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Abstract

Understanding how and why diversification rates vary through time, space, and across species groups is1

key to understanding the emergence of today’s biodiversity. Phylogenetic approaches aimed at identifying2

variations in diversification rates during the evolutionary history of clades have focused on exceptional shifts3

subtending evolutionary radiations. While such shifts have undoubtedly affected the history of life (1),4

identifying smaller but more frequent changes is important as well. We develop ClaDS, a new Bayesian5

approach for estimating branch-specific diversification rates on a phylogeny, that relies on a model with6

changes in diversification rates at each speciation event. We show using Monte-Carlo simulations that the7

approach performs well at inferring both small and large changes in diversification. Applying our approach8

to bird phylogenies covering the entire avian radiation, we find that diversification rates are remarkably9

heterogeneous within evolutionary restricted species groups. Some groups such as Accipitridae (hawks and10

allies) cover almost the full range of speciation rates found across the entire bird radiation. As much as 76%11

of the variation in branch-specific rates across this radiation is due to intra-clade variation, suggesting that12

a large part of the variation in diversification rates is due to many small rather than few large shifts.13

Manuscript14

Several phylogenetic approaches have been developed for understanding when and on which15

lineages diversification rates have changed during the evolutionary history of clades (2; 1; 3; 4; 5; 6).16

Most have focused on ‘major’ rate shifts, which is convenient methodologically; likelihoods of trees17

under such models have been used for some time (7). These models correspond to the idea that18

few rare events, such as key innovations, facilitate the invasion of new adaptive zones, with a19

drastic impact on diversification rates (8; 9). In these models, outside of few remarkable events,20

diversification rates are assumed to be homogeneous. However, while major rate shifts linked to key21

innovations have undoubtedly affected the history of life (1), they are not the only – nor necessarily22

the most important – source of variation in diversification rates.23

Shifts in diversification rates are likely quite widespread. Speciation and extinction rates may24

vary across lineages as a response to the particular biotic and abiotic environment experienced by25

each lineage (10); they may also vary as a response to traits that affect reproductive isolation such26

as reproduction mode (11) or pollination and dispersal syndromes (12). Such changes in diversi-27

fication rates probably occur far more frequently than key innovations, resulting in heterogeneous28
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diversification rates at much finer taxonomic scales (4). Accounting for such finer scale hetero-29

geneity is crucial if we want to obtain refined estimates of lineage-specific diversification rates and30

to better understand the processes subtending heterogeneity in the diversification of life. Meth-31

ods of the State-Speciation-Extinction family (13) can in principle better account for these types of32

heterogeneities, but they require assuming trait-dependency of rates (SI Appendix section 3.5). Non-33

model-based approaches such as the DR statistic (4) can also account for fine-scale heterogeneities,34

but they are rather ad hoc and generally do not perform as well as model-based approaches (14).35

Here, we develop a new Bayesian approach (ClaDS) for estimating lineage-specific diversification36

rates on a phylogeny that better accounts for the diverse sources of variation in diversification rates37

that occur during the evolutionary history of clades. Using Monte Carlo simulations, we quantify the38

ability of ClaDS to faithfully recover both small and large changes in diversification rates. Finally,39

we apply the method to time-calibrated phylogenies for 42 bird clades to evaluate the extent to40

which differences in the pace of diversification across the entire avian radiation result from few large41

versus many small events.42

A new model of diversification rate variation43

We consider a birth-death diversification process, the cladogenetic diversification rate shift44

(ClaDS) model, where diversification rates are inherited at speciation, but with a shift (Fig. 1).45

At the beginning of the process, the clade is composed of one lineage with speciation rate λ0 and46

extinction rate µ0. At each speciation event, the two daughter lineages inherit new diversification47

rates (λi1, λi2) and (µi1, µi2) sampled from a joint probability distribution ν parameterized by48

the parental rates λi and µi. If the change in speciation and extinction rates are assumed to be49

independent, the λi are sampled from a distribution νλ, the µi are sampled from a distribution νµ,50

and ν = νλ × νµ. Moreover, we allow for the possibility that some extant species are missing by51

assuming that each extant species is observed with probability f ≤ 1. We derive the probability52

density of a reconstructed phylogeny under this general model and implement its computation in R53

(Materials and Methods & SI Appendix sections 2 to 5).54

We then consider several scenarios in ClaDS where: i) νλ is a lognormal distribution with55

parameters log(α ∗λ) and σ; the latter ensures that the relative change in rate at speciation λi/λ is56

independent from the parental rate with a meanm given by α exp(σ2/2); σ controls how constrained57

daughter rates are (highly constrained for small σ values) and α controls the trend at speciation (i.e.58

whether daughter rates tend to be higher or lower than parental rates) ii) extinction rates are either59

negligible (µi = 0 for all lineages, ClaDS0), homogeneous across all lineages in the clade (µi = µ060

for all lineages, ClaDS1) or vary across lineages, but with a constant turnover ε (i.e. µi/λi = ε for61

all lineages, ClaDS2). We use Monte Carlo simulations under ClaDS1 and ClaDS2 (Materials and62

Methods & SI Appendix section 6) to verify that our likelihood expression is correct (SI Appendix63

section 6, Fig. S6 to S8). Finally, we implement a Monte Carlo Markov Chain (MCMC) sampler64

that, given a reconstructed phylogeny, simultaneously estimates both the parameters of ClaDS (λ0,65

α, σ, and either µ0 or ε) and the speciation rates λi at the origin of each branch i of the phylogeny66

