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ON THE BETTI MAP ASSOCIATED TO ABELIAN
LOGARITHMS

Y. ANDRÉ, P. CORVAJA, U. ZANNIER

ABSTRACT. (draft 5)

1. PROBLEM AND MAIN RESULTS.

1.1. Let A be a complex abelian variety of dimension g. We write Λ for the
its period lattice H1(A(C),Z), identified with the kernel of the exponential
map expA : LieA→ A.

We fix a complex point σ of A, and let Λσ be the lattice formed by the
pairs (` ∈ LieA,m ∈ Z) such that expA(`) = mσ. It sits in an extension

(1.1) 0→ Λ→ Λσ
(`,m)7→m→ Zσ → 0,

and we fix a splitting λ : Zσ → Λσ (i.e. a branch of the “abelian loga-

rithm”). On the other hand, let us consider the first projection Λσ
(`,m)7→`→

LieA and its R-linear extension Λσ ⊗Z R → LieA . Since the composed
map

(1.2) Λ⊗Z R→ Λσ ⊗Z R→ LieA

is an isomorphism, one has a canonical projection Λσ⊗ZR→ Λ⊗ZR, and
the image of λ(σ) in Λ ⊗Z R can be expressed, in terms of a basis ` of Λ,
by 2g real coordinates: the Betti coordinates1 of σ.

1.2. We are actually interested in the relative setting. Let S be a smooth
connected complex algebraic variety.

Let A
f→ S be an abelian scheme of relative dimension g. Its Lie algebra

LieA is a rank g vector bundle on S. For our purpose, there will be no

Date: June 16, 2016.
1991 Mathematics Subject Classification.
Key words and phrases.
1the terminology seems due to D. Bertrand and refers to the fact that Λσ is nothing but

the Betti realization of the 1-motive [Z 17→σ→ A] in the sense of [D2, X]. Note that the Betti
coordinates depend not only on σ but also on the auxiliary choice of a splitting λ and of a
basis of Λ.
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loss of generality2 in assuming, as we shall do, that S is affine and that this
vector bundle is trivial, i.e. ΓLieA is a free ΓOS-module of rank g.

Let σ : S → A be a section of f . The above constructions extend to this
relative setting as follows. Let S̃ be a universal covering of S(C), with its
canonical structure of complex analytic manifold. The kernel of expA is a
locally constant sheaf on S(C), which can be viewed as a constant lattice Λ
on S̃. Similarly, one constructs an exact sequence of lattices on S̃

(1.3) 0→ Λ→ Λσ
(`,m) 7→m→ Zσ → 0

and fixes a splitting λ : Zσ → Λσ.
Let S̃real be S̃ viewed as a real-analytic manifold and letOR(S̃real) (resp.

O(S̃real)) be the ring of real-valued (resp. complex valued) real-analytic
functions on S̃. The composed map

(1.4) Λ⊗Z OR(S̃real)→ Λσ ⊗Z OR(S̃real)→ ΓLieA⊗ΓOS O(S̃real)

is an isomorphism of free OR(S̃real)-modules. One thus has a canonical
projection Λσ ⊗Z OR(S̃real) → Λ ⊗Z OR(S̃real), and the image of λ(σ) in
Λ ⊗Z OR(S̃real) can be expressed, in terms of a basis ` of the lattice Λ, by
a real-analytic map (the Betti map)

(1.5) β = β(σ, λ, `) : S̃ → R2g.

1.3. We assume for convenience that A → S is principally polarized,
which allows to consider to the moduli map µ : S → Ag. We denote
by Aη̄ the geometric generic fiber, and we set

(1.6) d = dimµ(S).

We are interested in the range of β. It is easy to see that the its dimension
is ≤ min(2d, 2g). Under what condition is the range of β maximal, i.e. of
dimension min(2d, 2g)?

