained by first performing a complete development of G followed by a
complete development of F/G.

• A redex with history is a pair (M �β N , R) consisting of a reduction sequence M �β N and a
redex R in N . A redex with history (M �β P, S) is a copy of a redex with history (M �β N , R)

if there is a reduction sequence N �β P such that (i) M �β N �β P is permutation equivalent
to M �β P, and (ii) S is a residual of R across N �β P. The symmetric and transitive closure
of the copy relation is called the family relation on redexes with history and is obviously an
equivalence relation. If two redexes with history are elements of the same equivalence class in
the family relation they are said, par abus de langage, to belong to the same family relation.

REMARK 2.3
It is easy to check that M =r N if and only if there exists a sequence M = M0 ↔r M1 ↔r · · · ↔r
Mk = N of length k � 0.

2.3 Solvability

Lambda terms are classified as solvable or unsolvable, depending on their capability of interaction
with the environment.

DEFINITION 2.4
A closed λ-term M is solvable if there are P1, . . . , Pk ∈ Λ such that MP1 · · · Pk =β I. An open
λ-term M is solvable if its closure λx1 . . . xn.M is.

We say that a λ-term M is in head normal form (hnf ) if it has the shape λx1 . . . xn.xiM1 · · · Mk
where n, k � 0 and either 1 � i � n or xi occurs freely. We say that M has an hnf whenever

3We omit the details, see [2, Ch. 11.2].
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836 The fixed point property and a technique to harness double fixed point combinators

M �β N for some N in hnf. It is well known that if a λ-term has an hnf, then such an hnf can be
obtained by repeatedly reducing its head redex λx1 . . . xn.(λx.M)NM1 · · · Mk . Solvability has been
characterized in terms of head normalization by Wadsworth.

THEOREM 2.5 (Wadsworth [31]).
A λ-term M is solvable if and only if it has a hnf.

Every closed λ-term M can be turned into an unsolvable one by applying enough Ω’s. In other
words, for k large enough, MΩ∼k is unsolvable [2, Lemma 17.4.4]. The following lemma will be
useful in Section 6 and is a revisitation of such a result.

LEMMA 2.6
Let M ∈ Λ and y ∈ Var. If MyΩ∼n is solvable for all n ∈ N, then M =β λx0 . . . xk .x′M1 · · · Mm for
some k, m � 0 and x′ ∈ FV(M) ∪ {x0}.
PROOF. For n = 0 we have that My is solvable, which entails that M has an hnf λx0 . . . xk .x′M1 · · · Mm.
Toward contradiction, suppose x′ = xj, with 0 < j � k. Then for the appropriate M ′

1, . . . , M ′
m ∈ Λ

we have MyΩ∼k =β ΩM ′
1 · · · M ′

m, which is unsolvable. This contradicts the hypothesis
for n = k. �

2.4 Lambda theories

The equational theories of the untyped λ-calculus are called λ-theories and become the main object
of study when considering the equivalence between λ-terms more important than the process of
computation.

More precisely, we will be considering congruences, which are compatible binary equivalence
relations on Λ.

DEFINITION 2.7
A λ-theory T is any congruence on Λ containing the β-conversion.

As a matter of notation, we write T � M = N or just M =T N for (M , N) ∈ T . Let T be a
λ-theory and M be a λ-term, we write ΛT for the set Λ modulo T and [M]T for the T -equivalence
class of M . Similarly, we set Λo

T = {[M]T | M ∈ Λo}. Given a subset X ⊆ ΛT , we write M ∈T X
whenever [M]T ∈ X .

The set of all λ-theories, ordered by set-theoretical inclusion, constitutes a complete lattice λT of
cardinality 2ℵ0 . As shown by Salibra and his coauthors in their works [22, 23, 27], λT has a very
rich mathematical structure. The lattice λT has a bottom element λβ that equates only β-convertible
λ-terms, and a top element ∇ that equates all λ-terms.

DEFINITION 2.8
A λ-theory T is

• consistent if T �= ∇,
• inconsistent if it is not consistent,
• sensible if it equates all unsolvable terms,
• extensional whenever, for all λ-terms M , N and any variable x /∈ FV(MN), Mx =T Nx implies

M =T N .

CONVENTION

We will only consider consistent λ-theories and omit the assumption.
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The fixed point property and a technique to harness double fixed point combinators 837

By [2, Thm. 2.1.29], T is extensional exactly when it contains the η-conversion.
We denote by λβη the smallest extensional λ-theory and by H the smallest sensible λ-theory. We

denote by B the λ-theory equating two λ-terms if and only if they have the same BT [2, Def. 10.1.4].
It is well known that H also admits a unique maximal extension, which is denoted by H∗ [31]. As
shown in [2, Thm. 17.4.16], the strict inclusions H � B � H∗ hold.

The λ-theories H, B and H∗ have been extensively studied in the literature. In particular, Hyland
proved in [14] that two λ-terms M and N are equal in H∗ exactly when their BTs are equal up to
‘possibly infinite’ η-expansions (see also [2, Thm. 16.2.7]). As an easy consequence, we get the
following remark that will be used in Section 6.

REMARK 2.9
Let T be a sensible λ-theory. For all M , N ∈ Λ, if T � M = N then one of the following conditions
holds:

(i) M =T N =T Ω ,
(ii) There are k, m � 0 such that

M =βη λx1 . . . xk .yM1 · · · Mm and N =βη λx1 . . . xk .yN1 · · · Nm,

where T � Mi = Ni for all 1 � i � m.

By condition (ii), if M =T λx1 . . . xk1 .yM1 · · · Mm1 and N =T λx1 . . . xk2 .yN1 · · · Nm2 then m1−k1 =
m2 − k2. Intuitively, this means that the number of λ-abstractions and applications can be matched
by performing some η-expansions.

3 Fixed points and fixed point combinators

In λ-calculus a fixed point of a λ-term F is an X ∈ Λ satisfying FX =β X . The fixed point theorem
states that all λ-terms have a fixed point [2, Thm. 2.1.5], a result that follows from the existence of
fixed point combinators.

THEOREM 3.1
For every λ-term M , there exists X such that MX =β X . Actually, there exists a closed λ-term Y
such that for any λ-term M , M(YM) =β YM .

In this section we start by defining fixed points relative to some λ-theory T , and then provide
some notions of fixed point combinators and examples.

DEFINITION 3.2
Let T be a λ-theory.

(1) Given two λ-terms M , N , we say that N is a fixed point of M in T whenever MN =T N .
(2) For M ∈ Λ, we let FixT (M) = {[N]T | N ∈ Λ, MN =T N} be the set of all (T -classes of)

fixed points of M in T .
(3) Similarly, for M ∈ Λo, we let Fixo

T (M) = FixT (M) ∩ Λo
T be the set of (T -classes of) all

closed fixed points of M in T .

When T = λβ we simply say that N is a fixed point of M and write Fix(M) and Fixo(M) for the
set of its open and closed fixed points, respectively.
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838 The fixed point property and a technique to harness double fixed point combinators

REMARK 3.3
Given a λ-theory T and λ-terms M , N , if N ∈T FixT (M) then for all λ-theories T ′ ⊇ T we
have N ∈T ′ FixT ′(M). In particular, if N is a fixed point of M we have N ∈T FixT (M) for all
λ-theories T .

EXAMPLE 3.4

(i) Since IM =β M for all M ∈ Λ, we have that every λ-term is a fixed point of the identity I.
Therefore, Fix(I) = Λλβ and Fixo(I) = Λo

λβ .
(ii) Since FM =β I for all M ∈ Λ, we have that only λ-terms β-convertible with I are fixed

points of F and therefore that both Fix(F) and Fixo(F) are singletons.

3.1 Fixed point combinators

As shown in the fixed point theorem, every λ-term has at least one fixed point, since fixed points
can be constructed through fixed point combinators.

DEFINITION 3.5

(i) A λ-term Y is a fixed point combinator (or fpc) if Yx =β x(Yx) for every x /∈ FV(Y );
(ii) An fpc Y is reducing if Yx �β x(Yx) for every x /∈ FV(Y );

(iii) An fpc Y is terminal if it is reducing and there is a reduction ρ : Yx �β x(Yx) with the
property that the sequence of terms in the infinite reduction

is cofinal in the reduction graph Gβ(Yx).

Note that, following a well-established tradition [9, 10], we do not require that fpc’s are actual
combinators in the sense of being closed λ-terms. From the existence of closed fpc’s Y it follows
however that YM ∈λβ Fix(M); therefore, FixT (M) �= Ø (resp. Fixo

T (M) �= Ø) for all (closed)
λ-terms M .

DEFINITION 3.6
Let T ∈ λT and M ∈ Λ. A fixed point N ∈T FixT (M) is called canonical if N =T YM for some
fpc Y .

We now provide some examples of open and closed fpc’s, reducing and non-reducing fpc’s and
terminal and non-terminal fpc’s.

EXAMPLE 3.7

• Curry’s fixed point combinator Y = λf .Δf Δf where Δf = λx.f (xx), which is closed and not
reducing.

• Geuvers and Verkoelen’s fixed point combinator λf .(Δ(λxy.f (yxy))Δ) defined in [12] is also
closed and not reducing.

• Turing’s fixed point combinator Θ = WW where W = λwx.x(wwx), which is closed and
reducing.

• Turing’s fpc can be parametrized by setting ΘM = VVM for M ∈ Λ and V = λvpx.x(vvpx).
Indeed ΘM x = VVMx �β x(VVMx) = x(ΘM x), so ΘM is a reducing fpc for all M ∈ Λ.
Notice that for any variable z, Θz is open and terminal, while ΘΩ3 is closed and not terminal.
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The fixed point property and a technique to harness double fixed point combinators 839

• Polonsky’s fpc is introduced here and works for arbitrary A, B ∈ Λ. The fpc is the λ-term XZ
where (recall that [M , N] = λz.zMN for z /∈ FV(MN)):

X = λyx.x(y(yAF)K(λz.[z, yBF])x) and Z = λx.[x, X ].

Note that ZMK �β M and ZMF �β X hold. The fpc XZ is reducing:

XZx �β x(Z(ZAF)K(λz.[z, ZBF])x) �β x(ZX K(λz.[z, X ])x) �β x(XZx).

Whether XZ is closed or terminal depends on the chosen A, B ∈ Λ.

It is easy to check that all fpc’s have the same BT; therefore, all canonical fixed points are equated
in every λ-theory T ⊇ B. There are however λ-terms that are not fpc’s but have the same BT as a
fixed point combinator; such terms are called weak fixed point combinators (or looping combinators
in [7, 13]):

DEFINITION 3.8
A λ-term Y is a weak fixed point combinator if, for all x /∈ FV(Y ):

Yx =B x(Yx).

Since the BT of a weak fpc is equal to that of an fpc, the following alternative characterization of
weak fpc’s is easily obtained.

PROPOSITION 3.9
A λ-term Y is a weak fpc if and only if there exists a family of λ-terms (Yi)i∈N such that Y = Y0 and,
for all i ∈ N and x fresh, Yix =β x(Yi+1x).

PROOF. (⇐) is trivial while (⇒) is an easy coinductive argument. �
Since all the λ-terms Yi’s above are weak fpc’s themselves, this gives us the following coinductive

characterization of weak fixed point combinators: a λ-term Y is a weak fpc if and only if Yx =β

x(Y ′x) for some weak fpc Y ′ and x /∈ FV(Y ).

EXAMPLE 3.10
Define by double recursion [19], two β-distinct λ-terms Y and Y ′ such that Yx =β x(Y ′x) and
Y ′x =β x(Yx). Then, both Y and Y ′ are weak fpc’s.

Dealing with fpc’s and weak fpc’s suggests the following notions.

DEFINITION 3.11
Let M ∈ Λ.

• A variable x ∈ FV(M) eventually disappears from M , written x /∈β M if there exists M ′ such
that M �β M ′ and x /∈ FV(M ′).

• Given k ∈ N, we say that M is k-constant if x /∈β Mk(x), for x /∈ FV(M).

Clearly, if M is k-constant for some k ∈ N and x /∈ FV(M) then x /∈β ΘxM . By exploiting this
fact, we prove in Corollary 4.4 that for every k-constant λ-term M the set Fix(M) is a singleton, thus
generalizing Example 3.4(ii).
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840 The fixed point property and a technique to harness double fixed point combinators

3.2 Derived fixed point combinators

An interesting line of research [19], consists in defining new fixed point combinators starting from
existing ones. Notice, for instance, that Δδ = λw.δ(ww) =β W where δ = λyx.x(yx); therefore,
Yδ =β (λx.δ(xx))(λx.δ(xx)) =β Θ . In other words, Turing’s fixed point combinator can be obtained
from Curry’s one by applying δ.

The following properties concerning the interaction between fpc’s and δ have been pointed out by
Böhm (see [2, Lemma 6.5.3]).

LEMMA 3.12
Let Y ∈ Λ.

(i) Y is an fpc if and only if δY =β Y ,
(ii) if Y is a (reducing) fpc then also Yδ is.

Statman raised in [29] the following natural question and conjectured that it has a negative answer.
(This question will be discussed more thoroughly in Section 7.)

PROBLEM 1
Is there a double fpc, which is an fpc Y satisfying Y =β Yδ?

This problem is interesting because Lemma 3.12 tells us that starting from an fpc Y ; it is always
possible to define infinitely many fpc’s (Yn)n∈N by setting

Y0 = Y , Yn+1 = Ynδ.

The difficult part is to prove that all the fpc’s so obtained are β-distinct, a result that would clearly
follow from Statman’s conjecture. In the following case we know the answer, but the general case is
an open question.

EXAMPLE 3.13
The Scott sequence (Yn)n∈N is generated by taking as Y0 Curry’s fpc Y. As mentioned earlier, Turing’s
fpc Θ occurs as Y1 in such a sequence. As shown by Klop in [19, Thm. 2.1] with an ad hoc argument,
the Scott sequence contains no repetitions (i.e. Yi =β Yj if and only if i = j).

Other fpc’s can be found starting from existing ones by mechanical search.

