
HAL Id: hal-02408184
https://hal.science/hal-02408184

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PrivaTube: Privacy-Preserving Edge-Assisted Video
Streaming

Simon da Silva, Sonia Ben Mokhtar, Stefan Contiu, Daniel Négru, Laurent
Réveillère, Etienne Rivière

To cite this version:
Simon da Silva, Sonia Ben Mokhtar, Stefan Contiu, Daniel Négru, Laurent Réveillère, et al.. Pri-
vaTube: Privacy-Preserving Edge-Assisted Video Streaming. the 20th ACM/IFIP/USENIX Inter-
national Middleware Conference, Dec 2019, Davis, France. pp.189-201, �10.1145/3361525.3361546�.
�hal-02408184�

https://hal.science/hal-02408184
https://hal.archives-ouvertes.fr

PrivaTube: Privacy-Preserving
Edge-Assisted Video Streaming

Simon Da Silva
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, Talence, France

Sonia Ben Mokhtar
INSA Lyon, LIRIS, CNRS, France

Stefan Contiu
Scille SAS, France

Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, Talence, France

Daniel Négru
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, Talence, France

Laurent Réveillère
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800, Talence, France

Etienne Rivière
ICTEAM, UCLouvain, Belgium

Abstract

Video on Demand (VoD) streaming is the largest source of Inter-

net traffic. Efficient and scalable VoD requires Content Delivery

Networks (CDNs) whose cost are prohibitive for many providers.

An alternative is to cache and serve video content using end-users

devices. Direct connections between these devices complement the

resources of core VoD servers with an edge-assisted collaborative

CDN.

VoD access histories can reveal critical personal information,

and centralized VoD solutions are notorious for exploiting personal

data. Hiding the interests of users from servers and edge-assisting

devices is necessary for a new generation of privacy-preserving

VoD services.

We introduce PrivaTube, a scalable and cost-effective VoD solu-

tion. PrivaTube aggregates video content frommultiple servers and

edge peers to offer a high Quality of Experience (QoE) for its users.

It enables privacy preservation at all levels of the content distribu-

tion process. It leverages Trusted Execution Environments (TEEs)

at servers and clients, and obfuscates access patterns using fake

requests that reduce the risk of personal information leaks. Fake

requests are further leveraged to implement proactive provisioning

and improve QoE. Our evaluation of a complete prototype shows

that PrivaTube reduces the load on servers and increases QoE

while providing strong privacy guarantees.

CCS Concepts · Security and privacy;

Keywords multimedia, privacy, security, streaming, TEE

ACM Reference Format:

Simon Da Silva, Sonia Ben Mokhtar, Stefan Contiu, Daniel Négru, Lau-

rent Réveillère, and Etienne Rivière. 2019. PrivaTube: Privacy-Preserving

Edge-Assisted Video Streaming. In Middleware ’19: Middleware ’19: 20th

International Middleware Conference, December 8ś13, 2019, Davis, CA, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3361525.3361546

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

Middleware ’19, December 8ś13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7009-7/19/12. . . $15.00
https://doi.org/10.1145/3361525.3361546

1 Introduction

Video streaming accounted for close to 58% of all Internet traffic in

2018 [1] and is expected to reach 81% in 2021 [2]. There are two rea-

sons for this success: the multiplication of video sources (e.g., video

streaming catalogs, online TV channels, personal videos sharing)

and the pervasiveness of high-quality Internet connections.

Dominating Video on Demand (VoD) platforms rely on large-

scale infrastructures to cope with an increasing demand for high

Quality of Experience (QoE) and high-bitrate content. YouTube,

Netflix or Twitch have set up planetary-scale proprietary Content

Delivery Networks (CDNs) [3, 4, 9, 23]. They further deploy ex-

tra CDN nodes directly at Internet Service Providers (ISPs) and

negotiate special peering relations with their Autonomous Sys-

tems (ASs) [38]. Other platforms can rely on existing third-party

CDNs to serve content. DailyMotion is reported to use the CDNs of

Orange, Akamai, and Limelight to scale video delivery in different

parts of the world [8].

Dedicated CDNs require a high up-front investment, and third-

party CDNs incur high operational costs. The use of an edge-assisted

CDN is an appealing alternative for smaller players or platforms

that do not wish to monetize their users’ personal data to sustain

their activity, such as the free and open PeerTube [46] network.

Edge-assisted CDNs complement core dedicated servers with the

direct exchange of video content between end-users’ devices. Ex-

amples of platforms using an edge-assisted CDN are LiveSky [62],

Peer5 [45], Quanteec [49], Streamroot [54] and Kankan [64].

The usage of VoD platforms generates sensitive personal data in

the form of access histories to videos. This data can be leveraged for

the benefit of the user, e.g. allowing personalized recommendations

for new videos, or for the benefit of the platform, e.g. for targeted

advertising. However, the availability of access histories also leads

to major threats to privacy. Indeed, this data can be used to infer

private information about the user, such as her/his gender, origin,

political, religious or sexual orientation. Kandias et al. [31] show

for instance that the political affiliation of YouTube users can easily

be extracted from their access histories. Luo et al. [36] similarly

show how a household composition can be inferred.

Protecting users’ privacy in a video streaming system requires

hiding their access histories from servers and other users. Anonymiz-

ing networks such as TOR [24] allow hiding the identity of the client

of a service. Onion routing, TOR’s central mechanism, requires

multi-hop forwarding and cryptographic operations at each relay

server. TOR is therefore well-suited to web browsing but completely

ill-suited for high-bandwidth video delivery. Fully decentralized,

gossip-based broadcast protocols such as PAG [22] allow hiding

189

Middleware ’19, December 8ś13, 2019, Davis, CA, USA Simon Da Silva et al.

the source and destination of messages, but similarly come at a

high cost, due to the use of resource-intensive homomorphic hash-

ing.1 This is also not compatible with VoD bandwidth requirements.

Some video streaming services with privacy as a design goal have

been proposed [18, 29, 40, 50]. All these solutions target fully peer-

to-peer approaches, without core servers. This results in limited

guarantees in terms of QoE: Video discovery is a best effort and

unreliable operation, and the lack of a reliable authoritative source

means videos of low popularity are only served with very low

reliability.

Contributions. We present the design and implementation of Pri-

vaTube, a practical and privacy-preserving VoD streaming system.

Practicality refers to the ability of PrivaTube to serve video

content with a high QoE to its users: Low startup times, a constant

and stable stream of high-bitrate video, and no interruption in

the playback. This performance is enforced by the use of an edge-

assisted CDN, allowing clients to fetch video content from both

core servers and several assisting peers having accessed the same

video in the past.

PrivaTube extends MS-Stream [11], a protocol for video stream-

ing using multiple sources, compatible with the leading MPEG-

DASH standard [53]. It ensures that the load on the core servers is

minimized, and that the impact of faults is masked through redun-

dancy.

PrivaTube preserves the privacy of its users by enforcing δ -

unlinkability between specific users and videos, for a chosen value

of δ . Access histories are masked from the untrusted infrastruc-

ture hosting core servers and from other clients by leveraging Intel

SGX Trusted Execution Environments (TEEs) at both the client

and server sides. PrivaTube further prevents assisting peers from

inferring histories based on assistance requests by introducing fake

requests. Fake requests have a cost, that is turned to the system

profit by using them for pre-fetching content onto assisting peers

and improving availability. This positively impacts QoE, in particu-

lar for low-popularity videos, and improves PrivaTube scalability.

We implement PrivaTube and deploy it on a distributed testbed

with up to 14 SGX-enabled servers and clients to evaluate its perfor-

mance and behavior. We also perform large-scale simulations based

on a real-world data set of video access histories. Our results show

that PrivaTube leverages multiple sources and fake requests to

improve QoE, and compares favorably to non-privacy-preserving

streaming.

The paper is organized as follows. We present an overview of the

constituents and privacy objectives of PrivaTube in Section 2. We

detail how the system scales and provides highQoE in Section 3, and

how it preserves privacy in Section 4. We discuss our contributions

and provide a security analysis in Section 5. Our evaluation is

presented in Section 6. We review related work in Section 7 and

conclude in Section 8.

2 System model and objectives

We start by detailing the service model and system constraints,

followed by the adversarial model and privacy objectives, that

guide the design of PrivaTube.

1To disseminate a 1,080p video, PAG would require each node to perform 7,200 costly
homomorphic hashes per second. PAG further consumes three times the bandwidth of
the transferred payload for control messages necessary to enforce accountability.

Service model. We target the Video on Demand (VoD) service

model, consisting of a video player in a web browser allowing users

to select and play videos from a publicly-known catalog. The ob-

jective is to reach the highest possible Quality of Experience (QoE).

