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ABSTRACT 

Working with high-dimensional phylogenetic comparative datasets is challenging because 

likelihood-based multivariate methods suffer from low statistical performances as the number 

of traits p approaches the number of species n and because some computational complications 

occur when p exceeds n. Alternative phylogenetic comparative methods have recently been 

proposed to deal with the large p small n scenario but their use and performances are limited. 

Here we develop a penalized likelihood framework to deal with high-dimensional 

comparative datasets. We propose various penalizations and methods for selecting the 

intensity of the penalties. We apply this general framework to the estimation of parameters 

(the evolutionary trait covariance matrix and parameters of the evolutionary model) and 

model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), 

Ornstein-Uhlenbeck (OU) and Pagel’s lambda models. We show using simulations that our 
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penalized likelihood approach dramatically improves the estimation of evolutionary trait 

covariance matrices and model parameters when p approaches n, and allows for their accurate 

estimation when p equals or exceeds n. In addition, we show that penalized likelihood models 

can be efficiently compared using Generalized Information Criterion (GIC). We implement 

these methods, as well as the related estimation of ancestral states and the computation of 

phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the 

utility of the new proposed framework by evaluating evolutionary models fit, analyzing 

integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D 

dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst 

model suggesting an early diversification of brain morphology during the ecological radiation 

of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional 

multivariate comparative data. 

 

KEYWORDS 

Evolutionary covariances, Phylogenetic signal, Phylogenetic PCA, Regularization, Ridge, 

LASSO, large p small n, Shrinkage, approximate LOOCV, Generalized Information 

Criterion, New World monkeys, brain shape. 

 

 

Methods for modeling the evolution of species traits on phylogenetic trees, also known as 

phylogenetic comparative methods, have exploded since the seminal paper of Felsenstein 

(1985). In particular, multivariate models, in which several traits coevolve, have allowed the 

explicit investigation of several aspects of phenotypic evolution that cannot be addressed by 

separate univariate analyses (Butler and King 2009; Revell and Collar 2009; Bartoszek et al. 

2012; Clavel et al. 2015; Caetano and Harmon 2017; Goolsby et al. 2017; Manceau et al. 
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2017; Bastide et al. 2018). These multivariate phylogenetic models have for example allowed 

us to analyze the evolutionary integration of traits – i.e. how the evolution of one trait is 

associated to the evolution of others (Revell and Harmon 2008; Revell and Collar 2009; 

Bartoszek et al. 2012; Clavel et al. 2015). Estimating the correlated evolution of traits is also a 

necessary step in several multivariate statistical methods accounting for the evolutionary 

history of species such as canonical correlation Analysis (CCA) (Revell and Harrison 2008), 

principal component analysis (PCA) (Revell 2009), two-block partial least-squares (PLS) 

(Adams and Felice 2014), and tests associated with traditional versions of phylogenetic 

multivariate analysis of variance (MANOVA) (Garland 1992, 1993), and multivariate 

generalized least squares regressions (GLS) (Grafen 1989; Martins and Hansen 1997). A first 

step common to these multivariate phylogenetic comparative methods involves computing the 

maximum likelihood estimate of traits evolutionary variance covariance matrices - often 

referred to as the rate matrix R (e.g., Revell and Harmon 2008) - under specific models of 

phenotypic evolution (often, but not always, the multivariate Brownian model). 

In many respects working with multivariate methods is a challenging task as the 

computational time, memory requirement and the number of parameters to estimate for fitting 

these models grows up non-linearly with increasing dimensions (Ho and Ané 2014; Clavel et 

al. 2015; Goolsby et al. 2017). The challenge is even greater when working with high-

dimensional datasets - where the number of traits (p) is large compared to the number of 

species (n). In this case, complications arise to compute and/or invert the maximum likelihood 

estimate (MLE) of traits evolutionary variance covariance matrices. When p approaches n, the 

MLE of the covariance matrix is no longer a good approximation of the true (population) 

covariance matrix (James and Stein 1961; Schäfer and Strimmer 2005; van Wieringen 2017). 

For instance, the leading eigenvalues are systematically overestimated while the last 

eigenvalues are underestimated (Ledoit and Wolf 2004; Schäfer and Strimmer 2005; Ledoit 
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and Wolf 2012). As a consequence, multivariate phylogenetic comparative methods based on 

maximum likelihood are no longer reliable and lead to increased model misspecification or 

loss of statistical power (Dunn et al. 2013; Adams 2014a, 2014b; Goolsby 2016; Adams and 

Collyer 2018). Things get even worse when p equals or exceeds n. In this case, several 

eigenvalues equal zero and result in a non-invertible MLE of the covariance matrix, which 

precludes the use of most phylogenetic comparative methods (Adams 2014a, 2014c; Goolsby 

2016; Adams and Collyer 2018). In such a situation, a common practice is to reduce the 

dimensionality of the dataset through PCA and then treat the first axes as independent traits in 

downstream comparative analysis. But doing so can lead to erroneous conclusions about the 

underlying evolutionary model (Revell 2009; Uyeda et al. 2015; see also Bookstein 2012 for a 

similar problem with non independent observations in time-series ). Alternative dimension 

reduction methods have recently been proposed (Tolkoff et al. 2017), but they are currently 

limited to the Brownian motion model. 

As large p small n datasets become more and more widespread, as for example in 

geomorphometric and gene expression studies (Dunn et al. 2013; Goolsby 2016; Cross 2017), 

there have been some recent efforts to tackle the issue. First, Adams (2014a, b, c) developed 

an approach, implemented in the geomorph R package, to compare evolutionary rates across 

clades, measure phylogenetic signal and perform regression (PGLS) analyses for high-

dimensional data by transforming the data using analytical results known for the Brownian 

motion model. This approach is useful, yet restricted to Brownian motion processes (in fact to 

simple cases of BM that do not require computing a likelihood). More recently, Goolsby 

(2016) showed that Adams’ method suffers from low statistical performances, and proposed 

an alternative approach based on pairwise composite likelihoods, implemented in the 

phylocurve R package. The approach considers pairs of traits at a time and computes the 

corresponding pair-level likelihoods under any evolutionary model (such as Brownian 
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motion, Ornstein-Uhlenbeck and Early burst); a pseudo-likelihood is then computed by 

summing the pair-level likelihoods. This is again a helpful approach, yet using a pseudo-

likelihood prevents applying classical statistical techniques; for example the parametric 

evaluation of uncertainty around parameters estimates and model selection procedures based 

on Information Criterion cannot be performed, and we have to resort to simulations (although 

analogues to conventional Information criteria have been derived for composite-likelihoods; 

Varin et al. 2011). In his paper, Goolsby (2016) focused on model comparison, not estimates 

of the covariance matrix; such estimates can be obtained, but as discussed earlier we expect 

the obtained covariance to be a poor estimate of the true covariance when the ratio p/n 

approaches 1 or to be singular when p>n. Moreover, Goolsby’s approach has also recently 

been criticized for being sensitive to potential data transformation such as rigid rotations, 

which limits its use, for example in the case of geomorphometric data (Adams and Collyer 

2018). Hence, while the two developments above advanced the field by providing some new 

tools for high-dimensional datasets, they did not directly address the problem of estimating 

accurate covariance matrices, and thus do not allow extending the full arsenal of available 

phylogenetic comparative methods to small n large p datasets. 

In this article we develop a general penalized likelihood framework for estimating and 

inverting trait covariance matrices that allows multivariate phylogenetic comparative methods 

to be extended to high-dimensional data. Penalized likelihood (Huang et al. 2006; Levina et 

al. 2008; Warton 2008; Friedman et al. 2008; van Wieringen and Peeters 2016) is a modern 

formulation of the regularization/shrinkage approaches commonly used in the statistical 

literature (Hoerl and Kennard 1970a; Dempster 1972; Friedman 1989; Tibshirani 1996; 

Ledoit and Wolf 2004; Schäfer and Strimmer 2005). The goal of regularization approaches is 

to constrain the estimates of the parameters, such as the MLE, in order to make them more 

accurate and to solve ill-posed problems. For instance, the ridge regularization was one of the 
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first methods used in large multiple regression problems to circumvent singularity issues due 

to over parameterization and to obtain estimates with reduced mean squared errors (Hoerl and 

Kennard 1970a, 1970b). Regularization techniques have been successfully applied in 

phylogenetics for reconstructing trees (Kim and Sanderson 2008), estimating molecular rates 

and divergence times (Sanderson 2002; Smith and O’Meara 2012), and more recently for 

estimating lineage-specific evolutionary rates and ancestral states under univariate Brownian 

models of trait evolution (Kratsch and McHardy 2014) or detecting shifts in the optimum of 

Ornstein-Uhlenbeck models (Khabbazian et al. 2016). In all these studies, regularization has 

proven to be an efficient alternative to Bayesian techniques, generally used to integrate over 

parameter rich spaces. While the idea of using regularization approaches to address the large 

p small n problem has been suggested before in another context (Dunn et al. 2013), it has not 

been developed in practice. In the case of covariance matrix estimation, the goal of the 

penalized likelihood approach is to constrain the MLE to a symmetric positive definite and 

thus invertible matrix with a simpler structure and improved statistical properties (e.g., 

correcting for the over dispersion of the eigenvalues or reducing the quadratic loss). This is 

achieved by adding a penalty term to the likelihood that favors solutions with the required 

structure and by finding the optimal solution that maximizes the penalized likelihood. 

We consider four commonly used penalizations that fall in two broad types: the ridge 

penalty, also called �� regularization (Huang et al. 2006; Warton 2008; van Wieringen and 

Peeters 2016), and the LASSO penalty (Least Absolute Shrinkage and Selection Operator), 

also called �� regularization (Tibshirani 1996; Levina et al. 2008; Friedman et al. 2008; Bien 

and Tibshirani 2011). We propose a simple method for jointly estimating model parameters 

and the level of penalization. In addition, we show how to perform model selection using 

Information Criteria (Akaike 1974; Konishi and Kitagawa 1996).  
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We apply our penalized framework to the estimation of evolutionary trait covariance 

matrices, model fit and model comparison for the high-dimensional multivariate Brownian 

(BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel’s lambda models. We perform a 

series of simulations to test the performance of our penalized likelihood approach in terms of 

estimation of the variance covariance matrix and of evolutionary model parameters, as well as 

model comparison. When alternative approaches were available (i.e. ML when p<n for both 

parameter estimation and model comparison based on information criteria, and Goolsby’s 

pairwise likelihood when p>n for parameter estimation), we compared the performance of our 

approach to these alternatives. We also implemented the estimation of ancestral states 

(Martins and Hansen 1997; Cunningham et al. 1998) and phylogenetic PCA (Revell 2009) 

under the above-mentioned processes. 

We illustrate potential applications of our approach by analyzing an extremely high-

dimensional 3-D geometric morphometric dataset describing brain shape variation for 48 

species of New World monkeys. Previous model-fitting analyses on a subset of PCs axes 

derived from this dataset, together with disparity-through-time plots, have indicated that brain 

shape has quickly diversified during the early history of the clade, according to the occupation 

of different ecological niches (i.e., an adaptive radiation; Aristide et al. 2016). However, it has 

been suggested that, under certain conditions, comparative analyses conducted only over the 

first PC axes of multivariate datasets may tend to artificially favor “early burst” like processes 

and should instead be ideally performed using fully multivariate approaches that avoid 

dimensionality reduction steps (Uyeda et al. 2015). Here we apply our penalized likelihood 

framework to this high-dimensional empirical dataset, estimating the fit of alternative 

multivariate evolutionary models (BM, EB, and OU) and comparing the results to those 

obtained previously. Additionally, we utilize the best fitting model parameters to explore the 

global patterns of covariation among shape variables (i.e. evolutionary integration) derived 
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from a phylogenetic PCA, as well as to obtain an ancestral reconstruction of the New World 

monkey’s brain shape and evolutionary trajectories of its change through time. 