This may not be the case for various trivial reasons (e.g. when the σ is
a torsion section, or when A

f→ S is the pull-back of an abelian scheme
defined over a base of dimension < d ≤ g).

1.4. Here is a sample of concrete results [not our final results, hopefully!]:

1.4.1. Theorem. Assume that g ≤ min(3, d) and that the section σ is not
contained in a proper subgroup scheme of A. Then the range of β has real
dimension 2g. More precisely, the restriction of β to the inverse image of a
dense Zariski-open subset of S is a submersion.

2since S can be covered by such affine open subsets.
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The proof relies on an analysis of the Kodaira-Spencer map.

1.4.2. Theorem. Assume that σ is not contained in a proper subgroup
scheme of A. Assume moreover that d ≤ min(2, g). Then β has real im-
age 2d. More precisely, the restriction of β to the inverse image of a dense
Zariski-open subset of S is an immersion.

1.5. [Motivation for the problem, and application of the results (if any)...
General conjecture ....]

2. AN INFINITESIMAL APPROACH, AND ITS HOLOMORPHIC
TRANSLATION.

2.1. Our approach is infinitesimal. In fact, the problem we address is the
following:

under what condition is β almost everywhere an immersion, resp. a sub-
mersion (according to whether d ≤ g or g ≤ d) ?

2.1.1. Proposition. For every s ∈ S̃, Ker β(s) is a complex vector subspace
of LieAs ∼= R2g. Moreover the fibers of β are complex-analytic subspaces
of S̃, and all non-empty fibers have dimension ≥ 2d − r, where r is the
generic rank of β.

Proof. - [cf. your prop 2.1 + 2.2]. �

2.2. We may first replace S by a finite etale covering and assume that for
some n ≥ 3, the n-torsion sections are defined over S, then replace it by its
image in the moduli space Ag,n of principally polarized abelian varieties of
dimension g with level n-structure. We thus consider the rank of a jacobian
matrix of size (2d, 2g), and for this purpose, we introduce the following
notation:

(ω1, . . . , ωg, η1, . . . , ηg) is a symplectic basis of H1
dR(A/S) with

ω1, . . . , ωg ∈ ΩA,
(γ1, . . . , γg) is a symplectic basis of Λ,

Ω1 :=
(∫

γi
ωj
)
i,j=1,...g

, Ω2 :=
(∫

γi+g
ωj
)
i,j=1,...g

, Z := Ω1 · Ω−1
2 = tZ

(which takes values in Hg), L :=
(∫ σ

ωj
)
j=1,...g

· Ω−1
2 .

Let r be min(d, g). In the next step, we transform the vanishing of a 2r-
2r-minor involving real-analytic functions by the vanishing of a r-r-minor
of a related matrix involving only complex-analytic functions on S̃. In order
to do this, we take advantage of the monodromy, using a theorem of linear
independence of abelian logarithms with respect to periods [A1, th. 2] (cf.
also [A2, §1]).

At the end, we come along with the following translation of the problem
(under extra assumptions):
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2.2.1. Proposition. (with S ⊂ Ag,n). Assume that σ is not contained in a
proper sub-group scheme. Then for any s ∈ S̃, β is an immersion, resp. a
submersion (according to whether d ≤ g or g ≤ d) at s if and only if for
some (λ1, . . . , λg) ∈ Cg, the matrix

(2.1) ((∂iL)(s) +
∑

k=1,...,g

λk(∂iZkj)(s))i=1,...,d, j=1,...g

has maximal rank (where the ∂i form a basis of the tangent space TS̃(s)).
This is already the case if for some (λ1, . . . , λg) ∈ Cg, the matrix

(2.2) (
∑

j=1,...,g

λk(∂iZkj)(s))i=1,...,d, j=1,...g

has maximal rank.