Achieving high-QoE delivery is a multi-criteria optimization. It con-

sists in (1) provisioning a content bitrate that is not only the highest

possible but also the stablest possible, (2) minimizing the amplitude

and occurrence of variations in quality, (3) avoiding video interrup-

tions and (4) ensuring a fast startup time. Continuity and stability of

the video playback, together with fast startup times, are the factors

that impact the most the viewing experience of users [52].

Deployment constraints. We target VoD providers who do not

wish to monetize the personal data of their users while requiring

good scalability and reasonable operational costs, e.g. open and

alternative social media such as PeerTube [46]. The provider uses

public cloud infrastructures to host servers for metadata and video

content. For cost reasons, it does not use a third-party CDN. The

number and capacity of cloud servers are limited. In particular, up-

load bandwidth for servers is not sufficient to successfully provision

all clients with high-quality video at a reasonable cost.

Security assumptions. We assume that users trust their own ma-

chine but do not trust the other machines onwhich PrivaTube runs,

i.e., the public cloud infrastructure and the other users. However, we

assume that each node participating in PrivaTube is equipped with

an Intel SGX-enabled processor. We believe that this is a reasonable

assumption given the increasing availability of such processors on

commodity hardware and cloud offerings (e.g. Microsoft Azure).

We assume that the code running inside SGX enclaves is trusted

(e.g., it does not contain bugs, backdoors). The trust in enclave code

can be the result of its certification by a trusted third party, e.g. the

open-source community. We assume that all used cryptographic

primitives are trusted and that the adversary does not have enough

computational power to forge them.

Privacy objective. Our privacy objective is to prevent an adversary

from being able to exploit video access histories of any user in

the system. This requires concealing the actual access history, i.e.

legitimate events related to the actual visualization of a video by

a user should not be collectible by the adversary in clear. The

objective of PrivaTube is to achieve a good privacy-utility tradeoff.

It must limit the exposure of personal data to the adversary on the

one hand, and maintain cost-effectiveness and practicality (respect

of high QoE demand), on the other hand.

Adversary model. We assume an adversary that aims at breaking

the privacy guarantee offered by the system, i.e., uncovering the

interest of users for specific video items. To reach this objective, we

assume the strongest possible adversary (in terms of means) that is

a global and active adversary. Global means that the adversary can

monitor and record the traffic on all network links. Active means

that the adversary can control all infrastructure nodes in the cloud,

and run up to f client nodes to reach its objective. However, we

assume that the adversary does not aim at breaking the system

operation (e.g., by running denial of service attacks).

Our system design is detailed in Section 3, while privacy preser-

vation is the focus of Section 4.

190

PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming Middleware ’19, December 8ś13, 2019, Davis, CA, USA

tracker(s) metadata server(s) video servers

ap client ap

MPD? available bitrates?

requests for metadata

requests for video sub-segments
discovery of available bitrates

sub-segment?

ap selected assisting peer

1
2

3

4

candidate

assisting peers?

Figure 1. Streaming using video servers and assisting peers.

3 Practical and High-QoE Streaming

We detail the architecture of PrivaTube and how adaptive and

multi-source streaming enables it to reach a high QoE.

3.1 Edge-assisted CDN

To address the limited capacity of dedicated servers in providing

video content to users, we leverage an edge-assisted CDN. Figure 1

illustrates the architecture of PrivaTube, without privacy enforce-

ment. Video content is obtained from a combination of video servers

and assisting peers. Client nodes keep a cache of previously accessed

videos, and may be selected to act as assisting peers by other clients.

Video servers in PrivaTube are stable but come in limited num-

bers. Assisting peers have limited bandwidth, and may leave the

system at any time. Enforcing high QoE under these constraints

leads to the following requirements. First, single servers or assist-

ing peers may not be able to provide alone the highest quality to a

client. This requires the ability to stream simultaneously from mul-

tiple sources. Second, faults and disconnections may result in video

interruptions. This requires some redundancy in the obtained video

content, enabling to switch back to lower-bitrate content rather

than stopping the video. Finally, the quality of network connec-

tions may fluctuate during a video playback session. This requires

a streaming protocol that seamlessly adapts to network conditions,

and that we describe next.

3.2 Adaptive Streaming

MPEG-DASH (Dynamic Adaptive Streaming over HTTP) is the lead-

ing standard for delivering video. It uses HTTP on top of TCP or

QUIC. DASH is deployed by companies such as Netflix, YouTube

or Twitch. Video content is split into segments of a few seconds

(usually one to ten seconds) for which different qualities (i.e. dif-

ferent bitrates) are available. Clients obtain the list of versions and

servers hosting them from a metadata server returning a manifest

file, or MPD, and download segments directly from video servers.

A DASH client can dynamically switch between bitrates to adapt

to changing network conditions, e.g. when its download capacity

decreases. The client maintains a buffer of video segments. The

adaptation uses a combination of the buffer size and the prediction

of future download times, with the objective of avoiding rebuffering.

Multiple-source streaming. DASH is efficient for serving videos

from well-provisioned servers in the cloud. However, for edge-

assisted video delivery from peers with less stable or reliable links,

fetching from multiple sources with some level of redundancy

1 Mbps

2 Mbps

1 Mbps

Up	to	a	4	

Mbps	quality	

Sub-segment request

1	

 Sub-segment delivery 3	

2	Sub-segment composition

4	 Sub-segment aggregation

5	 Adaptation

Figure 2. Multi-source adaptive streaming with MS-Stream.

is a strong asset. The PrivaTube streaming protocol extends a

multiple-source adaptive streaming protocol, MS-Stream [11], fully

compatible with DASH. MS-Stream is illustrated by Figure 2, while

Figure 1 presents the complete workflow of our extension.

A MS-Stream client collects video content from multiple sources.

It reconstructs segments of the highest-possible bitrate supported

by its download link, even when none of the sources is able to

individually provide this quality. It ensures availability through

redundancy of video content with low-bitrate versions, that can be

used as a backup and help avoid rebufferings.

For each segment, a MS-Stream client assembles individual sub-

segments requests, using as many servers from the MPD as neces-

sary to satisfy its target bitrate. Segments and sub-segments are

formed of a sequence of short (e.g. 0.5 s) Groups of Pictures (GoPs).

Each video server can serve a GoP in different bitrates, in both a

low-quality (LQ) and several high-quality (HQ) versions. A sub-

segment assembles GoPs, some in LQ and others in the HQ level

requested by the client. This allows obtaining a HQ version of each

GoP from exactly one server, while also redundantly requesting

this same GoP in LQ from other servers. In the example of Figure 2,

if the segment is formed of 4 GoPs, the client could ask the bottom-

left server, with a capacity of 2 Mbps, for GoPs 1 and 2 in HQ and

GoPs 3 and 4 in LQ. It would then request from the top-left server,

with a capacity of 1 Mbps, GoP 3 in HQ, and GoPs 1, 2 and 4 in LQ.

Similarly, the top-right server with the same capacity would return

GoP 4 in HQ, and GoPs 1, 2 and 3 in LQ. The client assembles a

segment with the highest received bitrate for each GoP. It uses the

redundant GoPs in LQ as fallbacks should segments in HQ be miss-

ing. Bandwidth overheads depend on the bitrates used. We observe

a 7.8% average increase of bandwidth usage with the parameters

used in our evaluation.

Selection of assisting peers and servers. The selection of servers

and sub-segments in the previous version of MS-Stream [11] ex-

clusively favors QoE for the client, but does not consider different

classes of servers. In PrivaTube, we wish to limit the use of video

servers and favor the use of assisting peers. We extend MS-Stream

for this purpose, as follows.

First, the use of assisting peers requires an additional service,

the tracker. This server2 keeps track of the video access history

of clients. It returns to the client a random subset of up to 50

Candidate Assisting Peer (CAP) (② in Figure 1). For scalability

reasons, the tracker does not maintain the association between

CAPs, individual segments, and specific bitrates. Peers may indeed

only have different qualities available for each segment, as a result

2We consider a single server for the tracker and for the metadata server in our im-
plementation. The horizontal scaling of both servers can leverage stateless tiers and
replicated NoSQL databases [32]. We keep this extension for future work.

191

Middleware ’19, December 8ś13, 2019, Davis, CA, USA Simon Da Silva et al.

of the adaptation policy. Registering this fine-grained information

with the tracker would greatly impair scalability. Instead, clients

register their access to the video with the tracker only once, and

clients must discover for each segment what bitrates are available

from the CAPs. This is done for each new segment (③ in Figure 1).