Finally, we discuss our results and the broad potential of penalized-likelihood 

approaches for extending the multivariate comparative toolbox to high-dimensional data. 

 

MATERIALS AND METHODS 

Below we detail how to fit a class of multivariate trait evolution models to high-dimensional 

comparative data using penalized likelihood. These models include the multivariate Brownian 

model, and all other multivariate models (e.g. EB, OU, and Pagel’s λ) for which a single 

(between traits) evolutionary variance covariance matrix R applies across the phylogeny (R is 

often noted �, the multivariate counterpart of ��, the diffusion parameter of the univariate 

Brownian model), and all traits share a common phylogenetic variance-covariance matrix C 

representing the expected scaled variance for each species (a function of the height ��� above 

the root of the ith taxa and the parameters of the model) and between species scaled 

covariances (a function of the shared evolutionary history ��� between taxa i and j and the 

parameters of the model; Felsenstein 1985; Rohlf 2006). For these “simple” models, we can 

efficiently compute the corresponding log-likelihood using the multivariate normal density in 

Equation (1). For more complex models with for instance distinct C matrices for each trait or 

with distinct R matrices for different clades (e.g., the “BMM” model in mvMORPH; Clavel et 

al. 2015), different algorithms are required for computing the corresponding log-likelihood 

efficiently (e.g., Freckleton 2012; Clavel et al. 2015; Caetano & Harmon 2017; Goolsby et al. 

2017). The general penalized-likelihood framework presented here can be applied to such 

models, provided these algorithms are available. 

 

The Likelihood 
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The log-likelihood of traits is given by the multivariate normal density: 

 

ℒ = − �
� ��	log�2�� + �log|�| + log|�| + tr��

���� −  !�"����� −  !�#$ (1a) 

 

Where n is the number of species, p is the number of traits, Y is the n by p matrix of trait 

values, X the design matrix mapping ancestral states to species for each trait (a n dimensional 

column vector of one in what follows, but this matrix could have different column dimensions 

in general; e.g. for regression models such as PGLS), ! a vector of size p representing the 

ancestral states for each trait, C is the phylogenetic covariance matrix of size n by n (see 

above), and R the traits covariance matrix of size p by p (see details in Felsenstein 2004; 

Revell and Harmon 2008; Freckleton 2012; Clavel et al. 2015). For a given matrix A, tr�%� 

stands for the trace (the sum of the diagonal elements), |%| for the determinant, %�� for the 

inverse, %" for the transpose and %�" for the transpose of the inverse. The likelihood 

expression written in Equation (1a) can also be written as a function of a Kronecker product 

of R and C, and also as a function of the inverse of the traits covariance matrix R, which is 

commonly referred to as the precision matrix &. We report these expressions in Appendix 1, 

as they are commonly used in the multivariate statistics literature; the expression with & is 

also the one we use to obtain some of our results. 

In addition to this classical log-likelihood, we consider the restricted (RE) log-

likelihood, given by (Felsenstein 1973, 2004; Freckleton 2012): 

 

ℒ = − �
� �� − 1��	log�2�� + �log|�| + � − 1�log|�| + tr��

���� −  !�"����� −  !�# +

	�log| "��� |$ (1b) 
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Estimates based on the unrestricted likelihood are known to be biased (Harville 1977), 

and the restricted likelihood is thus more appropriate for estimating the residuals and 

variance-covariance parameters of the models (Felsenstein 1973, 2004; Freckleton 2012). 

Here we consider both types of likelihoods because there are straightforward extensions of the 

approach where restricted likelihood won’t be appropriate for model comparison (e.g. cases 

when the number of ancestral states  – or fixed-effects – coded in the design matrix X differ 

across models Freckleton 2012; but see Gurka 2006). 

 

The maximum likelihood estimate (MLE) of the evolutionary covariance matrix R is given 

by: 

�( = ��� )�*�+,��� )�
-  (2) 

 

or by using n-1 in the denominator of Equation (2) for the restricted log-likelihood. 

Unfortunately when the number of variables p approaches the number of species n, �( (the 

sample estimate) does not necessarily provide a good estimation of the true R, and when p 

exceeds n, �( is singular, meaning that we cannot compute its inverse nor the log of its 

determinant, and thus lose the ability to compute the associated log-likelihood. 

 

The Penalized Likelihood 

 

In order to solve the large p small n problem above, we use the penalized likelihood 

framework, which aims to provide estimators for the covariance matrix R that are well 

conditioned, positive definite, and thus invertible. We consider four penalties (Table 1): a 

linear ridge penalty hereafter referred to as the “archetypal ridge penalty”, two types of 

quadratic ridge penalties, and the LASSO penalty. These penalties are motivated by the bias-
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variance tradeoff and aim to find a compromise between the high-variance and low-bias �( 

and a well-behaved low-variance (but higher bias) target matrix T. Typical T matrices used in 

the literature are the null matrix (a matrix full of zeros), the identity matrix (or a multiple of 

the identity matrix), and the diagonal matrix composed of the estimated variances for each 

trait, that is the diagonal elements of �( (Hoffbeck and Landgrebe 1996; Schäfer and Strimmer 

2005; van Wieringen and Peeters 2016). The latter is often considered as the best choice as it 

has less bias than the other matrices (Schäfer and Strimmer 2005; van Wieringen and Peeters 

2016, but see Lancewicki and Aladjem 2014). 

 

The archetypal ridge estimator is given by (e.g., Schäfer and Strimmer 2005; Warton 

2008; van Wieringen and Peeters 2016): 

 

��.�/012345678	0�9:3 = �1 − .��( + .; (3) 

 

where . is a regularization parameter (often also called tuning parameter) bounded between 0 

and 1 that controls the intensity of the penalty, and T is a target matrix. We took T to be the 

diagonal matrix composed of the estimated variances for each trait (Hoffbeck and Landgrebe 

1996; Schäfer and Strimmer 2005; van Wieringen and Peeters 2016). This estimator reduces 

to the MLE when . = 0 and to T when . = 1 (a situation in which traits are estimated to be 

independent when T is diagonal); intermediate . values provide a good tradeoff between bias 

and variance reduction. We explain later how the value of the regularization parameter is 

selected. The archetypal ridge estimator results from maximizing the following penalized-

likelihood (van Wieringen and Peeters (2016), see Appendix 2): 
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ℒ= = − �
� ��	log�2�� + plog|�| + log|�| + �1 − .�tr��

���� −  !�"����� −  !�# +

.tr����;#$ (4) 

 

More generally, different types of regularizations are obtained by amending a penalty 

term to the log-likelihood (Eq. 1). The first type of quadratic ridge penalized-likelihood that 

we consider (hereafter referred to as ridge quad. (var)) is given by (van Wieringen and Peeters 

2016): 

 

ℒ= = ℒ − -?
@ tr���

�� − ;���"���� − ;���# (5) 

 

where again we take the target matrix T to be the diagonal elements of �(, and the 

regularization parameter . can take any value in �0,∞�. 

Finally, we consider two penalized-likelihoods given by: 

 

ℒ= = ℒ − -?
@ ‖�

��‖D (6) 

 

where the penalty ‖⋅‖D = ∑ |⋅|D6G
�H�  is the matrix norm and . can take any value in �0,∞�. 

With q=2 (Huang et al. 2006; Witten and Tibshirani 2009; van Wieringen and Peeters 2016), 

this penalty writes ∑ ∑ I�����J
�6

�H�
6
�H� = tr���"���# and is equivalent to the quadratic penalty 

given by Equation (5), but with T chosen to be the null matrix. We refer to this penalty as 

ridge quad. (null). With q=1, we obtain the penalty well known as the LASSO (Tibshirani 

1996; Friedman et al. 2008; Witten and Tibshirani 2009). The LASSO also shrinks �( towards 

the null matrix, but does so by progressively assigning the least significant covariance terms 

to zero instead of homogeneously reducing all terms as in the ridge quad. (null). 
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These penalties have been successfully applied to the estimation of large covariance 

matrices in other contexts (e.g., Ledoit and Wolf 2004; Schäfer and Strimmer 2005; Huang et 

al. 2006; Friedman et al. 2008; Witten and Tibshirani 2009; van Wieringen and Peeters 2016). 

The archetypal ridge estimator was historically considered because efficient methods can be 

used to compute and solve it (Friedman 1989; Hoffbeck and Landgrebe 1996; Ledoit and 

Wolf 2004; Schäfer and Strimmer 2005; Warton 2008; Theiler 2012). The quadratic ridge 

estimator resembles more to the original ridge penalty used in regression analysis and shows 

improved statistical properties (van Wieringen and Peeters 2016; van Wieringen 2017), but its 

analytical solution is more computationally demanding. The LASSO exhibits the same 

interesting shrinkage properties as the ridge penalizations, and in addition provides sparse 

matrix estimates, which provides an efficient way to perform covariance selection, but it 

requires even more intensive iterative algorithms (Friedman et al. 2008; Witten et al. 2011; 

Bien and Tibshirani 2011). An important difference between the various penalizations is that 

some of them (e.g. the ridge quad null) are rotation-invariant, meaning that they are robust to 

data orientation, while others (e.g. the ridge quad. var. and the LASSO) are not (Table 1, 

Ledoit and Wolf 2004; Warton 2008; Ledoit and Wolf 2012, 2015). When working on 

untransformed data, methods that are not rotation-invariant can be used. However in other 

cases, for example for variables generated from shape spaces in geomorphometrics which 

usually depend on the arbitrary choice of the orientation of a baseline shape (Rohlf 1999), 

only methods insensitive to these rotations should be used (Rohlf 1999; Adams and Collyer 

2018). The merits of the various types of penalizations are discussed at greater length in our 

Discussion and summarized in Table 1. 
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 In what follows, we need to compute first and second order derivatives of the 

penalized-likelihood for the different types of penalizations. These derivations are detailed in 

Appendix 2. 

<TABLE_1> 

 

Solving the Penalized Likelihood 

 

Unlike the archetypal ridge estimator (Eq. 3), which formulation preceded the 

corresponding penalized-likelihood (Warton 2008; van Wieringen and Peeters 2016; 

Appendix 2), the three other estimators are found by computing the argmax of the various 

penalized-likelihoods. 

The two quadratic ridge estimators (with T diagonal or T null) can be obtained 

analytically by finding the R matrix for which the first derivative of Equation (5) (and Eq. 6 

with q=2) equals zero (Witten and Tibshirani 2009; van Wieringen and Peeters 2016). For a 

fixed value of the regularization parameter . in �0,∞�, the quadratic ridge estimator is given 

by: 

 

��.�KL79074�1	0�9:3 = M.NO + �
@ I�( − .;

��J�P
� �⁄

+ �
� I�( − .;

��J (7) 

 

where NO is the identity matrix of dimension p. 

 The LASSO estimator, obtained by solving the penalized likelihood given by Eq. 6 

with q=1, cannot be computed analytically. Several algorithms have been proposed to 

compute it iteratively (Tibshirani 1996; Friedman et al. 2008), such as the “graphical lasso” 

algorithm implementation in the R package “glasso” (Friedman et al. 2008; Witten et al. 

