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Earth atmospheric loss through the plasma 
mantle and its dependence on solar wind 
parameters
Audrey Schillings1,2* , Rikard Slapak3, Hans Nilsson1,2, Masatoshi Yamauchi1, Iannis Dandouras4 
and Lars‑Göran Westerberg5

Abstract 

Atmospheric loss and ion outflow play an important role in the magnetospheric dynamics and in the evolution of the 
atmosphere on geological timescales—an evolution which is also dependent on the solar activity. In this paper, we 
investigate the total O+ outflow [ s−1 ] through the plasma mantle and its dependency on several solar wind param‑
eters. The oxygen ion data come from the CODIF instrument on board the spacecraft Cluster 4 and solar wind data 
from the OMNIWeb database for a period of 5 years (2001–2005). We study the distribution of the dynamic pressure 
and the interplanetary magnetic field for time periods with available O+ observations in the plasma mantle. We then 
divided the data into suitably sized intervals. Additionally, we analyse the extreme ultraviolet radiation (EUV) data 
from the TIMED mission. We estimate the O+ escape rate [ions/s] as a function of the solar wind dynamic pressure, 
the interplanetary magnetic field (IMF) and EUV. Our analysis shows that the O+ escape rate in the plasma mantle 
increases with increased solar wind dynamic pressure. Consistently, it was found that the southward IMF also plays 
an important role in the O+ escape rate in contrast to the EUV flux which does not have a significant influence for the 
plasma mantle region. Finally, the relation between the O+ escape rate and the solar wind energy transferred into the 
magnetosphere shows a nonlinear response. The O+ escape rate starts increasing with an energy input of approxi‑
mately 1011W.

Keywords: O+ outflow/escape, Plasma mantle, Solar wind, Interplanetary magnetic field (IMF), Extreme ultraviolet 
(EUV), Coupling functions
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Introduction
The Sun plays an important role in terrestrial atmos-
pheric loss. It is believed that billions of years ago, the 
Sun was more active than today. Enhanced particle 
fluxes and solar radiation affected the planetary envi-
ronment and may have led to significant atmospheric 
losses (Güdel 2007). Thus, the Earth’s atmospheric 
loss is an important phenomenon which may affect 
the evolution of the atmosphere on geological time-
scales. This terrestrial phenomenon is driven, at lower 
altitudes ( ∼  2 Earth radius [Re]), by atmospheric ions 
energised to a few eV and photoelectrons called the 

polar wind (Axford 1968; Nagai et al. 1984; Green and 
Waite 1985; Chappell et al. 1987; Chandler et al. 1991; 
Yau et  al. 2007). At higher altitudes ( > 2Re ), highly 
energised—up to a few keV—heavy ions, such as oxy-
gen ions ( O+ ), are flowing upward (Shelley et al. 1982). 
Those O+ ions are heated through different processes, 
such as field-aligned currents (Maggiolo et al. 2006) at 
lower altitudes or perpendicular heating via wave–par-
ticle interactions (Bouhram et  al. 2004b; Slapak et  al. 
2011; Waara et  al. 2011; Nilsson et  al. 2012) at higher 
altitudes. Once the upward moving ions have sufficient 
energy to escape the gravity, they become ion outflow. 
The latter are further accelerated under the curvature 
of the magnetic field lines, called centrifugal accelera-
tion (Nilsson et al. 2008, 2010). The main regions where 
we observe outflowing ions are the open magnetic 
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field line regions: the polar cap, cusp and plasma man-
tle. The polar cap represents the mapping of the open 
field lines to the ionosphere, whereas the cusp is a fun-
nel between the dayside closed magnetic field lines and 
the open magnetic field lines. This funnel provides a 
direct entry for magnetosheath plasma into the mag-
netosphere. The plasma mantle located downstream of 
the cusp has a mixed plasma population of ionospheric 
and magnetosheath ions. It is, however, dominated by 
solar wind ions conducted by the mirror force. In the 
part of the magnetotail, Wang et al. (2014b) found that 
the plasma mantle is characterised by similar tempera-
ture as in the magnetosheath and lower density, namely 
∼ 0.05–0.2 keV and ∼ 0.1–1 cm−3 . The area and size of 
the three regions are influenced by strong solar wind 
conditions, and it results in fluctuations of the pene-
trating solar wind. Several studies have been conducted 
in different magnetospheric regions to determine how 
the solar wind affects the O+ outflow (e.g Palmroth 
et  al. 2001; Abe et  al. 1996; Denton and Taylor 2008; 
Gou et al. 2016).

