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Abstract 

Radiotherapy is one of the most common form of treatment in oncology care. Indeed, radiotherapy 

proved to be very effective in treating a wide range of malignancies. Nevertheless, certain tumours are 

intrinsically radioresistant or may evolve to become radioresistant. Resistance to radiotherapy is often 

associated with dysregulated DNA damage response and repair. Recently, a number of strategies have 

been developed to improve radiotherapy efficacy by targeting the DNA damage response and repair 

pathways. Ongoing clinical trials showed the potential of some of these approaches in enhancing 

radiotherapy, but also highlighted the possible limitations. Here, we will describe (i) the main 

mechanisms involved in double-strand break repair; (ii) available strategies that target these DNA 

repair processes to improve radiotherapy and (iii) the clinical outcomes and challenges that have 

emerged so far.  
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Résumé  

La radiothérapie est l’une des formes de traitement la plus couramment utilisée dans la prise 

en charge des cancers. En effet, la radiothérapie s'est révélée très efficace dans le traitement 

d'un large éventail de tumeurs malignes. Néanmoins, certaines tumeurs sont intrinsèquement 

radiorésistantes ou peuvent évoluer pour le devenir. La résistance à la radiothérapie est 

souvent associée à une dérégulation de la réponse aux dommages de l'ADN et de leur 

réparation. Récemment, plusieurs stratégies ont été développées pour améliorer l'efficacité de 

la radiothérapie en ciblant ces voies. Les essais cliniques en cours ont démontré le potentiel de 

certaines de ces approches pour améliorer les résultats de la radiothérapie, mais ont également 

mis en évidence les limites possibles. Nous décrirons ici (i) les principaux mécanismes 

impliqués dans la réparation des ruptures double-brin; (ii) les stratégies disponibles qui ciblent 

les processus de réparation de l'ADN afin d'améliorer la radiothérapie et (iii) les résultats 

cliniques et les défis qui ont émergé jusqu'à présent. 
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1. Introduction 

DNA integrity is constantly challenged by various types of genotoxic insults (1). An uncorrupted 

DNA damage response is essential to preserve genomic integrity. Dysregulation of DNA damage 

signalling and/or DNA damage repair pathways are a known hallmark of cancer (2, 3). The DNA 

damage response of eukaryotic cells has evolved to repair a diversity of DNA damage types, by many 

independent repair pathways. Part of these pathways are functionally redundant allowing for a fail-safe 

mechanism whereby dysfunction of one pathway will be compensated by the hyperactivation of 

another pathway (4-7). These compensatory mechanisms in tumour cell context can result in increased 

cancer resistance to DNA damaging agents including radiotherapy, affecting cell  response and 
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outcomes to genotoxic therapies (8, 9). On the other hand, it may create a vulnerability specific to the 

tumor as its cells are reliant on alternative pathways for survival (10).  

Half of cancer patients are treated with radiation as a primary line of treatment (11, 12). 

Radiotherapy’s cytotoxic effect is mainly exerted by inducing DNA double-strand breaks (13). DNA 

double-strand breaks are the most deleterious type of DNA lesion and are also one of the most difficult 

to repair, making radiotherapy one of the most effective forms of cancer therapy (14,15). The major 

pathways involved in the repair of DNA double-strand breaks are: non-homologous end joining, 

homologous recombination and microhomology end joining. Due to their genetic instability and active 

proliferation, tumour cells are in general more radiosensitive than normal cells (16-18). Nevertheless, 

efficacy of radiotherapy greatly depends on the delivered dose. However, the maximal radiation doses 

that can be administered are limited by the sensitivity of the tissues and organs surrounding the tumour 

and the acceptable levels of morbidity (12, 19, 20).  

Enhancement of tumour response to radiotherapy through DNA repair inhibition has been in the 

foresight of translational radiotherapy research for decades (21). The use of DNA repair inhibitors may 

help tackling three of the major clinical challenges associated to cancer treatment: (i) widening the 

therapeutic index (11), (ii) prevent or reverse resistance to treatments by impeding the cell’s recovery 

(18); and/or (iii) kill cells that rely on compensatory DDR mechanisms through synthetic lethality 

(10). The research and development of drugs affecting DNA damage signalling and repair has been the 

object of extensive research in the preclinical and clinical realm with so far, a moderate success. 