2011). This algorithm provides a sparse estimate of 	��� rather than �. Other algorithms that 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy045/5040209
by ENS Paris Biologie, Julien Clavel
on 19 June 2018



directly introduce zeros in � (Bien and Tibshirani 2011) are more computationally demanding 

and have not been as well tested. As we encountered non-termination convergence issues with 

the “glasso” package, we instead implemented the GLASSOFAST algorithm proposed by 

Sustik and Calderhead (2012), which is also generally faster than the one proposed by 

Friedman et al. (2008). We made our implementation of this general-purpose algorithm 

publicly available on github (https://github.com/JClavel/glassoFast) and in an R package 

called “glassoFast” on the CRAN repository (R Development Core Team 2016). 

 

 

Estimating the regularization and model parameters 

 

We used cross-validation to obtain the regularization parameter . (Hastie et al. 2009). This 

parameter cannot be computed jointly with the model parameters by directly maximizing the 

penalized log-likelihood (Eqs. 4-6), because it would then always be estimated to 0. This is 

because the true covariance R in Equations (4-6) is generally not available and is instead 

replaced by a covariance �( estimated from the data by taking the MLE. Hence, the same data 

is used both to evaluate the likelihood of each observation and to estimate the covariance 

matrix. One way to solve this issue is to approach the likelihood by an expression that uses 

independent data to evaluate the likelihood and to estimate the covariance matrix. Here we 

use a leave-one-out cross-validation (LOOCV) of the penalized likelihood for which the 

general idea is to average the likelihoods over each observation (testing samples) with a 

covariance matrix �( estimated without the observation (training samples) (Hoffbeck and 

Landgrebe 1996; Hastie et al. 2009; Theiler 2012). We develop a leave-one-out cross-

validation scheme that consists first in directly removing the phylogenetic correlation between 
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species in the data; this avoids defining arbitrary blocks of independent species based on 

phylogenetic distance (e.g., Roberts et al. 2017). We note 

 

�R = ��
,
G�,  R = ��

,
G   

 

the transformed, decorrelated data, where ��
,
G is the square root of ���. !, the generalized 

least squares (GLS) estimate of the ancestral states (! = � "��� ��� "����, e.g. Rohlf 

2001), is then directly given by ! = I R" RJ�� R"�R. The leave-one-out cross-validated 

penalized log-likelihood is expressed as: 

  

ℒST = − �
� M�	log�2�� + �log|�| +	∑ UVWXY�R�.���Z�Y + [\ M�R�.������� I�RZ −  RZ!JI]̂� −-

�H�

_̂�!J
"P`P, (8) 

 

Where �RZ and  RZ are the p by 1 column vectors made of the ith row of the corresponding 

matrix (i.e. the row related to taxon a; I�RZ −  RZ!JI�RZ −  RZ!J
"	is thus a p by p matrix) and 

�R�.���Z� is the p by p penalized likelihood estimator computed as described in Eq. 3 for the 

archetypal ridge, Eq. 7 for the quadratic ridge, and the solution of Eq. 6 (with q=1) for the 

LASSO, with �( replaced by: 

 

�(��Z� =
I�R��Z� −  R��Z�!��Z�J

"I�R��Z� −  R��Z�!��Z�J
 − 1  

 

where the subscript �−a� refers to matrices computed without the row corresponding to taxon 

a. 
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We can jointly estimate the regularization parameter and the model parameters by 

maximizing the LOOCV (Equation 8). Calculating the LOOCV can be very computationally 

intensive, and so we consider faster implementations (for the archetypal ridge penalty, 

Appendix 3) and approximations (for the quadratic ridge and LASSO penalties, Appendix 3). 

Also, for the simple models considered here with X a n dimensional column vector of one  

(corresponding to the case when only one ancestral trait value is reconstructed for each trait, 

vs. models with specific subclades that can have distinct ancestral trait values for a given trait, 

such as when there are sudden variations in trait values during the evolutionary history of 

clades – O’Meara et al. 2006), we can compute the LOOCV directly on the phylogenetic 

independent contrasts scores that are, in this case, closely related to the residuals �RZ −  RZ! in 

Equation (8) (Appendix 3; see also Stone 2011; Blomberg et al. 2012). We estimate the model 

and regularization parameters by maximizing the LOOCV, considering both the likelihood 

and the restricted likelihood, using the L-BGFS-B routine implemented in the optim function 

in R. 

We also show in Appendix 2 how to compute standard errors around parameter 

estimates and provide some examples in the Supplementary Material (at http://datadryad.org; 

doi:10.5061/dryad.rf7317t). 

 

Model selection 

 

Penalized likelihoods cannot be compared using traditional information criteria such as the 

Akaike Information Criterion (AIC, Akaike 1974; Burnham and Anderson 2002), but they can 

be compared using the Generalized Information Criterion (GIC), which is an extension of the 

AIC to Maximum likelihood-type estimators (or M-estimators, Konishi and Kitagawa 1996, 

2008). Consider a series of independent data c�, c�, … , c- and a fitted model e�c|f� with 
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f = 	f�, f�, … , fg the parameters of the model; the M-estimator fh is given by the solution of 

an equation of the type ∑ i�c� , f� = 0-
�H� . Then, the GIC is defined by: 

 

jkl = −2∑ log eIc�YfhJ-
�H� + 2tr�m��N� (9) 

 

where 

m = − �
-∑

no�pq,r�
nr

-
�H� YrHr( and N = �

-∑ iIc�, fhJ ns
�pq|r�
nr

-
�H� YrHr( (10) 

 

Applied to our case, f is the likelihood function and the GIC is obtained by taking c� = �RZ −

 RZ! (i.e., the phylogenetically transformed residuals). In the case of ML estimation, i�c, f� 

is simply the derivative of the log-likelihood with respect to f. In the case of penalized 

likelihood estimation, it is the derivative of the penalized log-likelihood. The bias term 

tr�m��N� in Equation (9) can be seen as an effective number of degrees of freedom – a 

monotonic function of the regularization parameter (e.g., Rondeau et al. 2003; Abbruzzo et al. 

2014; Vinciotti et al. 2016). It can be computed as ∑ tr�mt��Nt�g
uH� , with 

mt = − �
-∑

no�pq,r�
nrv

-
�H� YrHr( and Nt = �

-∑ iIc� , fhJ ns
�pq|r�
nrv

-
�H� YrHr( (Konishi and Kitagawa 

2008). In our case we take the parameters of the model to be f� = & (to simplify the 

computation – Appendix 1), f� = !, and fw the parameter of the trait evolution model (e.g. x, 

r or y). In the case of ML estimation, we compute the derivatives with respect to & and ! 

using the well-known closed form derivatives of the log-likelihood of the multivariate normal 

density (e.g., McCulloch 1982; Anderson and Olkin 1985; Appendix 2). In the case of the 

penalized likelihood estimation, we derive the derivatives and provide efficient solutions to 

compute them in Appendix 2. Finally, in order to speed up the computation of the GIC, we 

approximate the third term in the sum (i.e. the term corresponding to k=3) by the number of 
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parameters of the trait evolution model, which corresponds to the number of degrees of 

freedom. Model selection with information criteria under REML estimation is often achieved 

with different formulations for the bias term (see discussions in Gurka, 2006). Here we follow 

Gurka (2006) and use the restricted log-likelihood with the bias term estimated as above, that 

is, by accounting for the estimation of all the parameters in the model. 

 

Implementation 

 

We implemented our penalized-likelihood fit of multivariate evolution for the BM, EB, OU 

and Pagel’s lambda model. The implementation is publicly available on github 

(https://github.com/hmorlon/PANDA/tree/PenalizedMLPhylo) and in the R packages 

RPANDA (Morlon et al. 2016, function fit_t_pl) and mvMORPH (Clavel et al. 2015, function 

mvgls).  We allowed (as an option in the function) for the possibility to account for intra-

specific variation and measurement errors (they may otherwise bias the model selection, 

Silvestro et al. 2015) by directly estimating them from the data in the fitting process 

(Housworth et al. 2004; Ives et al. 2007; Hansen and Bartoszek 2012, see also the 

Supplementary Material). Three additional functions compute the corresponding GIC scores 

(function GIC), perform the reconstruction of ancestral states (Martins and Hansen 1997; 

Cunningham et al. 1998, function ancestral), and output the phylogenetic PC axes based on 

the estimated variance-covariance matrix (Revell 2009, function phyl.pca_pl). 

 

Testing the performance of the PL approach with simulations 

 

We use simulations to assess the ability of our penalized likelihood (PL) approach to recover 

parameter estimates and to select the proper model, for various multivariate evolutionary 
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models. We compare the performance of our approach to that of maximum Likelihood (ML) 

and pairwise composite likelihood (PCL) (Goolsby 2016) approaches. We focus on four 

simple and widely used models of phenotypic evolution: the Brownian Motion (BM), the 

Early-Burst (EB), the Ornstein-Uhlenbeck (OU) and Pagel’s y models (a measure of 

phylogenetic signal). We follow Goolsby (2016) and Bastide et al. (2018) and consider the 

pull matrix of the multivariate OU process (sometimes called x or A; Bartoszek et al. 2012, 

Clavel et al. 2015) to be diagonal – that is, the coevolution between traits is entirely modeled 

in R (i.e. in the stochastic, not deterministic part of the process); in addition, the same pull 

parameter x applies to all the traits. For the OU and EB models we use parameter values (x 

for OU and r for EB) corresponding to 0 (BM) and 0.5, 1, 3, 5 and 10 half-lives elapsing over 

the tree height ([� �⁄ = log	�2� �\	W\	x��⁄ , held identical across traits. For Pagel’s y 

transformation we use values of: 0, 0.2, 0.4, 0.6, 0.8 and 1 (BM), held identical across traits. 

For each model and each parameter set, we simulate 1,000 trait datasets. We fix the 

size of the phylogeny to n=32 tips and vary the number of traits p from 2 to 50 (p=2, 5, 10, 

25, 31, 50). Each simulation consists in the following steps: i) simulate a pure-birth tree with 

n=32 tips scaled to unit height using the pbtree function in “phytools” (Revell 2012), ii) 

transform the branch-lengths of the tree according to the phenotypic evolution model 

considered, using the stretching approach (Pagel 1999; O’Meara 2012; this step is skipped for 

BM that does not require any transformation), iii) simulate a random R matrix using the 

approach of Uyeda et al. (2015), which intends to reflect the structure of typical evolutionary 

rate matrices (e.g., Mezey and Houle 2005); this matrix is obtained by sampling the 

eigenvalues from an exponential distribution with rate y = 1/100, assuring a certain degree 

of correlation between traits, and finally iv) simulate the traits on the transformed tree under a 

multivariate BM with evolutionary rate matrix R using the mvSIM function in “mvMORPH” 
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(Clavel et al. 2015). All simulations were performed on a Linux platform with R version 3.2.3 

(R Development Core Team 2016). 