EXAMPLE 3.14
Let Y ∈ Λ be an fpc. Klop’s Bible4 fixed point combinator is given bry = λe.BYBeL, where B is
the composition, and works for arbitrary L ∈ Λ. Notice that L remains in passive position during the
reduction:

3.3 The fixed point property

We have seen in Example 3.4 that, on the one hand, there are λ-terms having infinitely many fixed
points, like the identity I. On the other hand, there are λ-terms M possessing only one fixed point,
namely those having a constant output like the second projection F. Indeed, whenever there is an

4The name of such a combinator comes from the Dutch translation of ‘bible’, namely bijbel.
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The fixed point property and a technique to harness double fixed point combinators 841

M ′ such that MN =β M ′ for all N , we have that Fix(M) is a singleton. Therefore, it makes sense
to wonder how many fixed points a λ-term M possesses, as Intrigila and Biasone did (in the closed
case) [17].

The following terminology is inspired by the range property of λ-calculus [2, Thm. 17.1.16].

DEFINITION 3.15
Let T be a λ-theory.

• A closed λ-term M has the fixed point property (fpp) in T whenever Fixo
T (M) is either a

singleton or infinite.
• A λ-term M has the open fixed point property in T if FixT (M) is either a singleton or infinite.
• The λ-theory T satisfies the fixed point property (resp. open fpp) if every closed λ-term

(resp. possibly open λ-term) has the same property in T .

As usual, when T is omitted, we assume that we are considering T = λβ. In this terminology, the
Problem 25 of the TLCA list can be rephrased as follows.

PROBLEM 2 ([16]).
Does λβ satisfy the fixed point property?

Some modest advances on this problem are presented in Section 5, while in the next section we
give a positive answer to the analogue question concerning the open fixed point property. However,
we will be also interested in the following generalization of Problem 2 to arbitrary λ-theories.

PROBLEM 3
What are the λ-theories satisfying the fixed point property?

In Section 6 we will show that no sensible λ-theory T satisfies the fixed point property
(Theorem 6.4).

4 Canonical open fixed points are not normal

In this section we show that λβ satisfies the open fixed point property. More precisely, we show that
every λ-term exhibiting a non-constant behaviour has infinitely many canonical fixed points. Such
a result is not particularly difficult to prove and motivates the choice made by Intrigila and Biasone
of raising the question for closed fixed points only. (cf. [18], where such a property is proved for a
λ-calculus having infinitely many constants.)

The proof relies on the following property of Turing’s parametrized fpc, which will have
interesting consequences for closed fixed points as well (e.g. Proposition 5.4).

LEMMA 4.1
For all M , N ∈ Λ, we have ΘM =β ΘN if and only if M =β N .

PROOF. (⇒) First, notice that the head reduction of Θzx is given by

Θzx = VVzx →β (λzx.x(VVzx))zx →β (λx.x(VVzx))x →β x(VVzx). (3)

Suppose now that ΘM =β ΘN holds, then there are two standard reductions ρ, σ from ΘM x and
ΘN x toward a common reduct X , namely

ΘM x = VVMx
ρ
�β X

σ

β� VVNx = ΘN x.
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842 The fixed point property and a technique to harness double fixed point combinators

Each of these reductions must again factor through an initial segment of (3) and there are two
subcases. If this segment is empty, then ρ and σ are actually internal reductions. By inspection,
the only subterms of ΘM x, ΘN x that may have redexes are M and N , respectively. Thus, ρ and σ

yield a confluence between M and N , so we are done.
Otherwise, ρ and σ factor through a segment of (3) of the same length (in order to result in the

same shape of the final λ-term). In this case, the internal reductions which follow the segment are
again a confluence between ΘM x and ΘN x, allowing us to conclude by induction hypothesis.

(⇐) Trivial. �
LEMMA 4.2
Let M ∈ Λ and z /∈ FV(M). If z /∈β ΘzM then Fix(M) is a singleton.

PROOF. Let σ : ΘzM �β X be a standard reduction, with z /∈ FV(X ).
We consider the projection of σ across the canonical reduction sequence

ΘzM �β M(ΘzM) �β M(M(Θz)) �β · · ·
�β Mk(ΘzM) = Mk(VVzM) �β · · ·

Notice that the redex VV occurring inside each term in the sequence above is created during the
contraction of this redex in the previous term.

In particular, for any given k, we know that such a redex could not have been contracted by any
reduction starting with ΘzM and shorter than k steps.

We now complete the projection diagram with k = |σ |, the length of σ :

As just observed, the underlined redex cannot stand in the family relation to any redex contracted in
σ (since it requires |σ | redex contractions to be created).

Therefore, this redex remains untouched by the reduction ρ. As a result, the reduction ρ :
M |σ |(VVzM) �β Z lifts as (ρ0; · · · ; ρ)[VVz/v], where

ρ0 : M |σ |(vM) �βZ0[vM , . . . , vM], ρi : M �β Mi (1 � i � )

Z =Z0[VVzM1, . . . , VVzM].

But since z is not a free variable of X , it cannot occur in Z either. That is, we must have  = 0, and
therefore the reduction ρ0 is of the form:

ρ0 : M |σ |(vM) �β Z0, forv /∈ FV(Z0).

Putting it all together, we find

ΘzM �β Mk(vM)[VVz/v] �β Z0[VVz/v] = Z0.

Now we are done, since for X =β MX and k = |σ |, we have

X =β Mk(X ) = Mk(vM)[KX/v] =β Z0[KX/v] = Z0,

whence all fixed points of M are β-convertible with Z0. �
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The fixed point property and a technique to harness double fixed point combinators 843

PROPOSITION 4.3
Let M ∈ Λ and let y, z /∈ FV(M) be distinct variables. If ΘyM =β ΘzM then the set Fix(M) is a
singleton.

PROOF. Since ΘyM =β ΘzM they have a common reduct X , i.e. ΘyM �β X β� ΘzM . Clearly
neither y nor z can occur in X , so we conclude by Lemma 4.2. �

Since x /∈β Mk(x) entails z /∈β ΘzM , which in turn implies ΘyM =β ΘzM , we obtain the
following property of k-constant λ-terms.

COROLLARY 4.4
Let k ∈ N. For every k-constant λ-term M the set Fix(M) is a singleton.

THEOREM 4.5
For every λ-term M , either M is k-constant for some k ∈ N, or it has infinitely many, pairwise
distinct, canonical fixed points.

PROOF. If M is k-constant, then Fix(M) is a singleton by Corollary 4.4. Otherwise, given a fresh
variable x, every M ′ satisfying ΘxM �β M ′ contains a free occurrence of x. This entails that
ΘyM �=β ΘzM for all distinct y, z that do not occur in M . Therefore, {ΘzM | z ∈ Var − FV(M)} ⊆
Fix(M) and this set is infinite. �

We obtain the following result concerning the open fpp for λβ.

THEOREM 4.6
The λ-theory λβ satisfies the open fixed point property.

5 Some results concerning sets of fixed points in λβ

5.1 First observations

In this section we work in λβ.

EXAMPLE 5.1
The following examples are meant to illustrate the basic behaviour of the sets Fix(M) and Fixo(M).

(1) Define, for any n � 1, Appn = λfx1 . . . xn.f x1 · · · xn. Let 0n ⊆ Λ be the set of λ-terms M
such that M =β λy1 . . . yn.N for some λ-term N .
(Notice that 0n+1 ⊆ 0n for each n; the elements of 0n − 0n+1 are sometimes called terms of
order n.)
If M ∈ 0n, then M=βλy1 . . . yn.N for some N , and hence

Appn M=βλx1 . . . xn.M x1 · · · xn

=βλx1 . . . xn.N[x1/y1, . . . , xn/yn]=αλy1 . . . yn.N = M ,

whence M ∈λβ Fix(Appn).
Conversely, if M /∈ 0n, then Appn M �β λx1 . . . xn.Mx1 · · · xn ∈ 0n, and thus M /∈λβ

Fix(Appn). Hence, Fix(Appn) = {[M]β | M ∈ 0n}.
(2) For all λ-terms F we prove that Fix(F) �= {[Ω]β , [K]β} �= Fixo(F).

Assume, by contradiction, that F satisfies Fix(F) = {[Ω]β , [K]β}. Observe that [Ω]β = {M |
M �β Ω}, whence F Ω=βΩ if and only if F Ω �β Ω . Split on cases according to the
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844 The fixed point property and a technique to harness double fixed point combinators

solvability of F.

• If F is unsolvable then F �β λx.Ω , but then F K=βΩ �=β K, a contradiction.
• If F is solvable, then F �β λx1 . . . xn.xiN1 · · · Nk for some n, i, k � 0. As

(λx1 . . . xn.xiN1 · · · Nk)Ω �β Ω , we must have i, n = 1 and k = 0. Hence, F=βI
and thus Fix(F) = Λλβ , a contradiction.

(3) Let x /∈ FV(M) and F = λx.M (note that if M is closed, then so is F). Then if N=βM we have
F N=βM=βN , hence N ∈λβ Fix(F); and if N �=β M , then F N = (λx.M)N →β M[N/x] =
M �=β N , whence N /∈λβ Fix(F). Thus, for every M ∈ Λ, there exists a λ-term F such that
Fix(F) = {[M]β}. If M ∈ Λo, we may choose F ∈ Λo.

(4) Define 〈·〉 by 〈T〉 = λz.zT , where z /∈ FV(T). Set F = λx.x〈x〉, X = 〈I〉 and Z = λxy.x〈y〉.
Then, we have

FX =β X 〈X 〉 =β 〈I〉〈〈I〉〉 =β 〈〈I〉〉I =β I〈I〉 =β 〈I〉 = X

FZ =β Z〈Z〉 =β λy.〈Z〉〈y〉 =β λy.〈y〉Z =β λy.Zy =β Z

yet at the same time

X (KI)K = 〈I〉(KI)K =β (KI)IK =β IK =β K

Z(KI)K =β KI〈K〉 =β I.

The last two equations show that X �=β Z. Hence, there is a closed λ-term F with Fixλβ(F) �=
Λβ (since FΩ �=β Ω) such that there are at least two elements in Fixo

λβ(F) having distinct
normal forms.

The first result of the section is that unless Fix(F) and Fixo(F) are singletons, they cannot solely
consist of equivalence classes of λ-terms in normal forms.

PROPOSITION 5.2
Let F be a closed λ-term. If Fix(F) contains at least two elements, then at least one element does not
have a normal form.

PROOF. By the fixed point theorem, F has at least one fixed point of the form YF for some fpc Y .
We shall prove that if YF has a normal form, then F has at most one fixed point; the desideratum
follows immediately from this.

Any λ-term having a normal form is an isolated point in the tree topology on Λ [2, Lem. 14.3.23];
hence, YF is isolated.

By the continuity theorem [2, Thm. 14.3.22], the map X �→ XF is continuous, whence there is
a neighbourhood of Y in the tree topology that is mapped to the singleton YF. As the BT of Y is
λf .f (f (f (· · · ))) and the tree topology has as basic opens all (extensions of) finite approximants of
BTs (see, e.g. [2, Cor. 10.2.7]), there exists a k > 0 such that (λf .f k(Ω)) is mapped to YF. Hence,
(λf .f k(Ω))F = YF and (λf .f k(Ω))F is a normalizing term.

By the genericity lemma [2, Prop. 14.3.24], there is a fresh variable z such that Fk(Ω) =
(λf .f k(Ω))F = Fk(z). As z is fresh, for any term M , we have Fk(M) = (λf .f k(Ω))F, and thus
Fk(M) = YF.

If M is a fixed point of F, then M =β FM , and thus M =β Fk(M) = YF, concluding the
proof. �

The results in the rest of this section concern terms that have no weak hnf, namely terms that do
not reduce to an abstraction regardless of which substitution is applied to them.
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The fixed point property and a technique to harness double fixed point combinators 845

FIGURE 1 Comparing unsolvable terms, terms in Z and mute terms.

DEFINITION 5.3
We denote by Z the subset of Λ consisting of terms M such that, for all substitutions ϑ and terms N
with Mϑ �β N , N is not of the form λx.N ′.

The elements of Z are sometimes called ‘zero terms’, but this name has sometimes been applied
in the literature to terms having weaker properties. The interested reader is invited to consult the
subsection below for a discussion.

5.2 A terminological aside: Z

Terms of order 0 are, by definition, terms that cannot be converted to a lambda abstraction.
Historically, these terms have sometimes been called zero terms [5, 21]. At other times, the
expression ‘zero terms’ has been used, even by the same authors, to refer to the class of unsolvable
terms of order zero. Moreover, this usage is apparently becoming popular, with a number of active
researchers employing ‘zero terms’ in this restricted sense [3, 6].

The meaning of the expression ‘zero term’ is therefore disputed, and to avoid ambiguity, we will
eschew this term altogether. Yet, we do find that the terminological shift has a decent motivation—
especially, with the advent of the infinitary λ-calculus—and shall now brief ly comment on it.

Recall that the three canonical infinitary semantics of the λ-calculus are based on BT, Lévy-Longo
trees (LLT) and Berarducci trees. These semantics are obtained by coinductively quotienting terms
by a chosen subset, the elements of which are deemed to be ‘meaningless’—similarly to quotienting
an algebraic structure by some ideal. These sets, respectively, are as follows.

Unsolvable terms: M is solvable if, for some substitution ϑ : Var → Λ, and some terms
�P, Mϑ �P =β I. M is unsolvable if it is not solvable.

Unsolvable terms of order 0: These are elements of the set Z defined in Definition 5.3. It is easy
to check that the following are equivalent:

– M ∈ Z,
– Mϑ /∈ 01 for all ϑ : Var → Λ,
– M has no weak hnf.

Mute terms: M is mute if every reduct of M reduces to a β-redex. Equivalently,
M has no top normal form (i.e. it is a root-active term) [28].

The relationships between these sets are summarized in Figure 1.
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846 The fixed point property and a technique to harness double fixed point combinators

Intuitively, one thinks of elements of Z as terms that are not convertible to a lambda abstraction
(i.e. terms of order 0), which would make the terminology ‘zero terms’ appropriate. The subtlety is
that terms of order 0 are not closed under substitution. Indeed, a more robust notion is obtained by
defining zero terms to be terms that are hereditarily of order 0 (in the sense that all their instances
are such). In such an interpretation, zero terms will be precisely the elements of Z.

5.3 Fixed points of elements of Z

We first prove the proposition below.

PROPOSITION 5.4
If F belongs to Z, then Fix(F) is infinite. Moreover, if F is closed then Fixo(F) is infinite as well.