Proof. ... [your §3.5].
The second assertion follows from the first, putting an arbitrary coeffi-

cient λ0 in front of (∂iL)(s) and letting λ0 tend to 0. �

Remark. For d = g, the negation of the conclusion leads to a special case
of “Dieudonné’s problem”, which is notoriously difficult: describe vector
spaces of singular matrices Z, resp. singular symmetric matrices, cf. e.g.
[L]3.

3. ROLE OF THE KODAIRA-SPENCER MAP.

3.1. We know consider the following condition:
(3.1)
For every s in an dense open affine subset ofS, the matrix (2.2) has maximal rank.

We shall translate it in terms of the Kodaira-Spencer map

θ : TS ⊗ΩA → Ω∨A = LieA,

where ΩA denotes the locally free OS-module of invariant 1-forms on A.
We refer to [A3, 1.4, 2.1] for background about the Kodaira-Spencer map
of a polarized abelian scheme A of relative dimension g over a smooth C-
scheme S. For any ∂ ∈ ΓTS , we denote by θ∂ the corresponding map
ΩA → Ω∨A, which belongs to Homsym (ΩA, Ω

∨
A). Let us recall that in terms

of the symplectic basis ω1, . . . , ωg, η1, . . . , ηg, the matrix of θ∂ is given by
the lower left quadrant T∂ of the Gauss-Manin connection written in the
form

∂

(
Ω1 N1

Ω2 N2

)
=

(
Ω1 N1

Ω2 N2

)(
R∂ S∂
T∂ U∂

)
,

where R∂, S∂, T∂, U∂ ∈Mg(O(S)). Moreover T∂ is a symmetric matrix.

3we are grateful to M. Brion for this reference.
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3.1.1. Lemma. Assume that d = g. Then condition (3.1) is equivalent to:

(3.2) ∃ω ∈ ΓΩA, ∀∂ ∈ ΓTS \ 0, θ∂.ω 6= 0.

Proof. One has

∂Z = (∂Ω1−Ω1Ω−1
2 ∂Ω2)Ω−1

2 = ((Ω1R∂+N1T∂)−Ω1Ω−1
2 (Ω2R∂+N2T∂))Ω

−1
2

= (N1−Ω1Ω−1
2 N2)T∂Ω

−1
2 = −Ω−1

2 (tΩ1N2−tΩ2N1)T∂Ω
−1
2 = −2πiΩ−1

2 T∂Ω
−1
2 .

If ~µ = −2πi~λΩ−1
2 , one has

det(
∑

k=1,...,g

λk(∂iZkj)(s)) = det(
∑

k=1,...,g

µk(T∂i)kj(s)) · (det Ω2)−1.

Setting ω =
∑
µkωk, one has

∑
µk(T∂i)kj = θ∂i(ω) · ηj . Thus (3.1) is

equivalent to: there is a dense open affine subset S ′ ⊂ S such that

∀s ∈ S ′(C), ∃ωs ∈ Ω1(As), ∀∂s ∈ TS,s \ 0, (θ(s)∂s)(ωs) 6= 0.

It is easy to see that this condition is equivalent in turn to (3.2) (for the direct
implication, any ω lifting ωs for some s will do). �

3.2. In [A3], a condition similar to (3.2) is studied (cf. [A3, lemma 1.4.5]),
where the quantifiers are interchanged:

(3.3) ∀∂ ∈ ΓTS \ 0, ∃ω ∈ ΓΩA, θ∂.ω 6= 0.

3.2.1. Theorem. [A3, def. 4.2.1, th. 4.2.2] In the restricted PE case, con-
dition (3.3) is satisfied. �

3.2.2. Lemma. If d = g, (3.2)⇒ (3.3).

Proof. Let θω : TS → Ω∨A the contraction of θ by ω ∈ ΩA. Condition
(3.2) is equivalent to the injectivity of θω for some ω. Since d = g, this is
equivalent to the generic surjectivity of θω for some ω, which implies the
generic surjectivity of θ, which is in turn equivalent to (3.3). �

3.2.3. Question. Does the converse of the lemma holds?

3.2.4. Remark. Let η be the generic point of S and P (ΩAη) (resp. P (Tη))
be the projective space of lines on ΩAη) (resp. TS). We denote by ω̄ (resp.
∂̄) the class of ω in P (ΩAη) (resp. ∂ in P (Tη)).

