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Abstract. In this paper, we explain how to compute the Lie algebra of the differential
Galois group of a reducible linear differential system. We achieve this by showing how to
transform a block-triangular linear differential system into a Kolchin-Kovacic reduced form.
We combine this with other reduction results to propose a general algorithm for computing
a reduced form of a general linear differential system. In particular, this provides directly
the Lie algebra of the differential Galois group without an a priori computation of this
Galois group.
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Introduction

Let Apxq P Mnpkq denote an n ˆ n matrix with coefficients in a differential field
pk, Bq of characteristic zero, for instance k “ sQpxq. We consider the linear differen-
tial system rAs : Y 1pxq “ ApxqY pxq. The differential Galois group G of rAs is an
algebraic group which somehow measures the algebraic relations among the entries
of a fundamental solution matrix of rAs. The aim of this paper is to explain how to
compute effectively the Lie algebra g of the differential Galois group G, without computing G.

Goal of the paper. Given an invertible matrix P pxq P GLnpkq, the change of variable
(“gauge transformation”) Y pxq “ P pxq.Zpxq produces the linear differential system noted
Z 1pxq “ P pxqrApxqs Zpxq, with P pxqrApxqs :“ P´1pxqApxqP pxq ´ P´1pxqP 1pxq. The dif-
ferential system rAs is called reducible if there exists a gauge transformation P pxq, such
that Apxq :“ P pxqrApxqs is of the form

Apxq “

ˆ

A1pxq 0
Spxq A2pxq

˙

.

There exist algorithms to test and realize this factorization; they may be found in
[Sin96, Bar07] for the completely reducible case, and in the appendix of [CW04] (and
references therein) for the general case.

Let G denote the differential Galois group of rAs : Y 1pxq “ ApxqY pxq. Let g be its
Lie algebra. In this paper, we show how to compute g by using the theory of reduced
forms of linear differential systems. Finding a reduced form of rAs amounts to finding
a gauge transformation P pxq (possibly over an algebraic extension k0 of k) such that
P pxqrApxqs P gpk0q. This is similar to the Lie-Vessiot-Guldberg theories of reduction
of connections in differential geometry (see [BSMR10, BSMR12] for the latter and their
connections with the Kolchin-Kovacic theory of reduced forms). Our contribution is to
provide an algorithm to compute such a reduction matrix P pxq for a reducible system.

In [BCDVW16], it is explained how to put a completely reducible block-diagonal system
into reduced form. We will show that, to reduce rAs, it is thus sufficient to be able to reduce
rAs under the assumption that the block diagonal differential system

Y 1pxq “ AdiagpxqY pxq, with Adiagpxq “

ˆ

A1pxq 0
0 A2pxq

˙

,

is in reduced form. We, with A. Aparicio-Monforte, had solved this problem in [AMDW16]
in the special case when the Lie algebra of Adiagpxq is abelian. This was extended by Casale
and the second author in [CW18] to families of SL2-systems. In this paper, we treat the
problem in the general case. A review of this work with an emphasis on down-to-earth
exposition, relations to questions of theoretical physics and examples can be found in [DW21].

General algorithms for computing differential Galois groups. Using the classifica-
tion of the algebraic subgroups of SL2, Kovacic gave an efficient algorithm for computing
liouvillian solutions, which in turn allows to essentially obtain the differential Galois group
when n “ 2. This approach was systematized by Singer and Ulmer in [SU93b, SU93a] and
then [SU97], notably in the case n “ 3. Let us now describe general procedures that work
for an arbitrary n. Compoint and Singer gave a decision procedure in [CS99] to compute
the differential Galois group in the case of completely reducible (direct sums of irreducible)
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systems. Berman and Singer gave an algorithm extending [CS99] for a large class of
reducible systems [Ber02, BS99]. Using model theory, Hrushovski gave in [Hru02] the first
general decision procedure computing the Galois group. It was clarified and improved by
Feng in [Fen15], see also [Sun19]. More recently, the paper [AMP21] introduces new ideas to
further improve the bounds in Hrushovski’s algorithm. A symbolic-numeric algorithm was
proposed by van der Hoeven in [vdH07], based on the Schlesinger-Ramis density theorems.
None of these general algorithms is currently implemented, either because their complexity
is prohibitive (especially Hrushovski’s algorithm) or because it is not yet known how to
implement some of the required building blocks.