PROOF. Let, for n � 0, Xn = YnF, where Yn = Θcn are pairwise β-distinct fpc’s by Lemma 4.1.
Observe that {[Xn]β | n ∈ N} ⊆ Fix(F). Moreover, when F is closed, then so is YnF and hence [Xn]β
is an element of Fixo(F). The remainder of the proof is devoted to showing the claim below, from
which the main result immediately follows.

CLAIM 1 For m �= n, Xn �=β Xm.
�

SUBPROOF. The proof uses Claim 2, proved below.
Suppose that Xn =β Xm. By the Church–Rosser theorem, there is a λ-term X such that Xn �β

X β� Xm, and by Claim 2 we obtain

YnF �β F0(F1(· · · ZFk)) = X = F′
0(F

′
1(· · · Z′F′

k′)) β� YmF.

We posit that k = k′. For contradiction and without loss of generality, assume that k < k′. Then
we have

Z = F′
k , Fk = F′

k+1(· · · Z′F′
k′),

which contradicts that F =β F′
k belongs to Z, while Yn =β Z is an fpc.

Hence, k = k′, but then X has at depth k + 1 the subterm Z = Z′, which is a β-reduct of both Yn
and Ym. This is impossible by Lemma 4.1, unless n = m. �

CLAIM 2
For any n � 0 and any λ-term X such that YnF �β X , there is a k � 0 and there are λ-
terms F0, F1, . . . , Fk , Z with F �β F0, F �β F1, . . . , F �β Fk and Yn �β Z such that
X = F0(F1(· · · ZFk)) (intuitively, k is the number of ‘unfoldings’ of the fpc Yn applied to F).

SUBPROOF. Since Yn is a reducing fpc, we may consider the infinite reduction sequence

YnF �β F(YnF) �β F(F(YnF)) �β · · ·
Notice that in any reduction sequence starting from YnF there can only be one reduction step
contracting a redex that occurs at the root. Indeed, since we are considering Yn = Θcn = VVcn
a redex is created at the root only if it is of shape (λx.xΘx

cn
)F0 with Θcn x �β Θx

cn
and F �β F0.

Its contractum will therefore have shape F0Θ
F0
cn and none of its descendants will have a redex at the

root since F ∈ Z entails that F0 never reduces to an abstraction. Similarly, in any reduction sequence
of this kind there is at most one reduction step contracting a redex occurring at a position of depth k
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The fixed point property and a technique to harness double fixed point combinators 847

in the right spine of the syntax tree; this deeper redex can be created only once all redexes at previous
positions in the spine have been contracted (those reduction steps correspond to steps in the fixed
point combinator unfolding).

Assume wlog that the reduction sequence YnF �β X contracts k � 0 redexes in the rightspine
of the syntax tree of Yn. Consider the projection of YnF �β X across YnF �β F(F(· · · F(YnF)))

(k + 1 F’s) and write the projection diagram as

By the above arguments, the reduction X �β H consist solely of steps inside descendants of F
and Yn; whence, X = F0(F1(· · · ZFk)) for λ-terms Z, F0, . . . , Fk with Yn �β Z, F �β F0, F �β

F1, . . . , F �β Fk , as desired. �
The result now follows, as {[Xn]β | n ∈ N} is infinite by Claim 1.

5.4 Recurrent elements of Z as fixed points

Recall that a λ-term M is recurrent if, for all λ-terms N , M �β N implies N �β M . For example, Ω
and ΘI are recurrent elements of Z, λy.y(ΘI) is recurrent, but does not belong to Z, and Ω3 = Δ3Δ3
is an element of Z, but is not recurrent.

We proceed to prove a general result that recurrent terms belonging to Z can only be fixed points
of a combinator if all λ-terms are fixed points of that combinator, unless the combinator is constant.
We first prove Lemma 5.6 below; the general result is Theorem 5.7.

The proofs of both lemma and theorem make use of a result colloquially called ‘Barendregt’s
Lemma’; we use it in the following form due to van Daalen (see, e.g. [11] for a comprehensive
treatment).

LEMMA 5.5 (Barendregt’s lemma).
Let M[L/x] �β N . Then there exist a k-hole context C[x1, . . . , xk] (with k � 0), λ-terms
xP1

1 · · · P1
m1

, . . . , xPk
1 · · · Pk

mk
with x /∈ FV(C[]) and Q1, . . . , Qk such that

(i): M �β C[xP1
1 · · · P1

m1
, . . . , xPk

1 · · · Pk
mk

].
(ii): (xPi

1 · · · Pi
mi

)[L/x] �β Qi.
(iii): N = C[Q1, . . . , Qk].

LEMMA 5.6
If R = C[Q] is a recurrent term belonging5 to Z, and R �β Q, then either C[z] �β R or C[z] �β z
(for z /∈ FV(C[])).

5In fact, it is easy to see that this lemma holds for all recurrent R, not just members of Z. This is because any recurrent
term can be presented as R = N[R1, . . . , Rk ], where N[x1, . . . , xk ] is a normal context (no redexes), and Ri are root recurrent
(recurrent and reducing to a redex). (This normal form for recurrent terms is obtained by induction on the term structure
of R.)

If we now have R = C[Q] �β C[R], with R = N[R1, . . . , Rk ] and N normal, then C[R] = N[R′
1, . . . , R′

k ] and so

C[N[�R]] = N[�R′]. This can only happen if C[x] = x, C[x] = N[�R′], or N[�R] = Ri for some i—in which case Ri = R �β

C[Ri] and our lemma applies. Since we will not need this level of generality, we do not pursue this observation further.
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848 The fixed point property and a technique to harness double fixed point combinators

PROOF. Let z /∈ FV(C[]) and assume, for purposes of contradiction, that neither C[z] �β R, nor
C[z] �β z. Assume now C[z] �β N . If z /∈ FV(N), we have that R = C[Q] �β N[Q/z] = N , and
by recurrence of R, that N �β R and hence C[z] �β R, contradicting the assumptions. Hence, we
must have z ∈ FV(N) and, since N is an arbitrary reduct of C[z] and we have assumed that C[z] does
not β-reduce to z, every reduct of C[z] must contain z as a free variable strictly below the root.

As R is recurrent and R �β Q, we have Q �β R. Thus, we have the reduction sequence

R = C[Q] �β C[R] = C[C[Q]] �β C[C[R]] �β C[C[C[R]]] �β · · ·
Hence, for all n � 1 we have R �β Cn[R], and thus by recurrence of R that Cn[R] �β R. Observe
that for every n � 1, the λ-term Cn[R] is an element of Z as it is a reduct of R.

CLAIM 3 Let n � 0 and assume Cn[R] �β W . Then the length of the longest position in W is at
least n.

�
SUBPROOF. Proceed by induction:

• n = 0: Trivial.
• n � 1: By Barendregt’s lemma, we have that C[Cn−1[R]] �β W implies the existence of a

k-hole context D[x1, . . . , xk] (with k � 0) together with λ-terms zP1
1 · · · P1

m1
, . . . , zPk

1 · · · Pk
mk

and Q1, . . . , Qk such that z does not occur free in D[] and the following hold:

(1) C[z] �β D[zP1
1 · · · P1

m1
, . . . , zPk

1 · · · Pk
mk

],
(2) (zPi

1 · · · Pi
mi

)[Cn−1[R]/z] �β Qi for all 1 � i � k, and
(3) W = D[Q1, . . . , Qk].

As Cn−1[R] is an element of Z, hence cannot reduce to an abstraction, there is a k-hole context
D′[x1, . . . , xk] such that we may write (i), (ii) and (iii) above as (i) C[z] �β D′[z, . . . , z],
(ii) Cn−1[R] �β Qi for all 1 � i � k and (iii) W = D′[Q1, . . . , Qk]. Note that by the
previous observations, D′[z, . . . , z] cannot have a variable at the root as otherwise C[z] �β z,
a contradiction. Moreover, we cannot have k = 0 because, as shown earlier, every reduct of
C[z] must contain z as a free variable and z does not occur in D′[]. Hence, the length of the
longest position in D′[Q1, . . . , Qk] is at least one more than the length of the longest position
in any of the Qi’s.
But as Cn−1[R] �β Qi for all 1 � i � k, the induction hypothesis furnishes that the longest
position in any Qi is at least n − 1; hence, the length of the longest position in W is at
least n. �

Let d � 1 be an integer strictly greater than the length of the longest position in R. By Claim 3
above, Cd[R] �β R implies that the length of the longest position in R is at least d, a contradiction.
Hence, the original assumption leads to contradiction, and we must thus have either C[z] �β R, or
C[z] �β z, as desired.

THEOREM 5.7
Let F be any λ-term. If there is a recurrent R ∈ Z such that R ∈λβ Fix(F), then the following hold:

(1) For a fresh variable z, either Fz �β R or Fz �β z.
(2) Either F =β KR or F =β I.
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The fixed point property and a technique to harness double fixed point combinators 849

(3) In any λ-theory T , either FixT (F) = {[R]T } or FixT (F) = ΛT . Thus, if F ∈ Λo then
either Fixo

T (F) = {[R]T } or Fixo
T (F) = Λo

T .

PROOF. First, we observe that (1) implies both (2) and (3).

(2): If Fz �β R for a fresh z, then z must be erased in the reduction sequence, which
has therefore length at least 1. By the standardization theorem [2, 11.4.7], Fz �h
(λz.C[z])z →β C[z] �β R; hence, F �h (λz.C[z]) �β (λz.R) =β KR.
If Fz �β z, then F must β-reduce to an abstraction whence the reduction sequence is
non-empty. By the standardization theorem, Fz �h (λz.C[z])z →β C[z] �β z; hence,
F �h (λz.C[z]) �β (λz.z) and F =β I.

(3): Immediate by (2).

The remainder of the proof is devoted to proving (1). By the above observations, this suffices to
prove the theorem.

Suppose FR =β R for R a recurrent term in Z. By the Church–Rosser theorem, there is a λ-term
N such that FR �β N β� R. By recurrence of R, we obtain N �β R and consequently FR �β R.
Let x /∈ FV(F) and set M = Fx. By Barendregt’s lemma there is a context C[x1, . . . , xk] with
x /∈ FV(C[]), λ-terms P1

1, . . . , P1
m1

, . . ., Pk
1, . . . , Pk

mk
and Q1, . . . , Qk such that

(i) M �β C[xP1
1 · · · P1

m1
, . . . , xPk

1 · · · Pk
mk

],
(ii) (xPi

1 · · · Pi
mi

)[R/x] �β Qi for all 1 � i � k,
(iii) R = C[Q1, . . . , Qk].

Since R ∈ Z, point (ii) yields that

(xPi
1 · · · Pi

mi
)[R/x] = R(Pi

1[R/x]) · · · (Pi
mi

[R/x])

�β Qi = RiS
i
1 · · · Si

mi
,

where R �β Ri and Pi
j[R/x] �β Si

j .
For all i with 1 � i � k, consider the one-hole context

Ci[z] = C[Q1, . . . , Qi−1, z�Si, Qi+1, . . . , Qk].

Point (iii) yields that R = Ci[Ri] for each i, so we may apply Lemma 5.6 to conclude that either
Ci[z] �β z or Ci[z] �β R, for each i.

If, for some i, Ci[z] indeed reduces to z, then we conclude the proof by the following sequence of
inferences:

1. The vector �Si must be empty, so that mi = 0;
2. By the genericity lemma [2, Prop. 14.3.24], C[Q1, . . . , Qi−1, z, Qi+1, . . . , Qk] = Ci[z] �β z

implies that C[x1, . . . , xk] �β xi, since Qj = Rj�Sj are unsolvable, and z is normal;
3. Hence, Fx �β C[x�P1, . . . , x�Pk] �β x.

Suppose, on the other hand, that for each i, there is a reduction ρi : Ci[z] �β R. We then conclude
by the following sequence of inferences.

(1) For each i, we have the reduction ρ∗
i = ρi[Ri/z] : R = Ci[Ri] �β R, which erases the

displayed occurrence of Ri along the way.
(2) By the Church–Rosser theorem, these can be joined together to yield
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850 The fixed point property and a technique to harness double fixed point combinators

where all the alternative paths from C[Q1, . . . , Qk] to Z are equivalent; hence, no subterm
of Z descends from Qi (which gets erased by ρ∗

i ).
(3) The equivalent composite reductions above therefore lift to a reduction C[x1, . . . , xk] �β Z.
(4) By recurrence, also Z �β R.
(5) By point (i), we get Fx �β C[x1 �P1, . . . , xk �Pk] �β Z �β R, as desired.

This completes the proof of (i), and of the theorem. �
The assumptions that the λ-term R is recurrent and belongs to Z cannot be omitted, as seen in the

next example.

EXAMPLE 5.8
Consider the following examples.

1. Let F = λxy.y(xI). Then, Fix(F) = {[λy.yM]β | M ∈ Λ, y /∈ FV(M)} and Fixo(F) =
{[λy.yM]β | M ∈ Λo}. Clearly, both Fix(F) and Fixo(F) are infinite and have empty intersec-
tion with Z. Furthermore, both Fix(F) and Fixo(F) contain infinitely many distinct elements
[Q]β where Q is a closed recurrent term, namely all λ-terms Q of the form Q = λy.yR where
R is a closed recurrent term.

2. Thus, F is a closed λ-term with infinitely many non-β-convertible closed recurrent terms as
fixed points, showing that the assumption of R ∈ Z in Theorem 5.7 cannot be omitted.

3. Define J = λwxy.x(wwxy) and note that JJiz �β i(JJiz). Set F = JJI and, for each n � 0,
consider Yn = Θcn .

4. Then, as Yn is an fpc, we get {[YnF]β | n ∈ N} ⊆ Fix(F). Furthermore, by Lemma 4.1 and
the construction of F it is easy to see that for m �= n we have YmF �=β YnF, whence Fixo(F)

is infinite. Furthermore, note that YnF �β F(YnF) �β I(F(YnF)) and that F(YnF) does not
reduce to YnF whence none of the YnF is recurrent. It is straightforward to check that for any
n � 0, we have YnF ∈ Z.

5. Hence, F is a closed λ-term with infinitely many non-β-convertible elements of Z as fixed
points, showing that the assumption of R being recurrent in Theorem 5.7 cannot be omitted.

As an application of the previous theorem, recall the notion of Plotkin terms from [25]; these are
λ-terms P such that, for fresh x, every reduct of Px contains x, and yet PX =β PI for every closed
X ∈ Λo.