Limitation associated to the use of these inhibitors are often lined to excessive toxicity at effective 

doses and or resistance to the treatments through compensatory pathways that limit their efficiency. 

Many DNA repair inhibitors are already being tested in combination with radiotherapy. In this review 

we will focus on the main three pathways involved on the repair induced by radiotherapy, non-

homologous end joining, homologous recombination and microhomology end joining, and on the 

therapeutic value and clinical outcomes of inhibiting them.  

2. Inhibitors of DNA damage signalling 

An approach to hamper DNA double-strand breaks repair is through dysregulation of its signalling. 

The detection and signalling of DNA double-strand breaks are the very first steps of DNA repair 

pathways. The DNA damage response pathway transduces the presence of DNA damage to effector 

protein that will act in a choreographed manner to repair the insult. The most effective sensors of DNA 

double-strand breaks are the Mre11, Rad50 and NBS1 (MRN) complex and Ku heterodimer (22-24). 

These sensors will recruit signal transducers from the phosphatidylinositol 3-kinase-related kinases 

(PIKKs), a family of serine/threonine-protein kinases including: ataxia–telangiectasia mutated (ATM), 

ataxia telangiectasia and Rad3 related (ATR) and DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs), mammalian target of rapamycin (mTOR), nonsense mediated mRNA decay associated 
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PI3K-related kinase (SMG1), and transformation/transcription domain-associated protein (TRRAP) 

(25-28). These family of DNA damage signal transducers will in turn modify a large set of proteins 

involved in DNA repair, transcription regulation, cell cycle and apoptosis. Inhibition of the PIKKs 

through their catalytic site has shown to affect the cell’s response to DNA damage and genotoxic 

insults, making them interesting targets to enhance radiotherapy efficacy. The DNA damage response 

is mostly regulated by ATM, ATR and DNA-PK, justifying the fact that inhibitors of these three 

PIKKs are the most exploited and advanced in the clinic. ATM and DNA-PKcs are activated upon 

DNA double-strand breaks sensing, while ATR is activated by single-strand breaks and replication 

stress. Inhibition of signal transduction of DNA double-strand breaks will seriously hamper all 

downstream DNA repair as effectors proteins cannot be recruited to the damage site without it. 

Combination of DNA damage signalling inhibitors with genotoxic therapies, such as radiotherapy, 

should enhance the efficacy of those therapies by preventing the repair of the damage induced by the 

treatment.  

Inhibition of DNA-PK will be covered in “the inhibitors of non-homologous end joining repair 

pathway” section as DNA-PK is an important mediator of such pathway. In this section we will focus 

on the inhibition of ATM and ATR combined to radiotherapy. The grounds to use such inhibitors are 

based on their two main functions: (i) signal transduction of DNA double- and single-strand breaks 

and (ii) their role on cell cycle control through modification of CHK2 and CHK1 checkpoint kinases. 

Failing to transduce DNA damage signalling will hinder recruitment of DNA repair effectors affecting 

all downstream pathway. While at the same time, the cell will not undergo cell cycle arrest and take 

the necessary time to repair and recover from the damage induced by radiotherapy.  

ATM inhibitor AZD1390 has shown very interesting results in combination with radiotherapy in 

preclinical brain tumour models (29). It is currently being tested in a phase I clinical trial for safety 

and tolerability in combination with radiotherapy, as another ATM inhibitor M3541 (NCT03225105). 

Other ATM inhibitor, AZD0156, is being tested in the clinic for phase I safety trial in association with 

various chemotherapies including other DNA damage response inhibitors (NCT02588105). 

ATR inhibitors are as well an interesting target to be associated with radiotherapy, as they are signal 

transducers of single-strand breaks. Most of the DNA damage induced by radiation is by single-

strand breaks generation. Inhibition of ATR upon radiotherapy will prevent the repair of single-strand 

breaks and the phosphorylation of checkpoint kinase 1 (CHK1). Unrepaired single-strand breaks may 

become DNA double-strand breaks at replication or transcription steps and lead to cell death if left 

unrepaired. ATR inhibitor M6620 is being tested in combination with radiotherapy in brain 

metastasis (NCT02589522) and with other chemoradiotherapy protocols (NCT03641547). As well, 

AZD6738 ATR inhibitor is being tested with RT (NCT02223923) and other DDR inhibitors too 
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(NCT03682289). All these trials are still in early stages, aiming to determine whether ATR inhibitors 

are tolerable and if their combination with radiotherapy may be beneficial to patients.  