General algorithms for computing reduced forms. In the last decade, a strategy has
been developed to compute the Lie algebra, instead of the Galois group, by computing a
reduced form of the differential system. The Kolchin-Kovacic reduction theorems appear
in the Kovacic program on the inverse problem [Kov69, Kov71] and in works of Kolchin
on the logarithmic derivative [Kol73, Kol99]. Further studies of Lie-Kolchin reduction
methods are carried out by D. Blazquez and J.-J. Morales in [BSMR10, BSMR12]. As
a computation strategy, reduced forms are used in [AMW11, AMW12, AMDW16] (the
strategy in [NP10] is also related to this approach). A characterization of reduced forms
in terms of invariants is proposed in [AMCW13]; the latter paper also contains a decision
procedure for putting the system into reduced form when the Galois group is reductive. A
more elaborate, and much more efficient, algorithm is given in [BCDVW16] in the case of
an absolutely irreducible system.

Some motivations for reductions of reducible systems. In papers on differential
Galois theory, the case of a reducible system is sometimes brushed aside for two reasons.
First, if one solves the irreducible diagonal blocks, then the full system can be solved by
variation of constants. Second, a generic system is irreducible anyway so it may seem futile,
at first glance, to spend energy on rare reducible systems.

Regarding the first objection, it would require to first solve irreducible systems, and
then construct a big Picard-Vessiot extension; variation of constants would then require the
computation of integrals of transcendental functions. Namely, in the above notations, a
fundamental matrix is

U “

ˆ

U1 0
U2V U2

˙

, with
"

U 1i “ AiUi,
V 1 “ U´1

2 SU1,

where S denotes the lower triangular block in A. In contrast, the approach developed
here uses essentially rational solutions of linear differential systems with coefficients in the
base field; in return, it may actually be used to study properties of integrals of holonomic
transcendental functions, see [Ber01]. Indeed, a reduced form gives us all algebraic relations
between these integrals of holonomic functions; in particular, we will obtain a basis of
transcendental integrals to express all the other ones.

Regarding the second objection, it turns out that, in many practical applications, the
differential systems or operators that occur happen to be reducible. Indeed we next describe
several examples of this.

The context which was our initial motivation is the Morales-Ramis-Simó theory: it studies
integrability properties of dynamical systems by studying successive differential systems, the
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variational equations, which can be viewed as a cascade of reducible systems. Algorithms to
obtain reduced forms, and hence integrability criteria, for such systems are elaborated in
[AMW11, AMW12, AMDW16]. For more general (non-integrable) non-linear differential
systems, the Lie algebras of the differential Galois groups of variational equations give
information on the Malgrange groupoïd of the system. This is shown by Casale in [Cas09]
and developed in [CW18] to compute the Malgrange groupoïd of (non-linear) second order
differential equations. Once again, the fact that the variational equations are reducible
systems turns out to be an important ingredient.

Reducible operators also appear very naturally in the holonomic world of statistical
mechanics or combinatorics, see [BBH`09, BBH`11] or the reference book [McC10]. In
this context, objects (or generating series) appear as convergent holonomic power series
with integer coefficients; they are solutions of linear differential operators and their minimal
operator is often reducible, see e.g. [BBH`09, BBH`11].

Last, we may also mention prolongations of systems which appear in works on generic
Galois groups (situations with mixed differential and q-difference structures), see [DVH10]
and references therein. These are also (structured) reducible linear differential systems and
tools from this work may hence be used for a better understanding of generic or particular
parametrized differential Galois groups. Similar prolongations also appear when studying
singularly perturbed linear differential systems and studying solutions as series in the
perturbation parameter, see e.g. the PhD of S. Maddah [Mad15] and references therein.
The methods that we elaborate here may lead to simplification methods for such systems.