The standard construction of such terms (see [2, Def. 17.3.26]) yields a zero term Z =β PI, which
moreover satisfies PZ =β Z (since Z ∈ Λo). If Z was recurrent, then Theorem 5.7 would apply,
implying that P is either identity or constant on all (open) terms. Since P is neither, it follows that Z
is not recurrent.6

6One might suspect that this non-recurrence is due to Plotkin terms being universal generators, but this is not so; the term
WWc0, with Wwn = K(wwc0)[En, ww(S+n)] is a universal generator, and it is recurrent.
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The fixed point property and a technique to harness double fixed point combinators 851

6 The Fixed Point Property Fails in All Sensible Theories

In this section we prove that no sensible λ-theory T can satisfy the fixed point property. More
precisely, we are going to show that the λ-term defined as

Ξ = λxy.x(x(Ky))Ω

only has two possible fixed points modulo T . Interestingly, Ξ is also a counterexample to the open
fixed point property. This shows that, in contrast to the theory λβ, neither fixed point properties hold
in, say, H,B or H∗.

LEMMA 6.1
Ω ∈H FixH(Ξ); hence, Ω ∈T FixT (Ξ) for every sensible λ-theory T .

PROOF. We have ΞΩ =H λy.Ω(Ω(Ky))Ω =H Ω . �
We now show that the only solvable fixed point of Ξ in every sensible λ-theory T is the identity.

PROPOSITION 6.2
Let M ∈ Λ and T be a sensible λ-theory. If M ∈T FixT (Ξ) then M �=T Ω entails M =T I.

PROOF. All the equalities in this proof are intended to take place in the λ-theory T .
Let M �= Ω be a fixed point of Ξ in T . Since M is solvable, it has a hnf:

M = λx0 . . . xk .x′M1 · · · Mm. (4)

CLAIM 4
The head variable x′ of the hnf of M must be x0.

SUBPROOF. From M = ΞM it follows, for fresh variables y and z, that

My = ΞMy = M(M(Ky))Ω = (MzΩ)[M(Ky)/z]. (5)

Now, let (yi)i∈N be fresh variables and denote by σi the substitution [M(Kyi)/yi+1]. By iterating
equation (5) we get

My0 = (My1Ω)σ0 = (My2Ω
∼2)σ1σ0 = · · · = (MynΩ

∼n)σn−1 · · · σ0. (6)

In particular, taking n = k, we get

My0 = (MykΩ
∼k)−→σ k = x′M1 · · · Mm[yk/x0][ �Ω/�x]−→σ k

= (Myk+1Ω
∼k+1)−→σ k+1 = x′M1 · · · Mm[yk+1/x0][ �Ω/�x]−→σ k+1Ω ,

whence x′ cannot be a free variable, for no consistent theory can satisfy x′ �P = x′ �Q with unequal
number of P’s and Q’s.

Since M is solvable, so is My0, and, by (6), so are MynΩ
∼n, for all n ∈ N.

By Lemma 2.6, we get x′ = x0. �
We now need to prove that also the indices k, m must be equal to 0.

CLAIM 5
If k = 0 then also m = 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/29/5/831/5528041 by U
N

IVER
SITE D

E PAR
IS (U

D
P) user on 07 January 2021



852 The fixed point property and a technique to harness double fixed point combinators

SUBPROOF. Assume, by contradiction, that k = 0 while m > 0. On the one hand, we have M =
λx0.x0M1 · · · Mm. On the other hand, we have

ΞM = λy.M(M(Ky))Ω
= λy.M(KyM ′

1 · · · M ′
m)Ω for M ′

i = Mi[Ky/x0]
= λy.KyM ′

1 · · · M ′
mM ′′

1 · · · M ′′
mΩ for M ′′

i = Mi[KyM ′
1 · · · M ′

m/x0]
= λy.yM ′

2 · · · M ′
mM ′′

1 · · · M ′′
mΩ as we assumed m > 0.

Since M = ΞM we must have m = 2m, which is impossible for m > 0. �

CLAIM 6
If k = m then k = 0.

SUBPROOF. By induction on k ∈ N, we show that M = λx0 . . . xk .x0M1 · · · Mk implies M = I.

k = 0 : Trivial, since M has already the required form.
k > 0 : In the induction case, we have the following chain of equalities:

M = ΞM as M ∈T FixT (Ξ)

= λy.M(M(Ky))Ω by def. of Ξ

= λy.M(λx1 . . . xk .KyM ′
1 · · · M ′

k)Ω for M ′
i = Mi[Ky/x0]

=β λy.M(λx1 . . . xk .yM ′
2 · · · M ′

k)Ω since k > 0
= λy.(λw0 . . . wk .w0N1 · · · Nk)(λx1 . . . xk .yM ′

2 · · · M ′
k)Ω by α-renaming M

=β λyw2 . . . wk .((λx1 . . . xk .yM ′
2 · · · M ′

k)N
′
1 · · · N ′

k)[Ω/w1]
forN ′

j = Nj[λx1 . . . xk .yM ′
2 · · · M ′

k/w0]
=β λyw2 . . . wk .yM ′′

2 · · · M ′′
k ,

where M ′′
i = M ′

i [N
′
1/x1] · · · [N ′

k/xk][Ω/w1]
= λz0 . . . zk−1.z0P1 · · · Pk−1 by α-renaming
= I by ind. hyp.

Since M = λx0.x0, we conclude that k = 0. �
Assume now k > 0 and k �= m towards a contradiction. Easy calculations give

MyΩ = λx2 . . . xk .y(M1[y/x0][Ω/x1]) · · · (Mm[y/x0][Ω/x1]).

As a matter of notation we set V = λy.MyΩ , and to simplify the reasoning on the indices we perform
some α-renaming, namely we let

V = λyz1 . . . zk−1.yV1 · · · Vm,

where Vi = Mi[y/x0][Ω/x1][z1/x2] · · · [zk−1/xk] for 1 � i � m. We first prove the following claims.

CLAIM 7
For all n ∈ N, we have My = V n(M(Kny)).

SUBPROOF. We proceed by induction on n.

• Case n = 0. Trivial since My = M(K0y) = V 0(M(K0y)).
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The fixed point property and a technique to harness double fixed point combinators 853

• Case n + 1. We have

My = ΞMy as M ∈T FixT (Ξ)

= M(M(Ky))Ω by def. of Ξ

= V(M(Ky)) by def. of V
= V(V n(M(Kn(Ky)))) by induction hypothesis
= V n+1(M(Kn+1y))

�
In the proofs below we use the following basic properties of K (for a fresh x):

(K1) for all i, j � 0 we have λw1 . . . wi.Kjx =β Ki+jx,
(K2) if i > j then (Kix)P1 · · · Pj =β Ki−jx for arbitrary P1, . . . , Pj ∈ Λ,
(K3) if i � j then (Kix)P1 · · · Pj =β xPi+1 · · · Pj for arbitrary P1, . . . , Pj ∈ Λ.

CLAIM 8
For all n � m, we have My = V(V n(Kn+1−m+ky)).

SUBPROOF. We establish the following chain of equalities:

My = V n+1(M(Kn+1y)) by Claim 7
= V n+1(λx1 . . . xk .(Kn+1y)M ′

1 · · · M ′
m) by (4) with x′ = x0

where M ′
i = Mi[Kn+1y/x0] for1 � i � m

=β V n+1(λx1 . . . xk .Kn+1−my) by (K2), since n + 1 > m
=β V n+1(Kn+1−m+ky) by(K1).

�
We split into subcases, depending on whether m is greater than k.

CLAIM 9
When k > m we have for all n ∈ N (and for appropriate Xi ∈ Λ):

(i) V n(Vy) = λx1 . . . xk−1+(k−1−m)n.yX1 · · · Xm,
(ii) if n � m then My = K(2+n)(k−m)y.

SUBPROOF. (i) We proceed by induction on n.

• If n = 0 then the case follows by definition of V .
• If n > 0 then we have

V n(Vy) = V(V n−1(Vy)) by def.
= V(λx1 . . . xk−1+(k−1−m)(n−1).yX1 · · · Xm) by ind. hyp.

=β λz1 . . . zk−1.(λx1 . . . xk−1+(k−1−m)(n−1).y �X )V ′
1 · · · V ′

m,
where V ′

i = Vi[λx1 . . . xk−1+(k−1−m)(n−1).y �X/y] for 1 � i � m
=β λz1 . . . zk−1xm+1 . . . xk−1+(k−1−m)(n−1).yX ′

1 · · · X ′
m as k > m,

where X ′
i = Xi[V ′

1/x1] · · · [V ′
m/xm]

So the number of abstractions is k − 1 + k − 1 + (k − 1 − m)(n − 1) − m = k − 1 + (k − 1 − m)n.
(ii) For n � m we have the following:

My = V n(V(Kn+1−m+ky)) by Claim 8
= λx1 . . . xk−1+(k−1−m)n.(Kn+1−m+ky)X1 · · · Xm by (i)

=β λx1 . . . xk−1+(k−1−m)n.K(n+1−m+k)−my by (K2) as n � m, k > m
=β Kk−1+(k−1−m)n+(n+1−m+k)−my by (K1).

So, the number of K’s is k −1+ (k −1−m)n+ (n+1−m+k)−m = (k −1−m)n+n+2k −2m =
(k − 1 − m + 1)n + 2(k − m) = (k − m)(n + 2). �
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854 The fixed point property and a technique to harness double fixed point combinators

In Claim 9(ii) we have shown that, for all n large enough, My has a hnf with (k−m)(n+2) external
λ-abstractions and 0 applications. By Remark 2.9, we have (k − m)(n + 2) = k − m for all such
n, which is only possible if this quantity is independent from n. As we are supposing k > m this is
impossible.

CLAIM 10
When 0 < k < m we have for all n ∈ N (and for appropriate Xi ∈ Λ):

(i) V n(Vy) = λx1 . . . xk−1.yX1 · · · Xm+(m−k+1)n,
(ii) if n � m then My = λx1 . . . xk−1.yX1 · · · X(m−k)n+2m−k−1.

SUBPROOF. (i) We proceed by induction on n.

• If n = 0 then the case follows by definition of V .
• If n > 0 then we have

V n(Vy) = V(V n−1(Vy)) by def.
= V(λx1 . . . xk−1.yX1 · · · Xm+(m−k+1)(n−1)) by ind. hyp.

=β λ�z.(λx1 . . . xk−1.yX1 · · · Xm+(m−k+1)(n−1))V1 · · · Vm
=β λz1 . . . zk−1.yX ′

1 · · · X ′
m+(m−k+1)(n−1)Vk · · · Vm as k < m,

where X ′
i = Xi[V1/x1] · · · [Vk−1/xk−1] for 1 � i � m.

So the number of applications is m + (m − k + 1)(n − 1) + m − k + 1 = m + (m − k + 1)n.
(ii) For n � m we have the following:

My = V n(V(Kn+1−m+ky)) by Claim 8
= λx1 . . . xk−1.(Kn+1−m+ky)X1 · · · Xm+(m−k+1)n by (i)

=β λx1 . . . xk−1.yX(n+1−m+k)+1 · · · Xm+(m−k+1)n,

where the last equality follows by (K3) since k < m � n so that m+(m−k +1)n−(n+1−m+k) =
(m − k + 1)n + m − n − 1 + m − k = (m − k + 1 − 1)n + 2m − k − 1 = (m − k)n + 2m − k − 1 > 0.
In particular, the number of applications is what is claimed. �

By Claim 10(ii), for all n large enough, My has a hnf with (m − k)n + 2m − k − 1 applications and
k − 1 external abstractions, so the difference is (m − k)n + 2m − 2k. By Remark 2.9, we must have
(m − k)n + 2m − 2k = m − k for all such n, which is only possible if this quantity is independent
from n. As we are supposing k < m this is impossible.

As we ruled out all other possibilities, we conclude k = m = 0 and M = I.
As a consequence of Lemma 6.1 and Proposition 6.2 we obtain the following.

COROLLARY 6.3
For every sensible λ-theory T , Fixo

T (Ξ) = FixT (Ξ) = {[Ω]T , [I]T } is of cardinality 2.

We are now able to present the main result of the paper.

THEOREM 6.4
No sensible λ-theory T satisfies the fixed point property.

This gives a partial answer to Problem 3 and has the following corollary.

COROLLARY 6.5
The λ-theory B satisfies the range property, but not the fixed point property.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/29/5/831/5528041 by U
N

IVER
SITE D

E PAR
IS (U

D
P) user on 07 January 2021



The fixed point property and a technique to harness double fixed point combinators 855

We conclude this section with one more observation.

PROPOSITION 6.6
Let T be a sensible λ-theory. For all k > 0, there exists Mk ∈ Λo such that FixT (Mk) = Fixo

T (Mk)

has cardinality k.

PROOF. We define inductively the following sequence of terms:

F1 = F = λxy.y, F2 = Ξ , Fn+1 = λx.[Ξ(π1x), π1xFn(π2x)]forn � 2

and proceed by induction on k.
The case k = 1 is trivial since FixT (F) = Fixo

T (F) = {[I]T }.
The case k = 2 follows by Proposition 6.2.
Assume k > 2. Suppose that X ∈ FixT (Fk), which means that X =T FkX . Then X must be such

that X =T [X1, X2], where

X1 =T ΞX1 X2 =T X1Fk−1X2.

Since X1 =T ΞX1, Proposition 6.2 entails that either X1 =T Ω or X1 =T I. In the former case
we must have also X2 =T Ω . In the latter, the fact that X1 =T I entails that X2 =T Fk−1X2. By
induction hypothesis, there are exactly k − 1 solutions to this equation (modulo T ). It is easy to
check that each of these solutions indeed furnishes a fixed point of Fk . Therefore, the set

FixT (Fk) = {[[Ω , Ω]]T } ∪ {[[I, X ]]T | X ∈T FixT (Fk−1)}
consists of closed terms and, by Remark 2.9, has cardinality k. �

7 The Double Fixed Points Problem

In this section we focus on Problem 1, originally stated by Statman [29] and attacked by Intrigila [15],
namely the question of whether double fixed point combinators exist. Intrigila’s proposal is centred
on the remark that, in the BT model, both Y and Yδ are indeed equated and thus that somehow fixed
point unrollings had to be tamed with. While Intrigila defined a notion of weight to perform this
task, we approach the question differently by factoring the behaviour of the fixed point combinator
itself through a notion of interpretation of the λY-calculus in the λ-calculus and the identification
of structural properties of this interpretation from which the non-existence of double fixed point
combinators would follow.