The global low-energy ion outflow (dominated by 
H+ , not O+ ) has been studied under one solar cycle by 
André et al. (2015). The authors found that during one 
solar cycle, the increasing extreme ultraviolet (EUV) 
radiations ( F10.7 a proxy for EUV flux) increase the 
outflow by a factor 2. They explained this enhance-
ment by a higher density in the outflowing popula-
tion and concluded that the available ionospheric ion 
density limits the outflow mechanism. Those low-
energy ions can gain energy through solar illumina-
tion which changes the ionospheric scale height (Maes 
et  al. 2015). However, according to Li et  al. (2018) 
the energy transfer efficiency of the solar wind is 6–7 
orders of magnitude higher than the energy originat-
ing from the solar illumination. Solar illumination of 
the polar cap is much affected by the tilt of the geo-
magnetic dipole. In another study, Li et  al. (2017) 
studied this aspect combined with the F10.7 flux and 
found that the cold ion outflow is strongly influenced 
by the dipole tilt angle and the EUV flux. In a simi-
lar way, Engwall et  al. (2009) showed an increase in 
the cold ion outflow (up to 60 eV) with F10.7 and con-
cluded that EUV radiation mainly controls the low-
energised ion density.

Some cold ions are further energised to become a 
hot plasma population observed in the cusp, and they 
are either accelerated further to the plasma mantle and 
escape directly into the magnetosheath (Slapak et  al. 
2013) or transported to the plasma sheet (Kronberg et al. 
2014; Liao et  al. 2015). The density of those energetic 
O+ ions observed in the plasma sheet is strongly influ-
enced by the geomagnetic (Kp) and solar (EUV) activity 

(Mouikis et  al. 2010; Maggiolo and Kistler 2014; Kistler 
and Mouikis 2016).

The O+ outflow dependence on the interplanetary 
magnetic field (IMF) has been observed in the dayside 
magnetosheath and magnetopause regions (Slapak et al. 
2012; Marcucci et al. 2004). However, in the high-altitude 
polar cap, Elliott et  al. (2001) did not found any corre-
lation between IMF and O+ density in contrast to Len-
nartsson et al. (2004) who considered the same region but 
for O+ outflow. The latter found that the total O+ outflow 
rate was approximately three times higher for southward 
IMF ( Bz < 0 ) than for northward IMF. Despite all these 
studies on different solar wind parameters related to O+ 
outflow, the plasma mantle has not been well analysed. 
The plasma mantle was well sampled by the Cluster mis-
sion and is suitable to study ions that are likely to escape 
from the magnetosphere. Thus, this study aims to answer 
how the O+ escape rate from the plasma mantle depends 
on the solar wind dynamic pressure, IMF, EUV and solar 
wind energy input.

Instrumentation and data
For our data analysis, we used oxygen ion data provided 
by the Cluster mission (see “Cluster data” section) and 
solar wind data (see “Solar wind data” and “TIMED data” 
sections) in order to establish the correlation between O+ 
flux and the solar wind.

Cluster data
The Cluster mission (Escoubet et al. 2001) was launched 
in 2000 and has collected magnetospheric data for more 
than 18  years. Four spacecrafts are flying in tetrahedral 
formation on a polar elliptical orbit and carry 11 identical 
instruments each. One of the instruments is the COm-
position DIstribution Function (CODIF) included in the 
Cluster Ion Spectrometer (CIS) (Rème et  al. 2001) that 
provides a 3-D distributions of ion data, with mass dis-
crimination through a time-of-flight section. With this 
technique, it can measure H+ , He2+ , He+ and O+ . CODIF 
has a 360◦ field of view, an energy coverage from 25 eV/q 
(per charge) up to 40 keV/q and an energy resolution of 
�E/E ∼ 0.16.

The magnetic field data were taken from the FluxGate 
Magnetometer (FGM) (Balogh et  al. 2001). The instru-
ment has a normal mode sample frequency of 22.4  Hz 
and operative ranges for different magnetic intensities 
from a few nT to several thousand of nT. However, we 
only used the averaged magnetic field over the spacecraft 
spin (4 sec).

Solar wind data
The solar wind data, such as velocity, density and inter-
planetary magnetic field (IMF), were retrieved from the 
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OMNIWeb online database. This NOAA/SWPC data-
base is a collection of solar data from several satellites 
with various scientific objectives at diverse positions. 
The plasma parameters and IMF are provided by IMP8, 
Wind, Geotail and ACE. In our study, we used the high-
resolution data, 5 min and 1  min, time-shifted to the 
Earth’s bow shock.

TIMED data
The extreme ultraviolet (EUV) data are taken from the SEE 
instrument on board TIMED (Thermosphere, Ionosphere, 
Mesosphere Energetics and Dynamics) mission (Kusnierk-
iewicz 2003). TIMED was launched in December 2001 and 
has so far collected 17 years of data. It has a circular orbit 
with an inclination of 74.1◦ and an orbital period of 97 min 
and carries four sensors. One of these is the Solar EUV 
Experiment (SEE) (Woods et al. 2000) designed to meas-
ure and determine the rates of energy deposition, disso-
ciation and ionisation of solar FUV (Far Ultraviolet), EUV 
and soft X-ray irradiance from 1 to 195 nm and with a 0.5-
nm spectral resolution. The Sun is observed a few minutes 
( ∼ 3 min) during each orbit and an average value is deter-
mined, which gives 14–15 measurements per day.