Challenging the conventional targeted approach of inhibition, an innovative concept has been 

proposed through Dbait/AsiDNA™ molecules that work by priming the hyperactivation of DNA 

damage response systems instead of inhibiting it. Dbait molecules are made of a double-strand 

oligonucleotide mimicking a DNA double-strand breaks (30). Main DNA repair proteins as DNA-PK 

and PARP recognize and bind to it, being thereby activated (31,32). Their activation triggers an 

hypertransduction of DNA damage signal in the absence of any actual chromosomal damage (30, 33). 

This signal “blinds” the cell from the damage created by genotoxic therapies, such as radiotherapy, 

hindering and reducing the cell’s ability to recruit repair effectors enzymes to the real damage site 

induced by radiation. The proteins involved in single- or DNA double-strand breaks repair will not be 

able to form repair complexes and overall DNA repair is ineffective. Major repair pathways, such as 

non-homologous end joining and homologous recombination for DNA double-strand breaks and 

PARP-dependent single-strand breaks repair are hampered with a single agent. It was recently shown 

that the ability of Dbait to deregulate DNA damage response as a whole, instead of a single enzyme, 

reduces the cell’s ability to evolve resistance to the treatments (34). This broad spectrum of inhibition 

has also allowed for the use of AsiDNA™ combined to other DNA repair inhibitors as PARP 

inhibitors in order to create a drug-driven synthetic lethality, bypassing the requirement for tumour 

with a homologous recombination deficiency (35).  

A phase I/II clinical trial combining AsiDNA™ with radiotherapy for melanoma skin metastasis has 

showed promising results on the effectiveness of the treatment and notably, without dose-limiting 

toxicity (36). As a matter of fact, the maximum-tolerated dose was not reached or found confirming 

the preclinical results of which irreversible toxicity was never found (30, 33, 35, 37, 38). The ongoing 

clinical trial (NCT03579628), using a systemic delivery, will be vital to understand whether its 

systemic administration is safe, so that it can be further explored in various types of cancers in 

combination to radiotherapy.  

3. Inhibitors of non-homologous end joining repair pathway 

In humans, non-homologous end joining plays the largest role in DNA double-strand breaks repair 

(39). It is estimated that non-homologous end joining is accountable for the repair of 85% of the DNA 

double-strand breaks generated by radiation (40). Non-homologous end joining is then a very 

attractive target as an anticancer therapy to exacerbate the cytotoxic effect of DNA double-strand 

breaks induced by radiation. Non-homologous end joining mediates the direct end processing of the 

broken DNA without the need for a homologous template as it is the case for homologous 

recombination. non-homologous end joining-mediated repair can be accurate unless small processing 

at the DNA double-strand break ends is needed leading to small alterations as insertions or deletions. 
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Basically, the sequential repair steps of non-homologous end joining are the (i) recognition of the 

DNA break end by the MRN complex that will activate ATM (27, 41-43). ATM will in turn 

phosphorylate further ATMs and the H2AX flanking the break forming γH2AX; (ii) Ku heterodimer 

will assemble at the DNA double-strand breaks within seconds, to protect it from degradation and 

recruit DNA-PKcs leading to its activation (44-46). Once activated, DNA-PKcs will phosphorylate 

itself and Artemis (46, 47). It is the phosphorylation of DNA-PKcs that will favour DNA double-

strand breaks repair through non-homologous end joining, inhibiting homologous recombination (48, 

49) Artemis will help process break ends, that otherwise would be non-ligatable, like 5’ or 3’ 

overhangs or flaps (50, 51); (3) The DNA-PK complex will bridge the two physically proximal DNA 

ends working as a scaffold. (4) Finally, recruitment of  XRCC4-XLF and DNA ligase IV will ligate 

both ends terminating repair with the non-homologous end joiningcomplexes disassembly (4, 52-55) 

(Fig.1). Non-homologous end joining can be active in all phases of the cell cycle, yet more 

predominantly in G0 and G1 phase (56).  