7.1 Background on the λY-calculus

The λY-calculus is an extension of the untyped λ-calculus with a unary term constructor Y
representing a fixed point combinator. Formally, the set ΛY of λY-terms is generated by the following
grammar:

ΛY : M , N ::= x | MN | λx.M | YM .

In order to endow the Y construct with the behaviour of a fixed point combinator, we consider an
additional reduction →Y, which is the contextual closure of the rule:

YM → M(YM). Y

The λY-calculus thus becomes a higher-order rewriting system with reduction →βY generated by
the rules (β) and (Y). Most of the notions introduced in Section 2 for the λ-calculus are inherited by
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856 The fixed point property and a technique to harness double fixed point combinators

the λY-calculus in the obvious way. In particular, a λY-theory is a congruence on ΛY containing the
βY-conversion.

Several standard references provide background on the λY-calculus [1, 24, 30]. The usual
rewriting theoretic properties of the λ-calculus carry over to the λY-extension with virtually the
same proofs. We still review these arguments as later on we will employ some refinements of them,
but we refer to Appendix A for the most technical proofs.

THEOREM 7.1
The reduction →βY is confluent.

PROOF. The λY-calculus possesses two rewriting rules. By inspection, it is evident that the system is
orthogonal—there is no possible overlap between redex patterns of the two rules. We conclude since,
by [4, Thm. 11.6.19], every orthogonal higher-order term rewriting system is confluent. �

As a consequence, two βY-convertible λY-terms M and N have a common reduct.

COROLLARY 7.2
Let M , N ∈ ΛY. If M =βY N , then there exists Z ∈ ΛY such that M �βY Z βY� N .

In fact, the system λY is a conservative extension of the λ-calculus.

COROLLARY 7.3
λY is conservative over λ.

PROOF. Let M , N ∈ Λ such that M =βY N . By Corollary 7.2, there is a λY-term Z such that
M �βY Z βY� N . Since neither M nor N contain the symbol Y, and this symbol cannot be created by
β-reduction, there is no point during these reductions where such a symbol can appear. Consequently,
there is no point during these reductions where the Y-rule can be applied. We conclude that these
reductions in λY are actually reductions in λ, hence M =β N holds. �

7.1.1 Standardization and parallel reduction We now present some reduction relations that are
well known in the setting of the λ-calculus, and are here extended to the λY-calculus.

DEFINITION 7.4

(1) The weak head reduction is defined by the following two rules (for k � 0):

(λx.M)N0 · · · Nk →w M[N0/x]N1 · · · Nk

YN0 · · · Nk →w N0(YN0)N1 · · · Nk

(2) The standard reduction is obtained from the weak head reduction by setting:
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The fixed point property and a technique to harness double fixed point combinators 857

(3) The parallel reduction is the least congruence closed under simultaneous development:

We refer to the appendix for the basic results on these notions of reduction, including the
standardization theorem. The proofs in the next two sections will only use the following facts about
parallel reduction—whose proofs may be found there as well. Note that the transitive closure of
parallel reduction is equal to �βY.

PROPOSITION 7.5
For M , N ∈ ΛY, we have that M ⇒ M ′ and M ′ �Y N entail M ⇒ N . In particular, M �Y N
implies M ⇒ N .

PROPOSITION 7.6
For M , N ∈ ΛY, we have that M ⇒ M ′ and N ⇒ N ′ entail M[N/x] ⇒ M ′[N ′/x].

7.1.2 The simply typed case We now consider the version of λY endowed with simple types over
one ground type o. The typing restriction will prove to have several important advantages.

DEFINITION 7.7
The typed λY-calculus, λY→, is an extension of the simply typed λ-calculus obtained by adding a
new unary term constructor YA, for each type A:

A, B ∈ T ::= o | A → B

M , N ∈ Λ→
Y ::= x | MN | λx:A.M | YAM .

The typing rule for the new term constructor is the following:

The reduction rule is as in the untyped case:

YAM → M(YAM). Y

PROPOSITION 7.8
λY→ satisfies the subject reduction property.

PROOF. Routine. �

7.2 Interpretation of the constructor Y by fixed point combinators

7.2.1 Interpretation by fixed point combinators We have seen that in a λY-term M the constant
Y represents a generic fixed point combinator. Therefore, it is possible to retrieve a regular λ-term
by substituting some fpc Y for every occurrence of Y in M . The λ-term M ′ so defined is called the
‘interpretation of M in Λ’—and it depends on Y . In the next definition we are more liberal and
consider also the case where Y is substituted by a weak fixed point combinator.
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858 The fixed point property and a technique to harness double fixed point combinators

DEFINITION 7.9
Given a weak fpc Y ∈ Λ, we define the interpretation of a λY-term in Λ with respect to Y as the
map [[·]]Y : ΛY → Λ given by

[[x]]Y = x

[[MN]]Y = [[M]]Y [[N]]Y

[[λx.M]]Y = λx.[[M]]Y

[[YM]]Y = Y [[M]]Y .

Such an interpretation is clearly compositional and enjoys several interesting properties.

LEMMA 7.10 (Substitution lemma for λY).
Let M , N ∈ ΛY and let Y ∈ Λ be a weak fpc. Then, for all x /∈ FV(Y ), we have

[[M[N/x]]]Y = [[M]]Y [[[N]]Y /x].

PROOF. Straightforward by compositionality of the interpretation map [[·]]Y . �
In general a weak fpc Y can be such that Yx �β x(Y ′x) for Y �=β Y ′, and in this case the

interpretation is unsound; we have Yx →Y x(Yx) but [[Yx]]Y �=β [[x(Yx)]]Y . However, when Y is an
actual fpc the resulting interpretation is sound.

PROPOSITION 7.11 (Soundness).
Let Y ∈ Λ be an fpc. For all M , N ∈ ΛY, if M =βY N then [[M]]Y =β [[N]]Y .

PROOF. First, notice that by Lemma 7.10, if M =β M ′, then we have [[M]]Y =β [[M ′]]Y . Notice also
that, if M =Y M ′, then we have [[M]]Y =β [[M ′]]Y because Y is an fpc. The result then easily follows
by induction on the number of alternations between =β and =Y in a proof that M =βY N . �

REMARK 7.12
The converse to the above proposition fails for two reasons. One of these is rather trivial, the other
much deeper.

• The first problem has to do with the fact that the interpretation function [[·]]Y is not injective
even with respect to α-conversion. For example, fix any untyped fpc Y , and consider
M = λx.[Yx,Yx] and N = λx.[Yx, Yx]. Trivially [[M]]Y = [[N]]Y , but M �=βY N by a Church–
Rosser argument.

• The exotic reason is related to the Plotkin terms already discussed on Page 55; there exist
(unsolvable) λ-terms P ∈ Λo with the property that PX =β PI for all X ∈ Λo, and yet
Px �β P′ implies that x ∈ FV(P′).

For the counterexample now take M=PI and N=P(λz.Yz). Just as x can never be erased
from Px by any β-reduction, also Y can never be erased from P(λz.Yz) by any βY-reduction.
Yet, for a closed fpc Y , [[λz.Yz]]Y becomes a closed λ-term, and so [[N]]Y =β PI =β [[M]]Y .

7.2.2 Interpretation of Y by fpc’s in the typed case We now prove that both of the pathologies
described in Remark 7.12 disappear when considering the simply typed λY-calculus. We start by
showing that the interpretation becomes injective.
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The fixed point property and a technique to harness double fixed point combinators 859

DEFINITION 7.13
For a given fpc Y , the interpretation of λY→ in Λ is defined as in the untyped case, namely forgetting
the types.

PROPOSITION 7.14
Let Y be an fpc. Then the map

[[·]]Y : Λ→
Y → Λ

is injective—with respect to syntactic equality.

PROOF. The structure of [[M]]Y is completely determined by M ; the only two clauses in the definition
of [[·]]Y , which result in the same term constructor, are those for the application and for Y.

[[M1M2]]Y = [[M1]]Y [[M2]]Y

[[YN]]Y = Y [[N]]Y

Suppose there are M1, M2, N ∈ Λ→
Y such that

[[M1]]Y [[M2]]Y = Y [[N]]Y

Then we must have [[M1]]Y = Y . We claim that this is impossible. First of all, note that Y itself is not
a λY→-term, so M1 �= Y. Now, if Y occurs in M1 then Y occurs as a strict subterm of [[M1]]Y = Y .
This is impossible for finite terms.

Otherwise Y does not occur in M1, [[M1]]Y = M1 and M1 is a Y-free simply typed term, thus
normalizing, which Y is not. �
PROPOSITION 7.15
Let M , N ∈ Λ→

Y . Suppose that, for every fpc Y , [[M]]Y =β [[N]]Y . Then M =βY N .

PROOF. We consider the interpretation of Y by Turing’s fpc Θ and to lighten the notation we simply
write [[·]] for [[·]]Θ . We first show that for any one-step reduct [[M]] →β Z′ there exists a λY→-term
Z such that

M =βY Z, [[Z]] = Z′.

To see this, write [[M]] = C[R], where R is the contracted redex. Notice that R cannot be a proper
subterm of Θ , which has only one redex, occurring at the root:

Θ = WW, W = λwx.x(wwx).

Case 1: If R is indeed the λ-term Θ = WW, then it must descend from an occurrence of Y; in this
case we have

[[M]] = C[Θ] = C′[Θ[[N]]], C[x] = C′[x[[N]]]

M = C0[YN], [[C0[X ]]] = C′[[[X ]]]

[[M]] →β Z′ = C′[(λx.x(WWx))[[N]]].
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860 The fixed point property and a technique to harness double fixed point combinators

But now we have

M = C0[YN] →Y C0[N(YN)] β←C0[(λx.x(Yx))N] = Z

[[Z]] = [[C0[(λx.x(Yx))N]]]

= C′[[[(λx.x(WWx))N]]]

= C′[(λx.x(WWx))[[N]]] = Z′,

where we find M =βY Z and [[Z]] = Z′.
Case 2: If R does not come from Y, then the only possibility left is that it is the image of a redex,

which already appears in M :

[[C0[X ]]] = C[[[X ]]], [[(λx.P)Q]] = R

M = C0[(λx.P)Q] →β C0[P[Q/x]] = Z

[[M]] = [[C0[(λx.P)Q]]] = C[R] →β Z′ = C[[[P]][[[Q]]/x]]

[[Z]] = [[C0[P[Q/x]]]] = C[[[P[Q/x]]]].

By Lemma 7.10, we have [[P]][[[Q]]/x] = [[P[Q/x]]]; hence, Z′ = [[Z]] and M →β Z.

The result then follows by induction, applying Proposition 7.14. �

7.3 The reduction extension properties

We now present structural properties of the interpretation map [[−]]Y that we call ‘reduction
extension properties’. To present them in diagrammatic form, we first need to introduce some
notations.

NOTATION 7.16
Let M , N ∈ �Y, and let Y be a weak fpc. We write

[[M]]Y
[[·]]Y� [[N]]Y

whenever M �βY N .

DEFINITION 7.17
A weak fpc Y satisfies the reduction extension properties if the following properties hold for all
M ∈ ΛY. (Note that M ′, N ∈ ΛY while P ∈ Λ.)

where solid arrows denote the assumption reductions and dotted arrows denote the entailed ones.
In words, property I states that for all M ∈ ΛY, P ∈ Λ, [[M]]Y �β P entails that there exists an
N ∈ ΛY such that M �βY N and P �β [[N]]Y . Similarly, property II states that for all M , M ′ ∈ ΛY,
[[M]]Y �β [[M ′]]Y entails that there exists an N ∈ ΛY such that M �βY N βY� M ′.

Those properties are interesting because of the following observation.
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The fixed point property and a technique to harness double fixed point combinators 861

PROPOSITION 7.18
Let Y ∈ Λ be a weak fpc. If Y satisfies the reduction extension properties then Y �=β Yδ.

PROOF. Suppose, by way of contradiction, that Y =β Yδ holds. This entails that Yx =β Yδx, so by
confluence these λ-terms have a common reduct X satisfying Yx �β X β� Yδx. Furthermore, by
definition of [[·]]Y , we have Yx = [[Yx]]Y and Yδx = [[Yδx]]Y . By property I, Yx �βY M for some
M ∈ ΛY such that X �β [[M]]Y .

Now [[Yδx]]Y �β X �β [[M]]Y and this entails, by property II, that Yδx �βY N βY � M .
Therefore, Yδx �βY N βY� M βY� Yx. This is a contradiction, since no βY-reduct of Yx contains
a δ, while every reduct of Yδx contains one—it occurs at the innermost position, with a unique
descendant of Y applied to it. �

REMARK 7.19

(1) We will prove reduction extension property I for a class of reducing fpc’s. We conjecture
that this property actually holds for all reducing fpc’s, and that our technique will be useful
to treat the general case as well.

(2) Property I can be satisfied by a weak fpc Y satisfying Yx �β x(Y ′x) even when Y �=β Y ′,
because we might have Y ′x �β x(Yx), and Yx �β x2(Yx).

(3) An fpc Y satisfying property I, cannot satisfy property II for all M ∈ ΛY, because together
they would imply the completeness of the interpretation [·]Y —in contradiction with
Remark 7.12.

(4) Luckily, the above proof only involves typable λY-terms. So we only need these properties
to hold for all M ∈ Λ→

Y . We conjecture that property II indeed holds for all reducing fpc’s
Y and M ∈ Λ→

Y .
(5) Our proof of property I for a class of reducing fpc’s is obtained by considering a larger class

of weak fpc’s, namely the hereditarily reducing ones.

7.4 Hereditarily reducing weak fpc’s

In order to state property I in its most general form, we now introduce the class of hereditarily
reducing weak fpc’s.

We have seen in Definition 3.5(ii) that an fpc Y is reducing whenever Yx �β x(Yx). The
problem is that the set of reducing fpc’s is not closed under β-reduction, as shown by the following
counterexample.

EXAMPLE 7.20
Let us consider the following variant ΘI of Turing’s fpc:

ΘI = WIWI, WI = λwx.x(Iwwx).

It is easy to check that ΘI is reducing. Obviously, WI �β W and hence ΘI �β Θ , but if we only
contract Iw in the second occurrence of WI in ΘI, we obtain the fpc

Θ ′ = WIW,

which is no longer reducing.