Second, we modify the selection of sources, and the associated

selection of sub-segments, to favor the use of assisting peers over

video servers. Following the quality discovery phase, the list of

CAPs is pruned of peers who cannot offer the required HQ qual-

ity for the segment. The selection uses a greedy algorithm iter-

ating over remaining CAPs and video servers. The selection con-

siders first CAPs for which an estimation of the upload capacity

is available locally. This corresponds to peers which were used

for assistance in the past, and enables some stability in assistance

relationships. Following this, the selection considers other CAPs,

i.e., for which this estimation is not available. Video servers are fi-

nally considered if absolutely necessary. For each considered source,

the selection determines the maximal number of GoPs that can be

served by the peer in the target level of HQ, together with the other

GoPs in LQ. This depends on the bandwidth capacity estimation

for this source. For CAPs for which the information is unknown, a

limited number (up to 4 over 12 in our implementation) of GoPs in

HQ can be requested. For each selected peer, a random set of un-

covered GoPs in HD is assigned in the corresponding sub-segment

request, and the GoP is marked as covered with HD. The selection

stops when all GoPs are marked, and the sub-segment requests are

sent out (④ in Figure 1).

Improvements. The establishment of downloads from assisting

peers has a higher latency than the direct download from video

servers. In order to meet the QoE objective of fast video startup,

the first segment is downloaded directly using the standard DASH

procedure from a single video server.

We note that the effectiveness of selecting assisting peers instead

of video servers depends on the video popularity, directly resulting

in more copies at client peers. Unpopular content is at risk of being

unavailable in the required quality in enough CAPs. We actually ad-

dress this problem together with privacy preservation, as described

in the next section. The concealing of users’ interests indeed relies

among other measures on the issuance of fake requests for content.

We leverage these to the system’s interest, implementing a cache

pre-fetching strategy, and provisioning enough copies of all videos

on client peers. This reduces the load on video servers, even for

less popular content.

3.3 Implementation

The base system, without privacy protection, is implemented as

follows. The client is written in JavaScript and runs inside a web

browser. The metadata server is a key-value store. It hosts and

delivers MPD manifests to the clients. The video servers are imple-

mented in Java and store unencrypted video content. The tracker

is implemented as an in-memory key-value store. All services are

accessible through REST interfaces over HTTP, including commu-

nication between clients.

4 Privacy in PrivaTube

The goal of PrivaTube is to protect the access history of users (e.g.

identified with their IP address) to videos. This history should not

be exploitable in the clear by anyone else than the client node itself.

tracker(s) metadata

server(s)

video servers

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

HTTP

proxy

MPD?

candidate

assisting peers?

available bitrates?

sub-segment?

Trusted infrastructure

SGX enclave

client

in-memory

KVS

encrypted requests/responses

1

2

3

4

Figure 3. PrivaTube architecture for privacy preservation using

HTTP proxies and servers inside SGX enclaves.

In order to better understand who can learn this information in

PrivaTube, let us consider a user u interested in a video v . To this

end, and following (a simplified version of) the steps described in

Figure 1, u formulates a request req and sends it to the metadata

server and to the tracker to collect the IP addresses of a set of

video servers and candidate assisting peers from which it will get

segments for reconstructing v . From these steps, and if no security

mechanisms are used, one can easily see that a number of nodes in

the system can learn the link between u and v . These include the

tracker and the metadata server, using the information contained

in req, and the video servers and assisting peers as they serve

segments of v directly to u. Additionally, an adversary that listens

to the network would also learn the link between u and v either

from the content of req or from the segments ofv that u downloads.

Finally, an adversary that takes control of either of the above nodes

would similarly learn the link between u and v .

In the following, we present the two main security principles

that PrivaTube uses to protect the link between u and v . First, Pri-

vaTube leverages Trusted Execution Environment (TEE) at both the

client and server sides to prevent data leakage. Second, PrivaTube

leverages fake requests to protect users access histories from insider

attacks.

4.1 Trusted execution environments

TEEs offer guarantees of isolation, confidentiality, and integrity of

data and computations performed in untrusted machines by lever-

aging custom microprocessor zones. We use Intel Software Guard

Extensions (SGX) [16], which defines the concept of enclave as an

isolated unit of data and code execution that cannot be accessed

even by privileged code (e.g., the operating system or hypervisor).

Enclaves can be attested, that is, it is possible to prove that the code

running in the enclave is the one intended, and that it is running

on a genuine Intel SGX platform. Once attested, enclaves can be

provisioned with secret data by using authenticated secure chan-

nels. Moreover, enclaves can persist secret data outside the trusted

zone by using a sealing mechanism.

Protecting the tracker. The tracker in PrivaTube stores informa-

tion about nodes that have a local copy of a video. This information

is clearly critical and any adversary taking control of the tracker

192

PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming Middleware ’19, December 8ś13, 2019, Davis, CA, USA

would immediately break the privacy property we aim at preserving.

In order to prevent any information leakage, we run the tracker code

inside a TEE. The tracker data is kept encrypted in a local key-value

store, and can only be accessed in the clear by the code running

inside the TEE enclave. Each tracker request only accesses a small

subset of keys, henceforth the limited EPC memory size available to

the enclave is not a limitation. The resulting SGX-enabled tracker

guarantees that the access history of users to videos is protected

even if an attacker takes control of the machine, of its operating

system, or of the local hypervisor.

Protecting the metadata server. The metadata server stores for

each video a manifest (MPD) that contains a description of the video

and the list of servers from which its segments can be downloaded.

A user u wishing to access a video v needs first to retrieve the

manifest of v from the metadata server. To prevent any obvious

linking between u and v , we run the metadata server code and we

store its data inside a TEE, as for the tracker.

Protecting network traffic. As discussed above, an adversary lis-

tening to all network exchanges in the clear will learn the link

between u and v . In order to make the message exchanges unob-

servable, all entities running in PrivaTube are put behind HTTP

proxies running inside SGX enclaves. HTTP proxies intercept, en-

crypt and decrypt all inbound and outbound traffic as illustrated

in Figure 3. Communicating proxies share a common encryption

key which is securely transmitted to both communicating enclaves

if and only if its remote attestation process succeeds. As such, an

adversary listening to the network cannot learn the link between u

and v as messages circulating between the various HTTP proxies

are encrypted.

Using SGX-enabled HTTP proxies also allows protecting from

an adversary taking control of the various entities participating in

PrivaTube. Indeed, while a tracker or a metadata server can see an

incoming request from u they can not have access to the content of

this request nor to the content of the response sent back to u. Video

servers and assisting peers serve video segments to u following

requests forwarded by the proxy. We assume that video servers

are serving many requests simultaneously, hence disallowing an

adversary from precisely determining which specific incoming

request at the proxy corresponds to which outgoing request for

a video segment, an assumption done in similar systems such as

Koi [28].3 This is, however, not a property we can guarantee for

assisting peers who process a limited number of video segment

requests. We explain next how we mitigate this case using fake

requests.

4.2 Fake requests

Using the above security mechanisms, u is able to stream v in a

privacy-preserving manner. However, the link between u andv can

still be revealed if an attacker runs its own client machine and starts

issuing requests forv to uncover the community of users interested

in that specific movie. This attacker could send requests for v to

the tracker and collect the IP addresses of candidate assisting peers

that possess segments of v (including u), thus uncovering the link

between u and v . In order to mitigate this risk a key mechanism

3We note that if this assumption does not hold, i.e. if there is insufficient concurrency
for these requests, it is possible to modify the proxy to arbitrarily reorder the existing
traffic together with chaff (fake) traffic. We leave, however, the implementation of
such a feature to future work.

used in PrivaTube is the generation of fake requests. Specifically,

each client participating in PrivaTube sends a given proportion of

fake requests along with legitimate requests.

δ-unlinkability. Fake requests allow PrivaTube to guarantee δ -

unlinkability between users and videos they are interested in. En-

forcing δ -unlinkability means that at any point in time, the proba-

bility of guessing that a user u is interested in a video v is at most

equal to δ ∈ [0, 1]. Hence, the lower the value of δ the better the

privacy of users. To enforce δ -unlinkability, a client c must main-

tain at any point in time t a number Frt (c) of fake requests that is

defined as Frt (c) = Lrt (c) ∗
1−δ
δ

, where Lrt (c) is the number of

legitimate requests it has issued up to t . For instance, let us assume

that the system designer wants to enforce δ -unlinkability with δ

equal to 0.5. Semantically, this means that the insider attack that

learns a link between u andv can only infer that u is interested inv

with a probability of 0.5, which is equivalent to flipping a coin. To

enforce this property u would need to maintain Frt (u) = Lrt (u)

at any point in time, which corresponds to sending as many fake

requests as legitimate requests.

Generating fake requests. The difficulty when generating fake

requests is to make them indistinguishable from legitimate requests.

Towards this purpose, fake requests in PrivaTube are generated fol-

lowing the distribution of video popularities in the system. Relying

on video popularity allows avoiding awkward/detectable behav-

iors such as a very unpopular video being requested too often (i.e.,

through fake requests). This behavior is not desirable because on

the one hand, the request may be spotted as being a fake request by

an adversary and on the other hand, replicating unpopular videos

brings nothing useful to the system operation, creating way more

copies of video segments than what is actually needed to ensure

they will be available on assisting peers.