Data set criteria
Our data set consists of 5 years of solar wind and Clus-
ter data (from 2001 to 2005) and 4 years (as the mission 
started 1 year later) of EUV data (2002–2005). Our reason 
not to include more data is to focus on the oxygen data 
dependency on solar wind parameters without including 
a potential solar cycle dependency. The resolutions of the 
data for Cluster, solar wind and EUV are approximately 
4  s, 1  min and 97  min, respectively, as well as a 0.5-nm 
spectral resolution for the wavelength of EUV irradiance.

In the Cluster data set, some of the O+ counts might 
be false due to high flux proton contamination. Those 
ions typically originate from the intense magnetosheath 
fluxes, and they occur as a background in the O+ mass 
channel. Such contamination typically leads to under-
estimated O+ velocity moments. The false counts have 
a similar energy distribution as the protons, so for only 
false counts, the O+ perpendicular bulk velocity will 
be 1/4 smaller than the proton velocity, and this can be 
used to identify cases with significant contamination; see 
Nilsson et al. (2006) for more details about the method. 
About 20% of data with significant background counts 
are removed from our data set. However, these data cor-
respond mainly to magnetosheath data (which we do 
not want in our data set), and even if the percentage of 
removed data is high, this does not affect our O+ occur-
rence rate in the plasma mantle (see “Method” section).

In order to analyse O+ data from the plasma mantle, 
some conditions are consequently implemented to 
remove magnetosheath, cusp and polar cap data. The 
polar cap is usually associated with low-energy ions in 
contrast to the plasma mantle composed mainly of ener-
getic solar particles, meaning these two regions can be 
distinguished by the ratio between the thermal pressure 
and the magnetic pressure called the plasma β . In the 
polar cap, plasma β is typically around 0.05 and conse-
quently our constraint is β > 0.1 to avoid polar cap data 
(see e.g. Liao et al. 2010, 2015; Haaland et al. 2017). More-
over, several studies, such as Nilsson et al. (2006), Kistler 
et  al. (2006), Slapak et  al. (2017), have shown that the 
plasma sheet and plasma mantle populations have similar 
plasma β but can be distinguished by their density and 
temperature. Thus, we excluded the plasma sheet popula-
tion by setting the proton perpendicular temperature to 
T⊥(H

+) < 1750 eV . The density constraints are 
n(H+) > 10−3 cm−3 and 10−3 < n(O+) < 100 cm−3 to 
guarantee reliable bulk velocity estimates. The inner  
magnetosphere is removed by an arbitrary spatial con-
straint that still has a significant latitudinal and dawn–
dusk coverage and defined in cylindrical coordinates as 
RGSM =

√

Y 2
GSM + Z2

GSM > 6 Re and −5 < XGSM < 8 Re . 
To avoid cusp data, we set v�(H+) > 0 because most of 
the proton outward flux is observed in the plasma mantle. 
In practice, v�(H+) is mostly positive, and thus, only a few 
observations are removed by this conditions. Magne-
tosheath data are removed by the cross-talk condition 
(false background counts). These conditions lead to a data 
set containing only plasma mantle data. Finally, we define 
the O+ outflow in the plasma mantle as the local flux with 
an outward flux and therefore v||(O+) > 0 km/s.

Data from some major geomagnetic storms are 
removed from our data set since they turn out to corre-
spond to other magnetospheric regions than the plasma 
mantle (Schillings et al. 2017). Those events are 29 Oct 
2003 (full day), 7 and 9 Nov 2004 (full days), 4 Dec 2003 
(from 20:00 to 00:00 UT) and 13 Sep 2004 (from 20:00 
to 00:00 UT).

Interpolation
The solar wind data provided by the OMNIWeb online 
database have 1-min resolution while Cluster data 
have 4 s. Therefore, two interpolations have been done 
on the solar wind data: The first one removes the val-
ues set at 999.999 in the database corresponding to 
no measured values, and the second one interpolates 
the solar wind data to the Cluster data points. The 
interpolations use a nearest neighbour interpolation 
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technique. The same procedure is applied to the 
TIMED data for EUV.

Method
This section describes how we analysed the total O+ escape 
[ s−1 ] from the plasma mantle under different solar wind 
conditions.

Solar wind dynamic pressure and interplanetary magnetic 
field
Based on previous studies of ion escape at Mars by Ram-
stad et  al. (2015, 2017), we first looked at the solar wind 
velocity and density distributions. We divided these dis-
tributions into 9 solar wind subsets, with approximately 
the same amount of observations in each. The O+ outflow 
(net outward flux) is calculated for the 9 subsets. However, 
analysis of these 9 subsets indicated that we could use the 
dynamic pressure instead. We therefore chose to not use 
exactly the same method as used for Mars, even though 
this was our original intention. It appears that the param-
eters and conditions to determine outflow at Earth or at 
Mars differ.