(Materials and Methods & SI Appendix section 7, see also section 8 and Fig. S9 & S10 for a test67

of the sampler). Branch-specific extinction rates µi at the origin of each branch i of the phylogeny68

are given by µ0 for ClaDS1 and by ε ∗ λi for ClaDS2. In what follows for simplicity we refer to λi69

and µi as “branch-specific rates” instead of the more accurate “rates at the origin of each branch”.70

Under these scenarios of the ClaDS process, heterogeneity in speciation rates across lineages71

is determined on the one hand by a stochastic component (controlled by σ), and on the other72
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hand by a trend component (controlled by m). When the expected daughter rate is equal to the73

parental rate (m = 1), the resulting trees are relatively imbalanced and tippy (SI Appendix section74

1, Fig. S1 & S2): lineages that by chance have high speciation rates early in clade’s history spread,75

leading to rates that are heterogeneous across lineages and average rates that increase through time.76

This sorting effect is exacerbated when the expected daughter rate is higher than the parental rate77

(m > 1, Fig. S1 & S2), corresponding to a ‘niche-piling’ scenario where diversity begets diversity78

(15). To the contrary, when the expected daughter rate is lower than the parental rate (m < 1),79

corresponding to a ‘niche-filling’ scenario where diversification gets harder as new species arise80

(16; 17; 18), the heterogeneity in speciation rates across lineages is reduced, and with a low enough81

m, the average rate is constant or even decreasing through time (Fig. S1 & S2). Importantly, ClaDS82

is able to produce the combination of stemmy and imbalanced tree shapes observed in nature, and83

under a wider set of parameter values for the scenario with constant turnover (ClaDS2) than the84

scenario with constant extinction rate (ClaDS1, Fig. S1 & S2).85

Performance of ClaDS86

We begin by testing the performance of ClaDS under frequent rate changes and in the absence87

of extinction (ClaDS0) (Materials and Methods). We find that the approach provides unbiased88

estimates of all model’s parameters for large enough trees (size 200, Fig. 2); the relative change89

in rate at speciation m is also well estimated (Fig. 2 d). As expected, bias and variability around90

parameter estimates increase for smaller trees (Fig. S11 to S14).91

ClaDS provides reliable estimates of branch specific speciation rates on average: while low rates92

tend to be slightly overestimated and large rates slightly underestimated, ClaDS can detect regions93

of the tree with relatively high or low rates (Fig. 3 & Fig. S15 & S16).94

When considering also extinctions, focusing on the scenario with constant turnover (ClaDS2)95

as it generally produced tree shapes closer to those observed in nature, we found that estimates96

remain accurate at low levels of extinction (ε = 0.1) for both model parameters (Fig. S20) and97

branch-specific speciation rates (Fig. S21). At high levels of extinction (ε = 0.9), σ and, when98

the mean change in rate at speciation m approaches 1, branch-specific speciation rates, remain well99

estimated. It is not the case, however, of the turnover rate ε, α, and branch-specific speciation100

rates when m < 1, although accounting for extinction does improve inferences over ignoring it (Fig.101

S20 & S21). When extinction is not accounted for, estimated branch-specific speciation rates are102

generally lower than realized ones, but higher than realized net diversification rates (Fig. S21C &103

D).104

If there are a small number of major rate shifts during the evolution of clades, rather than many105

small changes (tested here with a single rate shift, Materials and Methods), ClaDS is still able to106

provide reliable estimates of branch-specific rates (Fig. S17 & S19). The model is also able to107

detect when two branches in the tree belong to distinct speciation regimes as soon as the difference108

in rates between the two regimes is large enough (a two-fold increase or decrease in our simulations)109

and both regimes are represented by a large enough number of branches in the phylogeny (Fig. S19110

left). The false detection rate associated to this test is low (Fig. S19 right).111

Finally, when comparing the performance of ClaDS to that of two other popular methods for112

estimating branch-specific rates (the DR statistic and BAMM (4; 5)) under various simulation113

schemes (SI Appendix section 9), we find, overall, that ClaDS outperforms the other methods for114

trees simulated with both many small shifts at speciation (Fig S22 & S26 to S28) and gradual115

changes along branches (Fig S24), and that it performs as well as other methods for trees simulated116
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with few large shifts (Fig. S23) and variations in extinction rates (Fig. S25). Importantly, ClaDS117

provides reliable estimates of the variance in rates under both the many small and the few large118

shifts scenarios (Fig. S30 & S32), while BAMM underestimates the variance in rates under the119

many small shifts scenario (Fig. S31). ClaDS and BAMM provide low (and similar) estimates of120

the variance in rates for trees simulated under constant rates (Fig. S29); in the presence of rate121

heterogeneity, they tend to underestimate rather than overestimate rate variance (Fig. S30 to S33),122

and BAMM more so than ClaDS.123

Diversification across the avian radiation124

When applying ClaDS to major bird clades (Materials and Methods), we found that lineage-125

specific speciation rates can vary by as much as 2 orders of magnitude within clades (Fig. 4e). In126

Accipitridae (hawks and allies) for example, speciation rates range from 0.013 to 1.2 Mya−1, which127

almost covers the range found across the entire avian radiation (0.013 − 5 Mya−1). Comparable128

within-clade heterogeneities occur in other clades, such as Muscicapidae & Turdidae, Tyrannidae129

and Parulidae (Fig. 4e, in orange). Such within-clade heterogeneities are way above heterogeneities130

arising from estimation error (Fig. S29). A variance partitioning of speciation rates across the bird131

radiation (Material and Methods) reveals that intra-clade variance accounts for 76% of the total132

variance. In comparison, BAMM would have estimated much less within-clade heterogeneities,133

with an intra-clade variance accounting for only 46% of the total variance (Fig. S34). Given our134

simulation results, this suggests that BAMM underestimates the intra-clade variance, and thus that135

many small shifts occurred during bird diversification that BAMM cannot detect.136

