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SINGULARITIES AND PERFECTOID GEOMETRY

YVES ANDRÉ

ABSTRACT. These notes give a quick overview of recent work by the speaker and of some
subsequent works introducing perfectoid geometry into homological commutative algebra
and singularity theory. The emphasis is on big Cohen-Macaulay algebras and applications.
The progresses take place primarily in mixed characteristic, but sometimes provide a bridge
between characteristic p and characteristic 0.

1. SINGULARITIES: RESOLUTION VERSUS HOMOLOGICAL STUDY

1.1. Introduction. In his second letter to Leibniz (1677), Newton answered his corre-
spondent’s query about the foundation of his methods in this way: “the foundation is ev-
ident enough, in fact; but because I cannot proceed with the explanation of it now, I have
preferred to conceal it thus: 6accdae13eff7i3l9n4o4qrr4s8t12ux”.

This anagram was decoded as: Data aequatione quotcunque fluentes quantitates invol-
vente, fluxiones invenire; et vice versa1, which is usually grossly translated as:

It is useful to solve differential equations.

History has largely done justice to this watchword. But some three centuries later,
another watchword emerged:

It is (also) useful not to solve differential equations... but to study their structure.

Proponents of this approach were Grothendieck who, reinterpreting the classical re-
solvent as descent datum, gave birth to the crystalline viewpoint on differential modules;
and the Kyoto school (Sato, Kashiwara) who, treating solutions and cosolutions on equal
footing, gave birth to the homological study of differential modules known as algebraic
analysis.

This pattern “resolution versus homological study” also occurs in the algebraic theory
of singularities.

Viewed as nuisances, one tries to get rid of them, which leads to the theory of resolution
of singularities. Viewed as jewels of commutative algebra, gardening and classifying them
leads to the homological study of singularities.

1.2. Cohen-Macaulay versus non Cohen-Macaulay singularities. This is a natural di-
chotomy: Cohen-Macaulay (CM) singularities form a rather broad class with lots of in-
teresting examples from various origins, and they share many nice properties: they satisfy
Serre duality, they allow concrete calculations of syzygies etc.

Let us remind their definition, and their homological characterization (reference: [6]).
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1Given an equation involving any number of fluent quantities to find the fluxions, and vice versa.
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2 YVES ANDRÉ

We adopt the viewpoint and language of commutative algebra, where spaces are re-
placed by the commutative rings of their functions, locality being reflected by the unique-
ness of the maximal ideal. Let S be a (Noetherian) local ring with maximal ideal m. A
sequence x = (x1, . . . , xn) of elements of m is secant if S/xS has dimension dimS − n.

Let M be an S-module. A sequence x is M -regular if

M/(x1, . . . , xi−1)M
·xi→M/(x1, . . . , xi−1)M

is injective (i = 1, . . . , n), and M 6= xM .
M is a Cohen-Macaulay module if any secant sequence is M -regular.
S is a Cohen-Macaulay ring if any secant sequence is S-regular. This is in particular

the case if S is regular, i.e. if m is generated by some secant sequence. Moreover, if S is
regular, an S-module M is Cohen-Macaulay if and only if it is faithfully flat.

One has the following characterizations:
[Auslander-Serre] S is regular⇔ every finite S-module has a finite free resolution⇔

S/m has a finite free resolution.
[Peskine-Szpiro-Roberts] S is Cohen-Macaulay ⇔ some nonzero S-module of finite

length has a finite free resolution.

1.3. Big Cohen-Macaulay algebras. What to do in front of a non-Cohen-Macaulay ring
S?

A first attitude (initiated by Faltings) is to try to get rid of the problem, finding a Cohen-
Macaulay resolution. Such a weak resolution of singularities is now known to exist in
great generality:

1.3.1. Theorem (Kawasaki [18], Cesnavicius [8]). Let S be a quasi-excellent noetherian
ring. There exists a projective morphism Y → X = Spec S with Y CM, which is an
isomorphism over the CM locus of X .

A second attitude, prompted by Hochster, is to look for (big) CM algebras: namely, an
S-algebra T (not necessarily of finite type) which is a CM S-module.

