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How individual species and entire ecosystems will respond to future climate change are 

among the most pressing questions facing ecologists. Past biodiversity dynamics recorded 

in the paleoecological archives show a broad array of responses, yet significant knowledge 

gaps remain. In particular, the relative roles of evolutionary adaptation, phenotypic 

plasticity, and dispersal in promoting survival during times of climate change have yet to 

be clarified. Investigating the paleo-archives offers great opportunities to understand 

biodiversity responses to future climate change. In this review we discuss the mechanisms 

by which biodiversity responds to environmental change, and identify gaps of knowledge 

on the role of range shifts and tolerance. We also outline approaches at the intersection 

of paleoecology, genomics, experiments and predictive models that will elucidate the 

processes by which species have survived past climatic changes and enhance predictions 

of future changes in biological diversity. 

 

Looking to the past to understand the future of biodiversity 

Current estimates predict that atmospheric CO2 levels may rise up to 450-500 ppm by the end 

of this century, potentially driving an increase in global average temperature on the order of 2 

to 5 ºC [1]. These projected magnitudes and rates of future climate change, unparalleled in 

many million years [2], pose major threats to biodiversity [3–6]. The scientific community is 

struggling to fully comprehend the range of responses of biodiversity to climate change, to 

anticipate whether species can respond quickly enough, and pinpoint the various roles of life-

history properties (e.g., dispersal capacity, genetic diversity, reproductive strategies, 

phenotypic plasticity, population growth rates) in adapting to a changing environment. To 

make reliable predictions it is essential to advance our understanding of the underlying 

principles and mechanisms of biodiversity responses. One fruitful approach is to look to the 

past by using geo-historical records to learn how individuals, populations, communities and 



biomes have responded to previous climatic changes [7–11]. Whether individuals and 

populations will adapt by evolutionary change or plasticity, whether they will migrate fast 

enough, and whether those responses will be adequate to forestall collapses of species ranges 

and prevent widespread species extinctions can be explored using case studies from the past.  

Indeed, past climate change, whether abrupt or gradual, and whether occurring in deep time 

or recent history, offers a vast set of unplanned natural experiments to explore biodiversity 

responses and test ecological and evolutionary theories. Recent years have seen the 

accumulation of well-documented examples of the influence of climate change on 

persistence, adaptation and diversification, dispersal, and extinction (e.g. [12–15]). The 

effects of climate change on rates and routes of range shifts have been intensively studied by 

biogeographers and paleoecologists, augmented recently by molecular markers and ancient 

DNA (aDNA; [16,17]). In situ tolerance to changing climate conditions has been explored in 

the fossil record using functional morphology and evolutionary genetics, including recent 

experimental approaches like ‘resurrection ecology [15,18,19]. Finally, paleoecological 

records of local and global extinctions provide information on the nature and consequences of 

failure of in situ tolerance and range shifts [20,21].  

 

However, key knowledge gaps remain. The relative importance of different mechanisms 

involved in species tolerance (e.g., evolutionary adaptive change versus phenotypic 

plasticity), and the nature and rates of climate-driven anagenetic evolution - a transition of 

one species to another- and cladogenetic evolution - the separation of a species into two or 

more species or clades- remain poorly understood [22]. The relative efficacy of in situ 

tolerance and range shifting under different rates and magnitudes of climate change is 

obscure [23,24]. Although much attention has been devoted to paleoecological records of 

species’ range shifts [25], the speed and  underlying controls are not clear except in a few 



specific cases [24]. Moreover, significant challenges remain for better integrating knowledge, 

scales, methods and data from a variety of biological disciplines, from paleoecology to 

genomics. In this review, we (1) synthesize the main responses of biodiversity to past climate 

change from deep to recent time (tolerance in situ, range shifts, and their simultaneous 

failure, resulting in extinction), (2) identify key knowledge gaps concerning underlying 

mechanisms (which span a broad set of biological disciplines), and (3) review and discuss 

new approaches that integrate multiple methods and disciplines to better understand the 

strategies by which life adapts to climate change and to better anticipate future responses of 

biological diversity. 