We implement two fake request generation policies, pop and

samePop. All policies are executed in the tracker, running inside an

SGX enclave. The pop policy generates fake requests by following

the overall distribution of video popularity in the system. In this

policy, the tracker keeps track of the number of requests issued

for each video so far, which reflects their popularity. Every time a

client issues a legitimate request, the tracker suggests a fake request

following the distribution of video popularity, i.e., popular videos

have a higher probability of being picked than unpopular ones.

The samePop policy generates fake requests by following the local

popularity of requested videos. That is, every time a user issues

a request for a given video, the tracker suggests a video with a

popularity similar to the requested one.

5 Discussion

We present a security analysis of PrivaTube with a focus on its

privacy guarantees. Following this, we review compromises used

in its design, and discuss limitations and possible mitigations.

5.1 Security Analysis

This section presents the security analysis of PrivaTube. We focus

on the enforcement of the δ -unlinkability property. To this end, we

consider whether the various entities participating in the system

are able to break the property or not.

On the client side. The code running on the client side is divided

into two parts, the HTTP proxy running inside an SGX enclave and

193

Middleware ’19, December 8ś13, 2019, Davis, CA, USA Simon Da Silva et al.

the streaming client running outside of the enclave. A malicious

adversary running a client with the purpose of breaking other

users’ privacy cannot bypass the HTTP proxy and run man-in-the-

middle attacks. However, it may issue specific requests using the

PrivaTube protocol and then learn from which assisting peers it is

downloading video segments. It can learn this by observing local

traffic. However, thanks to the use of fake requests, the adversary

will not be able to infer whether the assisting peers from which the

video segments have been downloaded are effectively interested or

not by the corresponding video.

Furthermore, up to f malicious clients under control of the

attacker and aiming at weakening the δ -unlinkability property

could modify the code of their local application to avoid sending

fake requests in the system. By doing this, the overall number of

fake requests in the system TFrt at a given point in time t will be

equal to:

TFrt = (TLrt ×
1 − δ

δ
) −

f∑

i=1

Frt (i)

where TLrt is the overall number of legitimate requests sent in

the system up to time t . However, while this decrease may have

an impact on the replication factor of movies in the system, it will

have no impact on the δ -unlinkability property of correct nodes.

Indeed, as the proportion of fake requests in the local history of a

correct node is preserved with respect to legitimate requests, an

attacker that would uncover the link between this user and a given

movie would not be able to distinguish with a confidence greater

than δ whether the user is effectively interested in the video or not.

On the tracker side. The tracker code exclusively runs inside an

SGX enclave. An adversary taking control of the tracker cannot

bypass the SGX enclave. Furthermore, as the traffic incoming and

outgoing from the enclave is encrypted, the only information that

can be collected by an adversary is that a given node is issuing a

request. If there is no other traffic when the user sends the request,

the attacker may see from which video servers and assisting peers

the client is gathering video segments. Using this knowledge, the

attacker may try to learn the videos stored on these nodes by

requesting them (in a brute forcemanner). However, this knowledge

would be insufficient to guess which exact video was downloaded

by the corresponding user and whether the latter was a legitimate

or a fake request.

On the metadata server side. The reasoning is the same as for

the tracker side. The metadata server holds important information

about which video server holds which video segments. However,

the processing of the request is performed inside an SGX enclave

and the attacker may only learn the co-existence of the request

and flows to video servers and assisting peers, and not determine

which precise video was requested, and if it was a legitimate or

fake request.

On video servers and assisting peers side. Video servers and

assisting peers store video segments and serve these segments

to requesting users. But similarly to the metadata server and the

tracker server, requests on these nodes are handled inside SGX-

enabled HTTP proxies. Hence, an attacker taking control of these

nodes will not be able to bypass the enclave and learn what video

segments are served to which specific user. Amalicious video server

or assisting peer could nevertheless delete its local videos keeping a

single (or a set of) semantically sensitive video(s). As such it would

learn the set of nodes requesting the latter. This threat is mitigated

by the use of fake requests as the adversary will not be able to get

a confidence greater than δ regarding the legitimate interest of the

corresponding users on this video.

5.2 Limitations

We discuss in this section the limitations of our system and how

we expect to mitigate them in our future work.

On the generation of fake requests. The generation of fake re-

quests is an important mechanism in PrivaTube as it allows us to

enforce δ -unlinkability for correct users. However, to be effective,

fake requests must be forged in a way that makes them indistin-

guishable from legitimate requests. PrivaTube uses movie popu-

larity for the generation of fake requests (i.e., popular movies have

a higher probability to be selected as fake requests than unpopular

ones). The probability distribution of legitimate requests targets

will be similar to the probability distribution of fake ones. However,

this policy does not capture particular access patterns to videos

(e.g., users accessing a collection of movies in sequence such as

the episodes of a given series). These sequential accesses could be

used to probabilistically distinguish legitimate from fake requests.

A solution would be to replace the generation of fake requests at

the level of a single video by generation of fake access logs, copying

the access behavior of another user. This may hinder the use of fake

requests to implement proactive pre-caching of video segments

using fake requests. We will consider this approach in our future

work.

On the use of Intel SGX enclaves on the client side. Assuming

the use of Intel SGX enclaves on the client side could be a limitation

to the deployment of PrivaTube, in particular on portable devices.

However, trusted execution environments are becoming common

place even in handheld devices (e.g., ARM TrustZone [5]) which

increases the likelihood for the adoption of PrivaTube in the near

future.

On the presence of freeriding assisting peers. Freeriders are a

well-known threat to collaborative systems. A freerider is a node

that benefits from the system without contributing its fair share

to it. In the context of PrivaTube, assisting peers could freeride

by (for instance) turning off the application each time they do not

watch video streams. If a large portion of assisting peers behave

as such, there might be an impact on the overall QoE. We consider

this problem as orthogonal to the one considered in this paper.

Nevertheless, the problem of freeriders has been widely studied in

the context of collaborative systems in general and in the context of

live streaming in particular [6, 22, 26, 34, 59]. We plan on evaluating

similar mechanisms (e.g., incentives or accountability mechanisms

to track freeriders) in a future version of PrivaTube.

On the integrity of videos served by assisting peers and video

servers. Assisting peers and video servers could misbehave by

replacing their video content with junk videos. Mitigating this

threat can be done by performing integrity checks on the client

side (e.g., using md5sum).

On the provision of video recommendations to users. PrivaTube

does not support the provision of video recommendations to its

194

PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming Middleware ’19, December 8ś13, 2019, Davis, CA, USA

users. The literature contains various research works in this di-

rection, which could serve as a starting point for integrating such

functionality while preserving privacy. These solutions rely either

on adding differentially private noise [37] or on the use of crypto-

graphic primitives [27].

On compromised client Intel SGX Enclaves. Our design relies

on the proper implementation of Trusted Execution Environments

(TEEs). The Intel SGX TEE that we use in our implementation

has been shown to be vulnerable under certain conditions to side-

channel attacks [33, 58]. The protection against such attacks is an

orthogonal concern to the design of PrivaTube. We expect future

iterations of Intel SGX to address these limitations, and other future

implementations of the TEE concept to avoid them by design. For

current SGX-enabled processors, solutions such as Varys [42] may

be used to prevent side-channel attacks from being exploited. A

complementary approach, that we leave for future work, is to limit

the attack surface of potential leaks of enclave private keys, after an

attack is observed or suspected (e.g., using a detection system such

as Déjà Vu [13]). This requires periodically rotating the long-term

secrets provisioned to PrivaTube client enclaves. Each rotation

could spawn a Diffie-Hellman key agreement session, similarly to

the Intel SGX attestation procedure. This mechanismwould achieve

forward secrecy: compromising a long term enclave private key does

not compromise the session keys.

6 Evaluation

We proceed to the evaluation of PrivaTube. Our evaluation com-

bines the analysis of the performance and behavior of a prototype

deployed over up to 14 SGX-enabled servers and clients, and large-

scale simulations based on a real-world data set of video access

histories.

We wish to answer the following research questions:

• What is the impact of proxy-ing the content requests through

Intel SGXTEEs’ enclaves on throughput and latencies achiev-

able by PrivaTube video servers? (ğ6.2)

• Is the use of assisting peers successful in improving QoE

for the clients, and does it help to reduce the load on video

servers? (ğ6.3)

• Are fake requests effective in hiding clients’ access patterns

to videos, and in improving performance and usefulness of

assisting peers? (ğ6.4)

6.1 Experimental setup

The PrivaTube prototype is deployed on a cluster of 14 SGX-

enabled Intel NUC nodes. Each node is an 8-core Intel i7 processor

at 3.50 GHz with 32 GB of RAM. Nodes are connected in a LAN

using 1 Gpbs Ethernet. The setup supports the use of network

emulation to emulate WAN links using the tc tool. Network emu-

lation parameters for video clients follow the DASH test case #2a

(NP2a) [20]. This profile is based on observations of the typical

characteristics of network clients at DASH providers: an incoming

bandwidth of about 4 Mbps, a latency to the video servers of about

100 ms, and a packet loss of about 7%. The network emulation for

servers caps their uplink bandwidth to 10 Mbps.