This situation motivates the introduction of the following notion. It amounts to relaxing the
requirement Yx �β x(Yx) to mere syntactic separability of x from Y .
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862 The fixed point property and a technique to harness double fixed point combinators

DEFINITION 7.21
A weak fpc Y ∈ Λ is hereditarily reducing whenever it satisfies the following property:

∀K � 0, ∀x /∈ FV(Y ), ∀N ∈ Λ such that Yx �β N ,

∃k � K, ∃Y∗ ∈ Λ such that x /∈ FV(Y∗) & N �β xk(Y∗x). (7)

We denote by Y the set of all hereditarily reducing weak fpc’s.

While the above definition might seem quite intricate at first, its essential meaning is borne in the
requirement that x /∈ FV(Y∗). Indeed, Y consists of all weak fpc’s Y such that any reduction starting
with Yx can be continued until the variable x is once again separated, on the syntactic level, from
the ‘engine’ producing the infinite BT x(x(x(· · · ))).
LEMMA 7.22

(1) If Y is a terminal fpc then Y ∈ Y .
(2) If Y is a weak fpc, then Yδ ∈ Y .

PROOF. (1) It follows easily from the definition of terminal fpc’s (see Definition 3.5).
(2) We divide the proof into claims.

CLAIM 11
Let C[] be a context such that λx.C[x] is a weak fpc and x /∈ FV(C[]). For every n ∈ N there exists a
weak fpc Y ′ such that C[δ]x �β xn(Y ′x).

SUBPROOF. Proceed by induction on n. In case n = 0, we can simply take Y ′ = C[δ]. Otherwise,
for all z /∈ FV(C[]) there is N ∈ Λ such that (λx.C[x])z �β zN and since the latter is a weak hnf it
can be reached by performing weak head reduction:

(λx.C[x])z →w C[z] �w zN ′ �β zN

for some N ′ ∈ Λ. Notice that λz.N , λz.N ′ must be weak fpc’s as well. As weak head reductions are
closed under substitution, we obtain (using [δ/z])

(λx.C[x])δx →w C[δ]x �w δD[δ]x →w (λx.xD[δ]x)x →w x(D[δ]x)

for some D[] such that D[δ] is again a weak fpc, so we conclude by induction hypothesis. �

CLAIM 12
Let λy.C[y] be a weak fpc and x, y /∈ FV(C[]). For all reduction sequences C[δ]x �β N there exist
Z ∈ Λ, n ∈ N such that N �β xn(Zx) and x /∈ FV(Z).

SUBPROOF. By induction on the length of the standard reduction ρ : C[δ]x �s N , which exists by
the standardization theorem for Λ. There are two cases.

Case 1: All reductions in ρ happen in the context []x, in other words C[δ] reduces but does not
‘eat’ the x. In this case, N has already the correct form for n = 0 because C[δ] cannot
create the variable x along its reduction. (This case includes the degenerate case of an
empty reduction sequence.)

Case 2: Otherwise, the standard reduction ρ must have the following form

C[δ]x �w δD[δ]x →w (λx.x(D[δ]x))x →w x(D[δ]x) �s N ,
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The fixed point property and a technique to harness double fixed point combinators 863

which entails N = xN ′ for some N ′ satisfying σ : D[δ]x �s N ′ for a shorter (possibly
empty) standard reduction σ . As λy.D[y] is a weak fpc we conclude by applying the
induction hypothesis. �

Now, since every weak fpc Y �β λx.C[x] for an appropriate context C[], Claim 11 entails that
Yδx �β xk(Y ′x) for arbitrarily large k. Therefore, Yδ ∈ Y follows from Claim 12 by applying
Church–Rosser.

The property that Y weak fpc entails Y ∈ Y is false, as evidenced by the following example.

EXAMPLE. Given a reducing fpc Y , consider B = λx.Y (Bx)x, which is a modified version of the
Bible fpc. Clearly Bx →β Y (Bx)x �β Bx(Y (Bx))x �β x(Y (Bx)x) �β xk(Y (Bx)x). Moreover,
this reduction sequence is unavoidable in the construction of its BT; therefore, B /∈ Y since
x ∈ FV(Y (Bx)).

DEFINITION 7.23
Let Y , Y ′ ∈ Λ, and let x /∈ FV(YY ′). Define

Y

�

k Y ′ if and only if Yx �β xk(Y ′x).

We write Y

�

Y ′ whenever Y

�

k Y ′ holds for some k ∈ N.

PROPOSITION 7.24
Let Y ∈ Y .

(1) If Y

�

Y ′ then Y ′ ∈ Y . Hence, Y is closed under

�

.
(2) If Y �β Y ′ then Y

�
Y ′. Hence, Y is closed under β-reduction.

(3) If Y ′ �β Y then Y ′ ∈ Y . Hence, Y is closed under β-conversion.
(4) For k, k′ ∈ N, Y

�

k Y ′ and Y ′ �

k′ Y ′′ entail Y

�

k+k′ Y ′′. So

�

is transitive.

PROOF. Fix Y ∈ Y .

(1) Suppose that Y

�

Y ′ because, say, Y

�

k0
Y ′.

Toward Y ′ ∈ Y , let K ∈ N, Y ′x �β Y ′′ be given.
From Yx �β xk0(Y ′x), Y ′x �β Y ′′, we get Yx �β xk0(Y ′′).
Since Y ∈ Y , let k � K + k0, Y∗∈Λ, x �∈ FV(Y∗) be such that

xk0(Y ′′) �β xk(Y∗x) = xk0+K+k′
(Y∗x).

Since the above reduction is entirely in Y ′′, Y ′′ �β xK+k′
(Y∗x).

(2) If Y �β Y ′, then Yx �β x0(Y ′x), so Y

�

0 Y ′. By (1), Y ′ ∈ Y .
(3) Assume Y ′ �β Y . Then Y ′x �β Yx.

Let Y ′x �β Z, K � 0 be given.
By Church–Rosser, there exists a Z0 such that Yx �β Z0

β� Z.
Since Y ∈ Y , there exists a k � K, and a reduction Z0 �β xk(Z′x).
So we have Z �β Z0 �β xk(Z′x), as required.

(4) From Yx �β xk(Y ′x), Y ′x �β xk′
(Y ′′x), we immediately find that

Yx �β xk+k′
(Y ′′x). �

LEMMA 7.25
The set Y contains all double fpc’s.
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864 The fixed point property and a technique to harness double fixed point combinators

PROOF. If Y is a double fpc, then Y =β Yδ. By Lemma 7.22(2), Yδ ∈ Y . By Proposition 7.24(3) Y
is closed under =β , so we get Y ∈ Y . �

7.5 Non-uniform reduction extension properties

To allow for the fact that weak fpc’s may change at various stages on the BT, the statements of the
reduction extension properties need to be refined accordingly.

NOTATION 7.26
Let �r be a notion of reduction for λY, and let Y , Y ′ be weak fpc’s. We write

[[M]]Y
[[·]]−→−→r [[N]]Y ′ if and only if M �r N and Y

�

Y ′.

As special cases, we consider

• [[M]]Y
[[·]]−→−→ [[N]]Y ′ if M �βY N and Y

�
Y ′.

• [[M]]Y
[[·]]�⇒�⇒ [[N]]Y ′ if M ⇒ N and Y

�
Y ′.

DEFINITION 7.27 (Non-uniform reduction extension properties).
A weak fpc Y ∈ Λ satisfies the non-uniform reduction extension properties if the following hold.

We now show that non-uniform property I holds for all hereditarily reducing weak fpc’s. From
now on, and until the end of the section, we consider fixed Y ∈ Y and M ∈ ΛY.

LEMMA 7.28
If Y

�

Y ′ holds then there exists N ∈ ΛY such that M �Y N and [[M]]Y �β [[N]]Y ′ .

PROOF. We proceed by structural induction on M .

M = x: In this case we just take N = x.
M = λx.M0: By definition, we have [[M]]Y = λx.[[M0]]Y . By induction hypothesis, there exists

N0 ∈ �Y such that M0 �Y N0 and [[M0]]Y �β [[N0]]Y ′ hold. As a consequence,
λx.M0 �Y λx.N0. Moreover, [[M]]Y = λx.[[M0]]Y �β λx.[[N0]]Y ′ = [[λx.N0]]Y ′ .

M = M1M2: By definition, we have [[M]]Y = [[M1]]Y [[M2]]Y . By induction hypothesis, there
exist N1, N2 ∈ �Y such that Mi �Y Ni and [[Mi]]Y �β [[Ni]]Y ′ for i ∈ {1, 2}.
As a consequence, M1M2 �Y N1N2. Moreover, [[M]]Y = [[M1]]Y [[M2]]Y �β

[[N1]]Y ′[[N2]]Y ′ = [[N1N2]]Y ′ .
M = YM3: By definition, we have [[M]]Y = [[YM3]]Y = Y [[M3]]Y . By induction hypothesis,

there exists N3 ∈ �Y such that M3 �Y N3 and [[M3]]Y �β [[N3]]Y ′ . Since Y

�

Y ′
holds, there exists k ∈ N such that Yx �β xk(Y ′x). Setting N = Nk

3 (YN3), we
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The fixed point property and a technique to harness double fixed point combinators 865

have

M = YM3 �Y YN3 →Y N3(YN3) →Y N3(N3(YN3)) →Y · · ·
�Y Nk

3 (YN3) = N

[[M]]Y = Y [[M3]]Y �β Y [[N3]]Y ′

= Yx[[[N3]]Y ′/x]

�β xk(Y ′x)[[[N3]]Y ′/x]

= [[N3]]k
Y ′(Y ′[[N3]]Y ′) = [[Nk

3 (YN3)]]Y ′ = [[N]]Y ′ .
�

LEMMA 7.29
If [[M]]Y ⇒ M ′ then there exist N ∈ �Y and Y ′ ∈ Y such that [[M]]Y

[[·]]�⇒�⇒ [[N]]Y ′ and
M ′ �β [[N]]Y ′ .

PROOF. We proceed by induction on a derivation of [[M]]Y ⇒ M ′.
[[M]]Y = x ⇒ x: Here M ′ = x, so we can take Y ′ = Y and N = M = x. Then certainly

M ⇒ N = x, M ′ �β [[N]]Y ′ = x.
[[M]]Y = λx.[[M0]] ⇒ λx.M ′

0: Here M = λx.M0, [[M0]] ⇒ M ′
0 and M ′ = λx.M ′

0. By induction

hypothesis, there are N0 ∈ �Y and Y ′ ∈ Y such that Y

�

Y ′ and
M0 ⇒ N0 with M ′

0 �β [[N0]]Y ′ . Letting N = λx.N0, we verify

M = λx.M0 ⇒ λx.N0 = N

M ′ = λx.M ′
0 �β λx.[[N0]]Y ′ = [[N]]Y ′ .

[[M]]Y = UV ⇒ M ′
1M ′

2: In this case, there are two possibilities:

• M = YM2, U = Y ⇒ M ′
1 and V = [[M2]]Y ⇒ M ′

2.
By induction hypothesis, there are N2 ∈ �Y and Y2 ∈ Y such
that Y

�

Y2 and M2 ⇒ N2 with M ′
2 �β [[N2]]Y2 .

Since Y ⇒ M ′
1 and Y

�

Y2, we get

M ′
1x β� Yx �β xk2(Y2x).

By Church–Rosser, there exist k′
2 � k2 and Y ′

2 ∈ Λ such that

M ′
1x �β xk′

2(Y ′
2) β� xk2(Y2x).

Now, using the fact that Y ∈ Y , we obtain Y∗ ∈ Λ, k∗ � k′
2

such that

xk′
2(Y ′

2) �β xk∗
(Y∗x)

and certainly Y

�

Y∗. Moreover, we have (i) M ′
1x �β xk∗

(Y∗x);
therefore, M ′

1

�

Y∗ and (ii) Y2x �β xk∗−k2(Y∗x), and hence
Y2

�

Y∗. By Lemma 7.28, there exists N∗
2 ∈ ΛY such that

N2 �Y N∗
2 , [[N2]]Y2 �β [[N∗

2 ]]Y∗ .
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866 The fixed point property and a technique to harness double fixed point combinators

Now M ⇒ YN2 �Y YN∗
2 , and so M ⇒ YN∗

2 . More-
over, M ′ = M ′

1M ′
2 �β M ′

1[[N2]]Y2 �β M ′
1[[N∗

2 ]]Y∗ �β

[[N∗
2 ]]k∗

Y∗(Y∗[[N∗
2 ]]Y∗) = [[N∗

2
k∗

(YN∗
2 )]]Y∗ .

• M = M1M2, U = [[M1]]Y ⇒ M ′
1, V = [[M2]]Y ⇒ M ′

2 and
M ′ = M ′

1M ′
2. By induction hypothesis, for i ∈ {1, 2}, there are

Ni ∈ �Y and Yi ∈ Y such that Y

�

Yi and Mi ⇒ Ni with
M ′

i �β [[Ni]]Yi .
From the first of these conditions Y

�
Y1, Y

�

Y2, we get

xk1(Y1x) β� Yx �β xk2(Y2x)

By Church–Rosser, there exist k12 � max{k1, k2} and Y12 ∈ Λ

such that

xk1(Y1x) �β xk12(Y12) β� xk2(Y2x).

Now, using the fact that Y ∈ Y , we obtain Y∗ ∈ Λ, k∗ � k12
such that

xk12(Y12) �β xk∗
(Y∗x)

and certainly Y

�

Y∗. Moreover, for i ∈ {1, 2}, we have Yix �β

xk∗−ki(Y∗x) and therefore Yi

�

Y∗. By Lemma 7.28, there exist
N∗

1 , N∗
2 ∈ ΛY such that

Ni �Y N∗
i , [[Ni]]Yi �β [[N∗

i ]]Y∗ . (i ∈ {1, 2})
Now M = M1M2 ⇒ N1N2 �Y N∗

1 N∗
2 , and so M ⇒

N∗
1 N∗

2 . Moreover, M ′ = M ′
1M ′

2 �β [[N1]]Y1 [[N2]]Y2 �β

[[N∗
1 ]]Y∗[[N∗

2 ]]Y∗ = [[N∗
1 N∗

2 ]]Y∗ .

[[M]]Y = (λx.M0)M1 ⇒ M ′
0[M ′

1/x], Mi ⇒ M ′
i : In this case, there are two possibilities:

• M = (λx.P0)P1 and Mi = [[Pi]]Y .
By induction hypothesis, we find Y0, Y1 with Y

�

Yi, k0, k1 � 0, and
Q0, Q1 such that for each i ∈ {0, 1} the following holds

Yx �β xki(Yix),

Pi ⇒ Qi,

M ′
i �β [[Qi]]Yi .