In the first approach (CM resolution), any secant sequence on Y (i.e. in the local rings
of Y ) is regular, but a secant sequence on X needs not remain secant on Y .

In the second approach, any secant sequence on X becomes regular on Y = Spec T ,
but a secant sequence on Y needs not be regular.

Big CM-algebras turn out to be very important tools in the homological study of singu-
larities (and surprisingly, even in the study of a CM singularity, see 2.2 and 3.2 below).

2. BIG COHEN-MACAULAY ALGEBRAS IN MIXED CHARACTERISTIC VIA PERFECTOID
THEORY

2.1. Existence and weak functoriality. The main result is the following:

2.1.1. Theorem. [2][4] (Big) Cohen-Macaulay algebras exist, and are weakly functorial.

More precisely: 1) for any complete local ring S, there is a CM S-algebra T ,
2) for any chain of local homomorphisms S1 → . . . → Sn of complete local domains,

there is a compatible chain T1 → . . .→ Tn of CM algebras for S1, . . . Sn respectively.
It turns out that 1) is equivalent to the following more geometric statement:
1’) For any regular ring R and any finite extension S, there is an S-algebra T which is

faithfully flat over R.
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Both 1) and 2) were conjectured by Hochster and proved by him in equal characteristic
(partly with Huneke).

2.2. Three consequences of Theorem 2.1.1 in commutative algebra.

The direct summand conjecture [Hochster ’69]:
any finite extension S of a regular ring R splits (as R-module).

Another direct summand conjecture:
any ring S which is a direct summand (as S-module) of a regular ring R is Cohen-

Macaulay.

The syzygy conjecture [Evans-Griffiths ’81]:
any n-th syzygy module of a finite module M of projective dimension > n has rank

≥ n.

We refer to [2][3][4][14] and to the earlier papers [6, ch. 9][10][15][16] for this circle
of ideas.

2.3. The role of perfectoids in the proof. In mixed characteristic, Theorem 2.1.1 is
proved using “deep ramification” techniques; more precisely, using the theory of perfectoid
spaces introduced by Scholze [22].

Let us review the basic notions and constructions used in the proof.

2.3.1. Perfectoid valuation rings. This is a complete, non discrete valuation ring Ko of
mixed characteristic (0, p), such that for some (equivalently: any) $ ∈ Ko with p ∈
$pKo, the Frobenius map F : Ko/$

x 7→xp

→ Ko/$p is an isomorphism2.

2.3.1. Example. Let W (k) be the Witt ring of a perfect residue field k. Then Ko =
W (k)〈p1/p∞〉 is a perfectoid valuation ring (one can take $ = p1/p).

2.3.2. Perfectoid Ko-algebras. These are p-adically complete, p-torsionfree Ko-algebras
A such that the Frobenius map F : A/$

x7→xp

→ A/$p is an isomorphism.

Using non-archimedean geometry, one can attach to them some spaces, and by glueing,
construct the geometry of perfectoid spaces. This geometry will not appear explicitly in
the sequel: it is hidden in the proof of the next two theorems. Nor will appear the funda-
mental tilting equivalence relating (perfectoid) geometry over Ko and over the valuation
ring K[o := limF K

o/$Ko of characteristic p (also hidden in the proofs).

2.3.2. Example. Let Ko be as in the previous example. The p-adic completion A of
∪iW (k)[p1/p

i

][[x
1/pi

1 , . . . , x
1/pi

n ]] is a perfectoid Ko-algebra.

One can construct further perfectoid algebras by adjoining p1/p
∞

-roots of elements of
A in a suitable sense:

2.3.3. Theorem. [2](improved in [12, §16.9]) The completed p-root closure3 of A[g1/p
∞

]
is perfectoid and faithfully flat over A.

2it turns out that this property is equivalent to deep ramification: ΩK̄o/Ko = 0 (Gabber-Ramero).
3the p-root closure of a p-adic ring R: elements r of R[1/p] such that rp

j ∈ R for some j > 0.
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2.3.3. Almost algebra. (Faltings, Gabber-Ramero [11]): given a commutative ring V and
an idempotent ideal I, almost algebra systematically “neglects” V-modules which are
killed by I (almost-zero modules). A morphism is an almost-isomorphism if its kernel
and cokernel are almost-zero, etc. Whereas this is a special case of Gabriel localization,
many notions of almost algebra go well beyond and are not of categorical nature: almost
finite, almost etale etc.