We use a video of 1 minute and 42 seconds, with 17 segments of

6 seconds. The video is available on video servers in three qualities:

LD, SD, and HD. The low definition LD (bitrate of 512 Kbps) is used

as the backup LQ quality in PrivaTube. LD segments are about

250 KB in size after encoding.4 The SD and HD are the two available

high-quality (HQ) variants. As detailed in Section 3, clients may

choose the HQ variant that matches their download capacity. The

SD (standard) definition (bitrate of 1 Mbps) leads to segments of

about 500 KB after encoding. The HD (high) definition (bitrate of

4.1 Mbps) corresponds to the full HD quality. Segments in HD are

about 2 MB after encoding.

Clients maintain a buffer of 30 seconds, i.e. upon starting a play-

back they download 5 segments (the first one from video servers,

the following ones from a combination of video servers and assist-

ing peers) and fetch a new segment as soon as one buffer slot is

consumed.

We compare PrivaTube to two baselines. The first baseline is

the standard DASH protocol. Our DASH implementation uses the

NGINX high-performance HTTP server [41]. The second baseline

is PrivaTube without enabling any of the mechanisms for protect-

ing users’ privacy. This corresponds to the system as described in

Section 3, without any of the additions detailed in Section 4. We call

this version ClearTube, to emphasize that exchanges happen in

the clear. In more detail, ClearTube does not use HTTP proxies

running inside SGX TEEs, does not encrypt any of the exchanges,

and does not use fake requests.

6.2 Performance of video servers

We start by evaluating the impact of privacy preservation on the

performance achievable by a single video server. This performance

is the primary measure of cost-effectiveness in any DASH deploy-

ment. For a VoD provider, the achievable bandwidth with one video

server directly impacts return-on-investment (RoI). More specifi-

cally, we wish to assess if the use of request proxying through SGX

does not impair too much the performance of each video server.

We do not use network emulation in this experiment. The com-

parative performance of PrivaTube and ClearTube enables to

isolate the overhead of using SGX-based HTTP proxies. The dif-

ference between ClearTube and DASH allows us to isolate the

impact of requesting sub-segments and the need to assemble them

at the video server level (whereas DASH is able to directly serve

pre-assembled segments).5

We first focus on request latencies. We set up a single client

performing 200 consecutive requests for a 6-second video segment.

Figure 4 presents the cumulative distributions of retrieval delays for

the three available bitrates, using the three systems. Unsurprisingly,

DASH provides the lowest latencies, and latencies increase with

the segment size. The overhead of assembling sub-requests at the

video server is highlighted by the performance of ClearTube.

For LD segments (250 KB), the DASH median efficiency (20 ms to

serve 1 MB) is twice that of ClearTube (40 ms to serve 1 MB). For

larger segments however, this difference is attenuated, e.g. for HD

segments (2 MB), the median efficiencies are 12.5 ms vs. 17.5 ms to

serve 1 MB. The difference between ClearTube and PrivaTube

is more important, and is a result of using SGX for the HTTP

proxy. The establishment of a link between the enclaves at the

client and the server, the exchange of secrets for establishing the

secure channel, and the encryption of communications, all have

an impact on latency. For LD segments, the median efficiency of

PrivaTube (160 ms to serve 1 MB) is 25% of the median efficiency

4The exact size depends on the codec and nature of the video.
5One could cache pre-computed segments at a PrivaTube video server, but we did
not implement this optimization.

195

Middleware ’19, December 8ś13, 2019, Davis, CA, USA Simon Da Silva et al.

0

20

40

60

80

100

3 5 10 20 30 50 100

Time in ms

C
D

F
 (

10
0%

)

Server DASH ClearTube PrivaTube

(a) LD segments

0

20

40

60

80

100

3 5 10 20 30 50 100

Time in ms

C
D

F
 (

10
0%

)

Server DASH ClearTube PrivaTube

(b) SD segments

0

20

40

60

80

100

3 5 10 20 30 50 100

Time in ms

C
D

F
 (

10
0%

)

Server DASH ClearTube PrivaTube

(c) HD segments

Figure 4. Cumulative distribution of latencies over 200 requests for a 6-second segment in various bitrates in DASH, ClearTube and

PrivaTube without using network emulation. Note that the abscissa uses a logarithmic scale.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

650 700 750 800 850

Throughput handled (Mbps)

L
at

en
cy

 (
s)

Server DASH ClearTube PrivaTube

Figure 5. Throughput and latency for DASH, ClearTube and Pri-

vaTube, without using network emulation. The inflection shows

the saturation point of the three solutions.

of ClearTube (40 ms). However, this difference is significantly

reduced for larger bitrates. For HD segments, PrivaTube reaches

an efficiency difference of 36% (47.5 vs. 17.5 ms to serve 1 MB).

Despite the unavoidable overheads linked with a higher level of

security, PrivaTube achieves median latencies of 95 ms (average

89 ms) for the HD bitrate, which remains negligible in practice for

6-second segments.

We now focus on achievable throughput for a video server un-

der a concurrent request workload. We use only the HD quality,

with video segments of size 2 MB. We set up a client with the wrk2

workload injection tool for HTTP requests [57]. We use 4 injection

threads from a single client, after checking that this setup is enough

to saturate all three configurations. Figure 5 presents the achieved

latencies for the three solutions under an increasing number of

requests. The latency in the non-saturated case (e.g., with a total

throughput of 650 Mbps) is close to the latencies for single requests

(Figure 4c). We observe an inflection point for the three systems, in-

dicating that the server is no longer able to serve incoming requests

on time and reaches its maximal capacity. Again, the difference

between DASH and ClearTube allows isolating the costs of the

extra protocol steps in PrivaTube, without the use of the SGX

HTTP proxy. ClearTube reaches saturation at 796 Mbps, 95% of

the max capacity of DASH (838 Mbps). Comparing PrivaTubewith

ClearTube allows isolating the cost of the SGX HTTP proxies and

of end-to-end encryption. PrivaTube saturates at 695 Mbps, 87%

of ClearTube, and 83% of DASH. The saturation point of a single

PrivaTube server corresponds to 260 clients consuming full-HD

content, while ensuring privacy and enabling the use of assisting

●

●

●

●

0

1

2

3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
o
w

n
lo

a
d
 t

im
e
 (

s)

(a) DASH

●●●

●

●●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●
●
●●●
●

●

●

●

●

●

●

●
●

●●
●●

●●

●●

●

●

●

●

●

●

●●

●●

●●●●
●

●

●

●

●

●

●

●
●
●
●●●
●●●

●

●

●

●

●

●

●
●

●●●●
●
●●●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

0

1

2

3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
o
w

n
lo

a
d
 t

im
e
 (

s)

(b) ClearTube

●●●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

0

1

2

3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
o
w

n
lo

a
d
 t

im
e
 (

s)

(c) PrivaTube

Figure 6. Distributions of segments download times

peers, against 312 clients with DASH. Again, the added value of

privacy protection justifies this overhead.

6.3 Impact of assisting peers

In this second experiment, we evaluate the complete PrivaTube

infrastructure. We use the 14 nodes. We use one node to host the

tracker, and one node for the metadata server. To emphasize the

limited capacity of the VoD provider infrastructure, we use a single

video server. The remaining 12 nodes are used as clients, denoted as

C1, C2, . . . , C12. We use the network emulation settings described

in our evaluation setup. As before, we compare DASH, ClearTube

and PrivaTube.

Initially, the video is only available at the video server in all

three qualities (LD, SD and HD). Clients initiate streaming sessions

to obtain and play the entire video. Each session starts by the

download of the first segment from the video server, followed by

196

PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming Middleware ’19, December 8ś13, 2019, Davis, CA, USA

1

2

3

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B
it
ra

te
 (

M
b
p
s)

(a) DASH

1

2

3

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B
it
ra

te
 (

M
b
p
s)

(b) ClearTube

1

2

3

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B
it
ra

te
 (

M
b
p
s)

(c) PrivaTube

Figure 7. Distribution of achieved playback bitrates

the sequential request for 4 more segments from the video server

and assisting peers, if any are available to provide the content. This

allows filling the 5 initial slots in the client’s buffer.

Client C1 starts at time 0, followed by C2, C3 and C4 each with

a 10-second interval. 10 seconds after the start of C4 (40 seconds

after C1), we emulate a flash crowd where the remaining 8 clients

are started in sequence without additional inter-arrival delays. We

observe two key performance indicators. The download time for in-

dividual segments indicate if the system operates in a non-saturated

mode, and whether clients are subject to resource contention. The

achieved quality rate is the effective bitrate at which clients were

able to play the video. It is directly linked with the download ca-

pability: The adaptation automatically switches to a lower bitrate

when the target bitrate cannot be obtainedwithout a risk of rebuffer-

ing. There were no rebuffering in our experiments, but the three

protocols differ greatly in achieved quality rate and its stability,

directly impacting QoE.