Next, to each simulated dataset, we apply our penalized likelihood approach with the 

archetypal ridge, the two quadratic ridge, and the LASSO penalties, as well as the PCL 

approach implemented in the evo.model function from the R package “phylocurve” (Goolsby 

2016). Under conditions when it is applicable (that is, when p<n), we also apply the simple 

ML using the evo.model function. In addition, we apply our approximation of the LOOCV to 

the LASSO and ridge quad. (var) penalties; the approximation of ridge quad. (null) is 

expected to perform similarly as that of ridge quad. (var). We found that, while the 

approximations were very good for large n compared to p, they were not when p approached 

or exceeded n. Thus, we apply the approximations only for p<n; they then provide substantial 

computational advantage compared to the regular LOOCV (Equation 8). Finally, for each of 

these analyses, we use both the likelihood and the restricted likelihood formulations. In total, 

we thus compare the performance of a series of 8 approaches with the likelihood (and the 

same 8 with the restricted likelihood) when p<n, and a series of 5 approaches with the 

likelihood (and the same 5 with the restricted likelihood) when p>n. For each simulated 

dataset and each approach we obtain estimates of the parameters of the phenotypic model. In 

our optimization, we constrained r from the EB model to be negative, α from the OU process 

to be positive, and Pagel’s λ to be between 0 and 1. We also obtain estimates of the traits 

evolutionary covariance matrix �(. For the ML and PCL approaches, the evo.model function 

directly provides estimates of the parameters of the phenotypic models. These can be used to 

compute C, which is then plugged into Equation 2 to obtain �(, which is not returned by 

default by the evo.model function. We compare �( to the true (i.e. simulated) matrix � using 

the quadratic loss function (e.g., van Wieringen and Peeters 2016): 
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ΔKI|(,|J = }|(��| − k6}
�
 (11) 

 

This loss measure is zero when the matrices are perfectly similar. When p is equal or larger 

than n, non-regularized estimates of the R matrix (e.g., Eq. 2) are likely to be singular so we 

compute the estimate of �(�� in the quadratic loss function using the pseudoinverse routine 

implemented in the R package “corpcor” (Schäfer et al. 2013). We also used instead the 

nearest positive definite matrix using the nearPD function in the “Matrix” R package (Bates 

and Maechler 2017) following the approach undertaken by Denton and Adams (2015) as well 

as Goolsby (2016); this resulted in even larger quadratic loss for the non-regularized estimates 

(results not shown). Finally, we measure our ability to recover the proper model by estimating 

the proportion of time the generating model was selected by the GIC criterion. This was done 

for all approaches except the PCL approach for which we cannot compute the GIC. For data 

simulated under BM, EB and OU, these 3 models are compared. For data simulated under 

Pagel’s λ model, we compared Pagel’s λ and BM (the typical test performed to assess 

phylogenetic signal). 

 

An empirical example: the evolution of brain shape in New World monkeys 

 

We analyzed the fit of three different evolutionary models (BM, OU and EB) to a 

comparative dataset of brain shape for 48 New World monkey species in order to better 

understand the diversification process of brain morphology in the clade. We used brain shape 

data from Aristide et al. (2016) which consists of a total of 26 anatomical landmark and 373 

semi-landmark 3D coordinates (totaling 1197 variables) on digitized endocasts obtained by 

X-ray computed tomography and micro-computed tomography. Because we are considering 

3D geometric morphometric landmark coordinates obtained after Generalized Procrustes 
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Analysis (see details in Aristide et al. 2016), model fit must be performed with a rotation-

invariant procedure (Rohlf 1999; Adams and Collyer 2018). We applied the fit_t_pl function 

to the data, using the rotation-invariant “ridge quadratic null” penalty and accounting for 

intra-specific variation and measurement errors in the model fit by setting the option SE to 

TRUE. The relative fit of the three models was assessed using the GIC criterion with the GIC 

function. We considered phylogenetic uncertainty by performing the analyses over a sample 

of 100 fossil-calibrated trees from the Bayesian posterior distribution of the phylogenetic 

analysis described in Aristide et al. (2015) (pruned to the 48 species considered here). 

Additionally, we studied the patterns of evolutionary integration and modularity (i.e., 

the correlated/independent change of traits through evolution; Klingenberg and Marugán-

Lobón 2013) in brain shape by analyzing the estimated evolutionary variance-covariance 

matrix derived from the model fitting analysis. We performed a principal component analysis 

of this matrix using the phyl.pca_pl function, which allowed us to extract evolutionary 

independent axes of correlated change among variables that broadly represent evolutionary 

integration patterns across the structure (Klingenberg 2008). Finally, with the ancestral 

function, we utilized the parameters derived from the evolutionary model that best explained 

our data to obtain brain shape reconstructions through time that illustrate the hypothetical 

evolutionary changes leading to the two most different species in the dataset. To generate 3D 

model visualizations of the reconstructed shapes, a 3D surface model of the sample’s mean 

shape was warped to each target ancestral shape by aligning the reconstructed and mean shape 

landmark data and using a TPS interpolation (Wiley et al. 2005), as implemented in the 

“Morpho” package for R (Schlager 2017). Color maps depicting shape changes were 

generated by computing the radial distance between each pair of corresponding vertices in 

two given 3D surfaces. 
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RESULTS 

As expected, for all the methods we considered, we found a better performance of the 

restricted likelihood than of the unrestricted one. All the results shown in the main text are 

based on the restricted likelihood, while results based on the (unrestricted) likelihood are 

presented in the Supplementary Material. 

 

Parameter estimation 

 

With the restricted likelihood, parameters of the EB, OU and Pagel’s λ models are estimated 

accurately by all methods for low dimensional traits (p=2-5) (Fig. 1 and S1, S3 and S5). 

Estimators based on the unrestricted likelihood are on the other hand systematically biased, 

regardless of the method used (Fig. S2, S4, and S6), as is expected from unrestricted 

estimators (Harville 1977): the parameter of the OU process (α) is overestimated, while the 

parameters of the EB (r) and Pagel (λ) models are underestimated. This bias is higher for the 

pairwise composite likelihood, and even more so for the maximum likelihood, than for the 

penalized likelihood approaches. 

 With both the restricted and unrestricted likelihoods, as the trait dimension p increases, 

parameters are estimated with increased precision when using the various non-approximated 

penalized approaches or the PCL approach, while the classical maximum likelihood estimate 

becomes completely inaccurate (Fig. S1-S6), and it cannot be computed at all when p>n. 

The various non-approximated LOOCV approaches perform similarly, with no 

significant difference between the chosen penalties (Fig. 1 and S1-S6). The approximated 

LOOCV approaches perform as well as the non-approximated ones for small p values (Fig. 

1); they lose precision as p increases (in particular in the case of the LASSO and when p 

approaches the number of species, Fig. S1-S6), but are still as efficient as the ML or pairwise 
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composite ML when n is still larger than p (i.e., the situations where the use of the LOOCV is 

generally a major computational bottleneck). 

<FIGURE_1> 

 

Estimation of the traits variance-covariance matrix R 

 

The error in the estimate of R, measured with the Q-loss function, is always smaller with the 

penalized likelihood approaches than with other approaches (Fig. 2 and Fig. S7-14). The Q-

loss is also slightly smaller when using the restricted versus unrestricted likelihood (Fig. S7-

14). Even with relatively small dimensions (p=2 or p=5), the penalized estimates outperform 

the PCL and ML estimates (Fig. S7-14). The difference in performance between the PL 

estimate and the other estimates increases as the dimension p increases (Fig. S7-14). 

Among the penalized estimates obtained with the non-approximated LOOCV, the 

quadratic ridge penalty with a null target is the most efficient; next, the quadratic ridge with 

the diagonal target matrix composed of the traits’ variances and LASSO penalties perform 

similarly. Finally, the archetypal ridge penalty performs slightly less well, consistent with 

observations from previous studies (Ledoit and Wolf 2012; van Wieringen and Peeters 2016). 

The penalized estimates obtained with the approximated LOOCV are not as good as those 

obtained with the non-approximated ones, but they still always outperform the PCL and ML 

approaches (Fig. 2 and Fig. S7-14). 

<FIGURE_2> 

 

Model comparison 
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Consistent with the other results, model comparison performs better with the restricted than 

with the unrestricted likelihood (Fig. S15 and S16); in particular, there is a high false-

discovery rate for the Ornstein-Uhlenbeck model with both the ML and the PL unrestricted 

approaches, which could be linked to the systematic overestimation of x obtained in this case 

(Fig. S4). 

For low trait dimensions (p=2-10), the ability to select the generating model is roughly 

similar with the penalized and maximum likelihood approaches (Fig. 3 and Figs. S15-17). 

However when p>10 the penalized likelihood approaches clearly outperform the maximum 

likelihood (Fig. 3 and Figs. S15-17): the power to detect the true model increases with 

increasing trait dimensions for the penalized likelihoods while maximum likelihood fails to 

detect the generating model when p is close to n (i.e., p=31; Fig. 3 and Fig. S15-S17). The 

different types of penalizations perform similarly well (Fig. 3 and Fig. S15-17). When models 

are fitted using the approximated LOOCV, model misspecification increases when p is close 

to n, but not as badly as when models are fitted using maximum likelihood (Figs. S17). 

 

<FIGURE_3> 

Evolution of brain morphology in New World monkeys 

 

Applying our penalized likelihood framework to the New World monkey brain shape dataset 

(Fig. 4a, b), we found substantial support for an Early-burst model and these conclusions were 

robust to the uncertainty in tree topology and dating (Table 2). The BM model was not 

supported in any of the 100 trees; the OU model was best supported for only 3 trees, and in 

these cases the difference in GIC with the EB model was very small (Table 2). The average 

parameter estimate for the Early-burst model (“r”, Table 2) describes an evolutionary rate 

decay with a half-life – the time it takes for the rate to decay half of its initial value – of ~19.4 
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Ma for an average root height of ~25.5 Ma, indicative of a mild early-burst pattern of brain 

shape evolution. Considering the first two principal components of the trait evolutionary 

variance-covariance matrix obtained under the best fitting model (EB), we were able to 

extract the major patterns of evolutionary integration in brain shape across the clade. 

Variation represented by the first PC axis (PC1) mainly reveals a pattern of correlated 

evolution among the stem, the base, and the parietal regions of the brain (Fig. 4c). Noticeably, 

variation along PC2 broadly indicates that the temporal, occipital and frontal regions evolve 

in a concerted fashion but independently from those aspects represented by PC1 (Fig. 4c). 

 Finally, we generated a hypothesis about the ancestral New World monkey brain 

shape, and the potential shape evolutionary trajectories leading to two species at opposite 

extremes in the brain morphospace (Alouatta macconelli and Saimiri boliviensis; Fig. 4b, d). 

The ancestral brain shape presents a relatively reduced occipital lobe compared to S. 

boliviensis, but a relatively expanded neocortex region and a more flexed base compared to A. 

macconnelli (Fig. 4d). Moreover, in agreement with the recovered EB model, the 

reconstructions reveal that for both considered lineages most changes occur at the intergeneric 

level rather than within each genus (Fig. 4b, d). This suggests that the brain shape of extant 

species was attained relatively early during the diversification process of the clade. 

 

<FIGURE_4> 

 

<TABLE_2> 

 

DISCUSSION 

Phenotypic evolution is multivariate by nature given that traits covary due to pleiotropic 

effects, genetic linkages, developmental and functional constraints or because of correlated 
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selection on multiple traits (Felsenstein 1988; Armbruster and Schwaegerle 1996; Walsh 

2007; Walsh and Blows 2009; Armbruster et al. 2014). In this article we developed a 

penalized likelihood approach for phylogenetic multivariate comparative methods. We 

demonstrated through simulations that this approach performs well in estimating parameters 

of trait evolution models, and performs better than maximum likelihood (when p<n) and 

current alternatives (when p>n) in estimating model parameters. Even a rough penalization 

using approximations of the cross-validated log-likelihood to select the regularization/tuning 

parameter outperforms standard estimates when p<n. The approach allows the use of 

generalized information criteria (GIC) for model selection, therefore avoiding 

computationally intensive simulation-based model comparison techniques. 