Though being a promising strategy for radio-sensitization, non-homologous end joining inhibition 

has faced two main obstacles: (i) high abundance of the involved proteins in tumor cells making 

effective inhibition of their activity a challenge and (ii) non-homologous end joining activity 

inhibition is easily toxic as it is key for healthy tissues maintenance. For instances, in clinical trials, the 

DNA-PK inhibitor M3814, despite being well tolerated as monotherapy, was found to enhance normal 

tissues reactivity to radiotherapy in some patients (57) (Fig.1). Ongoing clinical trials with M3814 

(NCT03724890, NCT03770689 and NCT02516813) will tell whether it can be both efficient and 

tolerable in combination with radiotherapy. Other DNA-PK inhibitor, MSC2490484A, is currently 

being tested for tolerability and efficacy in chemoradiotherapy protocols (cisplatin) (NCT02516813). 

The CC-115 dual-inhibitor of mTOR and DNA-PKcs, has shown to be better tolerated and with 

observable antitumour activity (58) (Fig.1). However, it has not yet been tested in combination to 

radiotherapy. Inhibitors of Ku70/80 (59) or DNA ligase IV (60) to be combined to radiotherapy are 

being developed and explored in preclinical studies but have not yet reached the clinical trial step.  

Other inhibitors of non-homologous end joining, more specifically those targeting its regulation, are as 

well being tested. A sideway to inhibit non-homologous end joining is through the inhibition of 

epidermal growth factor receptor (EGFR) pathway. Ionizing radiation activates EGFR pathway, 

translocating EGFR to the nucleus to be associated to DNA-PKcs (61). Dysregulation of EGFR 

pathway confers cells radioresistant (62, 63) and is associated with poorer prognosis in cancers (64, 

65). Inhibition of EGFR activation through monoclonal antibodies, cetuximab and panitumumab, 

combined with radiotherapy or platinum-based agents is presently used in the clinic and patients are 

presenting improved  overall survival (66-68) (Fig.1).  
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Another interesting approach of non-homologous end joining inhibition is through the androgen-

deprivation therapy, commonly used in the treatment of prostate cancer since the 1980s (69-71). It was 

not long ago, that the mechanisms of synergy were unravelled. The androgen receptor and DNA-PKcs 

comodulate each other in a positive feedback loop manner. While DNA-PKcs will stimulate the 

transcription of androgen receptor, androgen receptor signalling stimulates DNA double-strand breaks 

repair through DNA-PKcs and its gene expression (72, 73). Pharmacological androgen-deprivation 

therapy can be achieved by different drugs with different mechanism of action: luteinizing hormone-

releasing hormone (LHRH) agonists (e.g. goserelin), LHRH antagonist (e.g. degarelix), CYP17 

inhibitor (e.g. abiraterone), and antiandrogens (e.g. flutamide). Pharmacological or surgical androgen-

deprivation therapy synergizes with radiotherapy, increasing tumour radiosensitivity through an 

inefficient repair of the DNA double-strand breaks induced by radiation (71, 74-76) (Fig.1).  

4. Inhibitors of homologous recombination repair pathway 

DNA double-strand breaks repair by homologous recombination is an extremely complex process in 

which multiple proteins are tightly orchestrated to lead to an error-free repair (77). Even though it 

repairs a smaller number of the DNA double-strand breaks, its high-fidelity repair makes it essential to 

preserve genome stability. Homologous recombination will use the sister chromatid as a template for 

the accurate resynthesis of the DNA, thereby, it is essentially restricted to S-G2 phase of the cell cycle 

(78). This property makes homologous recombination inhibition an interesting strategy specially when 

considering that one important feature of tumour cells is their active proliferation.  

The sequential steps for homologous recombination repair are: (i) sensing of dsDB by MRN complex, 

and signalling by ATM kinase (41-43); (ii) 5’ to 3’ DNA end resection by CtIP, RPA binding to 5’ 

single-strand DNA to prevent formation of secondary structures or promiscuous annealing, later 

replaced by Rad51 monomers (79-82); (iii) recruitment of BRCA1, BRCA2, Rad52 and XCC2/3 and 

Rad51 complex to the 3’ strand (83,84); (iv) homology search mediated by Rad51 and D-loop strand 

formation; (v) resynthesis of the DNA by DNA polymerase δ formation and ligation of the Holliday 

junctions by DNA ligase I and finally resolution with or without crossover (85,86). (Fig.2)  

Like DNA-PKcs for the NHEJ, Rad51 plays a central role in homologous recombination-mediated 

repair. Few direct inhibitors of Rad51 have been tested in preclinical and clinical trials. Rad51 

inhibitor CYT-0851, is currently being tested as monotherapy in a phase I trial (NCT03997968) 