Figure 6 presents the distribution of segment download times,

while Figure 7 presents the achieved playback rates. We observe

only very minor variations in achieved metric values over different

runs and therefore report values over a single, randomly-selected

one.

We observe that DASH performs well for the first 4 clients. In-

deed, these clients are free to download and fill their buffers from

the video server without interference with the other peers: The

server has an upload of 10Mbps, hence requiring 8 seconds to fill the

8 MBs of the buffer with video in HD. However, when the number

of client increases we observe a tremendous increase in download

times for individual segments, indicating that the server is not able

to catch up with the requested throughput. The direct effect is that

some clients (C9 to C12) adapt their requested bitrates to avoid a

rebuffering. The QoE for these clients decreases significantly.

The general performance of ClearTube and PrivaTube follow

the same trend. In concordance with our previous experiments, we

observe additional latencies for segment download times with Pri-

vaTube compared to ClearTube, due to the use of SGX-supported

proxies (Figures 6b and 6c). When client C2 starts its session, C1 has

already downloaded the first six segments from the video server

and is selected as assisting peer by C2 for segments 2 to 5 to the

extent of its upload bandwidth capability (capped to 4 Mbps). When

peer C3 starts, both C1 and C2 are available, and so on. We observe

in Figure 6b that the median download time actually decreases with

more peers, and therefore more potential sources, but also results in

more outliers for clients that start at the same time. The largest out-

lier is for the first segment, that has to be retrieved from the video

server under contention, and due to competing requests towards

the same assisting peers. The scenario of the addition of 200% more

peers is a worst-case one; yet, PrivaTube succeeds in keeping the

average and median download times to less than a second. The

result on QoE is immediately visible on the achieved playback rates

(Figure 7). All clients achieve a very stable (narrow) distribution

with high bitrates. Differences between ClearTube and PrivaTube

are negligible in terms of QoE, and the experiment demonstrates the

impact of using multiple sources and assisting peers on maintaining

playback quality even during a sudden increase in the number of

clients.

6.4 Fake requests and pre-fetching policies

We finally evaluate the beneficial impact of fake requests on QoE.

We discussed the privacy impact of fake requests in Section 5.1.

We focus here on how fake requests’ ability to pre-fetch content

onto clients enables improving availability and the general utility

of assisting peers. Our evaluation is based on simulations, in order

to be able to use a large dataset denoting the interest of users in

movies.

Dataset. Access histories to large VoD services are not public for

obvious privacy reasons, and it would be unethical to exploit the

lack of privacy of existing services to collect such data. We build

instead video access histories from publicly-accessible data. More

specifically, we use the complete year of 2014 of the open and non-

commercial MovieLens [30] movie rating network.6 MovieLens

allows cinema enthusiasts to rate movies and enable personalized

recommendations. 7,763 users produced 39,177 ratings for 4,283

distinct movies in 2014.

The cumulative distribution of movies popularity in MovieLens

is presented in Figure 8. It is a heavy-tail distribution typical of VoD

systems [14, 63]. 50.42% of the movies were rated only once, while

the most popular was rated 64 times. Obviously, this represents

only a sample of actual accesses and interests in movies, as only

a small fraction of users rate movies they watch on MovieLens.

We posit however that this fraction is a uniform sample, making

this dataset statistically representative of what a sampling of actual

accesses to videos in a large-scale VoD system would yield.

We build a timeline of accesses to videos from the MovieLens

dataset. We consider the rating of a given movie by a user as a

6We chose 2014 as it is the last available full year from MovieLens 20M dataset (with
ratings from January 9, 1995 to March 31, 2015).

197

Middleware ’19, December 8ś13, 2019, Davis, CA, USA Simon Da Silva et al.

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●

●●●●● ●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●● ●●● ●●●●● ● ●●● ●●●●● ●●● ● ●●● ● ●●●● ● ● ●● ● ●●●●● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ●●●●●●●

0

20

40

60

80

100

1 2 3 5 10 20 30 50

Popularity index (log scale)

C
D

F
 (

10
0%

)

Figure 8. Distribution of movies popularities in MovieLens.

1

2

3

4

5

1 10 20 30 40 50 60

Original number of replicas

In
cr

ea
se

 f
ac

to
r

(l
og

 s
ca

le
)

Policy rand pop samePop

Figure 9. Replicas increase factor, δ = 50%

timed event, denoting the access to the video. The series of events

is used as an input to the simulator.

Simulation. Weemulate both legitimate requests (i.e. access events

from the MovieLens data set) and fake requests. We implement the

two policies for generating fake requests detailed in Section 4 in

the tracker: pop considers the distribution of popularities of pre-

viously requested videos, and draws a random one according to

this distribution; and samePop specifically picks a random video

with the same level of popularity as the one requested in the legit-

imate request. In addition, we consider a third baseline policy, in

order to highlight the impact of considering past access histories

when generating fake requests: rand simply selects a random video

from the list of all previously requested videos, regardless of their

popularity.

We are interested in the increase in availability that fake requests

allow. Ideally, we would like the number of copies of each video to

be sufficient to allow downloading most segments from assisting

peers rather than from the video servers.

We split the data set of accesses in two periods, with accesses

done from January to the end of September 2014 in the first period,

and accesses made in the remaining 3 months in the second period.

We use the first period to compute popularities in the system, as

the number of requests for each video. The popularity for a video v

at the end of the first period is denoted as v1st . We then replay the

accesses in the second period, and for each access, use the selected

fake requests policy. At the end of the second period, we record the

number of copies of the video asv2nd . We define the replica increase

factor as the ratio v2nd /v1st . Figure 9 presents the distribution of

Table 1. Replicas increase factor for various values of δ

δ = 66% δ = 50% δ = 25%

fake req. × 0.5 × 1 × 3

M
ea
n

M
ed
ia
n

S
td
.D

ev
.

M
ea
n

M
ed
ia
n

S
td
.D

ev
.

M
ea
n

M
ed
ia
n

S
td
.D

ev
.

rand 2.3 1.7 1.4 3.5 2.5 2.6 8.6 6.0 6.9

pop 1.5 1.5 0.5 2.0 2.0 0.6 4.0 4.0 1.1

samepop 1.5 1.5 0.5 2.0 2.0 0.6 4.0 4.0 1.1

this metric, as a function of v1st , when exactly one fake request is

sent for each video access (δ = 50%).

We can observe that the rand policy results in a heavy bias

towards increasing the availability of low-popularity videos. This

is not surprising, as these videos dominate in the data set, and are

therefore more likely to be selected by a random draw. On the other

hand, rand only marginally increases the number of replicas for the

rest of the distribution. The pop and samePop policies, on the other

hand, are effective at increasing the number of replicas regardless

of the original popularity of the video.

We present aggregate results for two other values of δ , the prob-

ability to link a user to a video, in Table 1. We can observe that the

target number of pre-provisioned copies of each video is achieved

with great stability for both pop and samePop, but with a high skew

for rand. There is no significant advantage in availability between

pop and samePop. It is therefore sensible to favor samePop, to also

hide the individual distribution of access video popularities for each

individual user. The samePop policy is also more stable. It deviates

less than pop, according to the results.

7 Related work

We review work on streaming platforms architectures, and on ap-

proaches to preserve privacy in streaming systems.

Streaming platforms architectures. We distinguish two fami-

lies of streaming platforms, those targeting live streaming (i.e. the

broadcast of a single stream, as it is generated) and those targeting

the VoD model, as PrivaTube.

Live streaming does not require maintaining a cache for a col-

lection of videos, making it adapted to fully decentralized stream-

ing [35]. Exchange of video segments may happen between peers

over an unstructured network using gossip-style interactions, as in

CoolStreaming [61], or use dissemination structures built over an

overlay network, as in MDC [44] or SplitStream [12]. Peer-to-peer

live streaming is highly scalable, but it is difficult in practice to

guarantee high QoE due to uncertainties in peer availability and

network stability.

Supporting the VoD model requires being able to quickly dis-

cover a specific video in a catalog, and ensure that copies of each

video exist in the system at all times, making it less amenable

to a fully decentralized implementation. Instead, several authors

proposed to complement a limited set of servers with edge peer

resources as we do in PrivaTube. Push-to-Peer [55] targets a de-

ployment on controlled networks, including for instance set-top-

boxes deployed by an ISP. Push-to-Peer proactively pushes content

to edge nodes to increase availability and QoE, based on a utility

198

PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming Middleware ’19, December 8ś13, 2019, Davis, CA, USA

model [56]. This is similar to the use of fake requests in PrivaTube

but Push-to-Peer does not consider privacy aspects. P2VoD [25]

combines source servers with the use of multicast trees [12, 44].

