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PROBLEM AND MAIN RESULTS.

1.1. Let A be a complex abelian variety of dimension g. We write Λ for the its period lattice H 1 (A(C), Z), identified with the kernel of the exponential map exp A : Lie A → A.

We fix a complex point σ of A, and let Λ σ be the lattice formed by the pairs ( ∈ Lie A, m ∈ Z) such that exp A ( ) = mσ. It sits in an extension

(1.1) 0 → Λ → Λ σ ( ,m) →m → Zσ → 0,
and we fix a splitting λ : Zσ → Λ σ (i.e. a branch of the "abelian logarithm"). On the other hand, let us consider the first projection Λ σ ( ,m) → → Lie A and its R-linear extension Λ σ ⊗ Z R → Lie A . Since the composed map

(1.2) Λ ⊗ Z R → Λ σ ⊗ Z R → Lie A
is an isomorphism, one has a canonical projection Λ σ ⊗ Z R → Λ ⊗ Z R, and the image of λ(σ) in Λ ⊗ Z R can be expressed, in terms of a basis of Λ, by 2g real coordinates: the Betti coordinates 1 of σ.

1.2. We are actually interested in the relative setting. Let S be a smooth connected complex algebraic variety. Let A f → S be an abelian scheme of relative dimension g. Its Lie algebra Lie A is a rank g vector bundle on S. For our purpose, there will be no 1 the terminology seems due to D. Bertrand and refers to the fact that Λ σ is nothing but the Betti realization of the 1-motive [Z 1 →σ → A] in the sense of [D2, X]. Note that the Betti coordinates depend not only on σ but also on the auxiliary choice of a splitting λ and of a basis of Λ. loss of generality2 in assuming, as we shall do, that S is affine and that this vector bundle is trivial, i.e. ΓLie A is a free ΓO S -module of rank g.

Let σ : S → A be a section of f . The above constructions extend to this relative setting as follows. Let S be a universal covering of S(C), with its canonical structure of complex analytic manifold. The kernel of exp A is a locally constant sheaf on S(C), which can be viewed as a constant lattice Λ on S. Similarly, one constructs an exact sequence of lattices on S

(1.3) 0 → Λ → Λ σ ( ,m) →m → Zσ → 0
and fixes a splitting λ : Zσ → Λ σ .

Let Sreal be S viewed as a real-analytic manifold and let O R ( Sreal ) (resp. O( Sreal )) be the ring of real-valued (resp. complex valued) real-analytic functions on S. The composed map

(1.4) Λ ⊗ Z O R ( Sreal ) → Λ σ ⊗ Z O R ( Sreal ) → ΓLie A ⊗ ΓO S O( Sreal ) is an isomorphism of free O R ( Sreal )-modules. One thus has a canonical projection Λ σ ⊗ Z O R ( Sreal ) → Λ ⊗ Z O R ( Sreal )
, and the image of λ(σ) in Λ ⊗ Z O R ( Sreal ) can be expressed, in terms of a basis of the lattice Λ, by a real-analytic map (the Betti map)

(1.5) β = β(σ, λ, ) : S → R 2g .
1.3. We assume for convenience that A → S is principally polarized, which allows to consider to the moduli map µ : S → A g . We denote by A η the geometric generic fiber, and we set (1.6) d = dim µ(S).

We are interested in the range of β. It is easy to see that the its dimension is ≤ min (2d, 2g). Under what condition is the range of β maximal, i.e. of dimension min(2d, 2g)?

This may not be the case for various trivial reasons (e.g. when the σ is a torsion section, or when A f → S is the pull-back of an abelian scheme defined over a base of dimension < d ≤ g).

1.4.

Here is a sample of concrete results [not our final results, hopefully!]:

1.4.1. Theorem. Assume that g ≤ min(3, d) and that the section σ is not contained in a proper subgroup scheme of A. Then the range of β has real dimension 2g. More precisely, the restriction of β to the inverse image of a dense Zariski-open subset of S is a submersion.

The proof relies on an analysis of the Kodaira-Spencer map.

1.4.2. Theorem. Assume that σ is not contained in a proper subgroup scheme of A. Assume moreover that d ≤ min(2, g). Then β has real image 2d. More precisely, the restriction of β to the inverse image of a dense Zariski-open subset of S is an immersion. 2.1. Our approach is infinitesimal. In fact, the problem we address is the following:

under what condition is β almost everywhere an immersion, resp. a submersion (according to whether d ≤ g or g ≤ d) ?

2.1.1. Proposition. For every s ∈ S, Ker β(s) is a complex vector subspace of Lie A s ∼ = R 2g . Moreover the fibers of β are complex-analytic subspaces of S, and all non-empty fibers have dimension ≥ 2d -r, where r is the generic rank of β.