Structure of the paper. The paper is organized as follows. In §1, we recall some basic
facts of differential Galois theory. We present the theory of reduced forms, notably the
Kolchin Kovacic reduction theorem, which is the heart of our paper. In §2 we prove that
the reduction matrix may be chosen to have a particular shape: it is a unipotent triangular
matrix. The action of such a gauge transformation on the matrix Apxq of the system
is governed by the adjoint action of the block-diagonal part of Apxq on its off-diagonal
parts. The results of this first part of §2 are generalizations of [AMDW16]. Then, we recall
the construction of an isotypical flag, which will be adapted to the adjoint action in the
reduction process. In §3 we give examples of the reduction process of §4. We have chosen to
take examples in increasing degrees of complexity in order to show step by step what the
difficulties are. In §4, we present the main contribution of the paper. We explain how to put
a block-triangular linear differential system into reduced form. Applying linear algebra and
standard module-theoretic tools (isotypical decomposition, flags of indecomposable modules,
etc.), we generalize the techniques of [AMDW16] to this non-abelian setting∗. The gauge
transformation which reduces the system is then derived from the computation of rational
solutions of successive linear differential systems with parametrized right-hand-side, see
Theorem 4.4. We believe that this part will generally be algorithmically efficient because it
uses mostly linear algebra and rational solutions of linear differential systems of bounded
size. We show this in several examples; see also the maple worksheet [DW20]. In §5, we

∗The main difference between this paper and [AMDW16] is that, in the previous paper, the Lie algebra of
Adiagpxq was abelian. This had the consequence that the eigenvalues of the adjoint action belonged to k and
a convenient Lie subalgebra of Apxq admitted a basis of constant matrices in which the matrix associated to
the adjoint action was in Jordan normal form. The reduction problem was then reduced to rational solutions
of first order scalar linear differential equations. This is no longer true here.
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present another contribution. We show how the results of §4 may be combined with other
results in order to have a general algorithm for reducing a general linear differential system.

The last two short sections are mostly expository and included for self-containedness. In
§6, we explain, given a system in reduced form, how to compute the Lie algebra g of the
differential Galois group. In §7, we describe how, having computed the Galois-Lie algebra g
of a reduced linear differential system, one can recover its differential Galois group G (using
connectedness). The material in §6 and §7 is mostly known.

Acknowledgments. We would like to thank G. Casale, R. Feng, and M.-F. Singer as
well as M.-A Barkatou, T. Cluzeau and L. Di Vizio for excellent conversations regarding the
material presented here. We specially thank both referees for many clarifying comments
and suggestions.

1. Differential Galois Theory and Reduced Forms

1.1. The Base Field. Let us consider a differential field of characteristic zero pk, Bq, i.e. a
field equipped with a derivation. We will use the classical notation c1, for the derivative of
c P k. We assume that its constant field C :“ tc P k | c1 “ 0u is algebraically closed. We
need to make assumptions about our base field k to elaborate our algorithms.

1© First we assume that k is an effective field, i.e. that one can compute representatives
of the four operations `,´,ˆ, { and one can effectively test whether two elements
of k are equal.

2© We also assume that, given a homogeneous linear differential system
rAs : Y 1pxq “ ApxqY pxq with Apxq P Mnpkq, we can effectively find a basis of
its rational solutions, i.e. its solutions Y pxq P kn.

3© Finally, we assume that, given a homogeneous linear differential system
rAs : Y 1pxq “ ApxqY pxq with Apxq P Mnpkq, we can effectively find a basis of
its exponential, also called hyperexponential, solutions (see [BCEBW12]).

The standard example of such a field would be k “ Cpxq with C “ Q. When k “ Cpxq, a
fast algorithm for rational solutions of linear differential systems is given in [Bar99]. A Maple
package IntegrableConnections, based on ISOLDE [BP], for this task is proposed
in [BCEBW]. Algorithms for 2© and 3© and generalizations appear in [BCEBW12] (and
references therein).

Remark 1.1. Assumption 3© is used only in the factorization algorithm which is a preliminary
step to our reduction method. The specific algorithm proposed in this paper only uses the
rational algorithms of assumption 2© and also 1©.

Singer showed, in [Sin91], Lemma 3.5 and Theorem 4.1, that if k is an elementary
extension of Cpxq or if k is an algebraic extension of a purely transcendental Liouvillian
extension of Cpxq, then k satisfies the above conditions and hence suits our purposes.