While some clades have very heterogeneous rates, others are quite homogeneous, such as Ram-137

phastides, Alcedinidae, Charadrii and Phasianidae (Fig. 4e, in blue). We did not find any signifi-138

cant relationship between the variance in rate values within a clade and the size (p = 0.49) or age139

(p = 0.93) of the clade, indicating that rate heterogeneity is not a mere result of time or species140

richness; rather, rates are pretty constrained in some old and rich clades (e.g. Phasianidae) as well141

as in some younger or less species-rich clades (e.g. Alcedinidae), while they can take very different142

values for distinct species of both old or young clades (e.g. Parulidae, Tyrannidae). The wide range143

of σ estimates found across bird clades (Fig. 4a), in comparison with rather tight α and m estimates144

(Fig. 4b & c), suggests that differences in rate heterogeneity across clades are due to the stochastic145

component of the model, rather than its trend component. Indeed, α ranges between 0.38 and 1.02146

(with a mean of 0.71, Fig. 4b), which indicates a universal tendency for daughter rates to be smaller147

than ancestral ones, with a decline that is comparable in magnitude across clades. There is only148

one case when m is clearly above 1 (1.12 in Campephagidae); this corresponds to a case when most149

shifts correspond to rate declines, but the few shifts that correspond to rate increases are much150

bigger in magnitude.151

Discussion152

Models of diversification applied to phylogenies of extant taxa are increasingly used to under-153

stand the long-term evolution of biodiversity. These approaches have highlighted how much variable154

diversification rates can be across the tree of life, and the importance of these variations for explain-155

ing current patterns of diversity (the so-called ‘diversification rate hypothesis’ (19)). Yet, despite156

recent advances in phylogenetic approaches for understanding diversification, detecting diversifica-157

tion rate variations and the processes underlying these variations remain a challenge spurring a158
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heated debate (20; 21; 22; 23; 24). In this paper, we have developed ClaDS, a new model with159

frequent small variations in diversification rates together with a method to infer branch-specific160

diversification rates on a phylogeny. We have shown using simulations that ClaDS accurately es-161

timates branch-specific rates. Finally, applying ClaDS to the bird phylogeny, we have shown that162

small but frequent changes have been instrumental in shaping global rate variation during the avian163

radiation.164

One of the major advances of our model is to rely on an explicit and exact computation of165

the likelihood in the presence of extinction. Previous likelihood expressions under diversification166

models with variable rates were computed with the underlying assumption that shifts do not occur in167

extinct lineages (1; 3; 5), except in the case of trait-dependent models (see SI Appendix section 3.5 for168

further discussion); this is biologically implausible and can introduce an important bias depending on169

the intensity of extinction (22; 23). In ClaDS we relax this inconvenient assumption by integrating170

appropriate Ordinary Differential Equations (ODEs, SI Appendix section 3). This allows computing171

likelihoods accounting for rate shifts on extinct lineages, which has so far only been done through172

intense and impractical Monte Carlo simulations (22). The ODE integration is computationally173

intensive, but not as much as to prevent running ClaDS on reasonably sized trees, as we illustrated174

on the bird phylogenies. Despite this significant improvement, our simulations show that estimating175

extinction remains difficult, in line with the well-known difficulty of estimating extinction from176

phylogenies of only extant taxa (25). This is true even when simulations and inferences are performed177

under simple models with constant extinction or turnover rate. Despite difficulties in estimating178

extinction rates, properly accounting for extinctions in the likelihood computation is satisfying on179

a biological and theoretical standpoint, and, as we have shown, improves the estimation of both180

model parameters and branch specific speciation rates.181

Another advantage of ClaDS is to avoid using model selection to select the number and location182

of rate shifts, by assuming that shifts happen at each speciation event. In the frequently-used183

MEDUSA method (1), stepwise AIC is used to perform this selection, with associated statistical184

limitations (21). In the approach of Morlon et al. (3), likelihood ratio tests are performed to185

select the number of shifts, but the location of these shifts needs to be fixed a priori. Finally, in186

the popular Bayesian analysis of macroevolutionary mixtures (BAMM, 5), reversible jump mcmc187

is used, with a prior on the number and location of shifts that may influence the results (22; 26).188

ClaDS avoids these limitations, while still performing well in the presence of rare rate shifts with189

large effects.190

Maybe more importantly than these technical aspects, ClaDS represents a view of evolution191

distinct from that of previous models: existing models focus on a small number of discrete diversifi-192

cation shift events spread across the tree, an idea that fits well with the concept of key innovations193

driving major diversification shifts (3; 1; 5); to the contrary, ClaDS allows for frequent variations194

linked, for example, to changes in environmental conditions or associations with continuously evolv-195

ing heritable traits. Accordingly, ClaDS does not aim at identifying specific nodes in a phylogeny196

subtending major diversification rate shifts. Rather, it assumes that rate shifts happen at each spe-197

ciation event and focuses on estimating branch-specific diversification rates. In nature, both many198

shifts with small effects and few shifts with large effects are likely to occur, and so it is reassuring to199

see that ClaDS can properly estimate branch specific rates under these two evolutionary processes.200

Accurately estimating branch specific diversification rates is a critical step for understanding201

the processes that lead some species groups to diversify faster than others. For example, species’202

traits can modulate their propensity to diversify, and tests based on assessing the correlation between203
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trait values at a phylogenies’ tips and metrics capturing the diversification rate of the corresponding204

lineages (‘tip-rate correlations’ tests) have been developed to detect such effects (27). These types205

of tests have regained interest lately (see e.g. STRAPP (20), FiSSE (28), ES-sim (29), pNoTO206