 

Biodiversity responses to climate change 

Tolerance, Adaptive Evolution, and Diversification 

Biotic responses to climatic and environmental changes as shown by the fossil records vary 

from macroevolutionary divergences (at very long (106-107 yr) time scales), to adaptive 

evolution (100-105 yr), to phenotypic adjustments in place (10-1-103 yr). Long-term climate 

change has been considered an important driver of high-order diversification, as clades 

respond to new climatic regimes [14]. In shorter time spans, many individuals and 

populations (e.g. long-lived modular organisms like corals and plant genets) can tolerate a 

high degree of climate change in situ. Paleogenetic records suggest also that adaptive 

evolution can support long-term persistence of species in response to climate change [26]. 

Adaptations can enable exploitation of new niches: for example, adaptive mutations in 

woolly mammoth haemoglobin allowed the exploitation of high-latitude cold environments 

during the Pleistocene [27]. Examples of more recent microevolutionary responses to climatic 



change include changes in the body color of owls during warmer winters [28], or adaptive 

changes in the flowering time of Brassicas in response to drought [29].  

 

Whether adaptive evolutionary change or plasticity are the prevalent strategy to tolerate 

climatic changes in situ, and at what spatial and time scale these two processes play a role, 

can be difficult to disentangle for extant populations [22,30] and even more challenging for 

ancient extinct populations, but both are candidate processes in population persistence under 

climate change. For most reported cases of climate-driven phenotypic changes in the wild, it 

remains unclear whether they are caused by microevolution or phenotypic plasticity, although 

recent meta-analyses suggest that most responses to climatic change are mediated by 

phenotypic plasticity [22,31] (see also [32–35]).  

Range shifts  

Range shifting (usually referred as migration in paleo-disciplines) has been a dominant 

response of species to climate shifts in the past [25]. Past range shifts are typically inferred 

from spatial and temporal patterns in fossil data [36,37], geographic patterns in genetic 

markers of extant and extinct populations [17], or both (e.g. [38]). They have shown variable 

species-specific spatial trajectories, timing and migration rates, ranging from a few tens to a 

few thousand m/yr, with averages around 2.7 km/decade [39–41]. Overall, there is evidence 

of both rapid range shifts and community reshuffling [42] as well as many species lagging 

behind climate [43], which reinforces the high specificity of range shift patterns across taxa.  

 

There are many different mechanisms by which climate change influences range shifts [44]. 

First, climate change can improve suitability beyond the range limit so that species may 

establish at formerly unsuitable areas like higher latitudes or altitudes [45,46]. . Second, 



climate change could foster colonisation of new areas in several ways: enhanced fecundity of 

source populations (thus increasing propagule pressure), increased propensity to disperse or 

emigrate (particularly in animals), or acceleration of dispersal processes [47,48]. Climate 

change can also enhance establishment of propagules after arrival, both directly [49] and –

particularly in rapid climate change– by reducing populations of dominant species, via 

mortality or disturbance [50]. Finally, climate change could reduce the probability of 

extinction of leading edge populations, for instance due to extreme climatic events [51]. A 

variety of processes are involved in species’ range shifts, all of which can be directly or 

indirectly (e.g. mediated by species interactions) influenced by climate change [23,50,52,53]. 

A challenge for ecologists, biogeographers, and paleoecologists is to identify generalizations, 

and to understand the role of species-specific, locale-specific, and time-specific contingencies 

and idiosyncracies in driving patterns and rates of range shifts. 

 

Extinction 

When species cannot tolerate climate change in situ, or colonize suitable habitat elsewhere 

quickly enough, they become extinct. In extreme cases, many high-order clades can be lost in 

mass extinction events [54,55]. There is strong support for a primary role of climate change, 

alone or in connection to other factors, in extinction events of different magnitude over the 

last 500 million years, including the recent extinction of large mammals in the last 50,000 

years [21]. Evidence of climate-driven species extinctions in recent centuries is limited [56], 

with rare exceptions being synergistic functions of both 20th century human-induced climate 

change and other proximate drivers of extinction (including infectious diseases) [57]. 