The usual set-up in the perfectoid theory is (V, I) = (Ko, p
1

p∞Ko). However, for our
constructions, we need to work with the following non-valuative set-up

(V, I) = (Ko[t1/p
∞

], (pt)
1

p∞Ko[t1/p
∞

]).

One obtains the notion of almost perfectoid algebra A (containing a compatible se-
quence of p-power roots of some g ∈ A) on consideringA as aKo[t1/p

∞
]-algebra (t1/p

i 7→
g1/p

i

) and relaxing the condition on Frobenius (only required to be an almost-isomorphism).
Similarly, one obtains the notion of almost CM algebra A (containing a compatible se-
quence of p-power roots of some g ∈ A) on interpreting the injectivity and inequality in
the definition in the almost sense.

2.3.4. Perfectoid Abhyankar lemma. The classical Abhyankar lemma asserts that under
appropriate assumptions (tameness...), a ramified extension can be made etale by adjoining
roots of the discriminant, rather than inverting it.

There is an analog for finite ramified extensions of perfectoid algebras:

2.3.4. Theorem. [1] Let A be a perfectoid Ko[t1/p
∞

]-algebra, such that the image g of t
in A is a nonzero divisor.

Let B′ be a finite etale A[1/pg]-algebra, and let B be the integral closure of A in B′.
Then B is (pt)

1
p∞ -almost perfectoid, and for any n > 0, B/pn is (pt)

1
p∞ -almost faith-

fully flat and almost finite etale over A/pn.

2.3.5. Application ot these tools to the construction of CM algebras. Let us come back
to our complete local domain S of characteristic (0, p). For simplicity, we assume that its
residue field k is perfect. We want to construct a (big) CM S-algebra.

By Cohen’s theorem, we may view S as a finite extension of some regular ring of the
form R = W (k)[[x]].

Then an S-algebra is a CM S-algebra if and only if it is faithfully flat over R.

Let g ∈ R be such that S[1/pg] finite etale over R[1/pg].
Let us take Ko = W (k)〈p1/p∞〉, and A0 = ∪̂iW (k)[p1/p

i

][[x
1/pi

1 , . . . , x
1/pi

n ]] be as in
the above examples (A0 is a perfectoid Ko-algebra).

Let A be completed p-root closure of A0[g1/p
∞

]: this is a perfectoid and faithfully flat
R-algebra by Theorem 2.3.3.

Let B′ := A[1/pg]⊗R S, which is finite etale extension of A[1/pg].
It then follows from Theorem 2.3.4 that the integral closure B of A in B′ is an almost

perfectoid almost CM S-algebra.

How to get rid of “almost”?
There are two ways: 1) Hochster’s modifications (which predate our work) [16].
2) Gabber’s trick: replacingB by Σ−1(BN/B(N)), where Σ is the multiplicative system

(pg)εi , εi → 0 ∈ N[1/p], one gets a genuine perfectoid CM S-algebra [12, §17.5].

Weak functoriality uses similar techniques, but is more difficult. Here is a strong ver-
sion:
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2.3.5. Theorem. [4] Any finite sequence R0
f1→ R1

f2→ · · · fn→ Rn of local homomor-
phisms of complete Noetherian local domains, with R0 of mixed characteristic, fits into a
commutative diagram

(2.1) R0

��

f1 // R1

��

f2 // · · ·
fn // Rn

��

R+
0

��

f1
+

// R+
1

��

f2
+

// · · ·
fn

+

// R+
n

��

C0
// C1

// · · · // Cn

where
R+
i is the absolute integral closure of Ri,

Ci is a perfectoid CM Ri-algebra if Ri is of mixed characteristic (resp. a perfect CM
Ri-algebra if Ri is of positive characteristic). Moreover, the f+i can be given in advance.

3. APPLICATIONS TO SINGULARITIES

3.1. Symbolic powers. Let S be a Noetherian ring, p a prime ideal, and V (p) the corre-
sponding subvariety of SpecS. Symbolic powers are defined by

p(n) := (pnSp) ∩ p.