One could try to answer the question in general by explaining the “log-
ical seesaw” between quantifiers from (3.3) to (3.2) through a “geometric
seesaw” provided by the incidence variety Σ ⊂ P (ΩAη) × P (Tη) formed
by pairs (ω̄, ∂̄) such that θ∂ · ω = 0, and let p1, p2 be the projections on the



6 Y. ANDRÉ, P. CORVAJA, U. ZANNIER

factors. Let further P̆h ⊂ P (Tη) be the locally closed subvariety formed by
elements ∂̄ such that θ∂,η has rank h. One has

p2(Σ) ⊂
h=g−1∐
h=1

P̆h ⊂ P (Tη) =

h=g∐
h=1

P̆h,

and
dim p−1

2 {∂} = g − 1− h if ∂ ∈ P̆h.
By (3.3), P̆g is non empty and in fact dense (the condition is open in ∂),
hence dim p2(Σ) ≤ g − 2.

The key problem is whether one has

(3.4) dim P̆h−1 < dim P̆h

(which is equivalent to dim P̆h 6= ∅ since P̆h ⊃ P̆h−1) for e < h < g, where
e is the first index such that P̆e 6= ∅.

If so, then dim P̆h ≤ h − 1 and dim Σ ≤ g − 2, so p1 is not dominant,
and any ω̄ outside the image of p1 will do.

We have only partial answers to 3.2.3.

3.2.5. Proposition. If d = g ≤ 3, (3.3)⇒ (3.2).

Proof. We use the previous remark: the case g ≤ 2 is trivial ((3.4) is sat-
isfied). For g = 3, dim P̆ 2 = 1, and it suffices to show that P̆ 1 is of
dimension 0 or empty. Let us identify P (Tη) with a plane in the projective
space of S2LieAη. Let ∆h ⊂ P (S2LieAη) be the locus of matrices of rank
h. Then ∆1 may be identified with the Veronese surface V ⊂ P5, since

its elements are the symmetric matrices of the form

 x2
0 x0x1 x0x2

x0x1 x2
1 x1x2

x0x2 x1x2 x2
2

,

and P (Tη) ∩ V may be identified with P̆ 1. It is enough to show that there
any plane P ⊂ P5 such that P ∩ V is a curve is contained in ∆2. Such a
plane would be cut by three hyperplanes, which would correspond to three
non collinear quadratic forms q0, q1, q2 in x0, x1, x2. If P ∩ V is a curve,
then one could choose the qi’s of the form `.xi, where ` is a linear form in
x0, x1, x2; by change of coordinates, ` may be taken to be x0, and it is then
clear that P ⊂ ∆2. �

3.2.6. Proposition. If µ(S) is a sufficiently general subvariety of dimension
g of a special subvariety S1 of Ag of restricted PEL type (cf. [A3, 4.2.1]),
then (3.3)⇒ (3.2).
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Proof. Let D := EndAη (assumed to be a division algebra), E a maximal
subfield ofD containing F (and chosen to be CM except ifD is a totally real
field) and E+ the maximal totally real subfield of E. One has a decomposi-
tion ΩA = ⊕ν:E→CΩA ⊗E⊗C,ν C. Fix ω ∈ ΩA with non-zero components
ων . Fix s ∈ S(C) such that ων,s remains non-zero. With the notation of
[A3, rem. 4.2.3 i)], the tangent space TS1,s decomposes as ⊕ν:E→C TS1,s,ν ,
and the universal Kodaira-Spencer map on the family of PEL type induces
an isomorphism TS1,s,ν