However, anthropogenic climate disruption is predicted to soon compete with habitat 

destruction as the most important driver of contemporary extinctions [58,59]. 

 



Climate change may trigger extinctions and local extirpations by surpassing the physiological 

limits of species, by reducing primary productivity of ecosystems and thereby local 

population fitness across food webs, and indirectly by disrupting ecological interactions via 

changes in species distributions or phenology. For instance, coral bleaching, the loss of 

intracellular endosymbionts due to the increase in prevalence of extreme heating episodes and 

changes in the carbon cycle, is one of the main supported mechanisms behind coral 

extinctions during the five mass extinction events [60]. Also, drier and colder climatic 

conditions during the LGM triggered a reduction in overall primary productivity, provoking 

losses in genetic diversity and populations of large grazers [13], depleting lineages, for 

example, of bowhead whales [61], and contributing to local and global extinctions [21]. 

These pathways to extinctions in different periods of the Earth’s history share some 

commonalities. In particular, climatic changes that exceed in magnitude and speed those 

experienced during the evolutionary history of species usually trigger extinction events, and 

climate change has frequently interacted with other extinction drivers [61].  



Unknowns, challenges and routes ahead 

Our review of the modal responses of biodiversity to past climate change unveils key 

knowledge gaps concerning the underlying mechanisms. We identify and discuss them here 

and propose new integrative approaches that show potential to crack the code of how 

biodiversity responds to climate change. 

 

Evolutionary adaptation versus plasticity? 

 

Climate-relevant decisions and policies implemented today (e.g., levels of CO2 emissions) 

have both short and long-term consequences for future biodiversity, influencing range shifts, 

divergence, speciation, hybridization, anagenetic evolution and extinction. Paleo-archives 

reveal that speciation, evolution and phenotypic change have played roles in species 

responses to past environmental changes.  However, the relative roles of those mechanisms in 

different settings, for different taxa, and across different timespans need clarification and 

exploration [62].  

At deep-time scales, comparative phylogenetics and novel macroevolutionary approaches are 

offering new insights into speciation and phenotypic change in response to major climatic 

shifts [63]. For instance, it was found that expected future climate change largely surpass past 

rates of climatic niche evolution among vertebrate species [64]. Comparative approaches 

allow fitting various models of phenotypic evolution and diversification to phylogenies in 

order to estimate evolutionary rates, including speciation and extinction [14]. Recently, 

models that can explicitly test for the effect of climatic changes on these evolutionary rates 

have been developed [65–68]. Future studies including genomic level data across thousands 

of species and climate-dependent evolutionary models will provide deeper insights on the 

role of climate change on speciation, including bursts, and phenotypic change. 



 

At shorter time spans, from thousands to hundreds of years, comparative analyses of species 

and populations provide important insights into the evolutionary processes that led to present 

day genetic and phenotypic diversity. However, when limited to exploring extant genetic 

patterns, inferences on past processes can be limited. New approaches considering species’ 

traits and explicit scenarios of past range dynamics can bring much deeper insights on the 

role of phenotypic variation on population persistence, range shifts, and generation of genetic 

structure [69]. Alternatively, long-term observational studies enable measurement of 

evolutionary processes by comparing temporal changes in genetic and phenotypic diversity 

with expectations of neutral and adaptive evolutionary models [70]. Long-term studies, 

however, may require commitments beyond the career or life spans of individual researchers. 

‘Resurrection Ecology’ (see Glossary, Figure 1 and Anticipating Extinctions section) 

provides an alternative and complementary path to reconstructing long-term patterns of 

evolutionary changes and unravelling mechanisms of response to climatic and other 

environmental changes [15].  

 

Migrating fast enough? 