If S is an algebra of finite type over a field, p(n) = is the ideal of functions which vanish
at V (p) at order at least n (Zariski).

One has p(n) ⊃ pn, and p(n) = pn if p is generated by a regular sequence (or more
generally if grpS is a domain).

The comparison of p(n) and pm, and its extension to non-prime ideals, is a classical
problem (the containment problem), which has applications in complex analysis, interpo-
lation theory (fat points) and transcendental number theory (Waldschmidt constants).

3.1.1. Theorem. [19] Let S be an excellent regular ring of dimension d.
Then for any prime p and any n, p(dn) ⊂ pn.

This was proved by Ein-Lazarsfeld-Smith in characteristic 0, using subadditivity of the
“multiplier ideal”, and by Hochster in characteristic p. In mixed characteristic, Ma and
Schwede use a new notion of multiplier ideal in which the complex RΓ(Y,OY ) attached
to a resolution of V (p) is replaced by a perfectoid Cohen-Macaulay algebra for S/p.

Let us explain this last point in general terms: let now S be a local domain, essen-
tially of finite type over C, and let π : Y → SpecS be a (log-)resolution of singulari-
ties. By Grauert-Riemenschneider, RiΓ(Y, ωY ) = 0 for i > 0, whence, by local duality:
Hjm(RΓ(Y,OY )) = 0 for j < dimS. Thus RΓ(Y,OY ) ∈ Db(S) appears as a “derived
avatar” of a CM algebra. In mixed characteristic or in characteristic p, one can replace the
missing RΓ(Y,OY ) by a suitable a (big) Cohen-Macaulay S-algebra.

3.2. Rational singularities. Remind that S (as before) “is” a rational singularity if and
only if RΓ(Y,OY ) ∼= S. By Grauert-Riemenschneider and local duality, any rational
singularity is CM.

Question: how to check that a singularity is rational without computing a resolution?
A criterion by reduction mod. p, after spreading out, has been known for some time

(Hara, Smith, Mehta-Srinivas):
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S rational singularity ⇔ (S mod. p) F -rational singularity for all p >> 0.
For a Cohen-Macaulay singularity in characteristic p, F -rationality has several equiva-

lent definitions (e.g. the top local cohomology is a simple Frobenius module), and can be
checked algorithmically (Macaulay2). But the above criterion requires all p >> 04.

Using perfectoid Cohen-Macaulay S-algebras, Ma and Schwede have shown that it
suffices to check F -rationality for some p (such that spreading out and reduction mod. p
make sense), which leads to an effective criterion of rationality:

3.2.1. Theorem. [20, §8] S rational singularity ⇔ (S mod. p) F -rational singularity
for some p.

This may be viewed as an application of p-adic techniques to effective complex alge-
braic geometry. However, perfectoid CM algebras do not appear in the statement: they
are hidden in the proof that the algorithm works, in the passage from characteristic p to
characteristic 0 through mixed characteristic.

There are similar results for specific classes of rational singularities (log-terminal sin-
gularities).

Rational singularities were introduced by Artin in dimension 2. In the context of their
work on rational singularities in mixed characteristic, Ma and Schwede, together with
Carvajal-Rosas, Polstra and Tucker, came back to the case of dimension 2 and extended
Artin’s theory of (Gorenstein complete) rational singularities S of dimension 2 from char-
acteristic p to mixed characteristic (0, p > 5) (with separably closed residue field). The
classification is the same:

They admit a split finite regular extension S ⊂ R. They are “Du Val singularities”, i.e.
of the form S = R′/fR′, where R′ is a 3-dimensional complete regular ring and f can be
written in one of the forms

x2 + y2 + zn+1 (An)
x2 + y2z + zn−1 (Dn)
x2 + y3 + z4 (E6)
x2 + y3 + yz3 (E7)
x2 + y3 + z5 (E8),

the label referring to the graph of a minimal resolution of the double point. One difference
with the equicharacteristic case is that the label does not determine S, due to the fact that
the parameter p is special, being fixed by automorphisms of S: choosing p = x, y or z may
lead to different singularities with the same label.
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