 

Parameter estimation 

Our penalized likelihood approach provides an efficient way to estimate parameters of 

various multivariate phenotypic evolution models as well as to estimate corresponding 

evolutionary covariance matrices in high-dimensional datasets (with p large compared to n). 

Maximum likelihood estimates are highly biased when p approaches n, and they can no 

longer be computed when p exceeds n. Penalized estimates generally perform better than 

maximum likelihood for estimating covariance matrices or their inverses (Ledoit and Wolf 

2004, 2012, 2015; van Wieringen 2017), and we have illustrated here that it is also the case 

for the evolutionary covariance in phylogenetic comparative methods. To date, the only 

alternative comparative method is the pairwise composite likelihood (PCL) approach 

proposed by Goolsby (2016). This method performs as well as the penalized likelihood for 

estimating the parameters of various classical phenotypic evolution models; however, the 

penalized likelihood is much more accurate for estimating the evolutionary covariance matrix. 

Thus, the penalized likelihood approach developed here is particularly useful for studying the 
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correlated evolution of traits in high-dimensional settings. It should also be useful for 

extending comparative methods, most of which rely on accurate estimates of the traits 

evolutionary variance-covariance matrix, to such high-dimensional situations. 

 

Model selection 

The penalized likelihood approach also provides an efficient way to compare the 

relative fit of various multivariate phenotypic evolution models to high-dimensional trait 

datasets using information criteria. Model selection based on maximum-likelihood is 

inaccurate when p approaches n, and it is non applicable when p exceeds n. Previous attempts 

to deal with such situations have used parametric bootstrap to compare pairs of models 

(Goolsby 2016). Parametric bootstrap approaches have appropriate statistical performances 

(e.g., type I and type II errors; Good 2005) but are computationally intensive and may be 

impractical when comparing several alternative models. In contrast, within the penalized 

likelihood framework, multiple model comparison as well as model averaging can be easily 

and efficiently performed using the Generalized Information Criterion (GIC). Information 

theoretic approaches (e.g., AIC, BIC, GIC) are commonly used in comparative studies for 

model selection and/or model averaging and we showed in our simulations that the GIC 

combined with penalized likelihoods clearly outcompetes information criteria based on ML 

when p approaches n and still performs well when p exceeds n. 

Performing model selection using GIC requires computing a bias correction term for 

the log-likelihood. We have shown here how to derive this term analytically. However, this 

might be hard to achieve for more complex models (e.g. models with distinct trait covariation 

structures and/or evolutionary regimes in distinct subclades). In addition, we have derived a 

first-order correction term, and higher-order corrections could still improve the statistical 

performance of the model selection scheme (Konishi and Kitagawa 2003). Future 
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developments could use numerical approximations to compute higher level bias correction 

terms even under complex models (e.g., Ueki and Fueda 2010). Alternatively, parametric 

bootstrap approaches such as the Bootstrap Information Criterion (or EIC, Efron Information 

Criterion; Ishiguro et al. 1997; Konishi and Kitagawa 2008) could be used in combination 

with our penalized likelihood framework to do multiple model comparison. This would be 

more computationally demanding but would automatically achieve higher-order bias 

correction, and efficient bootstrap strategies have already been developed (Ishiguro et al. 

1997; Konishi and Kitagawa 2008; Kitagawa and Konishi 2010). 

 

Properties of the various penalizations 

There are several regularization/shrinkage estimators for covariance matrices 

(reviewed in Engel et al. 2017), none of which performs best in all situations; the choice must 

be guided by practical use (Table 1). The first choice concerns the type of penalization (linear 

versus quadratic). The archetypal ridge estimator shrinks the eigenvalues of the covariance 

matrix linearly, and is thus expected to perform well when the eigenvalues are similar in 

magnitude (Ledoit and Wolf 2004). The quadratic ridge estimators shrink the eigenvalues 

non-linearly, and are thus expected to perform better when the difference in magnitude 

between the leading and other eigenvalues is high (i.e. when the eigenvalues are dispersed, 

Ledoit and Wolf 2012). As the dispersion of eigenvalues partly reflects the numbers of 

clusters of integrated traits, their respective numbers of traits, and the average correlation 

between the traits within clusters (diffuse correlation when eigenvalues are of same 

magnitude and strong correlation within few clusters when eigenvalues are dispersed), we 

expect linear estimators to perform well when traits tend to evolve independently and their 

covariance matrix is not tightly integrated; the LASSO is also expected to perform well when 

many pairs of traits are not correlated. Quadratic estimators, on the other hand, should 
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perform better when traits are highly correlated within few clusters, as is often observed in 

empirical data (Wagner 1984). Unsurprisingly, in our simulations where eigenvalues are 

sampled from an exponential distribution, the quadratic ridge estimators clearly outperform 

the other penalties. In practice, when studying the evolution of traits that are thought to 

coevolve, quadratic estimators are probably more reliable; however, they are more 

computationally demanding. There is thus a tradeoff between reliability and computational 

load (see Table 1). In very high dimensions where extreme values of the regularization 

parameter may be necessary, archetypal and quadratic ridge estimators are expected to 

perform equally as they both tend towards the target matrix (van Wieringen and Peeters 

2016). 

The second choice to make when choosing a penalized likelihood estimator concerns 

the target matrix. In our study we analyzed the performance of the Quadratic ridge estimator 

when using either the null or the diagonal matrix of traits’ variances. Here we obtained better 

R estimates in terms of quadratic loss when using the null target matrix, consistently with 

previous studies (van Wieringen and Peeters 2016); however, these results could vary with the 

choice of the metric for measuring statistical loss. In addition, each target matrix has a 

different variance-bias tradeoff, and so other targets may be a better choice depending on the 

goal of the study (Schäfer and Strimmer 2005; Lancewicki and Aladjem 2014). 

Maybe a more important thing to consider is whether a rotation-invariant approach is 

needed. Approaches affecting the eigenvectors of the sample covariance matrix (e.g. Equation 

2) are not rotation-invariant, while those that leave the eigenvectors unchanged are (Ledoit 

and Wolf 2004; Warton 2008; Ledoit and Wolf 2012, 2015). As discussed above, rotation-

invariant approaches should be used when there is no natural orientation of the data, i.e. when 

an arbitrary choice of orientation is made such as in geomorphometrics (Rohlf 1999). In most 

cases however, there is a natural orientation of the data. In this case it is not necessary to 

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy045/5040209
by ENS Paris Biologie, Julien Clavel
on 19 June 2018



apply rotation-invariant methods, and this can even yield better estimates (Schäfer and 

Strimmer 2005; Friedman et al. 2008; Warton 2008; Lancewicki and Aladjem 2014; van 

Wieringen and Peeters 2016); indeed, shrinking the eigenvectors can improve the estimation 

of covariances (Pourahmadi 2011), which can for example be particularly interesting for 

ordination analyses (Engel et al. 2017). 

Although computationally intensive, the LASSO penalty has the advantage over 

alternative penalizations that it directly identifies independencies between traits. Indeed, in 

the estimates of � or ���, the least significant entries are forced to zero. Such zeros in the 

covariance or its inverse correspond, respectively, to marginal independency between traits 

(pairs of traits are not correlated even when considering potential indirect factors) or 

conditional independency (a weaker form of independence where the pairs of traits are not 

directly related only when considering one or several other putative traits) (Dempster 1972; 

Friedman et al. 2008; Bien and Tibshirani 2011). Identifying such independencies is of major 

interest, for instance, in the study of patterns of phenotypic integration and modularity 

(Magwene 2001, 2008; Goswami and Polly 2010). We considered here the graphical-LASSO 

penalization where the target of the optimization is the precision matrix ��� rather than the 

covariance � (Friedman et al. 2008); an alternative algorithm will need to be used to target 

the covariance matrix (Bien and Tibshirani 2011) in order to analyze marginal 

independencies. 

 

Computational considerations 

A limit to the applicability of the penalized likelihood framework can be the 

computational cost associated with the estimation of the regularized covariance matrix and its 

inverse when p is large. The least to most computationally intensive of the estimators we have 

considered here are the archetypal ridge, the quadratic ridge with null target, the quadratic 
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ridge with diagonal matrix of variances, and finally the LASSO estimator. In our simulations, 

the computational time needed to cross-validate the log-likelihood with the LASSO penalty 

was order of magnitude higher than with ridge penalties. These computational considerations 

can guide the choice of the penalization strategy if there is no specific reason to choose one 

estimator versus another; all the penalized estimates improve upon the standard estimates. 

There are several strategies to gain in computational efficiency. We considered 

approximations of the LOOCV score and have shown that even this rough regularization 

generally outcompetes maximum-likelihood estimation, but only when p<n. Parallel 

computing and/or alternative cross validation strategies such as k-fold CV (Hastie et al. 2009) 

could potentially be used. Approaches avoiding cross-validation for estimating the 

regularization parameter could also be developed. For instance, the regularization parameter 

could be chosen such that the deviation in likelihood from the maximum is insignificant 

(Meyer 2011) or by using a priori criteria depending on n, p, and quantities related to the 

model such as the number of free parameters (e.g., Foygel and Drton 2010). 

 

New World monkeys brain shape evolution 

 We demonstrated the applicability of our framework by analyzing a highly-

dimensional empirical morphometric dataset describing brain shape variation in New World 

monkeys. Our analyses recovered as the best fit an Early-Burst model of evolution, a model 

which is generally considered to better represent the expectations of adaptive radiations than 

the BM or OU models (Harmon et al. 2010). Aristide et al. (2016) had already found evidence 

in favor of a model that supports an adaptive radiation scenario in the brain shape data, but 

using only the first PC axes. Given the potential issues arising from comparative analyses of 

PC variables (Uyeda et al. 2015), this result was questionable. The fully multivariate approach 

used here on the complete morphometric dataset thus provides a stronger support to this 
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result. Brain shape evolution in the clade shows a pattern of early diversification consistent 

with the hypothesis of an adaptive radiation (Aristide et al. 2016). This result is noteworthy 

because an early-burst pattern is generally hard to detect even on univariate data (Slater and 

Pennell 2014) and highlights both the singularity of the New World monkey radiation 

(Aristide et al. 2015) and the strength of the multivariate framework we developed.

 Additionally, we were able to extract the main patterns of evolutionary integration in 

brain shape, which indicated that most correlated changes are concentrated along well defined 

regions of the brain (e.g. frontal, occipital, parietal, etc.) and that some of these regions vary 

independently from the others. The functional and evolutionary implications of this remains 

to be assessed but ours constitutes the first attempt to analyze evolutionary integration 

patterns by using models of evolution in an extremely high-dimensional geometric 

morphometrics dataset. As stated previously, further developments that allow extracting these 

patterns from evolutionary covariance matrices of landmark data will help to provide a more 

detailed picture of brain evolution in the clade. 

Finally, using the model parameters estimated for the fully multivariate dataset, we 

generated ancestral reconstructions for brain shape that can serve as hypotheses regarding 

various aspects of the evolution of the clade. For example, as brain shape is associated to 

social group size and other ecological traits in New World monkeys (e.g. Aristide et al. 2016), 

a careful consideration of reconstructed ancestral shapes may help to understand the evolution 

of traits that are in general not directly preserved in the fossil record. 