The solar wind dynamic pressure in Pa is given by

where mSW · nSW is the solar wind mass density in kg/m3 
and vSW the solar wind velocity in m/s. We then divided 
Pdyn equally (approximately same amount of data points) 
in an increasing order to obtain 9 new solar wind subsets. 
Following the same method as Slapak et al. (2013, 2017), 
we estimated the O+ flux (in the plasma mantle) for these 
9 subsets shown in Fig. 1. In Fig. 1, the average O+ fluxes 
is represented in 1 Re × 1 Re bins by the colour bar show-
ing the O+ flux in logarithmic scale. Note that the bins 
are only a representation of our data and are not used in 
the O+ flux calculations (see Eq. 2 below). The small black 
arrows associated with the O+ flux correspond to the 
average bulk velocity direction in each bin. The six black 
curves, referred to as layer hereafter, are magnetopause-
like curves based on the Shue model (Shue et  al. 1998) 
and are used to divide the plasma mantle region into lay-
ers. They contribute to the total escape flux estimate (see 
explanation below). Furthermore, the 9 subplots display 
the 9 Pdyn subsets from the lowest values (top left, num-
ber 1) to the highest Pdyn values (bottom right, number 
9), also illustrated with an orange dashed arrow. The Pdyn 

(1)Pdyn = mSW · nSW · v2SW

Fig. 1 Solar wind dynamic pressure subsets. O+ flux (colour bar in log10 m
−2s−1 ) in the plasma mantle for 9 different solar wind dynamic pressure 

conditions numbered from 1 to 9 or, respectively, from the lowest to the highest dynamic pressure
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intervals for each subset are given in the title of the sub-
plots in nPa.

Afterwards, the total O+ escape was calculated for the 9 
Pdyn subsets. These steps are described below and summa-
rised by Eq. 2.

First, for each layer i (or between two magnetopause-
like segments), we defined the total escape flux fesc,i(O+) 
[ s−1 ] as the average O+ flux fmean,i(O

+) [ m−2 s−1 ] esti-
mated in the layer times the layer area Ai . The area is given 
by Ai = 0.59 · π · (r2i+1 − r2i ) [Re] taken from Slapak et al. 
(2013) where the factor 0.59 comes from a 106◦ wide angle 
in the ZYGSE plane containing most of the O+ observations. 
Additionally, the first magnetopause-like segment is plot-
ted at r1 = 5 Re, so that ri = 4 + i [Re].

For the second step, we considered how often O+ is 
observed in the layer ( Ni(O

+) ) compared to the total num-
ber of observations in the layer ( Ntot,i ). This parameter is 
called the occurrence rate and defined as Ni(O

+)/Ntot,i . 
The second step gave us the total escape O+ flux for each 
layer Fesc,i(O+).

Finally, the third step was an addition of the layers 
as shown in the last line of Eq.  2 to obtain the total O+ 
escape flux Ftot(O+) from the plasma mantle. Thus, we get 
Ftot(O

+) for the 9 subplots corresponding to different solar 
wind dynamic pressure conditions. 

We also investigated the relation between the total O+ 
escape rate and IMF through the clock angle given by 
θ = arctan (|BY ,IMF|/|BZ,IMF|) . A similar method was 
applied: division of the parameter in an increasing order 
and estimate of the total O+ escape flux for the 9 subsets 
through the tree steps described above.

Solar wind coupling functions
Since the solar wind dynamic pressure contains only den-
sity and velocity and not IMF, we looked at solar wind 
coupling functions such as the epsilon or Akasofu param-
eter (Akasofu 1981) and a derivative of the epsilon param-
eter, the Vasyliunas et al. formula (Vasyliunas et al. 1982). 
Koskinen and Tanskanen (2002) give a physical review in a 
modern context and clarifications how to use the Akasofu 
parameter with correct units. They described ǫ as a rate of 
solar wind energy that empowers the magnetosphere. The 
Koskinen formula of the epsilon parameter in SI units reads

(2a)step 1: fesc,i(O
+) [s−1

] = fmean,i(O
+) · Ai

(2b)step 2: Fesc,i(O
+) [s−1

] = fesc,i(O
+) ·

Ni(O
+)

Ntot,i

(2c)step 3: Ftot(O
+) [s−1

] =

∑

i

Fesc,i(O
+)

(3)ǫ [W ] =
4π

µ0
· vSW · B2

T · sin4(θ/2) · l20

where µ0 = 4π × 10−7 [ kg m/A2 s2 ] is the vacuum per-
meability, vSW [m/s] is the solar wind velocity, 
BT =

√

B2
Y + B2

Z  [T] is the transverse IMF, θ [rad] is the 
clock angle and l20 = 49 [ R2

e ] is the effective area of the 
solar wind–magnetosphere interaction (Akasofu 1981). 
However, the epsilon parameter is usually used for geo-
magnetic storms and a few hours, not years of data (Finch 
and Lockwood 2007; Tenfjord and Østgaard 2013; Wang 
et al. 2014a).