To simplify the exposition, we will further assume that k is a C1-field†.

†A field k is a C1-field when every non-constant homogeneous polynomial P over k has a non-trivial zero
provided that the number of its variables is more than its degree. For example, Cpxq is a C1-field and any
algebraic extension of a C1-field is a C1-field (Tsen’s theorem).



6 GALOIS-LIE ALGEBRA OF A REDUCIBLE DIFFERENTIAL SYSTEM

1.2. Differential Galois Theory. We review classical elements of differential Galois
theory. We refer to [PS03] or [CH11, Sin09] for details and proofs. Let us consider a
linear differential system of the form rAs : Y 1pxq “ ApxqY pxq, with Apxq P Mnpkq. A
Picard-Vessiot extension for rAs is a differential field extension K of k, generated over k by
the entries of a fundamental solution matrix of rAs and such that the field of constants of K
is C. The Picard-Vessiot extension K exists and is unique up to differential field isomorphism.

The differential Galois group G of the system rAs is the group of field automor-
phisms of the Picard-Vessiot extension K which commute with the derivation and
leave all elements of k invariant. Let Upxq P GLnpKq be a fundamental solution
matrix of Y 1pxq “ ApxqY pxq with coefficients in K. For any ϕ P G, ϕpUpxqq is also
a fundamental solution matrix, so there exists a constant matrix Cϕ P GLn pCq such
that ϕpUpxqq “ Upxq.Cϕ. The map ρU : ϕ ÞÝÑ Cϕ is an injective group morphism.
The group G, identified with Im ρU , may be viewed as a linear algebraic subgroup of GLn pCq.

The Lie algebra g of the linear algebraic group G Ă GLn pCq is the tangent space to
G at the identity. Equivalently, it is the set of matrices N PMnpCq such that Idn ` εN
satisfies the defining equations of the algebraic group G modulo ε2. The Lie algebra g of the
differential Galois group is referred to as the Galois-Lie algebra of the differential system
rAs. The dimension of the Lie algebra g, as a vector space, is the transcendence degree of
a Picard-Vessiot extension. Consequently, if we are able to compute the dimension of the
Galois-Lie algebra, it will help us to prove results of algebraic independence among solutions
of a linear differential system. The following example illustrates this by showing how our
techniques allow to prove or disprove algebraic dependence of integrals of D-finite functions.

Example 1.2. Let A1 :“

˜

0 1
3x2´6x`7
144xpx´1q2

´ 2
3x ´

2
3px´1q

¸

. A basis of solutions of the equation

associated to rA1s is given by Heun functions f1pxq, f2pxq. The Kovacic algorithm, see
[Kov86, vHW05], shows that the differential Galois group is a finite extension of SL2pCq; so
the Galois Lie algebra has dimension 3. The system rAs given by

A “

¨

˚

˝

0 1 0
3x2´6x`7

144 px´1q3x2
´ 2

3x ´
2

3px´1q 0

1 0 0

˛

‹

‚

has fundamental solution matrix
¨

˝

f1pxq f2pxq 0
f 11pxq f 12pxq 0

şx
f1ptqdt

şx
f2ptqdt 1

˛

‚.

One can show, for example with the techniques of this paper, that the Galois-Lie algebra
of rAs has dimension 5. It follows that the

ş

fiptqdt are transcendental and algebraically
independent over Cpxqpf1, f2, f

1
1, f

1
2q.

However, suppose we had started from

A1 “

ˆ

0 1
1
36

1
xpx´1q ´ 7

12x ´
1

6px´1q

˙

.



GALOIS-LIE ALGEBRA OF A REDUCIBLE DIFFERENTIAL SYSTEM 7

Its differential Galois group is also a finite extension of the group SL2pCq.
The maple implementation of [vHW05] gives us two hypergeometric solutions
f1pxq “ 2F 1pr´1{3, 1{12s, r7{12sqpxq and f2pxq “ x5{12

2F 1pr1{12, 1{2s, r17{12sqpxq. The

Galois-Lie algebra of rAs, with A “

¨

˝

0 1 0
1
36

1
xpx´1q ´ 7

12x ´
1

6px´1q 0

1 0 0

˛

‚, turns out to have

dimension 3 and reduction techniques applied to rAs give us the relations
ż x

fi ptq dt “ ´
9

11
x px´ 1q f 1i pxq `

15

44
p3x´ 1q fi pxq `

9

11
ci

satisfied by the fi, for some constants ci.