 

Future directions 

We see several directions for future developments. The models we have considered 

here are simple models with a common R matrix shared across the entire clade and a common 

phylogenetic covariance matrix C shared across traits. More complex models with multiple 
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regime/clade specific covariance matrices could be developed. For such models, joint 

optimization of multiple penalties (each associated to a given R) could be envisioned (e.g., 

Guo et al. 2011; Danaher et al. 2014). In even more complex multivariate models described 

by parameter rich stochastic processes with deterministic parts that are themselves non-

independent (e.g., in multivariate OU processes, if the pull matrix A is not diagonal, 

Bartoszek et al. 2012; Reitan et al. 2012; Clavel et al. 2015), penalties associated to 

parameters other than R (e.g. A) could be incorporated to reduce the variance in parameter 

estimates. Penalized approaches for such models have been shown to outperform alternative 

approaches in terms of model selection and parameter estimation in a non-phylogenetic 

context (Wang et al. 2016). In a phylogenetic context, the models are already available in a 

maximum likelihood framework, but they are not applicable with high-dimensional data and 

are generally estimated with large uncertainty (Bartoszek et al. 2012; Clavel et al. 2015). 

Second, the regularized estimates provided by the penalized likelihood framework in 

high-dimensional settings can be used to improve and extend the multivariate comparative 

toolbox to high-dimensional datasets, beyond fitting multivariate trait evolution models. 

Regularized versions of traditional (non-phylogenetic) multivariate statistics (such as the 

Wilks lambda or Pillai trace used in multivariate regressions and MANOVA) or multivariate 

classification methods (e.g., discriminant analysis, CCA, etc.) have already been shown to 

perform well and with increased power when the sample size is small compared to the 

number of variables (Vinod 1976; Friedman 1989; Warton 2008; Ullah and Jones 2015; Engel 

et al. 2015). Regularized estimates of evolutionary covariance matrices should likewise allow 

developing adequate phylogenetic equivalents of these multivariate statistics in high 

dimension. Similarly, penalized likelihood approaches for high-dimensional (non-

phylogenetic) data have proven to be extremely efficient in estimating missing data (Allen 

and Tibshirani 2010); missing data is also a common feature of high-dimensional phenotypic 
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datasets (Clavel et al. 2014, 2015; Goolsby et al. 2017), and phylogenetic equivalents of these 

regularized missing values imputation techniques should solve this challenging task. 

Finally, the regularization/shrinkage approaches we describe in this paper can be 

efficiently extended to Bayesian inferences (e.g., Caetano and Harmon 2017) where shrinkage 

priors are routinely used as penalties analogues – penalized likelihood estimates are often 

interpreted as maximum a posteriori (MAP) estimates (Green 1990) – to reduce statistical 

risks or to obtain well-conditioned symmetric positive definite matrices (Daniels and Kass 

2001; Lu and Ades 2009; Wang 2012; Khondker et al. 2013). Some of the computational 

tricks we developed here for computing the LOOCV should be useful for developing efficient 

proposals and sampling strategies in Bayesian MCMC approaches in high-dimensional 

parameter space. 

 

CONCLUSION 

Phylogenetic comparative methods for high-dimensional datasets are challenging, yet sorely 

needed. Regularization techniques are a powerful avenue to address this challenge. By 

providing the tools for properly estimating the evolutionary covariance matrix using penalized 

likelihood, we open the door to the extension of current multivariate phylogenetic 

comparative methods to high-dimensional datasets. This should allow addressing long-

standing questions related to the correlated evolution of traits. 

 

SUPPLEMENTARY MATERIAL 

Our Supplementary Material as well as example codes for running analyses in the paper are 

available from the Dryad Digital Repository at http://datadryad.org, 

doi:10.5061/dryad.rf7317t. 
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APPENDIX 1. THE LIKELIHOOD WRITTEN WITH THE KRONECKER PRODUCT AND AS A 

FUNCTION OF THE PRECISION MATRIX 

 

Expression with the Kronecker product 

 

The log-likelihood formulation often used in studies of multivariate trait evolution is (e.g., 

Clavel et al. 2015; Goolsby 2016): 

ℒ = −12 ���	log2�� + log|�⨂�| + ���� − �����⨂�������� − ���� 
Where ⊗� is the Kronecker product, and the vec operator stacks the columns of a matrix into 

a column vector (Henderson and Searle 1979). This formulation is intuitive, but it is 

computationally prohibitive. The formulation we use in the paper (Eq. 1a) is equivalent to this 

formulation, using the following Kronecker product identities: | ⨂!| = | |"|!|# where A is 

a p by p matrix and B is a n by n matrix,  ⨂!��� =  ��⨂!�$ and %& �'!�� =
������ ⊗!������ (see Magnus and Neudecker 2007, p. 32-35). 

 

Expression with the precision matrix 

 

We can re-express the log-likelihood in Equation (1a) as a function of the precision matrix (, 

defined as the inverse of the covariance matrix � (Anderson and Olkin 1985) as follows:  

ℒ = − �
) *��log2�� + �log|+| − 	�log|(| + �tr.�/(01 (A1) 

 

where �/ is the MLE estimate of R given by �/ = ���2�3�45���2�
"  (Equation 2). When the 

inverse of �/ is used as an estimate for the precision matrix (, the last term in A1 is equal to 

� × � (see also Eq. 23.31 in Felsenstein 2004). Following Anderson and Olkin (1985), for 
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computational reasons we use A1 (instead of Equation 1) in Appendices 2 and 3. The 

penalized estimate of (, noted (7 in what follows, is obtained as (7 = �8��� (e.g., van 

Wieringen and Peeters 2016). Likewise, (97�:� = ;�98��:�<�� in the equation of the 

LOOCV (Eq. 8), hence the LOOCV scores obtained maximizing with respect to ( are equal 

to LOOCV scores obtained maximizing with respect to �. 

 

APPENDIX 2. COMPUTATION OF THE FIRST AND SECOND ORDER DERIVATIVES OF THE 

PENALIZED LIKELIHOOD AND APPLICATION TO THE COMPUTATION OF THE GIC  

 

Model comparison using the generalized information criterion (Eq. 9) needs the computation 

of the first and second order derivatives of the penalized log-likelihood with respect to the 

parameters estimates (Eq. 10). This is also the case for the LOOCV approximation we 

describe in Appendix 3. The first and second order derivatives are called the gradient and the 

Hessian, respectively. 

We recall first some matrix notations and differentiation rules (e.g., Dwyer 1967; 

Magnus and Neudecker 1985, 2007). If = is a differentiable scalar function of an � × 1 vector 

x, then the 1 × � vector made of the partial derivatives of = with respect to each element of x, 

noted >=?� = @AB�
@B3  is called the derivative of =. If C is an D × 1 differentiable vector 

function of x, the derivative of C is the D × � matrix noted >C?� = @EB�
@B3  where the i

th
 row 

of the matrix is given by >CF?�. Finally, if F is a differentiable D × � function of an � × G 

matrix X, the derivative of F at X (noted 
HI��
H� ) is the D� × �G matrix >I�� = JKLM�I���

J�KLM���3. 

We also use the following matrix differentiation rules (e.g., Dwyer 1967; Magnus and 

Neudecker 2007):  
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HNOP|Q|
HQ = ��������; 

HRS ��
HQ = ��� ��; 

HRS.��30
HQ = HRS.�3�0

HQ = ���2���; 
H�
HQ = T#U;	H HQ =

V#U;	H�45HQ = −�����⊗��� 

where X and A are matrices of size p by p with A a constant matrix, T#U and V#U are 

respectively an identity matrix and a matrix full of zero both of size �) by �). 

 

Estimation of the first and second order derivatives with respect to ( for the quadratic 

penalty 

 

The penalized log-likelihood with quadratic ridge penalization is given by Equation 5 

(Witten and Tibshirani 2009; van Wieringen and Peeters 2016). Combined with Equation A1 

we have: 

ℒW.(; �/0 = − �
) Y��log2�� + �log|+| − 	�log|(| + �tr.�/(0 + "Z

) tr[( − '��( −
'�\]	(B1) 

where T is the diagonal matrix corresponding to the diagonal elements of �/��. The first 

derivative of the penalized likelihood w.r.t. the precision matrix is: 

 

H
H(ℒW.(;�/0 = "

) ^����(���� − ���*�/1� − Z
)
H
H( tr[( − '��( − '�\_ (B2) 

 

We can expand the derivative of the penalty term: 

 

dd( tr[( − '��( − '�\ = dd( [tr(�(� − tr(�'� − tr'�(� + tr'�'�\ 
= dd( tr(�(� − dd( tr(�'� − dd( tr'�(� 

= ����2(�� − 2����a�� 
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= 2[����(�� − ����a��\ 
 

Which leads to: 

dd(ℒW.(;�/0 = �2 b����(���� − ���*�/1� − 8����(�� − ����a���c 
 

H
H(ℒW.(;�/0 = "

) ���*(�� − �/ − 8( + 8'1�(B3) 

 

The second derivative of the penalized likelihood is: 

 

HU
H(U ℒW.(;�/0 = 	− "

) *(��⊗(�� + 8Tde1 (B4) 

 

Estimation of the first and second order derivatives with respect to ( for the archetypal ridge 

penalty 

 

The penalized log-likelihood with archetypal ridge penalization is given by Equation 4 

(Warton 2008, van Wieringen and Peeters 2016); expressed as a function of (, we have: 

ℒW.(; �/0 	= −12 *��	log2�� + plog|�| − �log|(| + �1 − 8�tr.�/(0 + �8tr['(\1 
	 (B5) 

The first and second order derivatives with respect to ( are: 

H
H(ℒW.(;�/0 = "

) ���*(�� − 1 − 8��/ − 8'1�	 (B6) 

HU
H(U ℒW.(; �/0 	= 	 ") �−(��⊗(��� (B7) 
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Note that setting B6 to zero, we find that the solution of the penalized-likelihood for the 

archetypal ridge estimator (Equation 4) is indeed 1 − 8��/ + 8', as given in Equation 3. 

  

Efficient inversion of the Hessian matrix and computation of the GIC 

 

Computing the GIC criterion (Eq. 9) and the approximate LOOCV scores (Appendix 3) 

involves computing the inverse of the second order matrix derivative of the likelihood (or 

penalized likelihood) with respect to the covariance or the precision matrix (the Hessian, Eq. 

B4 and B7). The Hessian matrix is of dimensions �) × �) and its direct inversion and storage 

is computationally infeasible even for a dataset of moderate dimension. For instance with the 

New-World Monkeys brain dataset studied here the Hessian is a matrix with 2 × 10�) entries, 

which would require more than 15 TB of memory to store (for double precision numerical 

data). Instead of directly inverting the Hessian, we use identities that reduce this operation to 

inversions and multiplications of matrices of size p by p. 

 

In the case of maximum-likelihood, the negative Hessian (h in equation 9 and 10) is given by 

HU
H(U ℒ.(;�/0 	= 	 ") �(��⊗(��� and the first derivative is given by 

H
H(ℒ.(;�/0 =

	") ���*(�� − �/1� (e.g., Anderson and Olkin 1985). h�� is easy to compute using the 

kronecker identity  ⊗!��� =  ��⊗!��. In addition, an efficient computation of the 

GIC can be done by using the computational trick of Abbruzzo et al. (2014; Eq. 20) – see also 

Lian (2011) and Vujačić et al. (2015): 

 

trh��T� = �
)"∑ ���.�/F0����*	(/�/F(/1"Fj� − �

) ���.�/0����*	(/�/(/1 (B8) 
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where �/F = .�9: − �9:�0.�9: − �9:�0� and (/ = �/��. 