 

Although dispersal is a key process underlying range shifts and the spread of native and 

invasive species, the migration capacity of species under rapid climate change remains 

uncertain [23]. While some taxa seem unable to shift ranges under changing climates [43], 

others seem able to migrate at a fast pace [45]. Attempts to explain observed range shifts 

based on species traits or ecological strategies have obtained modest results [71,72] (but see 

[73]). Low predictability may be expected given the large number of processes involved in 

range shifts, as well as the complexity and path-dependence when those processes interact. 



The dispersal process itself is highly stochastic and inherently uncertain [74]. Other important 

processes include size and fecundity of source populations (which determine propagule 

pressure), gene flow, local adaptation, evolution of dispersal, biotic interactions (competition, 

facilitation, mutualisms), Allee effects, and so on, all of which are likely to be affected by 

climate change [23]. Spatial heterogeneity on the landscape plays a role (e.g., dispersal-target 

size), as does high-frequency climate variability [47,50]. As a result, we may not be able to 

go much farther than estimating dispersal potentials for different species or populations [74]. 

A critical challenge is to use paleoecological and ecological data to identify generalizations 

that can emerge from the location-specific, species-specific, and event-specific particulars of 

detailed case studies [47,50]. 

 

Paleoecology has largely contributed to estimate how fast species migrated under past 

climatic changes under minimum levels of pre-historic global human intervention. 

Unfortunately, contemporaneous dispersal rates are likely to be rather different than past rates 

due to radically different conditions: more fragmented habitats, missing and novel 

interactions, or nearly unlimited human-mediated dispersal [23]. Hence, estimates of past 

migrations rates, however informative, may be of limited value when attempting to forecast 

future range shifts. Instead, a better understanding of the causes of variation in range shift 

rates may move us forward. Comparative studies of range shifts patterns among tens or even 

hundreds of species could throw some light into the role of environmental (contingent) 

factors as well as intrinsic factors that make some species migrate faster, slower or not at all. 

 

Anticipating future extinctions 

Revealing how the accumulative failure of in situ tolerance and dispersal mechanisms leads 

to population extirpation and ultimately species extinction under climate change is of utmost 



importance to provide robust scenarios for future biodiversity and to enhance conservation 

strategies. Recent insights on the factors correlating with declining genetic diversity, 

population sizes, and local and global extinctions, have been achieved for megafauna species 

during the Late Quaternary, highlighting the key role of the integration of disciplines like 

paleo-genomics and macroecological models [13] to explain range shifts, population 

collapses and species extinctions under climate change. More recently the application of 

genomics to historical specimens in biological collections is arising as a novel trend to 

understand genomic erosion of endangered species [75]. Although past biotic turnover and 

extinction events have provided better knowledge on extinction dynamics and their relation to 

climatic changes, paleo-data together with current data has only recently been fully 

implemented in quantitative assessments of future risk of extinction [76]. Moreover, 

correlative approaches lacking key biological mechanisms have dominated the forecasting of 

future responses of biodiversity to climate change. A paradigm shift from correlative models 

of different complexity to process-based simulations informed by paleo-records will bring 

deeper insights on the interplay of tolerance and dispersal to explain species range dynamics 

and extinctions under climate change [77] (Box 2; Figure 2).  

 

Integrating experimental approaches, paleorecords and models 

A large gap remains between mechanistic experiments at local scales and large-scale 

macroecological models that forecast the persistence of biological diversity under future global 

climate change [78]. The integration of experimental paleoecology, resurrection ecology, and 

large-scale process-based models holds a great potential to shed light on key mechanisms, as 

the unveiled role of in situ adaptation via evolutionary changes. Their integration can also 

provide large scales predictions of the magnitude and speed of evolutionary change that species 

will need to achieve for averting declines and extinction. 