Video content is cached at clients who can join the trees and act

as providers. BASS [19] is a similar approach using the BitTorrent

protocol. Both P2VoD and BASS are only evaluated using simula-

tions, and the ability of the peer-to-peer network to provide high

QoE remains limited.

PrivaTube adopts an edge-assisted architecture where the dis-

covery of video sources, including those at the edge, benefits from

centralization. This pragmatic approach is in the interest of QoE,

and eases the compatibility with the MPEG-DASH industry stan-

dard. A similar approach is used in Xunlei Kankan [64] and LiveSky [62].

Both systems combine CDNs with edge resources and report serv-

ing tens of millions of users simultaneously.

PeerTube [46] is an open social network for video sharing. Peer-

Tube is decentralized and uses a collection of support sites, leverag-

ing W3C’s federation protocol ActivityPub [60], but the download

of videos is made using a single server. The scalability, cost effec-

tiveness and privacy guarantees of PrivaTube would make it an

ideal protocol for the PeerTube social network.

Privacy-preserving streaming. Popcorn [29] uses private infor-

mation retrieval (PIR) techniques to conceal the access to videos

by clients of a VoD streaming platform. The platform only keeps

encrypted video content, and PIR hides the actual interest in a

video by forming requests that combine data from the entire cata-

log. However, Popcorn has a weaker adversarial model than ours

as it requires non-colluding servers. Additionally, the overhead

of the cryptographic mechanisms it uses makes it unpractical for

large scale deployments (e.g., a distributed catalog of thousands

of movies). Instead, the elastic architecture of PrivaTube, and the

use of lightweight cryptographic mechanisms makes it scalable by

design.

Rajan et al. [50] leverage a privacy-preserving publish and sub-

scribe [43] communication system to hide the interests of clients

from video providers, under the live streaming model. As with the

use of onion networks (e.g. in TOR [24]) this approach requires

cryptographic operations at intermediary nodes, which incurs la-

tencies and costs likely to degrade QoE significantly.

Cui et al. [17] consider the more general problem of hiding access

patterns to objects in a third-party CDN, and present encryption

mechanisms under the Searchable Encryption (SE) model. This

allows users to search and request items without revealing their

interests in the clear. These mechanisms do not protect, however,

from an attacker who would analyze the traffic to and from the

clients. In contrast, PrivaTube does not require a specific and costly

encryption of video content on video servers.

Previous approaches have proposed to add noise to legitimate

traffic in order to conceal the interests of users, as fake requests

allow in PrivaTube.

Decouchant et al. [21] developed concurrently to our work a tech-

nique similar to our use of fake requests, but for pure peer-to-peer

video streaming, i.e. without any video servers. Peers subscribe to

k − 1 additional streams for each stream of interest, and participate

to the dissemination of all k streams. Similarly to fake requests in

PrivaTube, these additional participants increase the availability

of videos. P3LS enables, however, peers to participate with less

bandwidth to the dissemination of additional streams (up to 30%

according to simulations), provided that an attacker is not able to

determine with sufficient confidence a participation to the dissem-

ination of a stream of interest from the dissemination of another

stream. This property of plausible deniability [7] could also benefit

PrivaTube.

Other approaches target other applications such as peer-to-peer

file sharing. Swarmscreen [15] adds random connections in the

BitTorrent file-sharing network to enforce plausible deniability.

A noise level of 25% to 50% prevents an attacker from success-

fully mapping communities of interests in this network. However,

Swarmscreen fake connections do not prevent an attacker from

actively probing individual nodes for content and are not leveraged

to improve content availability.

Mistrustful P2P [18] leverages erasure codes to reduce the cost

of fake requests in a peer-to-peer file-sharing system and, as for

PrivaTube, improve content availability while concealing users’

interests.

Designing privacy-preserving systems using Intel SGX.

Trusted Execution Environments (TEEs) and in particular Intel SGX

have been extensively used in the past few years to build secure

and privacy-preserving systems. Examples include replication ser-

vices [10], Web search proxies [39, 47] or database systems [48, 51].

This demonstrates that TEEs are a promising technology as they

offer a satisfactory compromise between security properties and

performance overheads. While PrivaTube principles are not exclu-

sively relying on Intel SGX properties, it still illustrates the benefits

of this technology for performance-sensitive VoD applications.

8 Conclusion

We presented PrivaTube, a practical and privacy-preserving VoD

streaming system. PrivaTube aggregates video content from mul-

tiple servers and edge peers to offer a high QoE for its users. It

enables privacy preservation at all levels of the content distribution

process. It leverages TEEs at servers and clients, and obfuscates

access patterns using fake requests that reduce the risk of personal

information leaks. Fake requests are further leveraged to implement

proactive provisioning and improve QoE, filling two needs with

one deed. We implemented PrivaTube and showed in an extensive

evaluation of our prototype involving 14 SGX-enabled servers and

clients that PrivaTube reduces the load on servers and increases

QoE while providing strong privacy guarantees. Our future work

includes the investigation of more sophisticated fake requests tak-

ing into consideration movie access patterns over time and the

design of a private recommender system on top of PrivaTube.

Acknowledgments

We thank our shepherd, Mema Roussopoulos, and the anonymous

reviewers for their comments. This work was partially funded by

the French-German ANR-DFG project PRIMaTE (ANR-17-CE25-

0017), and by the Belgian FNRS project DAPOCA (33694591).

References
[1] 2018. Global Internet Phenomena Report. Technical Report. Sandvine.
[2] 2019. Cisco Visual Networking Index: Forecast and Trends, 2017ś2022. Technical

Report. CISCO.
[3] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz

Steiner, and Zhi-Li Zhang. 2012. Unreeling Netflix: Understanding and improving
multi-CDN movie delivery. In Proceedings of IEEE INFOCOM.

199

Middleware ’19, December 8ś13, 2019, Davis, CA, USA Simon Da Silva et al.

[4] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang. 2012.
Vivisecting YouTube: An active measurement study. In Proceedings of IEEE INFO-
COM.

[5] ARM. [n.d.]. TrustZone: system-wide hardware isolation for trusted software.
https://developer.arm.com/ip-products/security-ip/trustzone.

[6] Mira Belenkiy, Melissa Chase, C Chris Erway, John Jannotti, Alptekin Küpçü,
Anna Lysyanskaya, and Eric Rachlin. 2007. Making P2P accountable without
losing privacy. In ACM workshop on Privacy in electronic society (WPES). ACM.

[7] Vincent Bindschaedler, Reza Shokri, and Carl AGunter. 2017. Plausible deniability
for privacy-preserving data synthesis. Proceedings of the VLDB Endowment 10, 5
(2017), 481ś492.

[8] Alessio Botta, Aniello Avallone, Mauro Garofalo, and Giorgio Ventre. 2018. A
user-oriented performance comparison of video hosting services. Computer
Communications 116 (2018).

[9] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve Uhlig.
2018. Open connect everywhere: A glimpse at the internet ecosystem through
the lens of the Netflix CDN. ACM SIGCOMM Computer Communication Review
48, 1 (2018).

[10] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. Securekeeper: Con-
fidential ZooKeeper using Intel SGX. In 17th ACM/IFIP/USENIX International
Middleware Conference.

[11] Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Negru, Jordi Mongay Batalla,
and Eugen Borcoci. 2018. Adding a new dimension to HTTP Adaptive Streaming
through multiple-source capabilities. IEEE MultiMedia 25, 3 (2018).

[12] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. 2003. SplitStream: high-bandwidth multicast in
cooperative environments. In ACM SIGOPS Operating Systems Review, Vol. 37.
ACM.

[13] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.
Detecting privileged side-channel attacks in shielded execution with Déjà Vu. In
2017 ACM Asia Conference on Computer and Communications Security.

[14] Ann L Chervenak, David A Patterson, and Randy H Katz. 1995. Storage systems
for movies-on-demand video servers. In 14th Symposium on Mass Storage Systems.
IEEE.

[15] David R Choffnes, Jordi Duch, Dean Malmgren, Roger Guierma, Fabian E Busta-
mante, and Luis Amaral. 2009. Swarmscreen: Privacy through plausible deniabil-
ity in P2P systems. Technical report, Northwestern EECS (2009).

[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016 (2016), 86.

[17] Shujie Cui, Muhammad Rizwan Asghar, and Giovanni Russello. 2017. Privacy-
preserving content delivery networks. In 42nd Conference on Local Computer
Networks (LCN). IEEE.

[18] Pedro Moreira da Silva, Jaime Dias, and Manuel Ricardo. 2016. Mistrustful P2P:
Privacy-preserving file sharing over untrustworthy Peer-to-Peer networks. In
IFIP Networking Conference.

[19] Chris Dana, Danjue Li, David Harrison, and Chen-Nee Chuah. 2005. BASS:
BitTorrent assisted streaming system for video-on-demand. In 7th Workshop on
Multimedia Signal Processing. IEEE.