 

For the archetypal ridge, the Hessian is also of type  ⊗! (Eq. B7), and its inverse is easy to 

compute using the kronecker identity  ⊗ !��� =  ��⊗!��. The GIC can be computed 

using:  

tr[h��T\ = tr;h��kl�k �⁄ �< = �
"∑ tr;h�����kln����kF��<"Fj� =

�
"∑ ���kln��h�����kF�"Fj�  (B9) 

where kl is the matrix of gradient scores, i.e. the n by �) matrix which i,j element is given by 

o?F , ;(Z<q� (Eq. 10). With J of the form  ⊗! and using the identity ��� �!� =
!�⊗ ������ (Henderson and Searle 1979; Magnus and Neudecker 2007), each element 

in the sum above can be efficiently computed as:  

tr ⊗!��������������� = ������ ��⊗!�������� 
= ������	��� ���!��� = ∑[�⊙	 ���!��\ (B10) 

 

Where ⊙ is the Hadamard (element wise) product. 

 

For the quadratic ridge, the Hessian is of type . ⊗! + 	8Tde0 (Eq. B4) and its inversion can 

be done by using the eigen-decomposition of Kronecker products identity (e.g., Magnus and 

Neudecker 2007 p. 33; see also Stegle et al. 2011): 

. ⊗ !+ 	8Tde0 = st⊗su�.vt ⊗vu + 	8Tde0st� ⊗su�� 
 

where  = stvtst� is the eigenvalue decomposition of A, and ! = suvusu�  the eigenvalue 

decomposition of B (s is the matrix of eigenvectors and v is the diagonal matrix of 

eigenvalues d). It follows that:  
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. ⊗! + 	8Tde0�� = st⊗su�wxyz1. |t⊗|u + 	8�⁄ �st� ⊗su�� (B11) 

 

Where wxyz�� is the diagonal matrix with diagonal elements given by vector v and ./ is the 

element wise inverse operator. In order to efficiently compute the GIC we make use of the 

various Kronecker product identities given above, and obtain each element in the last sum of 

Equation (B9) as: 

 

tr }. ⊗ !+ 	8Tde0�������������~ = ������. ⊗! + 	8Tde0������� =
∑[���su��st� 	⊙ 	���[1./|t⊗|u + 	8�\ ⊙ ���su��st�\ (B12) 

 

Note that in our case (Eqs. B4 and B7), the matrices A and B are identical and further simplify 

the computations. 

 

 

Computation of the GIC for the penalized likelihood with LASSO 

 

The LASSO penalty is not easily differentiable (Lian 2011; Abbruzzo et al. 2014; Vujačić et 

al. 2015). Instead of computing the derivatives of the LASSO penalized likelihood with 

respect to the covariance matrix, we follow Abbruzzo et al. (2014) and Vujačić et al. (2015) 

and use instead the derivatives of the log-likelihood with a sparse estimate assumption as an 

approximation. This allows us to estimate the bias term in Equation (9) efficiently using the 

following formula: 

trh��T� ≈ �
)"∑ ���.�/F ⊙�Z0����*(Z.�/ F⊙�Z0(Z1"Fj� − �

) ���.�/ ⊙ �Z0����*	(Z.�/ ⊙
�Z0(Z1 (B13) 
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Where (Z is the regularized estimate that maximize the LASSO penalized likelihood for a 

given 8, �Z is an indicator matrix where the entries are 1 when the corresponding entries are 

non-zero in (Z and zero otherwise (see the details for the derivation of this approximation in 

Abbruzzo et al. (2014)), and �/F is as above �/F = .�9: − �9:�0.�9: − �9:�0�. Note that when 

every element of the indicator matrix �Z is equal to one we obtain the formula described 

above (Eq. B8) for the MLE (i.e., when 8 = 0). 

 

 

Estimation of the first and second order derivatives with respect to � 

 

The gradient and Hessian with respect to the ancestral states � are the same whether we 

consider the log-likelihood or the penalized log-likelihood (except in the case of the 

archetypal ridge, where they are equal up to 1 − 8�, which does not affect model comparison 

using GIC), and they can be obtained analytically. From matrix calculus and differential rules 

(e.g., Magnus and Neudecker 2007, p. 201), we have, if A is a symmetric matrix: 

dd� %&[ � − ����� − ���\
= 	 dd� [tr ���� − tr ����� − tr����� � + tr������ �\ 

= − dd� tr ����� − dd� tr����� � + dd� tr������ � 
= −���� ����� − ������� �� + �������� + [�����\� ��� 

= ����−2��� + 2���� �� 

 

 Therefore, we have: 

Hℒ�2;(�H2 = Hℒ2;(�
H2 = − �

) ���*−2	�9��9( + 2	�9�	�9�(1� = 	���*	�9��9( − 	�9�	�9�(1	� (B14)  
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From equation (B14) and results from Magnus and Neudecker (2007, p. 198, 360), the second 

order derivatives are given by: 

HUℒ�2;(�H2U = HUℒ2;(�
H2U = −*(⊗ �9��91	 (B15) 

The inverse of the negative Hessian − bHUℒ2;(�H2U c��and the GIC criterion (Eqs. 9-10) can then 

be efficiently computed using the tricks based on kronecker product identities described 

above for the precision matrix. 

 

 

Standard error of parameter estimates 

 

Taking ℒ#�� = ℒ�� − ��� to be the penalized likelihood with respect to parameters � 

with penalty term P, the standard error (SE) of the parameter estimates �� can be computed 

using either the observed Fisher information matrix – the negative Hessian – or the so-called 

“sandwich” formula (Fan and Li 2001; Rondeau et al. 2003). A first simple approximation of 

the asymptotic variance-covariance matrix for the parameter estimates �� is given by: 

���� .��0� = �/��.��0 (B16) 

where �/.��0 = − HUℒ�.�/0H�U  is the negative Hessian of the penalized log-likelihood. Another 

robust estimator of the covariance matrix for the parameter estimates �� is given by the 

“sandwich” formula (Fan and Li 2001; Rondeau et al. 2003): 

���� .��0) = �/��.��0��.��0�/��.��0 (B17) 

where �/.��0 is as previously defined and ��.��0 = − HUℒ.�/0
H�U  or ��.��0 = ��� }Hℒ.�/0H� ~. The 

standard errors for the parameter estimates �� are then obtained by taking the square root of 

the diagonal elements of either ���� .��0� or ���� .��0). 
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When computing standard errors around the precision matrix ( (or the covariance R), there 

are �� + 1�/2 parameter estimates (not �)), because ( (or R) is symmetric. Therefore, 

instead of computing the derivatives with respect to (, we compute the derivatives with 

respect to vech((�, where vech is an operator that stacks the columns of a square matrix 

starting at its diagonal elements into a column vector (Henderson and Searle 1979). We have: 

HU
HKLM�(�U ℒW.(;�/0 = k� HUℒ�.(;�/0H(U k where k, known as the “duplication matrix”, is a �) by 

	�� + 1�/2 matrix with indicator entries 0 or 1 that satisfies ��� � = k���ℎ � 
(Henderson and Searle 1979; Moneta 1991). For the archetypal ridge for example, from B7 

we deduce (e.g., McCulloch 1982): 

HU
HKLM�(�U ℒW.(; �/0 = 	 ") �k�−(��⊗(���k� (B18) 

Codes for this calculation and the associated computation of standard error for the precision 

matrix are provided as an illustrative example in our Supplementary Material. 

 

APPENDIX 3. SPEEDING-UP THE COMPUTATIONS OF THE LEAVE-ONE-OUT CROSS-

VALIDATION (LOOCV) 

 

The ordinary approach for computing the LOOCV score (Eq. 8) requires the inversion of n 

matrices of size p by p for a given value of the regularization parameter, which is 

computationally intensive, especially for large n. Here we develop approaches for reducing 

computation time. In the case of the archetypal ridge penalty, we use an analytical trick and 

illustrate the use of independent contrasts scores instead of the �9 and �9 matrices in Equation 

(8). In the case of the quadratic ridge and LASSO penalties, we derive an approximation of 

the LOOCV score. 
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Exact and efficient computation of the LOOCV with the archetypal ridge penalty 

 

The LOOCV of the penalized log-likelihood (Eq. 8) with the archetypal ridge 

estimator, target matrix T, and regularization parameter 8 can be efficiently computed using 

the rank-one update trick proposed by Hoffbeck and Landgrebe (1996; section 3.3-3.4). These 

authors showed that we could obtain �/�:� required to compute �98��:� in Equation (8) using 

a rank-one update of the covariance matrix �/: 

�/�:� = �∗�∗ − 1�/ −	 �� − 1��∗ − 1��/: 
with �∗ = � for the maximum likelihood estimator and �∗ = � − 1 for the restricted 

maximum likelihood (see also Theiler 2012; eq. 50). Hence, we can re-express the archetypal 

ridge estimate as: 

�98��:� = 1 − 8��/�:� + 8' = kZ − 	=�/: 
Where kZ = ��Z�"∗

"∗��� �/ + 8', and = = ��Z�"
"���"∗���. 

Using this new expression, it is possible to rewrite tr b�98��F��� .�9: − �9:�0.�9: − �9:�0�c in 

the LOOCV (Eq. 8). If we note � = .�9: − �9:�0, we have �/: = ��� and the Sherman-

Morrison-Woodbury formula yields: 	
.kZ − 	=�/:0�� = .kZ − 	=���0�� = kZ�� + 	= kZ�����kZ��1 − =��kZ��� 

We deduce: 

tr b.kZ − 	=�/:0�����c = ��.kZ − 	=�/:0��� 

= �� �kZ�� + 	= kZ�����kZ��1 − =��kZ���� � = ��kZ��� + 	= ��kZ�����kZ���1 − =��kZ���  
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= &F + = &F)1 − =&F =
&F1 − =&F 

With &F = ��kZ��� (see also Theiler 2012, eq. 16-18). 