Thus, we also implemented three variations of the 
Vasyliunas et al. formula. The original formula (Vasyliu-
nas et al. 1982) describing the rate of solar wind energy 
that enters the magnetosphere is given by

where ME = 8.06× 1022 [ A/m2 ] is the Earth’s magnetic 
dipole moment, µ0 the vacuum permeability, mSW · nSW 
[ kg/m3 ] the mass density, vSW [m/s] the velocity, |B| the 
IMF [T], F(θ) a function of the clock angle and finally 
α , a coupling function that can be found empirically. 
The function F(θ) is commonly defined as sinus of the 
clock angle and α has different values within the litera-
ture, e.g. Murayama (1982), Stamper et al. (1999), Finch 
and Lockwood (2007), Tenfjord and Østgaard (2013), 
Wang et  al. (2014a). In our study, one variation of the 
Vasyliunas et al. formula is the original one (Eq. 4) with 
the coupling coefficient α = 0.3 from Finch and Lock-
wood (2007). Note that we did not use the author’s for-
mula but only their α value (see Additional file 1 for more 
details). For the second variation, we used a coupling 
coefficient α = 0.5 from Tenfjord and Østgaard (2013). 
The authors defined energy coupling functions for storms 
and long time series. In our study, we took their long 
time series formula (see Additional file 1: Eq. 1 for more 
details). The third variation was taken from Wang et al. 
(2014a), who made 240 simulations and found α = 0.43 
and F(θ) = sin(θ/2)2.7 + 0.25 . We also used the original 
authors equation (see Additional file  1: Eq.  3 for more 
details). As before, the coupling functions were divided 
in 9 approximately equal subsets (same amount of data 
points in each division) where we estimated the total 
O+ escape rate. The four coupling functions and how 
O+ escape depends on them were then investigated; see 
“Observations and results” section.

Extreme ultraviolet radiation
The EUV irradiance is provided by the SEE instrument 
on board TIMED (see “Instrumentation and data” sec-
tion for more details). In this study, we used the obser-
vational average that consists of about 15 measurements 

(4)
Pα [W ] = M

2/3
E · µ

(1/3−α)
0

·m
(2/3−α)
SW

· n
(2/3−α)
SW

· v
(7/3−2α)
SW

|B|2αF(θ)
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per day. In these measurements, only the wavelengths 
absorbed by O+ ( � = 10–90  nm) are of interests. The 
total EUV intensity Itot including these wavelengths I(�) 
is calculated as

where �� = 1 [nm] is the bin of the wavelength. After-
wards, the total EUV intensity was interpolated on the 
Cluster data for the years 2002–2005. In order to look 
at the correlation between EUV and the total O+ escape 
flux, the EUV intensity values were also sorted in increas-
ing order and equally distributed in 9 subsets. Further-
more, the EUV intensity was divided in Low EUV and 
High EUV according to its mean value 0.0035 W/m2.

Another way to express the EUV correlation with the 
total O+ escape flux is to estimate the photoionisation 
flux (see “Discussion” section). The latter is defined by 
the EUV intensity I(�) divided by the photon energy Eγ 
as

where h and c are the Planck constant and speed of light, 
respectively. Like all others parameters, the photoionisa-
tion flux was equally distributed in 9 subsets for which 
we calculated the total O+ escape flux.

Observations and results
We hereby present the correlation between the total O+ 
escape flux and the solar wind parameters described in 
“Method” section.

Solar wind dynamic pressure and IMF
The solar wind density and velocity were first investigated 
individually; however, these two parameters can be cou-
pled by taking the solar wind dynamic pressure Pdyn (see 
Eq. 1). After dividing Pdyn into 9 ascending subsets, Fig. 1 
shows the O+ outflow for each subset. An enhancement 
of approximately 1.5 order of magnitude is observed for 
the O+ flux between the subsets of lowest and highest 
solar wind dynamic pressure. The O+ outflow for the 
lowest Pdyn , first subset (Fig. 1, subplot nb. 1 top left) has 
an upper limit of 2.78× 109 m−2 s−1 (with a minimum of 
5% observations in the bin), whereas for the higher Pdyn , 
last subset (Fig. 1, subplot nb. 9 bottom right) we already 
see visually an enhancement of the O+ outflow. The latter 
has an upper limit of 8.84 × 1010 m−2 s−1 (with a 

(5)Itot =

∫

I(�)d� ≃

�end
∑

n=�

I(�)��

(6)

F(�) =
I(�)

Eγ (�)
with Eγ (�) =

hc

�

Ftot =

∫

F(�)d� ≃

�end
∑

n=�

F(�)��

minimum of 5% observations in the bin). Afterwards, the 
total O+ escape flux was estimated for the 9 Pdyn subsets 
and the tendency clearly shows a correlation between the 
O+ outflow and Pdyn (Fig. 2). The error bars correspond 
to 95% confidence intervals and are estimated, for each 
subset (represented as black dots filled in red), from the 
average O+ outflow per layer. As an example, the first dot 
representing the lowest Pdyn at 1024.6 s−1 in Fig.  2 con-
tains the average O+ outflow observations from the layers 
shown in Fig.  1, subplot 1. Thus, the 95% confidence 
interval for this subset is given by 
CI (95%) =

√

CI2layer1 + CI2layer2 + · · · + CI2layerN , where 

CIlayer =
σ∗1.96
√

N
 with σ the standard deviation of log10 ( O

+ 
total flux) in the layer and N the number of O+ observa-
tions in the layer. The same method is applied for the 8 
Pdyn subsets left. As shown in Fig. 2, the total O+ escape 
reaches 1.36× 1026 s−1 for a dynamic pressure of 8.4 nPa. 
The enhancement of the total O+ escape rate is about two 
orders of magnitude meaning that the larger the solar 
wind dynamic pressure is, the more ions would escape 
from the plasma mantle.