[20] DASH Industry Forum. [n.d.]. Guidelines for Implementation: DASH-AVC/264
Test cases and Vectors. https://dashif.org/docs/DASH-AVC-264-Test-Vectors-v1.
0.pdf.

[21] Jérémie Decouchant, Antoine Boutet, Jiangshan Yu, and Paulo Verissimo. 2019.
P3LS: Plausible Deniability for Practical Privacy-Preserving Live Streaming. In
38th International Symposium on Reliable Distributed Systems (SRDS).

[22] Jérémie Decouchant, Sonia Ben Mokhtar, Albin Petit, and Vivien Quéma. 2016.
PAG: Private and accountable gossip. In 36th International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE.

[23] Jie Deng, Gareth Tyson, Felix Cuadrado, and Steve Uhlig. 2017. Internet scale
user-generated live video streaming: The Twitch case. In International Conference
on Passive and Active Network Measurement (PAM). Springer.

[24] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington
DC.

[25] Tai T. Do, Kien A. Hua, and Mounir A. Tantaoui. 2004. P2VoD: Providing fault
tolerant video-on-demand streaming in peer-to-peer environment. In IEEE Intl.
Conf. on Communications (ICC), Vol. 3.

[26] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod,
and Swagatika Prusty. 2010. Lifting: lightweight freerider-tracking in gossip. In
11th ACM/IFIP/USENIX International Conference on Middleware.

[27] Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, Mahammad Valiyev,
and Jingjing Wang. 2017. I know nothing about you but here is what you might
like. In 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN).

[28] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. 2012. Koi: A location-
privacy platform for smartphone apps. In 9th USENIX conference on Networked
Systems Design and Implementation (NSDI).

[29] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,
andMichaelWalfish. 2016. Scalable and private media consumptionwith Popcorn.
In 13th USENIX Symposium on Networked Systems Design and Implementation

(NSDI).
[30] F. Maxwell Harper and Joseph A. Konstan. 2016. TheMovieLens Datasets: History

and Context. ACM Transactions on Interactive Intelligent Systems 5, 4 (2016), 19.
[31] Miltiadis Kandias, Lilian Mitrou, Vasilis Stavrou, and Dimitris Gritzalis. 2013.

YouTube user and usage profiling: Stories of political horror and security success.
In International Conference on E-Business and Telecommunications. Springer.

[32] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk Huh.
2019. ShieldStore: Shielded In-memory Key-value Storage with SGX. In 14th
EuroSys Conference (EuroSys). ACM.

[33] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In 26th USENIX Security Symposium.

[34] Harry C Li, Allen Clement, Edmund L Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin. 2006. BAR gossip. In 7th symposium on Operating
systems design and implementation (OSDI). USENIX Association.

[35] Yong Liu, Yang Guo, and Chao Liang. 2008. A survey on peer-to-peer video
streaming systems. Peer-to-peer Networking and Applications 1, 1 (2008), 18ś28.

[36] Dixin Luo, Hongteng Xu, Hongyuan Zha, Jun Du, Rong Xie, Xiaokang Yang, and
Wenjun Zhang. 2014. You are what you watch and when you watch: Inferring
household structures from IPTV viewing data. IEEE Transactions on Broadcasting
60, 1 (2014).

[37] Frank McSherry and Ilya Mironov. 2009. Differentially private recommender
systems: Building privacy into the Netflix prize contenders. In 15th ACM SIGKDD
international conference on Knowledge discovery and data mining.

[38] Ricky KP Mok, Vaibhav Bajpai, Amogh Dhamdhere, and KC Claffy. 2018. Re-
vealing the Load-Balancing Behavior of YouTube Traffic on Interdomain Links.
In International Conference on Passive and Active Network Measurement (PAM).
Springer, 228ś240.

[39] Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin, Rafael Pires,
and Valerio Schiavoni. 2017. X-search: Revisiting private web search using Intel
SGX. In 18th ACM/IFIP/USENIX Middleware Conference.

[40] Alok Nandan, Giovanni Pau, and Paola Salomoni. 2004. GhostShare: reliable and
anonymous P2P video distribution. In IEEE Global Telecommunications Conference
Workshops.

[41] NGINX Inc. [n.d.]. NGINX web server. https://www.nginx.com.
[42] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof

Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks.
In 2018 USENIX Annual Technical Conference.

[43] Emanuel Onica, Pascal Felber, Hugues Mercier, and Etienne Rivière. 2016.
Confidentiality-preserving publish/subscribe: A survey. ACM computing surveys
49, 2 (2016).

[44] Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou. 2003. Resilient
peer-to-peer streaming. In 11th IEEE Intl. Conf. on Network Protocols (ICNP).

[45] Peer5. [n.d.]. Last mile delivery: Ensure coverage in underserved regions and
internal networks with peer-assisted delivery. https://www.peer5.com/p2p.

[46] PeerTube. [n.d.]. A decentralized video hosting network, based on free/libre
software. https://joinpeertube.org/en/.

[47] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, Antoine
Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin, and Valerio Schiavoni. 2018.
CYCLOSA: Decentralizing Private Web Search Through SGX-Based Browser
Extensions. In 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE.

[48] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. Enclavedb: A secure
database using SGX. In Symposium on Security and Privacy (SP). IEEE.

[49] Quanteec. [n.d.]. Streaming with Quanteec: Quality and cost. https://quanteec.
com.

[50] MA Rajan, Ashley Varghese, N Narendra, Meena Singh, VL Shivraj, Girish Chan-
dra, and P Balamuralidhar. 2016. Security and privacy for real time video stream-
ing using hierarchical inner product encryption based publish-subscribe architec-
ture. In Workshops of the 30th International Conference on Advanced Information
Networking and Applications (WAINA). IEEE.

[51] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In Symposium on Security and Privacy.
IEEE.

[52] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld,
and Phuoc Tran-Gia. 2015. A survey on quality of experience of HTTP adaptive
streaming. IEEE Communications Surveys & Tutorials 17, 1 (2015), 469ś492.

[53] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE MultiMedia 18, 4 (Oct. 2011), 62ś67.

[54] Streamroot. [n.d.]. Powering the next generation of video delivery. https://
streamroot.io.

[55] Kyoungwon Suh, Christophe Diot, Jim Kurose, Laurent Massoulie, Christoph Neu-
mann, Don Towsley, and Matteo Varvello. 2007. Push-to-peer video-on-demand
system: Design and evaluation. IEEE Journal on Selected Areas in Communications
25, 9 (2007).

[56] Bo Tan and Laurent Massoulié. 2013. Optimal content placement for peer-to-peer
video-on-demand systems. IEEE/ACM Transactions on Networking (TON) 21, 2
(2013).

200

PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming Middleware ’19, December 8ś13, 2019, Davis, CA, USA

[57] Gil Tene. [n.d.]. WRK2: HTTP benchmarking tool. https://github.com/giltene/
wrk2.

[58] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel SGX kingdom with transient
out-of-order execution. In 27th USENIX Security Symposium.

[59] Xavier Vilaça, Luís Rodrigues, João Silva, Hugo Miranda, Gustavo Correia, and
Tiago Maurício. 2018. FastRank: Practical lightweight tolerance to rational
behavior in edge assisted streaming. Pervasive and Mobile Computing 46 (2018).

[60] W3C. [n.d.]. ActivityPub decentralized social networking protocol. https://www.
w3.org/TR/activitypub/.

[61] Susu Xie, Bo Li, Gabriel Y Keung, and Xinyan Zhang. 2007. Coolstreaming: Design,
theory, and practice. IEEE Transactions on multimedia 9, 8 (2007), 1661ś1671.

[62] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang Lin, Hui
Zhang, and Bo Li. 2009. Design and deployment of a hybrid CDN-P2P system
for live video streaming: experiences with LiveSky. In 17th ACM international
conference on Multimedia.

[63] Hongliang Yu, Dongdong Zheng, Ben Y Zhao, and Weimin Zheng. 2006. Under-
standing user behavior in large-scale video-on-demand systems. In ACM SIGOPS
Operating Systems Review, Vol. 40.

[64] Ge Zhang, Wei Liu, Xiaojun Hei, and Wenqing Cheng. 2015. Unreeling Xunlei
Kankan: Understanding hybrid CDN-P2P video-on-demand streaming. IEEE
Transactions on Multimedia 17, 2 (2015).

201

	Abstract
	1 Introduction
	2 System model and objectives
	3 Practical and High-QoE Streaming
	3.1 Edge-assisted CDN
	3.2 Adaptive Streaming
	3.3 Implementation

	4 Privacy in PrivaTube
	4.1 Trusted execution environments
	4.2 Fake requests

	5 Discussion
	5.1 Security Analysis
	5.2 Limitations

	6 Evaluation
	6.1 Experimental setup
	6.2 Performance of video servers
	6.3 Impact of assisting peers
	6.4 Fake requests and pre-fetching policies

	7 Related work
	8 Conclusion
	References