(30; 31)), as an alternative or complement to state-dependent speciation-extinction (SSE) methods207

that jointly model diversification dynamics and trait evolution (32; 13). However, current metrics208

of species-level diversification rates have limitations. Some of them are derived from BAMM (5)209

and thus reflect a limited set of diversification rate regimes rather than lineage-specific rates per se.210

Others are summary statistics describing phylogenetic branching patterns, such as the “node density”211

(27), the “equal split” (33), or the “diversification rate” (4) statistics; they are not rigorously derived212

from speciation-extinction models, and they generally perform worse than model-based approaches213

(14) (SI Fig. S22 to S27). ClaDS provides tip level estimates of diversification rates that should214

help identifying the specific features of a species that make it more or less prone to diversify. In215

the future, we could imagine a hybrid between SSE and ClaDS that would account for both trait-216

dependent diversification and residual rate variation not accounted for by the trait, in the spirit217

of hidden states models (HiSSE (34), MSBD (6)). This could for example be done by imputing in218

ClaDS specific trend parameters α corresponding to trait shifts.219

Changes in biotic and abiotic conditions can also modulate the tempo of diversification, leading220

diversification to be faster during some time periods than others. ClaDS accommodates temporal221

trends in rate variation, without the need to specify a specific form for this variation a priori as222

in time-dependent diversification models (35; 16; 3), and with more flexibility than models where223

a discrete rate shift at a given time point affects the whole clade (36). In the future, the trend224

parameter α could depend on measured environmental variables; this would allow directly test-225

ing for an effect of these environmental variables on diversification, as in environment-dependent226

diversification models (37; 38), while accounting for residual rate variation.227

Our ClaDS analysis of the avian radiation reveals a series of compelling results. First, and even228

though these estimates need to be taken with caution, we find significant (non-zero) turnover rates.229

Second, we find a pervasive pattern of declines in speciation rates over time congruent with previous230

studies (16; 17; 18). Third, we find a remarkable heterogeneity in speciation rates, with per-lineage231

rates that vary by two orders of magnitude (0.01− 5 Mya−1), peaking around 0.15 Mya−1. Fourth,232

we find that variability in speciation rates can be as high within than between clades, suggesting that233

rate variation may be much more widespread than currently thought and implemented in existing234

models. Finally, we highlight a remarkable difference across clades in terms of how constrained235

their diversification rates are, with plovers and allies on one extreme, and hawks and allies on the236

other extreme of a continuum between rates that vary less than 2 fold to more than 80 folds (Fig.237

4e, f). These differences in how constrained diversification rates are striking and remain to be238

explained: these could be linked to differences in genetic architecture, developmental constraints,239

or biogeographies, for example.240

Together, our results refute the idea that speciation may be clock-like (39) and emphasize the241

need to consider diversification models that embrace the pervasive heterogeneity of the evolutionary242

process. Further, they promise a bright future for approaches, such as ours, that relax the speciation243

clock similarly to the way the molecular clock has been relaxed (40; 41; 42): similar to molecular244

rates, diversification rates vary according to many small shifts.245

Material and Methods246
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Likelihood, simulation and Bayesian implementation of ClaDS247

Likelihood We derived the probability density of observing a reconstructed phylogeny with248

branches delimited by the times (ti, si)i∈J1,NK and speciation and extinction rates λi and µi at249

time ti (i.e. at the origin of each branch) under the cladogenetic diversification rate shift model250

(SI Appendix section 2 to 4). We note Θ the parameters of the new rate distribution ν. The251

probability density can be derived from three main probability functions: ΦΘ,λ,µ(t), the probability252

that a lineage alive at time t has speciation and extinction rates λ and µ and no descendant in253

the reconstructed phylogeny; χΘ,λ,µ(t), the probability that a lineage alive at time t has speciation254

and extinction rates λ and µ and exactly one descendant species sampled in the reconstructed255

phylogeny; and ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2), the probability that a lineage alive at time t has speciation256

and extinction rates λ and µ and gives birth at time s to two daughter lineages that respectively257

have speciation rates λ1 and λ2 and extinction rates µ1 and µ2. We obtained ordinary differential258

equations (ODEs) to solve for Φ, χ and ξ by considering the different events that can happen during a259

short time interval ∆t and making ∆t tend to 0 (SI Appendix section 3.1 to 3.3). Under a pure-birth260

model and for a completely sampled phylogeny, the ODEs can be solved analytically (SI Appendix261

section 4). In the presence of extinction and/or if there are missing taxa in the phylogeny, Φ, χ and262

ξ are computed by integrating the ODEs numerically, which is more computationally intensive (SI263

Appendix section 5).264

Simulation We implemented a simulation algorithm of ClaDS in the R-package RPANDA265

(43, function sim_ClaDS) (SI Appendix section 1). In this implementation, the speciation rates of266

daughter lineages are drawn independently from a distribution νλ. Their extinction rates are either267

drawn from a distribution νµ, given by µ0 (constant extinction rate scenario, ClaDS1), or given by268