Furthermore, it is likely that the IMF direction will 
affect the ion outflow, possibly independent of the geo-
magnetic activity level (see Additional file 1: Fig. 1). Thus, 
we investigated O+ escape for different IMF configura-
tions represented by the clock angle (CA) θ for differ-
ent dynamic pressure subsets as shown in Fig.  3a. The 
three dashed curves above the main black curve (labelled 
no conditions) are for southward IMF or CA > 90◦ . 
We observed that the more IMF turned southward 
( CA > 150◦ ), the more ions are escaping (see dashed 
light blue curve). On the contrary, for strong northward 
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IMF ( CA < 30◦ ) or dotted yellow curve, the total O+ 
escape is smaller. The difference between strong north-
ward and strong southward IMF is about 1 order of mag-
nitude. Intermediary curves show the configuration for 
slightly northward and southward IMF. The dotted dark 
blue and green curves correspond to northward IMF for 
30◦ < CA < 60◦ and 60◦ < CA < 90◦ , respectively, and 
the dashed red and pink curves to southward IMF for 
90◦ < CA < 120◦ and 120◦ < CA < 150◦ , respectively. 
Figure 3b displays the same curves as described but with 
95% confidence intervals described above.

Coupling functions
After the solar wind dynamic pressure, we investigated 
the solar wind coupling functions because it includes 
the three previous parameters (n, v and θ ) analysed in 
section Observations. The first coupling function is the 
Akasofu (or epsilon) parameter, which was initially used 
to study storms and substorms (Akasofu 1981). As the 
epsilon parameter is intended for a short period of time, 
we also estimated three variant formulae of Vasyliunas 
et  al. (1982) for statistics. The four coupling functions 
investigated for this study are shown in Fig. 4a. This fig-
ure gives the total O+ escape as a function of the coupling 
functions [W]. The dashed blue curve corresponds to the 
epsilon parameter, the dotted green one to the Vasyliunas 
et  al. formula with Pinput(α=0.5) , F(θ) = sin4(θ/2) (Eq.  2 
in the Additional file 1: Tenfjord and Østgaard 2013), the 
dashed–dotted violet one Pα=0.3 , F(θ) = sin4(θ/2) (Eq. 1 
in the Additional file 1: Finch and Lockwood 2007) and 

finally the solid orange to the Vasyliunas et  al. formula 
Einput with α = 0.43 and F(θ) = sin2.7(θ/2)+ 0.25 (Eq. 3 
in the Additional file  1: Wang et  al. 2014a). Figure  4b 
shows the same coupling functions as described above 
but with error bars corresponding to a 95% confidence 
interval (see more details in “Solar wind dynamic pres-
sure and IMF” section).

Similarly to Pdyn , the four functions are equally divided 
into 9 subsets (with the average subsets shown using cir-
cles, diamonds, crosses and points on the curves); the 
first subset corresponds to the average lowest energy 
input ( ∼ 107 W for epsilon and between 108 and 1011 W 
for the Vasyliunas et al. formulae) and the last subset to 
the largest energy input, ∼ 1012 W . For weak to moder-
ate solar wind energy input or roughly the 5 first subsets, 
three functions ( ǫ , Pα and Pinput ) show a small decrease 
producing a reduction of O+ escape flux. For stronger 
solar wind energy input into the magnetosphere, we 
observe in the four functions a strong increase in the 
total O+ flux (see Fig. 5, zoom of Fig. 4 for higher energy 
input). However, the 95% confidence intervals of the 
Akasofu parameter overlap except for the last subset. 
Consequently, no clear correlation between this param-
eter and the O+ escape can be claimed.

Extreme ultraviolet flux
As a complement to the coupling functions, we com-
pare the EUV intensity and EUV flux from the TIMED 
data with the oxygen data from Cluster. Figure 6a dis-
plays the total O+ escape as a function of the solar 
wind dynamic pressure for different EUV (intensity, see 
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Eq. 5) conditions, namely low EUV (dashed blue curve) 
and high EUV (dotted green curve). Note that the 
limit between low and high EUV is given by its mean 
at 0.0035 W/m2 and the solid dark curve has no EUV 
conditions (same as in Fig. 2). Figure 6b is identical to 
Fig.  6a with error bars corresponding to a 95% confi-
dence interval. Our observations show that EUV has a 
very limited influence, if any, on the total O+ escape in 
the plasma mantle.