As in the previous case, we first obtain Y∗ with Y0, Y1

�

Y∗ such that

xk0(Y0x) �β xk∗
(Y∗x) β� xk1(Y1x).

Next, for each i ∈ {0, 1}, we apply Lemma 7.28 on Yi

�

Y∗ and Qi in
order to obtain Q′

0, Q′
1 satisfying

Qi �Y Q′
i,

[[Qi]]Yi �β [[Q′
i]]Y∗ .
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The fixed point property and a technique to harness double fixed point combinators 867

From Pi ⇒ Qi �Y Q′
i, we obtain Pi ⇒ Q′

i, and so

M = (λx.P0)P1 ⇒ Q′
0[Q′

1/x].

Moreover, from M ′
i �β [Qi]Yi �β [Q′

i]Y∗ , we have M ′
i �β [Q′

i]Y∗
and therefore

M ′ = M ′
0[M ′

1/x] �β [[Q′
0]]Y∗[[[Q′

1]]Y∗/x] = [[Q′
0[Q′

1/x]]]Y∗ ,

where the last equality is by the substitution lemma.
• M = YP, λx.M0 = Y and M1 = [[P]]Y . Then Mi ⇒ M ′

i gives

Yx = (λx.M0)x →β M0 �β M ′
0

[[P]]Y ⇒ M ′
1.

By induction hypothesis, we find Y

�

Y ′, P ⇒ Q with M ′
1 �β [[Q]]Y ′ .

Since Y

�

Y ′, there exists k0 ∈ N such that Yx �β xk0(Y ′x). Notice
that we also have Yx �β M ′

0. Now let these reductions be joined

xk0(Y ′x) �β Z β� M ′
0.

Using that Y ∈ Y , let k � k0, Y∗ ∈ Λ be such that Z �β xk(Y∗x).
Then we obtain

xk0(Y ′x) �β xk(Y∗x) β� M ′
0.

In particular Y ′ � Y∗, and by the previous lemma, there is R ∈ �Y

such that

Q �Y R, [[Q]]Y ′ �β [[R]]Y∗ .

As P ⇒ Q we get, setting N = Rk(YR), that

YP ⇒ YQ �Y YR →Y R(YR) →Y · · · →Y Rk(YR)

and so M ⇒ N . At the same time, from M ′
0 �β xk(Y∗x), M ′

1 �β

[[Q]]Y ′ �β [[R]]Y∗ we find

M ′
0[M ′

1/x] �β xk(Y∗x)[[[R]]Y∗/x]

= [[R]]k
Y∗(Y∗[[R]]Y∗)

= [[Rk(YR)]]Y∗

and hence M ′ �β [[N]]Y∗ . Indeed, we also have Y

�

Y ′ � Y∗ from
which we conclude by transitivity. �

We are now ready to prove that non-uniform reduction extension property I holds for all Y ∈ Y .

THEOREM 7.30
Let Y ∈ Y . For all M ∈ ΛY, M ′ ∈ Λ:

[[M]]Y �β M ′ ⇒ ∃(N , Y ′) : [[M]]Y
[[·]]−→−→ [[N]]Y ′ , M ′ �β [[N]]Y ′ .

PROOF. By induction on the length of the reduction sequence [[M]]Y �β M ′.
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868 The fixed point property and a technique to harness double fixed point combinators

[[M]]Y = M ′: Take N = M , Y ′ = Y .
[[M]]Y �β M0 →β M ′: By induction hypothesis, there are N0 ∈ ΛY, Y

�

Y0 and reductions

ρ : M �βY N0

σ : M0 �β [[N0]]Y0 .

Projecting the redex R contracted in M0
R→β M ′ over σ induces a parallel

reduction

R\σ : [[N0]]Y0 ⇒ M1

and the finite reduction σ\R : M ′ �β M1.
[[M]]Y �β M0 →β M ′: By Lemma 7.29, we can find N1 ∈ ΛY, Y0

�

Y1 and reductions

ρ1 : N0 ⇒ N1

σ1 : M1 �β [[N1]]Y1 .

Now ρ ; ρ1 : M �βY N0 ⇒ N1 clearly yields a reduction

M �βY N1

and σ\R ; σ1 : M ′ �β M1 �β [[N1]]Y1 yields

M ′ �β [[N1]]Y1 .

Furthermore, Y

�

Y0

�

Y1, from which we conclude since

�

is transitive.�
In the particular case of terminal (reducing) fpc’s, the theorem above entails that also the reduction

extension property I from Definition 7.17 holds.

COROLLARY 7.31
Every terminal fpc Y satisfies the reduction extension property I.

PROOF. If Y is terminal, then Y ∈ Y can be witnessed with Y ′ = Y for any reduction starting from
Yx. (That is, the fpc never changes.) In particular, the previous theorem is valid with Y ′ = Y .

That is, [[M]]Y �β M ′ implies [[M]]Y
[[·]]Y−−−−� [[N]]Y β� M ′. �

We end this section by presenting two conjectures; the first implies that non-uniform extension
property I holds for all reducing fpc’s (by Theorem 7.30), while the second entails the non-existence
of double fixed point combinators in the simply typed setting.

CONJECTURE 1
If Y is a reducing fpc then Y ∈ Y .

CONJECTURE 2
In the simply typed setting, every fpc Y ∈ Y satisfies non-uniform reduction extension property II
for all M ∈ Λ→

Y .

Indeed, from Lemma 7.25 and Theorem 7.30 we get that every double fpc would satisfy non-
uniform reduction property I. If Conjecture 2 holds, then Y moreover satisfies non-uniform reduction
property II. Now, the same argument as in Proposition 7.18 applies; the interpretation of Λ→

Y ref lects
conversion, leading to the impossible λY-equality Yx = Yδx.
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The fixed point property and a technique to harness double fixed point combinators 869

8 Conservativity of Double Fixed Point Operators

We analyse another possible proof technique, suggested by Klop, for proving the non-existence of
double fixed point combinators. Consider the following λY-theory.

DEFINITION 8.1
Let δ∗ be the λY-theory generated by the axiom Yx = Yδx.

In [20], Klop raised the question of whether the λY-theory δ∗ generated by the equation
characterizing double fixed point combinators is a conservative extension of the λ-calculus. The
motivation for this question is that, if this theory was found not to be conservative over Λ, this
would immediately yield a proof of Statman’s conjecture. Indeed, assuming that some fixed point
combinator Y satisfies the equation Y =β Yδ, any equation between pure λ-terms that is provable
with the axiom Yx = Yδx could be derived in the pure λ-calculus using Y , showing that δ∗ is
conservative over Λ.

The rest of the section is devoted to proving that Klop’s question has a positive answer. This result
shows that, unfortunately, this strategy cannot be used to settle Statman’s conjecture.

8.1 The υ-reduction

To characterize equality in δ∗ using standard rewriting techniques, we introduce a new notion of
reduction:

YδM → YM . υ

LEMMA 8.2
For all M , N ∈ ΛY, δ∗ � M = N if and only if M =βYυ N .

PROOF. (⇒) By definition, =βYυ is a contextual equivalence and therefore a λY-theory. A simple
inspection of the υ-rule shows that =βYυ validates every axiom of the theory δ∗. We conclude since
δ∗ is the least λY-theory validating these axioms.

(⇐) This implication follows by an easy induction on the length of the conversion sequence
M = M1 ↔βYυ · · · ↔βYυ Mk = N . �

The conservativity of δ∗ will follow from the confluence property enjoyed by βYυ-reduction.
Note that this system is not (weakly) orthogonal, due to the overlap between λY- and υ-redexes.
It is not terminating either; thus, Newman’s lemma does not apply. Therefore, we need to prove
confluence directly. As a first step, we show that υ-reduction enjoys the strong diamond property.

PROPOSITION 8.3
Let M , N , P ∈ ΛY. If N υ←M →υ P, then there exists Q ∈ ΛY such that N →υ Q υ←P.

PROOF. Assume that Nυ←M →υ P by contracting the redexes L and R, respectively. If the two
redexes are disjoint, then we easily close the diagram

N
R/L−→υ Q

L/R
υ←− P.

Otherwise, one redex is contained in the other one, say, R occurs within L. Since L is an υ-redex
it must have the shape YδN ′, so the occurrence of R must be contained in N ′, witnessed by N ′→υP′.
That is, for some λY-context C[], we must have

N = C[YN ′] L
υ← C[YδN ′] = M

R→υ C[YδP′] = P.
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870 The fixed point property and a technique to harness double fixed point combinators

We conclude since C[YN ′] R/L−→υ C[YP′] L/R
υ←− C[YδP′]. �

The rest of the section is devoted to proving the confluence of βYυ-reduction. We start by defining
the parallel version of υ-reduction and by studying its properties.

DEFINITION 8.4
The notion of parallel υ-reduction ⇒υ is given as the λY-contextual closure of the following rule:

M ⇒ν M ′

YδM ⇒ν YM ′

PROPOSITION 8.5 (Postponement of υ-reduction).

PROOF. 1. We proceed by induction on the derivation of M ⇒υ M ′.

Case x ⇒υ x. This case is impossible, because x has no βY-redex.
Case λx.M0 ⇒υ λx.M ′

0 with M0 ⇒υ M ′
0. Clearly, the redex contracted in λx.M ′

0 →βY N ′
must occur inside M ′

0, so that N ′ = λx.N ′
0 and M ′

0 →βY N ′
0. By induction hypothesis, there exists a

term N0 such that M0 �βY N0 ⇒υ N ′
0. Since reductions are contextual, we get M = λx.M0 �βY

λx.N0 ⇒υ λx.N ′
0 = N ′.

Case M1M2 ⇒υ M ′
1M ′

2 with Mi ⇒υ M ′
i . We need to consider two subcases.

• If the redex contracted in M ′
1M ′

2 →βY N ′ occurs inside some M ′
i , say, in M ′

1, then by
induction hypothesis we obtain that M1 �βY N1 ⇒υ N ′

1, where N ′ = N ′
1M ′

2. So we take
N = N1M2, and find M = M1M2 �βY N1M2 ⇒υ N ′

1M ′
2 = N ′.

• Otherwise, the redex occurs at the root in M ′
1M ′

2. Since Y cannot occur as a term on its own,
the redex must be a β-redex. That is, M ′

1 = λx.M ′
10, and (λx.M ′

10)M
′
2 →β M ′

10[M ′
2/x] = N ′.

In this case M1 ⇒υ M ′
1 can only arise as λx.M10 ⇒υ λx.M ′

10, where M0 = λx.M10 and
M10 ⇒υ M ′

10. Therefore, we have M = (λx.M10)M2 →β M10[M2/x] ⇒υ M ′
10[M ′

2/x] = N ′.

Case YM3 ⇒υ YM ′
3 with M3 ⇒υ M ′

3. There are two subcases.

• If the redex contracted in YM ′
3 →βY N ′ occurs inside M ′

3, so that N ′ = YN ′
3 with M ′

3 →βY

N ′
3, then by induction hypothesis we have that M3 �βY N3 ⇒υ N ′

3 and hence that M =
YM3 �βY YN3 ⇒υ YN ′

3 = N ′.
• Otherwise, the redex contracted in YM ′

3 →βY N ′ is the Y -redex at the root, and its contractum
N ′ is M ′

3(YM ′
3). From M3 ⇒υ M ′

3, we get YM3 ⇒υ YM ′
3, which entails M3(YM3) ⇒υ

M ′
3(YM ′

3). Therefore, M = YM3 →βY M3(YM3) ⇒υ M ′
3(YM ′

3) = N ′.

Case YδM4 ⇒υ YM ′
4 with M4 ⇒υ M ′

4. Again, there are two subcases.

• If the redex contracted in YM ′
4 →βY N ′ occurs inside M ′

4, with M ′
4 →βY N ′

4 and N ′ =
YN ′

4, then induction hypothesis yields M4 �βY N4 ⇒υ N ′
4. From this it follows that M =

YδM4 �βY YδN4 = N and N ⇒υ YN ′
4 = N ′.
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The fixed point property and a technique to harness double fixed point combinators 871

• Otherwise, the redex contracted in YM ′
4 →βY N ′ is the root redex, and N ′ is its contractum

M ′
4(YM ′

4). We have

M = YδM4 →Y δ(Yδ)M4 →β (λx.x(Yδx))M4

→β M4(YδM4)

⇒υ M ′
4(YM ′

4) = N ′,

where the ⇒υ -step arises by combining M4 ⇒υ M ′
4 with YδM4 ⇒υ YM ′

4 using the
application rule.

2. By induction on M ′ �βY N ′, tiling 1 vertically.
3. By induction on M �υ M ′, tiling 2 horizontally. �
Remark. Notice that the above proof can be refined to a postponement of υ reduction along β

reduction instead of βY reduction.

LEMMA 8.6 (Commutations of υ-reductions).

PROOF. 1. This is immediate since the rules for β- and υ-reductions are orthogonal.
2. Recall that ⇒ denotes the parallel βY-reduction introduced in Definition 7.4. Since, by

Corollary A5, M �Y N entails M ⇒ N we proceed by induction on the derivation of the latter.
The only interesting cases arise when M is a Y-redex or an υ-redex.

Case YM0 ⇒ N0N1 with M0 ⇒ N0 and YM0 ⇒ N1. As YM0 ⇒υ M ′ = YM ′
0, we must have

M0 ⇒υ M ′
0. By induction hypothesis, we can complete the diagram

From M ′
0 �Y N ′′

0 and YM ′
0 �Y N ′′

1 we get YM ′
0 �Y N ′′

0 N ′′
1 . So we have N = N0N1 �β N ′

0N ′
1 ⇒υ

N ′′
0 N ′′

1 Y� YM ′
0 = M ′.

Case YδP ⇒ YδQ with P ⇒ Q. Suppose moreover that YδP ⇒υ YP′ with P ⇒υ P′. By
induction hypothesis, we can complete the diagram
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872 The fixed point property and a technique to harness double fixed point combinators

Thus, we have N = YδQ �β YδQ′ ⇒υ YQ′′
Y� YP′ = M ′.