Proof. -[cf. your prop 2.1 + 2.2].
2.2. We may first replace S by a finite etale covering and assume that for some n ≥ 3, the n-torsion sections are defined over S, then replace it by its image in the moduli space A g,n of principally polarized abelian varieties of dimension g with level n-structure. We thus consider the rank of a jacobian matrix of size (2d, 2g), and for this purpose, we introduce the following notation:

(ω 1 , . . . , ω g , η 1 , . . . , η g ) is a symplectic basis of

H 1 dR (A/S) with ω 1 , . . . , ω g ∈ Ω A , (γ 1 , . . . , γ g ) is a symplectic basis of Λ, Ω 1 := γ i ω j i,j=1,...g , Ω 2 := γ i+g ω j i,j=1,...g , Z := Ω 1 • Ω -1 2 = t Z (which takes values in H g ), L := σ ω j j=1,...g • Ω -1 2 .
Let r be min(d, g). In the next step, we transform the vanishing of a 2r-2r-minor involving real-analytic functions by the vanishing of a r-r-minor of a related matrix involving only complex-analytic functions on S. In order to do this, we take advantage of the monodromy, using a theorem of linear independence of abelian logarithms with respect to periods [A1, th. 2] (cf. also [A2, §1]).

At the end, we come along with the following translation of the problem (under extra assumptions): 2.2.1. Proposition. (with S ⊂ A g,n ). Assume that σ is not contained in a proper sub-group scheme. Then for any s ∈ S, β is an immersion, resp. a submersion (according to whether d ≤ g or g ≤ d) at s if and only if for some (λ 1 , . . . , λ g ) ∈ C g , the matrix

(2.1) ((∂ i L)(s) + k=1,...,g λ k (∂ i Z kj )(s)) i=1,...,d, j=1,...g
has maximal rank (where the ∂ i form a basis of the tangent space T S (s)). This is already the case if for some (λ 1 , . . . , λ g ) ∈ C g , the matrix

(2.2) ( j=1,...,g λ k (∂ i Z kj )(s)) i=1,...,d, j=1,...g has maximal rank. Proof. ... [your §3.5].
The second assertion follows from the first, putting an arbitrary coefficient λ 0 in front of (∂ i L)(s) and letting λ 0 tend to 0.

Remark. For d = g, the negation of the conclusion leads to a special case of "Dieudonné's problem", which is notoriously difficult: describe vector spaces of singular matrices Z, resp. singular symmetric matrices, cf. e.g.
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ROLE OF THE KODAIRA-SPENCER MAP.

3.1. We know consider the following condition: (3.1) For every s in an dense open affine subset of S, the matrix (2.2) has maximal rank.

We shall translate it in terms of the Kodaira-Spencer map

θ : T S ⊗ Ω A → Ω ∨ A = Lie A,
where Ω A denotes the locally free O S -module of invariant 1-forms on A. We refer to [A3, 1.4, 2.1] for background about the Kodaira-Spencer map of a polarized abelian scheme A of relative dimension g over a smooth Cscheme S. For any ∂ ∈ ΓT S , we denote by θ ∂ the corresponding map

Ω A → Ω ∨ A , which belongs to Hom sym (Ω A , Ω ∨ A ).
Let us recall that in terms of the symplectic basis ω 1 , . . . , ω g , η 1 , . . . , η g , the matrix of θ ∂ is given by the lower left quadrant T ∂ of the Gauss-Manin connection written in the form

∂ Ω 1 N 1 Ω 2 N 2 = Ω 1 N 1 Ω 2 N 2 R ∂ S ∂ T ∂ U ∂ , where R ∂ , S ∂ , T ∂ , U ∂ ∈ M g (O(S)
). Moreover T ∂ is a symmetric matrix.

3 we are grateful to M. Brion for this reference.