∼= S2Ω∨A,s,ν or TS1,s,ν
∼= ⊗2Ω∨A,s,ν (according to

whether D is of type I or II, or of type III or IV). In particular the contrac-
tion (θων1 )s : TS1,s,ν → Ω∨A,s,ν is surjective, hence also (θω1 )s : TS1,s → Ω∨A,s.
Since S is sufficiently general in S1 of dimension g, then TS is transverse
to the kernel of θω1 on a suitable dense open subset of S [details should be
checked]. �

3.3. A counterexample. We indicate here what seems to be an example with
smallest g > 0 of a subvariety (resp. a special subvariety) of dimension d
ofAg,n with d = g, such that the restriction of the universal abelian scheme
does not satisfy condition (3.3) (hence not (3.1); in this example the Betti
map is nowhere a submersion). In fact d = g = 5 (resp. 6).

Let us first treat the modular example. Let E+ be a real quadratic field
and E a totally imaginary quadratic extension fo E+. Let A → S be a
principally polarized abelian scheme of relative dimension 6, with level n ≥
3 structure, such that EndSA = OE , and with Shimura type (rν , sν) =
(1, 2), (1, 2) (for the two embeddings ν1, ν2 of E+ in C). According to [S],
there exists such a family, with base S a special subvariety of dimension∑
rν · sν = 6 of A6,n. By functoriality, θ commutes with the OL-action,

hence respects the decomposition H1
dR(A/S) = ⊕ρ:E→CHρ. For every ρ,

and general ∂, the restriction of the Kodaira-Spencer map θ∂ to (ΩA)ρ has
rank 1 (either the source or the target is of rank 1), hence θ∂ has rank 4 < 6.

The non modular example consists in taking a general hypersuface sec-
tion in a modular example with d = 6, g = 5. Here E is a quadratic imag-
inary field, and EndSA = OE with Shimura type (r, s) = (2, 3). For each
complex embedding ρ of E, the restriction of the Kodaira-Spencer map θ∂
to (ΩA)ρ has rank 2 (either the source or the target is of rank 2), hence θ∂
has rank 4 < 5.

3.3.1. Remark. It would be interesting to go beyond, and settle (3.2) fro
instance in the case of maximal monodromy Sp2g. Let A → S be the
jacobian of the universal hyperelliptic curve of genus g > 0. Here S is
the affine space M0,2g+2

∼= (P1 \ {0, 1,∞})2g−1. By Torelli’s theorem,
one has dim µ(S) = 2g − 1. On the other hand, according to [M2, th.
5.6], EndAη̄ = Z (in fact, it is knwon that the monodromy representation,
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which is a specialization of the Burau representation of the braid group, has
Zariski dense image in Sp2g, cf. [aC]). Hence (3.2) whould imply that,
after replacing (P1 \ {0, 1,∞})2g−1 by a suitable dense Zariski-open affine
subset, β is a submersion. [There are explicit calculations (without detail)
by Bryant of θ in this case on MathOverflow (tag: hyperelliptic) which
should settle the matter]

3.4. Let us turn to the proof of th. 1.4.1. [sketch] One may replace S by a
finite etale covering and assume that A/S has a level n structure for some
n ≥ 3, then replace S by a smooth dense affine open subset of its image
in Ag,n. By assumption, d = dim µ(S) ≥ g. Taking a sufficiently general
locally closed affine subvariety S ′ ⊂ S of dimension g, the restriction to
S ′ of the abelian scheme and of the section satisfy the same assumption.
Moreover, one checks that the condition d ≥ g implies that we are in the
restricted PE case4. Remplacing S by S ′, one is in the situation d = g. One
can then combine prop. 2.2.1, 3.2.5 and th. 3.2.1. [A similar deduction
holds with prop. 3.2.6 in place of 3.2.5]. �

4. PROOF OF THEOREM 1.5.1.

[your §4 and 5].
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