Discussion
Compression of the magnetosphere and solar dynamic 
pressure
The magnetospheric dynamics is strongly influenced by 
changing solar wind conditions. During solar storms or 
long periods of southward IMF, the magnetosphere is 
compressed. This magnetospheric compression can be 
observed in Fig.  1 for high dynamic pressure (subplot 
9). The O+ average bins represented in this figure do not 
fill up the last layer between 10 Re and 11 Re ( ∼ 50% less 
observations than for 8 others subplots). Thus, we inter-
pret a compression of the magnetopause located near 
10 Re. On the other hand, for quiet conditions, the aver-
age O+ bins outside the layers (see Fig. 1, subplots 3, 4, 
5 for example), which physically means O+ ions in the 
magnetosheath (because the magnetopause in quiet con-
ditions is estimated around 10 Re to 11 Re), are discarded 
in the estimation of the total O+ escape rate. Thus, in the 
total O+ estimation, the escaping area of the filled layers 
in Fig. 1 includes this compression effect.

We believe that most of the O+ outflow from the plasma 
mantle is escaping and lost into the solar wind. Therefore, 
in this study we replace the total O+ outflow by total O+ 
escape rate. This statement can be discussed using the ion 
convection towards the plasma sheet (perpendicular bulk 
velocity) and the parallel bulk velocity of the ions. Slapak 
and Nilsson (2018) calculated a convection speed in the 
plasma mantle of 35  km/s during extreme geomagnetic 
storms and a corresponding typical parallel ion speed of 
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115  km/s, such that these ions reach the plasma sheet 
( ZGSM = 0 ) at around 50  Re downtail. Under disturbed 
conditions, those ions are then tailward of the near-Earth 
neutral sheet X-line (Nagai et al. 1994, 1998) and the O+ 
ions will be lost in the distant magnetotail. For more gen-
eral conditions, Nilsson (2011) found that the average 
parallel velocity in the mantle was 70  km/s, with a per-
pendicular temperature of 1 keV. Our ion trajectories for 
the plasma mantle pass XGSM = 0 at an altitude typically 
above 12 Re, and an average convection velocity towards 
the plasma sheet for southward IMF is 10 km/s (Haaland 
et al. 2008). A simple estimate of the transport time from 
12  Re to the centre of the plasma sheet would thus be 
(12× 6371)/10 ≃ 7600 s , yielding a tailward field-aligned 
transport of 70 km/s× 7600 s ≈ 80 Re . Here we did not 
take into account the mirror force acting on the 1  keV 
average perpendicular temperature, any further ion heat-
ing nor any centrifugal acceleration. We thus confirm the 
conclusions of Nilsson (2011); Nilsson et  al. (2012) that 
most of the cusp/plasma mantle ion outflow will escape.

Our result in Fig. 2 shows a clear correlation between 
the O+ escape rate and the solar wind dynamic pres-
sure. A similar trend has been observed by Elliott et  al. 
(2001), who found that in the high-altitude polar cap, the 
O+ density and parallel flux increases with solar dynamic 
pressure. Another aspect influencing the O+ escape is the 
IMF direction [here studied through several clock angles 
(CA)] shown in Fig. 3. Our estimation shows that the O+ 
escape rate is higher by a factor of 3 for southward IMF 
than for northward IMF. Despite that Elliott et al. (2001) 
did not see any influence of the IMF direction on the O+ 

density and parallel flow at high altitudes, this trend was 
observed by Marcucci et  al. (2004) for magnetosheath 
O+ ions having higher velocities during southward IMF. 
Finally, the cusp area increases (Newell and Meng 1994) 
and moves towards lower latitudes (Palmroth et al. 2001) 
under larger solar wind pressure and IMF Bz , which also 
contributes to a higher O+ escape rate. So, our results are 
in line with what we expected for O+ ions in the plasma 
mantle.

The coupling functions
The coupling functions are defined by the epsilon 
parameters and the Vasyliunas et  al. formula. They are 
employed for quantifying the energy transferred from 
the solar wind through the magnetosphere (for further 
details see Akasofu 1981; Koskinen and Tanskanen 2002 
and references therein). In this study, we chose to imple-
ment the Akasofu parameter and three variations of the 
Vasyliunas et  al. formula (Eq.  4) with different coupling 
coefficient α . Note that more details about the three var-
ied equations are given in the Additional file 1.

For a transferred power into the magnetosphere of 
approximately 1010 W , we estimated an O+ escape rate 
of 9.13× 1025 s−1 for the Vasyliunas et al. formulae and 
5.11× 1025 s−1 for the Akasofu parameter. In compari-
son, Li et  al. (2017) analysed the epsilon parameter for 
cold ion outflow. The authors used 10  years of Cluster 
data and estimated the Akasofu parameter under several 
solar wind parameters. They found that the total cold 
ion flux is increasing for higher ǫ (up to 1011 W ). This 
result (Li et  al. 2017) is in agreement with ours as our 
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epsilon values is estimated in average to 3.05× 1010 W 
(see dashed blue curve in Fig. 4) and goes up to 1012 W 
for a few values (see Fig. 5). According to Akasofu (1981), 
a transferred power of 1012 W or higher corresponds to 
a magnetic storm. From our observations, this statement 
implies that for geomagnetic storms the O+ escape rate 
increases, which is in good agreement with the results 
found by Schillings et  al. (2017, 2018). In addition, we 
observe a slightly higher solar energy transfer into the 
magnetosphere during strong southward IMF (up to 
− 30 nT , not shown); meanwhile, the cusp is expanding 
and moving equatorward (Newell et  al. 1989; Palmroth 
et al. 2001; Li et al. 2012). Therefore, during more intense 
southward IMF, the interaction area for the penetrating 
solar wind expands and powers significantly the magne-
tospheric dynamics.