(Fig.2). An alternative way to for inhibiting Rad51, is to target its regulation through the c-Alb 

tyrosine kinase; c-Alb  undergoes a strong activation upon radiotherapy  and modulates Rad51 

response to DNA damage (87,88). Imatinib, a c-Alb inhibitor known to impact Rad51, has been 

already tested in combination with radiotherapy in a phase I trial (Fig.2). Issues in  safety–toxicity 

were raised due to the rate of spontaneous adverse effects associated to the nature of the paediatric 

brainstem malignant gliomas (89). Final results of that trial will dictate whether it can be further 
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explored with radiotherapy, and if it is of interest to test it in other tumours with less spontaneous 

adverse effects. 

Because of low potency and/or selectivity many of the MRN complex inhibitors developed in 

preclinical studies, such as mirin and derivatives, have not reached yet the clinic (90). 

5. Inhibitors of microhomology end joining 

Early studies of cells deficient in non-homologous end joining have identified alternative error-prone 

mechanism of end joining repair. This alternative mechanism, also known as alternative non-

homologous end joining, will hereafter be named as microhomology end joining. Contrary to classical 

non-homologous end joining that uses minimal processing of the DNA double-strand breaks and is 

relatively accurate, microhomology end joining involves larger segments of DNA at the break site 

with alignments of microhomologous sequences (as few as one nucleotide in mammalian cells) and 

often results in flank deletions of the DNA double-strand breaks at the repair junction (55, 91-96). 

Microhomology end joining is an unfaithful and mutagenic repair pathway of DNA double-strand 

breaks that has been associated to carcinogenesis (91, 94, 97). Microhomology end joining is often 

seen as an alternative backup of non-homologous end joining, but both can also coexist in certain 

settings (98).  

The chronology of microhomology end joining repair is the following: (i) DNA double-strand breaks 

will be sensed by MRN complex, which will recruit and activate PARP1 in the absence or in 

competition of Ku proteins (Ku70 and Ku80) (93, 99, 100). PARP will produce poly(ADP-ribose) and 

end resection will be initiated by the MRN complex or CtIP endonuclease (101-104); (ii) 

microhomologies will anneal  (105, 106); and (iii) resection of the heterologous 3’ flaps (8 to 9 

nucleotides) will be executed by Fen1 endonuclease (98); (iv) fill-in synthesis will be done by DNA 

polymerase θ, that may create artificial homologies throughout DNA synthesis (107, 108); and finally 

(v) DNA ligation by DNA ligase III, scaffolded by XRCC1 (99, 109) (Fig.3). Increased levels of 

cyclin-dependent kinases throughout S/G2 cell cycle phases limit resection by MRN–CtIP and 

decrease Ku levels and its binding to DNA double-strand breaks concomitantly, enabling homologous 

recombination and alternative non-homologous end joining to act. Like homologous recombination, 

microhomology end joining activity is generally observed to S/G2 phases (110-112) (79) though, the 

choice between homologous recombination and microhomology end joining is not fully clear except 

for the presence or absence of certain dominant factors belonging to each pathways (107, 113-115).  

Following the rationale of synthetic lethality for anticancer treatment, inhibition of alternative non-

homologous end joining may be beneficial for tumours that rely on such pathway as a compensatory 

pathway. It is known that microhomology end joining not only may serve as a backup in non-

homologous end joining-deficient cells but also in homologous recombination-deficient (107, 115, 
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116). While conventional non-homologous end joining depends critically on DNA-PK, and 

homologous recombination on BRCAs or Rad51, microhomology end joining depends mainly on the 

initial detection of the DNA double-strand breaks by PARP1. Given the role of PARP on 

microhomology end joining and on single-strand breaks repair (in base excision repair pathway), 

pharmacological inhibition of PARP in combination with radiotherapy may be of interest. PARP 

inhibitors in combination with radiotherapy have been already tested and continue as well to be tested 

in different tumours in clinic (inaparib, NCT0068776 and NCT01551680, and veliparib, 

NCT01589419 and NCT01477489) (Fig.3). Treatments were well tolerated but only a patient with 

tumour bearing a BRCA mutation showed a significant response to the treatment (117, 118). The lack 

of success of these clinical trials demonstrates a need for better understanding of microhomology end 

joining pathway and its role on radiation-mediated DNA damage in order to better stratify the 

potential patients benefiting from such treatments.  