ε ∗ λsi,1 and ε ∗ λsi,2 (constant turnover scenario, ClaDS2). νλ and νµ can be normal, log-normal,269

or uniform distributions. The simulations are continued until a stopping criterion is met, either a270

fixed time or a fixed number of species. In addition, sim_ClaDS takes as one of its arguments a271

parameter p controlling the probability that a shift happens at each speciation event (the default272

value p = 1 corresponds to the model investigated here), and a parameter n, controlling a maximum273

number of shifts (the default value n = INF corresponds to the model investigated here; if n takes274

a finite value, then p switches to 0 as soon as n switches have occurred).275

Bayesian implementation We implemented a Bayesian inference approach for fitting ClaDS276

to reconstructed phylogenies in the R-package RPANDA (43, function fit_ClaDS) (SI Appendix 1277

section 7). In order to fit ClaDS0 (no extinction), we use a Metropolis within Gibbs MCMC (Monte278

Carlo Markov Chain) sampler with a Bactrian proposal (44), and convergence is monitored by279

running three MCMC chains in parallel and computing Gelman statistics (45). In order to fit280

ClaDS1 and ClaDS2 (i.e. in the presence of extinction), and/or if there are missing taxa in the281

phylogeny, we use the faster blocked Differential Evolution (DE) MCMC sampler, with sampling282

from the past of the chains (46). We also ran three chains. For both with and without extinctiion,283

we use an inverse gamma prior with shape parameter 1 and rate parameter 0.1 for σ and a flat284

prior for all other parameters. Each estimate was computed as the mean over the iterations and285

the three chains.286
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Testing the performance of ClaDS287

We performed intensive simulations to test the performance of ClaDS. We tested both the288

performance of ClaDS under data generated by this model, and its performance for data generated289

with a discrete speciation rate shift. In order to assess the performance of ClaDS under a large290

parameter set and for a variety of tree sizes, we considered primarily the pure birth model with291

completely sampled phylogenies. We also considered the model with extinction and/or missing taxa,292

but only in a limited, computationally tractable, set of simulations.293

Many small rate shifts (ClaDS model) For each combination of the following parameter294

values, we simulated 20 pure birth trees, stopping the simulation when a target tip number of 50,295

100 and 200 was reached. λ0 was fixed at 0.1, σ was taken in {0, 0.1, 0.18, 0.26, 0.34, 0.41}, and α in296

{1.2, 1.1, 1, 0.95, 0.9, 0.7}. We recorded the realized speciation rate on each branch in each of these297

simulations. We then ran ClaDS on each simulated tree using our run_ClaDS0 function. Lastly,298

we compared the retrieved estimates of λ0, σ and α to their simulated values; we also compared299

the retrieved estimates of branch-specific speciation rates for each tree to their realized values by300

performing linear regressions and computing relative errors (ratio of estimated versus realized rates).301

In order to explore the model accounting for extinction, we simulated 5 trees of size 100 under302

4 scenarios with constant turnover rate (ClaDS2), and for each condition either low (ε = 0.1) or303

high (ε = 0.9) turnover (8 scenarios in total). We focused on the scenario with constant turnover,304

because this scenario produced tree shapes similar to those of empirical trees under a wider set305

of parameter values than the alternative scenario with constant extinction rate (Fig. S2.1 versus306

S2.2). Maintaining a balance where extinction is neither negligible nor driving clades to extinction is307

also easier under ClaDS2. The four scenarios were as follows: i) high heterogeneity and decreasing308

rates : λ0 = 0.1, σ = 0.7, α = 0.7 (mean relative change m = 0.9), ii) no heterogeneity and309

constant rates (equivalent to constant rate birth-death trees) : λ0 = 0.1, σ = 0, α = 1 (m = 1)310

iii) Low heterogeneity and no average change in rate at speciation : λ0 = 0.1, σ = 0.2, α = 0.98311

(m = 1) iv) Low heterogeneity and decreasing rates : λ0 = 0.1, σ = 0.2, α = 0.88 (m = 0.9). We312

recorded the realized speciation rate at the beginning of each branch in each of these simulations.313

We then ran ClaDS on each simulated tree using our R function, both accounting (run_ClaDS)314

and not accounting (run_ClaDS0) for extinction, the latter to evaluate the bias resulting from not315

accounting for extinction when it occurs. Lastly, we compared the retrieved estimates of σ, α, m316

and ε for each tree to their simulated values. We did not compare the retrieved estimates of λ0 to317

the simulated values, because the estimates correspond to the speciation rate at the crown while318

the simulated values correspond to the speciation rate at the stem. These two rates can be very319

different in the presence of extinction. We also compared the retrieved estimates of branch-specific320

speciation rates and net diversification rates (speciation minus extinction) for each tree to their321

realized values by performing linear regressions and computing relative errors.322

Few large rate shifts We also tested the behavior of ClaDS under a ‘key innovation’ scenario323

with only a single large rate shift during the history of the clade. In order to simulate this scenario,324

we used our sim_ClaDS function with λ0 (the background rate in this case) fixed at 0.1, p (the325

probability that a rate shift happens at each speciation event) fixed at 0.02, and n (the maximum326

number of shifts) fixed at 1. The new speciation rate took a series of values from lower (uniformly327

drawn in [0.025, 0.03], [0.03, 0.05], [0.05, 0.1]) to higher (uniformly drawn in [0.1, 0.15], [0.15, 0.2],328

[0.2, 0.3], [0.3, 0.4], [0.4, 1]) than the background rate. For each of these rate values, we simulated329
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phylogenies of size 200 until we had a good coverage of subclade new rate/size combination (from330