 

Resurrection Ecology (RE) focuses on life forms (zooplankton, insects, algae, fungi, bacteria, 

plants) producing resting stages as part of their life cycles in response to environmental 

hardship [18,79,80], and its temporal extent encompasses mainly the last 200 years (but see 

[81]). When such resting stages can be recovered from ancient sediments and reared in the 

laboratory, they can reveal molecular targets (genes, metabolites, proteins) that enable 

evolution and adaptation to changing climate. Resurrecting individuals from such species and 

populations across documented temporal shifts in the environment uniquely permits 

simultaneous measurement of both plastic (phenotypic and behavioural) and genetic 

(evolutionary) responses to climatic change, using common garden or transplant experiments 

[82,83]. Relative fitness of both historical and modern populations can be measured in 

response to different climatic regimes, including past, present and future. Such long-term 

studies, replicated across multiple environments and taxa, can be a powerful resource for 

building models to forecast species persistence [84] (Figure 1).  

 

A long-standing complement to resurrection ecology might aptly be designated Methuselan 

ecology (after the biblical character known for his multi-century longevity).  Methuselan 

ecology (ME) focuses on multiple, overlapping generations of living organisms of unusual 

longevity and studies them to examine demographic, genetic, and ecological responses to 

environmental change. Tree-rings have long been used to reconstruct growth responses to 

climate variation over centuries to millennia, and effects of climate variability on demographic 

patterns over several centuries [85–87].  In a recent set of studies, tree-ring demography has 

been combined with genetic studies to examine patterns, rates, and controls of colonization of 

new sites by Pinus ponderosa in western North America, revealing interactions among long-

distance dispersal, population genetics, climate variability, and Allee effects [88–90]. Although 



more difficult to apply to animals, potential exists for simultaneous age- and genetic sampling 

of animals of unusual longevity that can be independently aged (e.g., certain marine fish, 

tortoises, corals). 

 

Incipient modelling approaches providing spatially explicit predictions of shifts on species 

distribution and abundance can now incorporate evolutionary adaptation [91]. These models 

are however in need of quantitative estimates on the magnitude and speed of adaptation, and 

both Resurrection Ecology and Methuselan ecology can provide actual values based on 

historical information. Yet this integration between data and models to forecast future 

responses at large spatial scales across a variety of taxa faces daunting challenges. Both RE 

and ME are restricted to a limited set of organisms under a limited set of circumstances 

(experimental and natural) [80,83]. However, this is not an issue to understanding organismal 

response to climatic change. Indeed, some species that provide the unique advantage of 

resurrecting dormant stages are also keystone species in their ecosystem, enabling us to 

illuminate the links in the causal chain from genes to communities and ecosystems. Ideally, 

model organisms and systems that feature a comprehensive triad of strong ecological 

interactions in nature, experimental tractability in diverse contexts and accessibility to 

modern genomic tools, may be used [92]. The water flea Daphnia and the flowering plant 

Silene stenophylla, as well as a number of bacteria are examples of organisms that satisfy 

these criteria [15]. They can be used as proxies to study the impact of climatic change on 

different ecosystems.   

 

Resurrection Ecology and Methuselan ecology do not only dig in the past. A forward-in-time 

approach, involving long-term collection of propagule-banks [79,83] will allow scientists in 

the future to measure the magnitude and speed of evolutionary changes. Under the Project 



Baseline, seeds of several populations across the geographical range of >60 plant species are 

now stored and will be grown with contemporaneous seeds during the next 50 years, allowing 

the identification of phenotypic and molecular evolution occurring during the intervening time 

under different magnitudes of climate change. Similar initiatives in other continents, and a 

taxonomic expansion of these experiments, would enable a next generation of predictive 

models incorporating evolutionary adaptation. Joseph Grinnell in 1910 already foresaw that 

the most significant value of his field work on Californian fauna would be for the students of 

the future. Today, his and other pioneers’ data have served to document  the magnitude and 

rates of species range shifts and local extirpations in the last century [12,93–96].  