6. Conclusions 

Our understanding of the molecular events involved in the repair of DNA damage has greatly 

improved during these past years. It has made possible the development of inhibitors to target such 

processes for anticancer purposes. Nonetheless, as integrity of the genome is a life issue, organism 

systems have evolved to be highly robust and redundant, making the targeting of DNA repair 

pathways a challenge. Various independent pathways must be inactive at once to lead to effective 

tumour cell death. To overcome its robustness and redundancy, it is of importance to further 

understand what DNA repair pathways or proteins are dysregulated in what kind of cancers to 

understand their vulnerability. This way, optimizing the use of certain DNA repair inhibitors and 

ensure successful clinical translation and outcomes.  

The various preclinical and clinical studies have demonstrated that DNA repair inhibitors can 

effectively sensitize cancer cells to radiation. However, not all patients or cancers types seem to 

benefit equally. This may be due to a suboptimal inactivation, either by compensatory mechanism of 

the cancer cells or inappropriate therapeutic targeting for certain tumours.  Better stratification could 

avoid such, and as well help identify which patients could see their effective dosage being reduced, 

like radiotherapy de-escalation. 

The targeting of the master regulators of damage signalling, which act on very early stages, seem to 

have more effective implications on DNA repair outcome, rather than inhibition of a single enzyme 

acting downstream in the repair pathways cascade. Next years will confirm if we have succeeded to 

improve radiotherapy efficacy by targeting DNA repair. 

The development and use of DNA repair inhibitors is still callow, as many are still in early phases of 

clinical tests. However, some inhibitors have raised some issues concerning toxicity and effectiveness. 
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Deeper understanding of the underlying mechanistic differences of DNA repair in tumour and normal 

cells could help to identify the most effective with the least toxicity therapeutic targets. The ongoing 

and future preclinical and clinical studies will provide researchers with a wealth of information within 

the next years. A careful evaluation will help determined whether we have succeeded to improve 

radiotherapy efficacy and tumour selectivity using DNA repair.  
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Figure legends 

 

Figure 1. Mechanism of non-homologous end joining in humans. (1) Sensing and signalling of 

DNA double-strand breaks is made by MRN complex and ATM, respectively. ATM will 

phosphorylate the H2AX histones flanking the DNA break; (2) Ku70 and Ku80 will assemble to the 

DNA double-strand break end and will activate DNA-PKcs activating them; (3) DNA–PK complex 

will bring the two ends together and recruit Artemis and (4) finally recruiting XRCC4-XLF and DNA 

ligase IV (DNA Lig IV), which will ligate both ends.. Red arrows indicate the inhibitors being tested 

in the clinic in combination with radiotherapy; continuous line represents the direct inhibitors of the 

represented enzyme, while the discontinued line represents the indirect inhibitors that dysregulate their 

signalling or regulation. (P) phosphorylated ; (me) methylated form. 

 

Figure 2. Mechanism of homologous recombination in humans. (1) sensing of DNA double-

strand breaks by MRN complex, and signalling by ATM kinase; (2) DNA end resection by CtIP and 

RPA binding to 5’ single-strand which is later replaced by Rad51 monomers; (3) further recruitment 

of effectors like BRCA1, BRCA2, Rad52 and XCC2/3 and Rad51 complex; (4) Rad51-mediated 

homology search and D-loop strand formation, resynthesis of the DNA by DNA polymerase δ, 

formation and ligation of the Holliday junctions by DNA ligase I and finally resolution with or without 

crossover. Red arrows indicate the inhibitors being tested in the clinic in combination with 

radiotherapy; continuous line represents the direct inhibitors of the represented enzyme, while the 

discontinued line represents the indirect inhibitors that dysregulate their signalling or regulation. (P) 

phosphorylated. 

 

Figure 3. Mechanism of microhomology end joining in humans. (1) sensing of DNA double-

strand breaks by MRN complex, and signalling by PARP which will produce poly(ADP-ribose) 

polymers; (2) microhomologies will anneal and (3) heterologous 3’ flaps will be resected by Fen1; (4) 

fill-in synthesis by DNA polymerase θ and DNA ligation by DNA ligase III scaffolded by XRCC1. 

Red arrows indicate the inhibitors being tested in the clinic in combination with radiotherapy; 

continuous line represents the direct inhibitors of the represented enzyme, while the discontinued line 

represents the indirect inhibitors that dysregulate their signalling or regulation. 



 



 



 