300 to 500 phylogenies per parameter set). In such simulations, there are only two distinct rates331

across the tree: the background rate and the new rate. We then ran ClaDS on each simulated tree332

using our run_ClaDS0 function and compared the retrieved estimates of branch-specific speciation333

rates for each tree to their simulated values by performing linear regressions and computing relative334

errors. Finally, we tested whether the model is able to detect if two branches in the tree belong to the335

same or distinct speciation regime(s): two branches were considered to have significantly different336

rates (distinct regime) if the difference in the estimated speciation rates between the two branches337

was of constant sign on at least 95% of the MCMC chains. We assessed the significance of speciation338

rate differences (and the corresponding sign) for all pairs of branches in the simulated trees. Finally,339

we quantified the ‘proper detection’ rate as the proportion of pairs for which a significant difference340

was inferred when the two branches indeed belonged to distinct speciation regimes (i.e. one had341

the background speciation rate and the other one had the new rate), and the ‘false detection’ rate342

as the proportion of pairs for which a significant difference was inferred, while the two branches343

actually belonged to the same speciation regime (i.e. both had either the background speciation344

rate or the new rate).345

Diversification of the avian radiation346

We applied ClaDS, accounting for extinction (ClaDS2, model with constant turnover) and in-347

complete sampling, to bird phylogenies. We used the MCC trees from Jetz et al. (4) with only the348

species for which there was molecular data, along with the associated sampling fractions provided349

by the authors. Most of these are family level phylogenies, with some spawning two or a few more350

families. We ran the model on the 42 bird phylogenies with more than 50 species. We report the351

distribution of branch-specific speciation rates across the 42 clades, as well as individual distri-352

butions for each clade. We partitioned the total variance of the logarithm of the branch specific353

speciation rates (
∑

i

(
ln(λi)− ln(λ)

)2
, where ln(λ) is the mean of the log of the speciation rates for354

all branches in all clades) between the intra-clade (
∑

i

(
ln(λi)− ln(λci)

)2
, where ci is the clade to355

which branch i belongs and ln(λc) is the mean of the log of the speciation rates for all branches in356

clade c) and inter-clade variance (
∑

i

(
ln(λci)− ln(λ)

)2
). We also tested for a potential correlation357

between the variance in rates and the size (number of tips) and age (crown age) of clades using358

PGLS (47) (two-sided test) on the Hacket backbone phylogeny provided in Jetz et al. (4).359

Data availability360

The simulated phylogenies used to test the method are available at https://github.com/OdileMaliet/ClaDS/tree/master/Simulations,361

in the file named trees.zip. All the empirical data used for the analysis were obtained from Jetz et362

al. (2012) study, and are available on https://www.nature.com/articles/nature11631.363

Code availability364

The R functions used to simulate and fit the model are available in the RPANDA R-package.365

All the codes used to test our method are available on the github repository https://github.com/366

OdileMaliet/ClaDS.git.367

9

https://www.nature.com/articles/nature11631
https://github.com/OdileMaliet/ClaDS.git
https://github.com/OdileMaliet/ClaDS.git
https://github.com/OdileMaliet/ClaDS.git


Competing interests368

The authors declare no competing interests.369

Acknowledgements370

The authors are very grateful to Leandro Arístide, Julien Clavel, Jonathan Drury, Carmelo371

Fruciano, Sophia Lambert, Eric Lewitus, Marc Manceau, Olivier Missa, Benoît Perez, Ana Cata-372

rina Silva and Guilhem Sommeria-Klein for their helpful comments on an earlier version of this373

manuscript. This work was supported by an AMX grant (from Ecole Polytechique) and the Labex374

MemoLife to OM, PROCOPE mobility grant 57134817 to FH and HM, and the European Research375

Council [ERC 616419-PANDA] to HM.376

References377

[1] Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Carnevale,378

G., and Harmon, L. J. Nine exceptional radiations plus high turnover explain species diversity379

in jawed vertebrates. Proceedings of the National Academy of Sciences 106(32), 13410–13414380

(2009).381

[2] Chan, K. M. and Moore, B. R. SymmeTREE: whole-tree analysis of differential diversification382

rates. Bioinformatics 21(8), 1709–1710 (2004).383

[3] Morlon, H., Parsons, T. L., and Plotkin, J. B. Reconciling molecular phylogenies with the fossil384

record. Proceedings of the National Academy of Sciences 108(39), 16327–16332 (2011).385

[4] Jetz, W., Thomas, G., Joy, J., Hartmann, K., and Mooers, A. The global diversity of birds in386

space and time. Nature 491(7424), 444 (2012).387

[5] Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence388

on phylogenetic trees. PloS one 9(2), e89543 (2014).389

[6] Barido-Sottani, J., Vaughan, T. G., and Stadler, T. A Multi-State Birth-Death model for390

Bayesian inference of lineage-specific birth and death rates. bioRxiv (2018).391

[7] Sanderson, M. J. and Wojciechowski, M. F. Diversification rates in a temperate legume clade:392

are there so many species of Astragalus (Fabaceae)? American Journal of Botany 83(11),393

1488–1502 (1996).394

[8] Miller, A. H. Some ecologic and morphologic considerations in the evolution of higher taxonomic395

categories. Ornithologie als biologische Wissenschaft , 84–88 (1949).396

[9] Hunter, J. P. Key innovations and the ecology of macroevolution. Trends in ecology & evolution397

13(1), 31–36 (1998).398

[10] Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic399

and abiotic factors through time. Science 323(5915), 728–732 (2009).400

[11] Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A., and Igić, B. Species401

selection maintains self-incompatibility. Science 330(6003), 493–495 (2010).402

10



[12] Onstein, R. E., Baker, W. J., Couvreur, T. L., Faurby, S., Svenning, J.-C., and Kissling, W. D.403

Frugivory-related traits promote speciation of tropical palms. Nature ecology & evolution 1(12),404

1903 (2017).405

[13] FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods406

in Ecology and Evolution 3(6), 1084–1092 (2012).407

[14] Title, P. O. and Rabosky, D. L. Tip rates, phylogenies, and diversification: what are we408

estimating, and how good are the estimates? Methods in Ecology and Evolution (2018).409