3.1.1. Lemma. Assume that d = g. Then condition (3.1) is equivalent to:

(3.2) ∃ω ∈ ΓΩ A , ∀∂ ∈ ΓT S \ 0, θ ∂ .ω = 0.
Proof. One has

∂Z = (∂Ω 1 -Ω 1 Ω -1 2 ∂Ω 2 )Ω -1 2 = ((Ω 1 R ∂ +N 1 T ∂ )-Ω 1 Ω -1 2 (Ω 2 R ∂ +N 2 T ∂ ))Ω -1 2 = (N 1 -Ω 1 Ω -1 2 N 2 )T ∂ Ω -1 2 = -Ω -1 2 ( t Ω 1 N 2 -t Ω 2 N 1 )T ∂ Ω -1 2 = -2πiΩ -1 2 T ∂ Ω -1 2 . If µ = -2πi λΩ -1 2 , one has det( k=1,...,g λ k (∂ i Z kj )(s)) = det( k=1,...,g µ k (T ∂ i ) kj (s)) • (det Ω 2 ) -1 . Setting ω = µ k ω k , one has µ k (T ∂ i ) kj = θ ∂ i (ω) • η j . Thus (3.1) is equivalent to: there is a dense open affine subset S ⊂ S such that ∀s ∈ S (C), ∃ω s ∈ Ω 1 (A s ), ∀∂ s ∈ T S,s \ 0, (θ(s) ∂s )(ω s ) = 0.
It is easy to see that this condition is equivalent in turn to (3.2) (for the direct implication, any ω lifting ω s for some s will do). Proof. Let θ ω : T S → Ω ∨ A the contraction of θ by ω ∈ Ω A . Condition (3.2) is equivalent to the injectivity of θ ω for some ω. Since d = g, this is equivalent to the generic surjectivity of θ ω for some ω, which implies the generic surjectivity of θ, which is in turn equivalent to (3.3).

In [A3]

Question. Does the converse of the lemma holds?

3.2.4. Remark. Let η be the generic point of S and P (Ω Aη ) (resp. P (T η )) be the projective space of lines on Ω Aη ) (resp. T S ). We denote by ω (resp. ∂) the class of ω in P (Ω Aη ) (resp. ∂ in P (T η )).

One could try to answer the question in general by explaining the "logical seesaw" between quantifiers from (3.3) to (3.2) through a "geometric seesaw" provided by the incidence variety Σ ⊂ P (Ω Aη ) × P (T η ) formed by pairs (ω, ∂) such that θ ∂ • ω = 0, and let p 1 , p 2 be the projections on the factors. Let further Ph ⊂ P (T η ) be the locally closed subvariety formed by elements ∂ such that θ ∂,η has rank h. One has

p 2 (Σ) ⊂ h=g-1 h=1 Ph ⊂ P (T η ) = h=g h=1
Ph ,

and dim p -1 2 {∂} = g -1 -h if ∂ ∈ Ph . By (3.3), Pg is non empty and in fact dense (the condition is open in ∂), hence dim p 2 (Σ) ≤ g -2.
The key problem is whether one has

(3.4) dim Ph-1 < dim Ph
(which is equivalent to dim Ph = ∅ since Ph ⊃ Ph-1 ) for e < h < g, where e is the first index such that Pe = ∅.

If so, then dim Ph ≤ h -1 and dim Σ ≤ g -2, so p 1 is not dominant, and any ω outside the image of p 1 will do.

We have only partial answers to 3.2.3.

3.2.5. Proposition. If d = g ≤ 3, (3.3) ⇒ (3.2).
Proof. We use the previous remark: the case g ≤ 2 is trivial ((3.4) is satisfied). For g = 3, dim P 2 = 1, and it suffices to show that P 1 is of dimension 0 or empty. Let us identify P (T η ) with a plane in the projective space of S 2 Lie A η . Let ∆ h ⊂ P (S 2 Lie A η ) be the locus of matrices of rank h. Then ∆ 1 may be identified with the Veronese surface V ⊂ P 5 , since its elements are the symmetric matrices of the form

  x 2 0 x 0 x 1 x 0 x 2 x 0 x 1 x 2 1 x 1 x 2 x 0 x 2 x 1 x 2 x 2 2   ,
and P (T η ) ∩ V may be identified with P 1 . It is enough to show that there any plane P ⊂ P 5 such that P ∩ V is a curve is contained in ∆ 2 . Such a plane would be cut by three hyperplanes, which would correspond to three non collinear quadratic forms q 0 , q 1 , q 2 in x 0 , x 1 , x 2 . If P ∩ V is a curve, then one could choose the q i 's of the form .x i , where is a linear form in x 0 , x 1 , x 2 ; by change of coordinates, may be taken to be x 0 , and it is then clear that P ⊂ ∆ 2 .

3.2.6. Proposition. If µ(S) is a sufficiently general subvariety of dimension g of a special subvariety S 1 of A g of restricted PEL type (cf. [A3, 4.2

.1]), then (3.3) ⇒ (3.2).
Proof. Let D := End A η (assumed to be a division algebra), E a maximal subfield of D containing F (and chosen to be CM except if D is a totally real field) and E + the maximal totally real subfield of E. One has a decomposition Ω A = ⊕ ν:E→C Ω A ⊗ E⊗C,ν C. Fix ω ∈ Ω A with non-zero components ω ν . Fix s ∈ S(C) such that ω ν,s remains non-zero. With the notation of [A3, rem. 4.2.3 i)], the tangent space T S 1 ,s decomposes as ⊕ ν:E→C T S 1 ,s,ν , and the universal Kodaira-Spencer map on the family of PEL type induces an isomorphism T S 1 ,s,ν ∼ = S 2 Ω ∨ A,s,ν or T S 1 ,s,ν ∼ = ⊗ 2 Ω ∨ A,s,ν (according to whether D is of type I or II, or of type III or IV). In particular the contraction (θ ων 1 ) s : T S 1 ,s,ν → Ω ∨ A,s,ν is surjective, hence also (θ ω 1 ) s : T S 1 ,s → Ω ∨ A,s . Since S is sufficiently general in S 1 of dimension g, then T S is transverse to the kernel of θ ω 1 on a suitable dense open subset of S [details should be checked].