 

Concluding remarks 

Climate change has triggered large and persistent effects on biological diversity, including 

speciation, redistribution, local adaptations and extinction events. However, a deeper 

mechanistic understanding of these dynamics is urgently needed (see also Outstanding 

Questions). Until recently, most evidence suggested that biotic responses to climate change 

were dominated by range shifting. It is now clear from both paleoecological and ecological 

perspectives that in situ tolerance, being plasticity or adaptive evolution, are also key 

responses to climate change. Although adaptation is now an important object of study, we are 

still lacking sufficient evidence - comparative or experimental - on fundamental questions: 

How is adaptive evolution shaped by dispersal and range shifting in real ecosystems? 

Conversely, how is dispersal influenced by adaptive evolution?  How do tolerance, adaptive 

evolution, and dispersal interact in specific circumstances to reduce or amplify risk of 

extinction?  The integration of recorded long-term responses and ecological and evolutionary 

theories into models will facilitate a deeper understanding of the roles of adaptation and 

dispersal under climate change. Cracking the code of past biodiversity responses to climate 



change will increase the ability to anticipate, adapt and mitigate future declines of biological 

diversity under climate change.  
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Glossary  

Adaptive evolution –Results from the propagation of advantageous alleles in populations through 

natural selection, driven by environmental selection pressure acting on genes underlying species traits 

linked to fitness. 

Dormant propagules – A still living seed, cyst, spore or egg that has arrested development and is 

preserved in ice, soil, sediment, permafrost. 

Experimental Paleoecology: Experimental studies to test sufficiency and necessity of mechanisms 

(or combinations or sequences of mechanisms) invoked to explain paleoecological phenomena.   

Migration – Spatial displacement of organisms leading to shifts of species distributions  

Paleogenomics – The study of ancient genomes to reveal functional genetic patterns through time, 

supporting inferences concerning evolutionary adaptation, functional traits, population dynamics, 

domestication, genetic events preceding extirpations or extinctions, and other patterns of interest. 

Phenotypic plasticity – Ability of individuals of a genotype to alter physiology, morphology, 

anatomy, phenology, behaviour, or other phenotypic traits in response to environmental change.  

Resurrection ecology – Study of traits and environmental responses of past populations by hatching 

or germination of dormant propagules and culturing or cultivation of the organisms. 

Process-based models - Spatially explicit approaches that simulate the effect of climate and 

environmental conditions on important vital rates (including population growth, dispersal and 

plasticity in demographic traits) to explain species distributions and their changes, including range 

shifts and local extirpations. 

Tolerance –Ability of a population to persist at a site under environmental change by adaptive 

evolution, phenotypic plasticity, or both. 

 

  



Box 1. Biodiversity responses to past climate change.  

 

 Figure I: Future climate forcing will surpass those of the previous several million years [2]. Countless 

individuals in thousands of species across the globe will need to tolerate climate change in situ, disperse 

to more suitable climatic conditions, or undergo extinction. Figure I highlights a number of biodiversity 

responses directly or indirectly linked to climatic changes along the Cenozoic (last 66 million years). 

1) During the Paleocene-Eocene Thermal Maximum (~56 million years before present) there were large 

extinctions in some marine groups (benthic foraminifera), remarkable poleward range shifts in others 

(dinoflagellates, mammals, reptiles, plants), and high community turnover [97]. 2) Under a global 

cooling trend, winters became >4 °C colder across the Eocene-Oligocene boundary, partially driving 

extinction of many terrestrial mammals in Europe as well as marine invertebrates globally [98]. 3) Many 

thermophilous plants shifted their ranges southward and finally went extinct in Europe during the late 

Miocene global cooling [99]. 4) More than half (52%) of the cool-temperate European tree genera did 

not survive the glaciation cycles starting at the end of the Pliocene [100]. 5) An adaptive mutation of 

haemoglobin enabled mammoths to tolerate the very low temperatures at high latitudes [27]. 6) More 

than 70% of megafauna genera in the Americas and Australia, and 40% in Eurasia, underwent extinction 

within a relatively brief period of time (5,000-10,000 years) in co-occurrence with climatic changes and 

human impacts [55]. 7) Plants in North America migrated northwards between 450 and 2200 km in less 

than 10,000 years under a warming of 5 degrees [101]. Past temperature data from [102]; future 

temperature projections (under two greenhouse concentration scenarios: RCP2.5, most benign, and 



RCP8.6, most extreme) from [1]. Abbreviations of geological epochs as follows: P = Palaeocene, Eo = 

Eocene, Ol = Oligocene, Mi = Miocene, Pli = Pliocene, Ple = Pleistocene, Hol = Holocene. 