The most striking feature with all the different cou-
pling functions is that the energy input must reach a cer-
tain threshold before any significant change of the O+ 
escape rate is seen. After that, there is a strong correla-
tion between any of the coupling functions and the O+ 
escape rate. At lower energy input, there is no or even a 
negative correlation. A possible interpretation is that for 
low to intermediate energy input, the initial upflow is 
mainly determined by the solar wind precipitation into 
the upper atmosphere (Nilsson et al. 1996; Ogawa et al. 
2009). As energy input increases, the O+ escape rate 
increases and may be due to an expansion of the polar 

cap and ion circulation to lower latitudes, which results 
in denser plasma from lower latitude moving towards 
higher latitudes into the cusp. With the available data we 
have, this is only a speculation, but it can be tested using 
ground-based data such as incoherent scatter radars.

Extreme ultraviolet
The low-energy O+ density and outflow in the polar cap, 
cusp and lobes have been observed to be dependent of 
EUV radiation ( F10.7 ) (Young et al. 1982; Yau et al. 1988; 
Cully et  al. 2003; André et  al. 2015). Despite this, we 
observe no correlation between the EUV intensity and 
the O+ escape rate in the plasma mantle (see Fig. 6). As 
an extra caution, we tested the EUV dependence for polar 
cap data using our code and obtained a similar result 
to the papers cited above (not shown). EUV radiations 
have an impact in the ionosphere between roughly 80 
and 600 km, the ionisation of atomic oxygen to O+ ions 
increases at those altitudes, and the O+ density extends in 
altitude. On the other hand, all those newly formed ions 
are not transversely heated and accelerated enough to 
reach the plasma mantle. One portion will remain bound 
by gravity, and another portion will become outflow and 
end up in the plasma sheet. It seems that the amount that 
reaches the plasma mantle is not strongly dependent on 
this initial production of ions. This may be because the 
O+ in the plasma mantle mainly originates from the ion-
ospheric cusp, where there is also significant soft electron 
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precipitation to heat and ionise the ionospheric F-region, 
leading to the initial upflow (Nilsson et al. 1996; Ogawa 
et al. 2009); see also statistical maps of electron precipi-
tation (Newell et al. 2009). To strengthen this result, we 
implemented the O+ flux as a function of both EUV flux 
(see Eq.  6) and dynamic pressure (see Fig.  7). We see 
that, in the plasma mantle, the O+ escape rate definitely 
depends on the solar wind dynamic pressure and not on 
the photoionisation flux (neither does the Kp index see 
Additional file 1: Fig. 1).

Conclusions
Previous work has reported O+ outflow dependency with 
solar wind parameters such as IMF (Slapak et  al. 2015), 
EUV (Yau et  al. 1988; Cully et  al. 2003; Mouikis et  al. 
2010) or among other parameters e.g. Abe et al. (1996), 
Elliott et  al. (2001), Lennartsson et  al. (2004). However, 
those results do not cover the plasma mantle region. In 
this study, we analysed the O+ escape rate in the plasma 
mantle for different solar wind parameters, namely the 
dynamic pressure Pdyn , IMF through the clock angle and 
the EUV flux. We found that

1. The O+ that will eventually escape from the plasma 
mantle increase with the solar wind dynamic pres-
sure by about 2 orders of magnitude between the 
lowest to highest dynamic pressure conditions.

2. The IMF has a clear influence on the O+ escape with 
an increase by a factor 3 between northward and 
southward IMF,

3. The photoionisation flux (EUV flux) does not influ-
ence the O+ escape rate in the plasma mantle.

Our results imply that the higher the O+ escape rate is, 
the higher solar wind flux and energy penetrates into the 
magnetosphere. Therefore, atmospheric loss through 
the plasma mantle strongly depends on solar wind con-
ditions but not solar radiation. When using a solar wind 
coupling function, the response is nonlinear and starts to 
increase only after some threshold is reached. Thus, if we 
consider higher solar energy input as extreme solar wind 
conditions, we suggest as a possible explanation that the 
O+ escape rate increases significantly due to an increased 
polar cap size and increased convection of fresh plasma 
into the ionospheric upflow region. Finally, considering 
that the young Sun had stronger solar wind, we await that 
O+ escape driven by solar wind conditions has a crucial 
influence on the evolution of the Earth’s atmosphere. 
Therefore, questions remain open and could be addressed 
in future studies regarding how does the intrinsic mag-
netic field protect the Earth from significant solar wind 
penetration and our atmosphere from atmospheric loss.

Additional file

Additional file 1. The first paragraph of the Additional file 1 provides 
more details on the calculations of the Vasyliunas et al. formula used in 
Figs. 4 and 5. The equations are fully described. The second part provides 
additional information on the geomagnetic activity (Kp) compared with 
the solar wind dynamic pressure and the photoionisation flux.
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