A counterexample.

We indicate here what seems to be an example with smallest g > 0 of a subvariety (resp. a special subvariety) of dimension d of A g,n with d = g, such that the restriction of the universal abelian scheme does not satisfy condition (3.3) (hence not (3.1); in this example the Betti map is nowhere a submersion). In fact d = g = 5 (resp. 6).

Let us first treat the modular example. Let E + be a real quadratic field and E a totally imaginary quadratic extension fo E + . Let A → S be a principally polarized abelian scheme of relative dimension 6, with level n ≥ 3 structure, such that End S A = O E , and with Shimura type (r ν , s ν ) = (1, 2), (1, 2) (for the two embeddings ν 1 , ν 2 of E + in C). According to [S], there exists such a family, with base S a special subvariety of dimension r ν • s ν = 6 of A 6,n . By functoriality, θ commutes with the O L -action, hence respects the decomposition H 1 dR (A/S) = ⊕ ρ:E→C H ρ . For every ρ, and general ∂, the restriction of the Kodaira-Spencer map θ ∂ to (Ω A ) ρ has rank 1 (either the source or the target is of rank 1), hence θ ∂ has rank 4 < 6.

The non modular example consists in taking a general hypersuface section in a modular example with d = 6, g = 5. Here E is a quadratic imaginary field, and End S A = O E with Shimura type (r, s) = (2, 3). For each complex embedding ρ of E, the restriction of the Kodaira-Spencer map θ ∂ to (Ω A ) ρ has rank 2 (either the source or the target is of rank 2), hence θ ∂ has rank 4 < 5.

3.3.1. Remark. It would be interesting to go beyond, and settle (3.2) fro instance in the case of maximal monodromy Sp 2g . Let A → S be the jacobian of the universal hyperelliptic curve of genus g > 0. Here S is the affine space M 0,2g+2 ∼ = (P 1 \ {0, 1, ∞}) 2g-1 . By Torelli's theorem, one has dim µ(S) = 2g -1. On the other hand, according to [M2, th. 5.6], EndA η = Z (in fact, it is knwon that the monodromy representation, which is a specialization of the Burau representation of the braid group, has Zariski dense image in Sp 2g , cf. [aC]). Hence (3.2) whould imply that, after replacing (P 1 \ {0, 1, ∞}) 2g-1 by a suitable dense Zariski-open affine subset, β is a submersion. [There are explicit calculations (without detail) by Bryant of θ in this case on MathOverflow (tag: hyperelliptic) which should settle the matter] 3.4. Let us turn to the proof of th. 1.4.1. [sketch] One may replace S by a finite etale covering and assume that A/S has a level n structure for some n ≥ 3, then replace S by a smooth dense affine open subset of its image in A g,n . By assumption, d = dim µ(S) ≥ g. Taking a sufficiently general locally closed affine subvariety S ⊂ S of dimension g, the restriction to S of the abelian scheme and of the section satisfy the same assumption. Moreover, one checks that the condition d ≥ g implies that we are in the restricted PE case4 . Remplacing S by S , one is in the situation d = g. One can then combine prop. 2.2.1, 3.2.5 and th. 3.2.1. [A similar deduction holds with prop. 3.2.6 in place of 3.2.5].

4. PROOF OF THEOREM 1.5.1.

[your §4 and 5].

1. 5 .

 5 [Motivation for the problem, and application of the results (if any)... General conjecture ....] 2. AN INFINITESIMAL APPROACH, AND ITS HOLOMORPHIC TRANSLATION.

  , a condition similar to (3.2) is studied (cf.[A3, lemma 1.4.5]), where the quantifiers are interchanged:(3.3) ∀∂ ∈ ΓT S \ 0, ∃ω ∈ ΓΩ A , θ ∂ .ω = 0. 3.2.1. Theorem. [A3, def. 4.2.1, th. 4.2.2] In the restricted PE case, condition (3.3) is satisfied. 3.2.2. Lemma. If d = g, (3.2) ⇒ (3.3).

since S can be covered by such affine open subsets.

here one needs a generalization of the notion of restricted PE to the case of an abelian scheme whose generic fiber is not necessarily simple. This does not pose problem.