[15] Emerson, B. C. and Kolm, N. Species diversity can drive speciation. Nature 434(7036), 1015410

(2005).411

[16] Rabosky, D. L. and Lovette, I. J. Explosive evolutionary radiations: decreasing speciation or412

increasing extinction through time? Evolution 62(8), 1866–1875 (2008).413

[17] Phillimore, A. B. and Price, T. D. Density-dependent cladogenesis in birds. PLoS biology 6(3),414

e71 (2008).415

[18] Moen, D. and Morlon, H. Why does diversification slow down? Trends in Ecology & Evolution416

29(4), 190–197 (2014).417

[19] Rosenzweig, M. L. Species diversity gradients: we know more and less than we thought. Journal418

of mammalogy 73(4), 715–730 (1992).419

[20] Rabosky, D. L. and Huang, H. A robust semi-parametric test for detecting trait-dependent420

diversification. Systematic Biology 65(2), 181–193 (2015).421

[21] May, M. R. and Moore, B. R. How well can we detect lineage-specific diversification-rate shifts?422

A simulation study of sequential AIC methods. Systematic biology 65(6), 1076–1084 (2016).423

[22] Moore, B. R., Höhna, S., May, M. R., Rannala, B., and Huelsenbeck, J. P. Critically evaluating424

the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proceedings425

of the National Academy of Sciences 113(34), 9569–9574 (2016).426

[23] Rabosky, D. L., Mitchell, J. S., and Chang, J. Is BAMM flawed? Theoretical and practical427

concerns in the analysis of multi-rate diversification models. Systematic biology 66(4), 477–498428

(2017).429

[24] Rabosky, D. L. How to make any method "fail": BAMM at the kangaroo court of false equiv-430

alency. arXiv preprint arXiv:1711.03253 (2017).431

[25] Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution432

64(6), 1816–1824 (2010).433

[26] Mitchell, J. S. and Rabosky, D. L. Bayesian model selection with BAMM: effects of the model434

prior on the inferred number of diversification shifts. Methods in Ecology and Evolution 8(1),435

37–46 (2017).436

[27] Freckleton, R. P., Phillimore, A. B., and Pagel, M. Relating traits to diversification: a simple437

test. The American Naturalist 172(1), 102–115 (2008).438

11



[28] Rabosky, D. L. and Goldberg, E. E. FiSSE: A simple nonparametric test for the effects of a439

binary character on lineage diversification rates. Evolution 71(6), 1432–1442 (2017).440

[29] Harvey, M. G. and Rabosky, D. L. Continuous traits and speciation rates: Alternatives to441

state-dependent diversification models. Methods in Ecology and Evolution (2017).442

[30] Bromham, L., Hua, X., and Cardillo, M. Detecting macroevolutionary self-destruction from443

phylogenies. Systematic biology 65(1), 109–127 (2015).444

[31] Hua, X. and Bromham, L. Phylometrics: an R package for detecting macroevolutionary pat-445

terns, using phylogenetic metrics and backward tree simulation. Methods in Ecology and Evo-446

lution 7(7), 806–810 (2016).447

[32] Maddison, W. P., Midford, P. E., and Otto, S. P. Estimating a binary character’s effect on448

speciation and extinction. Systematic biology 56(5), 701–710 (2007).449

[33] Redding, D. W. and Mooers, A. Ø. Incorporating evolutionary measures into conservation450

prioritization. Conservation Biology 20(6), 1670–1678 (2006).451

[34] Beaulieu, J. M. and O’Meara, B. C. Detecting hidden diversification shifts in models of trait-452

dependent speciation and extinction. Systematic biology 65(4), 583–601 (2016).453

[35] Nee, S., May, R. M., and Harvey, P. H. The reconstructed evolutionary process. Phil. Trans.454

R. Soc. Lond. B 344(1309), 305–311 (1994).455

[36] Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the456

National Academy of Sciences 108(15), 6187–6192 (2011).457

[37] Condamine, F. L., Rolland, J., and Morlon, H. Macroevolutionary perspectives to environmen-458

tal change. Ecology letters 16(s1), 72–85 (2013).459

[38] Lewitus, E. and Morlon, H. Detecting environment-dependent diversification from phylogenies:460

a simulation study and some empirical illustrations. Systematic biology (2017).461

[39] Hedges, S. B., Marin, J., Suleski, M., Paymer, M., and Kumar, S. Tree of life reveals clock-like462

speciation and diversification. Molecular biology and evolution 32(4), 835–845 (2015).463

[40] Thorne, J. L., Kishino, H., and Painter, I. S. Estimating the rate of evolution of the rate of464

molecular evolution. Molecular biology and evolution 15(12), 1647–1657 (1998).465

[41] Huelsenbeck, J. P., Larget, B., and Swofford, D. A compound Poisson process for relaxing the466

molecular clock. Genetics 154(4), 1879–1892 (2000).467

[42] Lartillot, N., Phillips, M. J., and Ronquist, F. A mixed relaxed clock model. Phil. Trans. R.468

Soc. B 371(1699), 20150132 (2016).469

[43] Morlon, H., Lewitus, E., Condamine, F. L., Manceau, M., Clavel, J., and Drury, J. RPANDA:470

an R package for macroevolutionary analyses on phylogenetic trees. Methods in Ecology and471

Evolution 7(5), 589–597 (2016).472

[44] Yang, Z. and Rodríguez, C. E. Searching for efficient Markov chain Monte Carlo proposal473

kernels. Proceedings of the National Academy of Sciences 110(48), 19307–19312 (2013).474