Case YδP ⇒ N1N2Q with δ ⇒ N1,Yδ ⇒ N2 and P ⇒ Q. We also suppose that YδP ⇒υ YP′
with P ⇒υ P′. The fact that δ is a normal form entails N1 = δ, so we obtain YδP ⇒ δN2Q. Since
the only Y-reducts of Yδ are λY-terms of the form δk(Yδ) for some k we must have N2 = δk(Yδ). We
also have the β-reduction:

N = N1N2Q = δ(δk(Yδ))Q →2
β Q(δk(Yδ)Q)

= Q(δ(δk−1(Yδ))Q) →2
β Q(Q(δk−1(Yδ)Q))

→2(k−1)
β Qk+1(YδQ).

By induction hypothesis, we have Q �β R ⇒υ S Y� P′. Therefore,

Notice that Rk+1(YδR) ⇒υ Sk+1(YS) is obtained by putting together the reduction R ⇒υ S at
k + 2 disjoint positions, while using a single υ-reduction step to remove the δ occurring at depth
k + 1. The Y-reduction YP′ �Y Sk+1(YS) is obtained as

YP′ →Y P′(YP′) �Y S(YP′) → S(P′(YP′)) �Y S(S(YP′)) �Y · · ·
�Y Sk+1(YP′) �Y Sk+1(YS).

3. We proceed by induction on the length n of the reduction M �βY N .

Case n = 0. In this case M = N and there is nothing to prove.
Case n > 0. The reduction M �βY N factors as M �βY N0 →βY N . By applying the induction

hypothesis to M �βY N0 of length n − 1, we have

There are two subcases.

• If N0 →βY N contracts a β-redex, then we conclude by

where the square on the left exists by confluence of β, and the one on the right by part 1.
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• If N0 →βY N contracts a Y-redex, then we are done since

where the square on the left exists by commutation of β and Y (which holds by orthogonality),
and the one on the right by part 2. �

PROPOSITION 8.7

PROOF. 1. We proceed by induction on the length of M �υ M ′, omitting the base case, which is
trivial. The inductive case is obtained via the following diagram:

By applying postponement of υ-reduction to the bottom row, one turns N ′
0 �υ N1 �β N ′

k into
N0 �β N ′ �υ N ′

k for some N ′ from which the result follows immediately.
2. Given the reductions M �βYυ N and M �βYυ M ′, we first apply υ-postponement to each and

then we complete the diagram
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The squares that appear along the main diagonal are obtained by confluence of βY-, β- and υ-
reductions, individually. The rectangles covering the bottom-left and top-right corners are given by
part 1. The remaining squares follow by commutation of υ- and β-reductions (Lemma 8.6(1)). �

By the well-known Theorem 3.1.12 in [2], we obtain the following corollary.

COROLLARY 8.8
Let M , N ∈ ΛY. If M =βYυ N then there exists a λY-term Z such that M �βYυ Z βYυ� N .

THEOREM 8.9
The λY-theory δ∗ is a conservative extension of λ-calculus.

PROOF. Let M , N ∈ Λ and suppose that δ∗ � M = N . By Lemma 8.2 we have M =βYυ N and, by
Corollary 8.8, there exists a λY-term Z such that

M �βYυ Z βYυ� N .

Since none of the reduction rules are able to create a new occurrence of the symbol Y, there is no
point in these reductions where Y - or υ-redexes can appear. Thus, the reductions above are actually
β-reductions, so we conclude that M =β N . �

9 Conclusions

We have investigated two questions concerning (sets of) fixed points of terms in λ-calculus, the
veracity of the fixed point property, and the existence of a double fixed point combinator. We have
provided partial answers to both questions, and established several promising new techniques for
tackling full solutions.

One novel aspect of the present work is to consider the questions in different λ-theories. For
example, we have devised an example showing that the fixed point property patently fails in any
sensible lambda theory, thus proving a conjecture of Intrigila and Statman.

Apart from the major problem of settling the status of the two main questions in the most fine-
grained λ-theory—i.e. the ‘usual’ theory whose equivalence classes consist of terms that are β-
equivalent—several lesser open problems remain; e.g. providing a characterization of the fixed
point property in semi-sensible theories, and investigating the usefulness of the novel technique for
refuting the existence of double fixed points combinators in the setting of (simple) types. We urge
the reader to peruse the conjectures and suggestions that occur throughout the paper, both explicitly
and in the running text.

A Technical Appendix

A.1 Standardization

The standard reduction can be thought of as a ‘canonical serialization’ of the usual multistep
reduction. This idea is made precise by the standardization theorem, which we now prove.

LEMMA A1 (Substitution lemma).
For M , M ′, N , N ′ ∈ ΛY, we have

(i) N �s N ′ implies M[N/x] �s M[N ′/x],
(ii) M →w M ′ and N �s N ′ imply M[N/x] �s M ′[N ′/x],

(iii) M �s M ′ and N �s N ′ imply M[N/x] �s M ′[N ′/x].
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PROOF OF LEMMA A.1

(i) By the fact that �s is a congruence.
(ii) First notice that M[N/x] →w M ′[N/x]. This can be seen by considering the possible shape of

M →w M ′, where

((λy.M0)N0 · · · Nk)[N/x] = (λy.M0[N/x])N0[N/x] · · · Nk[N/x]

→w M0[N/x][N0[N/x]/y]N1[N/x] · · · Nk[N/x]

= M0[N0/y][N/x]N1[N/x] · · · Nk[N/x]

= (M0[N0/y]N1 · · · Nk)[N/x]

(YN0 · · · Nk)[N/x] = YN0[N/x] · · · Nk[N/x]

→w N0[N/x](YN0[N/x])N1[N/x] · · · Nk[N/x]

= (N0(YN0)N1 · · · Nk)[N/x].

Next, we have M ′[N/x] �s M ′[N ′/x] by point (i).
(ii) Thus, M[N/x] →w M ′[N/x] �s M ′[N ′/x].
(ii) By the redex rule for �s, we have (ii).

(iii) By induction on M �s M ′, using (ii) in case of the redex rule. �
LEMMA A2
For M , N ∈ ΛY, we have that M �s λx.N entails M �w λx.M ′ and M ′ �s N for some M ′ ∈ ΛY.

PROOF OF LEMMA A2. We proceed by induction on the derivation of M �s λx.N . Since M reduces
to an abstraction, there are only two possibilities:

• M �s λx.N because M = λx.M ′ and M ′ �s N . This case is trivial as M �w λx.M ′ follows
from the ref lexivity of �w.

• M �s λx.N because M →w M1 and M1 �s λx.N . By induction hypothesis, there exists
M ′ ∈ ΛY such that M1 �w λx.M ′ with M ′ �s N . Since →w ⊆ �w and �w is transitive, we
conclude M �w λx.M ′. �

THEOREM A3 (Standardization).
For all M , N , N ′ ∈ ΛY, we have

(i) M �s N →βY N ′ implies M �s N ′,
(ii) M �s N �βY N ′ implies M �s N ′,

(iii) M �βY N implies M �s N .

PROOF OF THEOREM A3. (i) By induction on the derivation of M �s N .

M →w M ′ �s N→βY N ′: By induction hypothesis, we have M ′ �s N ′. Now M →w M ′ �s
N ′, whence M �s N ′.

M = x �s x= N : This case is inconsistent with N →βY N ′.
M = λx.M0 �s λx.M ′

0= N : Since N = λx.M ′
0 is not a redex, the redex contracted in N →βY N ′

must occur below, in M ′
0. So M ′

0 →βY M ′′
0 and N ′ = λx.M ′′

0 .
By induction hypothesis, M0 �s M ′′

0 , whence M = λx.M0 �s
λx.M ′′

0 = N ′.
M = M1M2, Mi �s M ′

i : We distinguish two subcases.
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876 The fixed point property and a technique to harness double fixed point combinators

• The redex contracted in N = M ′
1M ′

2 →βY N ′ occurs at the root. Note that it cannot be a
Y-redex, since Y cannot occur on its own. This entails that M ′

1 = λx.M ′
0 is an abstraction

and N ′ = M ′
0[M ′

2/x], being the contractum of (λx.M ′
0)M

′
2. Since M1 �s λx.M ′

0, we get
by Lemma A.2 a λY-term M0 such that M1 �w λx.M0 and M0 �s M ′

0. Therefore, we
obtain M = M1M2 �w (λx.M0)M2 →w M0[M2/x] on the one side. On the other side, we
have M0 �s M ′

0 and M2 �s M ′
2. By the substitution lemma for standard reductions, we

get a standard reduction M0[M2/x] �s M ′
0[M ′

2/x]. By an iterated application of the rule
combining →w and �s to get a standard reduction, we obtain M �s M ′

0[M ′
2/x] = N ′.

• The redex contracted in N = M ′
1M ′

2 →βY N ′ occurs below, in some Mi. So M ′
i →βY M ′′

i ,
and N ′ = M ′′

1 M ′′
2 , where we set M ′′

3−i = M ′
3−i.

By induction hypothesis, M1 �s M ′′
1 and M2 �s M ′′

2 .
Thus, M = M1M2 �s M ′′

1 M ′′
2 = N ′.

M = YM3 �s YM ′
3= N : Again, we have two possibilities.

• The redex contracted in N = YM ′
3 →βY N ′ is the root redex. Then we have N ′ =

M ′
3(YM ′

3). From M3 �s M ′
3, we obtain M3(YM3) �s M ′

3(YM ′
3). Now M = YM3 →w

M3(YM3) �s M ′
3(YM ′

3) = N ′, whence M �s N ′.
• The redex contracted in YM ′

3 →βY N ′ occurs in M ′
3. Then N = YM ′′

3 , with M ′
3 →βY M ′′

3 .
By induction hypothesis, we have that M3 �s M ′′

3 holds. Now M = YM3 �s YM ′′
3 = N ′,

which concludes the proof.

(ii) By straightforward induction on N �βY N ′, using (i).
(iii) Immediate by (ii). �

A.2 Properties of parallel reduction

Notice that our definition of parallel reduction allows superdevelopment of newly created Y -redexes.
While not strictly necessary, this simplifies some of our arguments.

One consequence of this is the following absorption lemma.

LEMMA A.4
The following rule is admissible:

PROOF OF LEMMA A.4. First, consider the length of the reduction M ′ �Y N ′. When M ′ �Y N ′ is
empty, then M ′ = N ′ and certainly M ⇒ N ′. Otherwise, M ′ �Y N →Y N ′, and induction yields
that M ⇒ N . We now use a subsidiary induction on the derivation of this fact. Let Δ be the Y-redex
contracted in the step N →Y N ′.

x ⇒ x = N : This case is inconsistent with N
Δ→Y N ′.

M1M2 ⇒ N1N2 = N : We are in a case where N is an application N1N2 and therefore redex

Δ fired in N1N2
Δ→ N ′ may not occur at the root because Y is not

itself a term. So Δ ⊆ N1 or Δ ⊆ N2. Writing N ′ = N ′
1N ′

2, we have

Ni →�1
Y N ′

i . Since Mi ⇒ Ni, we have by induction hypothesis, that
Mi ⇒ N ′

i , whence M ⇒ N ′.
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λx.M0 ⇒ λx.N0 = N : Clearly, Δ ⊆ N0, so that N0 →Y P and N ′ = λx.P. By induction,
M0 ⇒ N0 →Y P yields M0 ⇒ P, and hence

M = λx.M0 ⇒ λx.P = N ′.

(λx.P)Q ⇒ P′[Q′/x] = N : with P ⇒ P′ and Q ⇒ Q′. Since Y cannot occur as a term on its own,
a Y-redex cannot be created by a substitution instance P′[Q′/x]. So
Δ is inside either P′ or Q′. That is, either N ′ = P′′[Q′/x], where

P′ Δ→Y P′′, or N ′ = P′[Q′′/x], where Q′ Δ→Y Q′′. In either case, we
can use induction hypothesis to get P ⇒ P′′, respectively Q ⇒ Q′′,
and therefore M ⇒ N ′.

YP ⇒ YP′ = N : with P ⇒ P′. We split into two subcases.

• If Δ ⊆ P′, so that YP′ Δ→Y YQ = N ′, then P ⇒ P′ →Y Q yields by induction
P ⇒ Q. Then M = YP ⇒ YQ = N ′.

• If Δ is the root redex YP′, then N ′ = P′(YP′), and we need only apply the Y-redex
rule:

YP ⇒ P′Q: with M = YP and N = P′Q Δ→Y N ′. That is, the last derivation step
looks as follows:

Since P′ cannot be Y itself, Δ must be in either P′ or in Q. In the
former case, we apply induction to P ⇒ P′ →Y P∗ without changing
the second hypothesis, so the conclusion of the rule becomes YP ⇒
P∗Q. In the latter case, we apply induction to YP ⇒ Q →Y Q∗
without changing the first hypothesis, so the conclusion becomes
YP ⇒ P′Q∗, as desired. �

Therefore, a Y-reduction sequence of arbitrary length can be turned into a single step of parallel
reduction.

COROLLARY A.5
For all M , N ∈ ΛY, M �Y N entails M ⇒ N .

Parallel reduction also satisfies the usual substitution property.

LEMMA A.6 (Substitution lemma for ⇒).
For M , M ′, N , N ′ ∈ ΛY, we have

(i) N ⇒ N ′ implies M[N/x] ⇒ M[N ′/x],
(ii) M ⇒ M ′ and N ⇒ N ′ imply M[N/x] ⇒ M ′[N ′/x].

PROOF OF LEMMA A.6.

(i) By the fact that ⇒ is a congruence.
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(ii) By induction on M ⇒ M ′. The only interesting case is the redex rule

M = (λy.P)Q P ⇒ P′

M ′ = P′[Q′/y] Q ⇒ Q′.

In this case

M[N/x] = (λy.P[N/x])Q[N/x] (A.1)

M ′[N ′/x] = P′[Q′/y][N ′/x] = P′[N ′/x][Q′[N ′/x]/y]. (A.2)

Note that the side condition y /∈ FV(N ′) needed for the application of the substitution
lemma in (A.2) is inherited under N ⇒ N ′ from the rules for capture-avoiding substitution
in (A.1), where y is chosen implicitly to be such that y /∈ FV(N). By induction hypothesis,
we have

P[N/x] ⇒ P′[N ′/x]

Q[N/x] ⇒ Q′[N ′/x].

By applying the redex rule for ⇒, we get

M[N/x] = (λy.P[N/x])Q[N/x] ⇒ P′[N ′/x][Q′[N ′/x]/y] = M ′[N ′/x]. �
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