 

  



Box 2. Correlations are not enough: simulations and process-based models to improve 

biodiversity forecasts 

Much evidence for the impact of past climate change on biodiversity is based on patterns of 

co-occurrence between past climatic events and biological responses such as migration, 

tolerance and extinction. However, the low temporal resolution of available dating techniques 

for paleorecords often creates difficulties in aligning relevant abiotic dynamics (i.e., climate 

change, acidification, volcanisms) with biological events. Moving from correlations to 

causation is challenging because of the co-varying changes in the environment.  Recorded 

biological responses in paleo-records can be used as the testing ground of models deeply 

rooted in competing ecological and evolutionary theories (Figure 2) [103]. In process-based 

models [104] these records can serve to inform model parameters, test competing hypotheses 

and scenarios with the paleorecords, and improve predictions. Nonetheless, predictions may 

be hindered due to limited data availability that stems from low sampling effort, or because 

the potential for fossilization is not even across regions and species. Given these constraints, 

vertebrates and plants from temperate, cold and dry regions of the planet appear by now as 

the best suited to apply process-based models in the past.  The development and further 

integration of experiments, paleo-records and spatial models on past ecosystems will push the 

envelope of predictive models of biodiversity and the adequacy of theories and different 

processes to explain past, and future, biodiversity dynamics under climate change.  

 

 

 

 

 

 



Figure 1. Reconstructing historical patterns of evolutionary change for unravelling 

mechanisms of genetic and plastic response to anthropogenic environmental changes. a) 

Conceptual framework for the integration of resurrection ecology and predictive models. 

Using for example Daphnia, dormant propagules can be resurrected (step 1). On resurrected 

propagules, genetic (G) and phenotypic changes (P) can be quantified over evolutionary time. 

Similarly, environmental factors (E) can be inferred from historical records or measured e.g. 

via chemical analysis of sediment. The genetic mechanisms (G) underlying phenotypic 

changes (P) are identified via a genome wide association analysis (GWAS) (step 2). The 

causal link between phenotypic changes (P) and environmental variation (E) is established 

via experiments with the support of historical environmental records or reconstruction of 

temporal trends in environmental variables (PR). The parameters for predictive models of 

phenotypic trajectories are trained on empirical data (G, P and E) from the sedimentary 

archive (step 5). Several iterations may be needed to identify the parameters that best fit the 

empirical data. Using the optimized parameters, future trajectories of phenotypic (and the 

underlying genotypic) trajectories are identified, with a level of uncertainty (step 6).  b) 

Scaling up the approach described in a) to a macroecological scale, across sites -represented 

by yellow circle- and biological systems within ecosystems from the tropics to the poles, we 

can identify evolutionary and plastic responses of species to global anthropogenic pressures 

(within circles from upper left to bottom right: habitat degradation, land-use changes, 

invasive species and climate change).  

 

 

 

 

 



Figure 2 Cracking the code of biodiversity responses to climate change. Here we 

summarize the paleo-data sources, workflow, research challenges and opportunities to 

incorporate multiple lines of evidence on the magnitude, rate, and processes involved on 

biodiversity responses to past climate changes for informing biodiversity scenarios. a) 

Digging in the past (here an example of Late Pleistocene in western Europe) to reconstruct, 

using a variety of paleo-records (i.e., dated fossil records, ancient molecules) and disciplines 

(paleoecology, population genomics), the past environmental and biotic conditions and 

responses to past climate change. b) Main theories and predictions are simulated and tested in 

process-based models against past recorded trends. c) Opportunities and challenges ahead to 

ground future biodiversity scenarios in past biological responses and tested biodiversity 

models. 

 

 