12



[45] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. Bayesian475

data analysis. Bayesian data analysis, volume 2. CRC press Boca Raton, FL, (2014).476

[46] ter Braak, C. J. and Vrugt, J. A. Differential evolution Markov chain with snooker updater477

and fewer chains. Statistics and Computing 18(4), 435–446 (2008).478

[47] Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326(1233), 119–157479

(1989).480

Author contribution481

OM, FH and HM designed the study and performed research. OM contributed new analytical482

tools and analysed data. OM, FH and HM wrote the paper.483

Figure legends484

Figure 1 Illustration of the cladogenetic diversification rate shift model (ClaDS). Upper panel:485

cartoon phylogeny simulated under ClaDS, with branches colored according to their speciation486

rate (red: high rate, blue: low rate). Speciation rates are inherited at speciation with a shift487

determined by the probability distribution νλ (here taken to be a lognormal distribution, insert).488

Red arrows indicate speciation events (and associated diversification rate shifts) that are hidden in489

the reconstructed phylogeny as a result of extinction.490

Figure 2 Recovery of ClaDS parameters. Estimated λ0 (a), α (b), and σ (c) inferred with ClaDS,491

and (d) resulting estimation of m = α ∗ exp(σ2/2). Violin plots: distribution of estimated param-492

eters; yellow cross: median; thick black line: quartiles; red lines: values used in the simulations.493

Different shades of brown correspond to: in a and c, the values of α used in the simulations (1.2494

(light), 1, 0.9, 0.7 (dark)) ; in b and d, the values of σ used in the simulations (0 (light), 0.1, 0.26,495

0.41 (dark)). Results corresponding to simulated trees of size 200; 20 trees where simulated and496

analysed for each parameter set; results for other tree sizes are shown in Fig. S11 to S14.497

Figure 3 ClaDS performs well in recovering branch-specific speciation rates a) tree simulated498

under the ClaDS model (λ0 = 0.1, σ = 0.18 , α = 1, ε = 0, size N = 200), with branches499

colored according to their realized speciation rate b) same tree with branches colored according500

to inferred speciation rates c) Inferred versus simulated branch-specific speciation rates (on a log501

scale) for 20 trees simulated with the same parameters and size as the tree from panel a; the darker502

points highlight rates for the tree shown in panel a. Each regression line (light gray) corresponds503

to one of the 20 trees, and the black line corresponds to the regression across all trees. The red504

line displays the 1:1 relationship. Values in the bottom right corner correspond to the mean and505

standard deviation of the slope and correlation coefficient across the 20 regressions, and those of the506

relative error in branch-specific speciation rates estimates (λestimated/λsimulated) across all branches507

from the 20 trees.508
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Figure 4 Patterns of diversification across 42 bird clades. Distributions across clades of (a) σ, (b)509

α, (c) m = α exp(σ2/2), and (d) ε values estimated with ClaDS. e: Distributions of branch specific510

speciation rates for each specific clade (grey and colored lines) and all clades pooled together (thick511

black line). Red: Accipitridae; Orange: Muscicapidae & Turdidae, Tyrannidae and Parulidae; Dark512

blue: Charadrii ; Medium blue: Ramphastides; Light blue : Alcedinidae and Phasianidae); Brown:513

Scolopaci ; Green: Anatinae f: Exemplar phylogenies colored according to their inferred branch-514

specific speciation rates, in Myr−1, and plotted on the same time scale. Top panel: the Accipitridae515

phylogeny subtends very variable rates that tend to decrease through time (inferred parameters:516

σ = 0.67, α = 0.61, m = 0.76 and ε = 0.02). Bottom panel: the Ramphastides phylogeny subtends517

rather homogeneous rates (σ = 0.16, α = 0.97, m = 0.98 and ε = 0.05).518

14



σ
stochasticity

νλ

log(α)
trend

log(λi)

log(λi1) log(λi2)

λ0 initial speciation rate

λi ancestral rate
λi1, λi2 daughter rates

νλ distribution of daughter

speciation rates
log−normal distribution

of parameters σ, αλi

m = αeσ
2 2 mean relative 

daughter rate

µ extinction rate

ε = µ λ turnover rate



0.
05

0.
10

0.
15

0.
20

0.
25

0 0.1 0.26 0.41

σ

in
fe

re
d 

 λ
0

1.
2 1 0.
9

0.
7α

a

0.
6

0.
8

1.
0

1.
2

1.2 1 0.9 0.7

α

in
fe

re
d 

 α

0 0.
1

0.
26

0.
41σ

b

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0 0.1 0.26 0.41

σ

in
fe

re
d 

 σ

1.
2 1 0.
9

0.
7α

c

0.
6

0.
8

1.
0

1.
2

1.
4

1.2 1 0.9 0.7

α

in
fe

re
d 

m
 =

 α
ex

p(
σ2

2)

0 0.
1

0.
26

0.
41σ

d



a b

0.1 0.2 0.5

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

λsimulated

λ e
st

im
at

ed

slope   0.7 (0.044)

cor   0.82 (0.011)

rel error   1 (0.0058)

c



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

σ

a

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

α

●

b

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

m

●

c

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

ε

●

d
0.

0
0.

5
1.

0
1.

5
2.

0

de
ns

ity

e

speciation rate (Myr−1)
0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

Ducks, geese and swans

Toucans and barbets

Plovers and allies

Sandpipers and allies

Hawks and allies

f

speciation rate (Myr−1)
0.02 0.05 0.1 0.2 0.5 1


	post export Replaced Article File with reference article titles
	Figure 1
	Figure 2
	Figure 3
	Figure 4