In addition, we can compute ��98��:�� in Equation (8) using Sylvester’s determinant theorem 

(see section 3.3 in Hoffbeck and Landgrebe 1996): 

��98��:�� = �kZ − 	=���� = �kZ�1 − =&F� 
 

Using these expressions, the LOOCV (Eq. 8) of the log-likelihood for the archetypal ridge is 

given by: 

 

ℒ�� = − �
) b�∗�	log2�� + �log|�| +	�∗log�kZ� + ∑ }��z1 − =&F� + �n��A�n~"Fj� c (C1) 

 

This expression is an exact equivalent to the LOOCV score in Equation (8), yet the 

computational cost is greatly reduced (from O(np
3
) to O(p

3
)+O(np

2
) operations) because the 

computation of the determinant and inverse of kZ is done only once (Hoffbeck and Landgrebe 

1996; Theiler 2012). Moreover, the determinant and the inverse can be cheaply obtained from 

the factorization of kZ (see Clavel et al. 2015; Appendix S1). We note that in their original 

paper, Hoffbeck and Landgrebe (1996; section 3.4) considered a slight variant of the LOOCV 

with tr b�98��F��� .�9: − �9:��F�0.�9: − �9:��F�0�c instead of tr b�98��F��� .�9: − �9:�0.�9: −
�9:�0�c where ��F� = .�9�F�� �9�F�0���9�F�� �9�F�; in this case, an efficient computation is done 

by replacing the term 
�n��A�n in Eq. C1 by } "

"��~) �n��A�n. However, in our case, we found 

Equation C1 to provide better estimates than those obtained with the formula used by 

Hoffbeck and Landgrebe (1996). 
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To further speed up the computations, we use the phylogenetic independent contrasts scores 

(Felsenstein 1973, 1985, 2004) instead of the �9 and �9 matrices in Equation (8). We note U 

the � − 1�	by	� matrix of phylogenetic independent contrasts scores. We further note � the 

column vector of size �	containing the variance associated to the estimation of all contrasts 

and the root state (Felsenstein 1973; Freckleton 2012). Applying the same calculations as 

above, we can write the LOOCV as:  

log	ℒ��� = − �
) b�∗�	log2�� + �∑ log�F�"Fj� +	�∗log�kZ� + ∑ }log1 − =&F� + �n��A�n~"��Fj� c 

(C2) 

where	&F = �F�kZ���F with kZ = �∗=�/ + 8' and �F the column vector made of the x�� row of 

matrix U and = = ��Z
"∗��. Here �/ is simply computed as	s3s"∗  (Felsenstein 2004). Note that 

because the contrasts scores have a zero mean, kZ and = are different from those used for 

Equation (C1) above (Theiler 2012). For REML estimation, �∗ = � − 1 and the variance term 

associated to the root state in V is omitted. 

 

 

Approximation of the LOOCV with the quadratic ridge penalty 

 

Previous authors have shown that it is possible to efficiently approximate the LOOCV score 

for the multivariate normal log-likelihood and used these results to approximate the LOOCV 

score for the graphical LASSO (Lian 2011; Vujačić et al. 2015; see below Efficient 

approximation of the LOOCV with the LASSO penalty). Building on these previous 

developments we give here the derivation of the approximate LOOCV score for the 

multivariate normal penalized likelihood with the quadratic ridge penalty. 
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From Lian (2011; Appendix A), and Vujačić et al. (2015; section 4.1), the LOOCV score for 

the penalized likelihood can be approximated by: 

ℒ��.(7; �/0 ≈ − �
" ℒ.(7; �/0 −	 �)"∑ YH�.�/n;(70H( ��� }(97�F� − (7~]"Fj�  (C3) 

 

where z is the (scaled) penalized log-likelihood, which, for the quadratic ridge penalty, is 

defined as: 

z.�/,(0 = log|(| − tr.�/(0 −	82 tr[( − '��( − '�\	 
 

We can approximate the term ��� }(97�F� − (7~ in Equation (C3) using the first order Taylor 

expansion of the function 
H�.�/;(70H(  around .�/,(70, evaluated at }�/�F�, (97�F�~ (Lian 2011; 

Vujačić et al. 2015, 4.1): 

 

dz }�/�F�, (97�F�~d(
≃ �dz.�/,(70d( � + d)z.�/,(70d() ��� }(97�F� − (7~

+ d)z.�/,(70d(d�/ ���.�/�F� − �/0 
 

Since 
H�.�/,(70H( = 0 (it is the derivative – Eq. B3 – of the penalized-likelihood z evaluated at 

the maximum penalized-likelihood estimates �/ and (7) and equivalently 
H�}�/4n�,(974n�~H( = 0, 

when �/�F�	and (97�F� are sufficiently close from �/ and (8� it follows that: 
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��� }(97�F� − (7~ ≃ −}HU�.�,/(70H(U ~�� HU�.�,/(70H(H�/ ���.�/�F� − �/0 (C4) 

 

This approximation is accurate when �/�F� − �/ is sufficiently small. 

Therefore, the term 
H�.�/n,(70H( ��� }(97�F� − (7~ on the right hand side of Equation (C3) can 

be approximated by: 

 

dz.�/F , (70d(  −¡d)z.�/,(70d() ¢�� d)z.�/,(70d(d£ ���.�/�F� − �/0¤ 
 

From Appendix 2 we have 
HU�.�/,(0
H(U =	−(��⊗(�� − 8T#U, H�.�/,(0H( = ���.(�� − �/ −

8'� − ¥(0�, 
H�/
H�/ = T#U and thus 

HU�.�/,(0
H(H£ = H.(45��/�Z'��¦(0

H£ = −T#U. 
Therefore the term above is equal to:  

 

���.(7�� − .�/F − 8'0 − ¥(70� b.(7��⊗(7�� + 	8T#U0����� }−T#.�/�F� − �/0~c 
Using the eigen-decomposition of (7�� = s�s� and similar calculus as above (see Appendix 

2), we find that this term is equal to:  

∑ b���.s�.(7�� − .�/F − 8'0 − ¥(70s0 	⊙	}���[1./w ⊗ w + 	8�\ ⊙ ���.s�.�/ −#U

�/�F�0s0~c (C5) 

 

Finally, after simplification we obtain the first order Taylor approximation of the LOOCV 

score for the penalized log-likelihood with the quadratic ridge penalty (see also Eq. 6 in 

Vujačić et al. 2015): 
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ℒ�� ≈ − �
" ℒ.(7; �/0 + 1 2�� − 1�⁄ ∑ Y∑ b���.s�.(7�� − .�/F − 8'0 − 8(70s0 	⊙#U"Fj�

	}���[1./w ⊗ w + 	8�\ ⊙ ���.s�.�/ − �/F0s0~c] (C6) 

 

Further, we note that once (7�� (= �8�) has been computed (using Eq. 7), (7 can be easily 

obtained from the eigen-decomposition of (7�� or by noticing that (7 = �
Z ;(7�� − �/ − 8'�< 

(van Wieringen and Peeters 2016; section 3.1). 

 

Efficient approximation of the LOOCV with the LASSO penalty 

 

For the LASSO penalty we use the LOOCV approximation of the multivariate normal log-

likelihood with the assumption of a sparse estimate for ( (i.e.,	(	 = (7§t¨¨©) given by 

Vujačić et al. (2015 - Eq. 6 and 9): 

 

ℒ�� ≈ −1� ℒ.(7; �/0 + 1 2�� − 1�⁄ ª«F
"

Fj�
 

with  

 

«F = ∑*.(7�� − �/F0 ⊙�Z⊙(7	*.�/ − �/F0 ⊙�Z1(71	 (C7) 
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Figure 1. Performance of penalized likelihood for the estimation of model parameters and comparison with 
other approaches. Estimates of the parameters of the OU, EB and Pagel’s λ models obtained with the various 
(restricted) penalized likelihood approaches, the (restricted) pairwise composite likelihood approach, and the 

(restricted) maximum likelihood. Boxplots represent the median, first and 3rd quartile and range of 
estimates obtained over 1000 simulated datasets. The red line represents simulated parameter values. Left 
panels (p=5) illustrate results with p<n (n=32), and right panels (p=50) illustrate results with p>n. Results 
with other p values and unrestricted likelihoods are presented in Figure S1-S6. For p>n, the approximated 

LOOCV approaches are not reliable (and thus not shown), and the maximum likelihood approach is not 
applicable. For each trait model, we report results for only 4 of the 6 simulated parameters for presentation 

purposes.  
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Figure 2. Performance of penalized likelihood for the estimation of the variance covariance matrix and 
comparison with other approaches. Quadratic loss between the simulated and estimated traits evolutionary 
variance-covariance matrix R obtained with the various (restricted) penalized likelihood approaches, the 

(restricted) pairwise composite likelihood approach, and the (restricted) maximum likelihood. Boxplots 
represent the median, first and 3rd quartile and range of Q loss values obtained over 1000 simulated 

� �datasets.  Left panels (p=5) illustrate results with p<n (n=32), and right panels (p=50) illustrate results 
with p>n. Results with other p values and unrestricted likelihoods are presented in Figures S7- � �S10.   
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Figure 3. Performance of penalized likelihood for model selection and comparison with maximum likelihood. 
Model support, measured as the proportion of simulated datasets (over 1000) for which the generating 

model has the lowest GIC score, represented as a function of the model parameters and for p ranging from 
smaller to larger than n (n=32) (p = 2, 5, 10, 25, 31, 50), with: (a-c) the restricted likelihood with 
archetypal ridge penalization, and (d-f) the restricted maximum likelihood approach. With penalized 

likelihood, the ability to recover the generating model increases with increasing dimensions, while with 
maximum likelihood it decreases as p approaches n. Results with the unrestricted likelihood and other types 

of penalizations are presented in Figures S15-S17. Note that the OU with α=0, EB with r=0 and Pagel’s 

model with λ=1 are equivalent to BM, such that the % model support for these parameter values represent 
the false recovery rate.  
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Figure 4. New-World Monkeys Brain Evolution. a) Brain endocast (of Pithecia irrorata) showing the position 
of the anatomical landmarks (red), and surface (blue) and curve (green) semi-landmarks that were taken on 

each species (see Aristide et al. 2016). b) Maximum clade credibility tree showing the phylogenetic 
relationships for the 48 platyrrhine species considered in this study (see Aristide et al. 2015). Number on 
nodes indicates the location of reconstructions in d). c) Patterns of evolutionary integration and modularity 
in brain shape as represented by the first two Principal Component (PC) axes of the estimated evolutionary 
covariance matrix. Red colored areas represent regions changing concertedly along each PC axis. d) New 
world monkey ancestral brain shape reconstruction, and reconstructed evolutionary trajectories for two 

selected species. Colors depict the amount of change between a given state and the previous one, in terms 
of expansion (orange) or contraction (cyan) with respect to the center of the surface.  
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Table 1. Summary of various penalized likelihood approaches, associated target matrices, 

and their properties. The four penalties evaluated in the paper are highlighted in bold. I is the 

identity or multiple of the identity matrix. V is a diagonal matrix with distinct diagonal values, 

such as the estimated variances for each trait. N is the null matrix (a matrix full of zero). 

 

Penalty Target matrix Rotation-invariance Computational complexity* Flexibility** 

ridge archetypal I YES + + 

 
V NO + ++ 

ridge quadratic N YES ++ ++ 

 
I YES +++ ++ 

 
V NO +++ +++ 

LASSO N
***
 NO ++++ ++++ 

* Computational complexity refers to both the computation of the solution of the penalized likelihood and the 

LOOCV.** Flexibility refers to the robustness of the penalization procedure with respect to structure in the data 

; more confidence in the estimates (and thus also in model selection) will be provided by more flexible 

penalizations, at the expense of computational efficiency. *** In some LASSO implementations, the diagonal 

elements of � (or ���) are not penalized and � (or 	���) is shrunk towards ����	�
 (or ����	���
) which can 
be then seen as the target matrix (e.g., Bien and Tibshirani 2011). 
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Table 2. Support for BM, OU and EB models for the evolution of New World monkeys’ brain 

shape over 100 trees from the Bayesian posterior distribution. The EB model is preferred 

(lowest GIC value) in 97% of the trees. 

 

Model GIC (mean±2sd) ∆GIC (2.5%-97.5% range) % trees preferred Parameters* (mean±2sd) 

BM -726505±410 [4.95 - 258] 0 – 

OU -726504±409 [1.03 - 260.4] 3 � = 9.34e-5±4.8e-4 

EB -726618±379 [0 - 0.30] 97 r = -0.91±0.69 

*The Brownian parameters are given in the multidimensional � matrix (see also Figure 4). 
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