For a factorized reducible system rAs of the form

Apxq “

ˆ

A1pxq 0
Spxq A2pxq

˙

“ Adiagpxq `Asubpxq,

we have a fundamental solution matrix of the form

U “

ˆ

U1 0
U2V U2

˙

“

ˆ

U1 0
0 U2

˙ˆ

Idn1 0
V Idn2

˙

.

Once U1 and U2 are known, V is given by integrals : V 1 “ U´1
2 SU1. Let Kdiag :“ kpU1, U2q

be a Picard-Vessiot extension of k for rAdiags, with differential Galois group Gdiag. Then
K :“ KdiagpV q is a Picard-Vessiot extension of k for rAs with differential Galois group G.
Note that Kdiag has field of constants C, so that we may consider the differential Galois
group over Kdiag. Letting Gu :“ GalpK{Kdiagq be the differential Galois group of rAs over
Kdiag, we have by Galois correspondence, see Proposition 1.34 of [PS03], that Gu is the set

of elements of G of the form
ˆ

Idn1 0
G2,1 Idn2

˙

as the Ui are fixed. Then, Gu ŸG and

Gdiag»G{Gu
hkkkkkkikkkkkkj

k Ă Kdiag :“

GuŸG
hkkkkkkkkkikkkkkkkkkj

kpU1, U2q Ă K :“ KdiagpV q.

Remark 1.3. Given g P G, we have gpUiq “ Ui.Ci for invertible constant matrices Ci. Then

Gdiag »

"ˆ

C1 0
0 C2

˙ ˇ

ˇ

ˇ

ˇ

Dg P G, gpUiq “ Ui.Ci for i “ 1, 2

*

. In other words, for any matrix
ˆ

C1 0
0 C2

˙

P Gdiag, there exists a matrix M P G with M “

ˆ

C1 0
C2,1 C2

˙

.

We define Cg :“ C2gpV q ´ V C1. In virtue of

gpV 1q “ gpU´1
2 SU1q “ C´1

2 U´1
2 SU1C1 “ C´1

2 V 1C1,

we find that Cg is a constant matrix. Since gpV q “ C´1
2 V C1 ` C´1

2 Cg, we see that
gpU2V q “ U2V C1 ` U2Cg and

gpUq “

ˆ

U1 0
U2V U2

˙

¨

ˆ

C1 0
Cg C2

˙

“ U ¨

ˆ

C1 0
0 C2

˙ˆ

Idn1 0

C´1
2 ¨ Cg Idn2

˙

.

Last, we recall a useful lemma to switch from group to Lie algebra in specific cases:
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Lemma 1.4. Let n Ă Mn pCq be a C-vector space of lower triangular matrices with
zero entries on the diagonal. Assume that, for all N,N 1 P n, N ¨ N 1 “ p0q. Then,
U :“

!

Idn `N,N P n
)

is a connected algebraic group and n is its Lie algebra.
Furthermore, we have two bijective maps which are inverses of each other

exp : n ÝÑ U
N ÞÑ Idn `N

log : U ÝÑ n
Idn `N ÞÑ N.

Proof. The algebraic group U is abelian thanks to the assumption; the fact that n is its
Lie algebra is easily derived from the definition. Let N P n. We have exppNq “ Idn `N
because, by assumption, N2 “ 0. The same argument shows that logpIdn `Nq “ N . It
follows that exp and log are bijective on the required sets and are inverses of each other.
This also proves the connectedness of U . �

1.3. Reduced Forms of Linear Differential Systems. Let Apxq PMn pkq, G be the
differential Galois group of rAs : Y 1pxq “ ApxqY pxq and g its Lie algebra. As usual, the
notation gpkq stands for the extension of scalars gpkq “ g bC k. Let k be the algebraic
closure of k.

Definition 1.5. Let us consider Apxq, Bpxq PMnpkq. The two linear differential sys-
tems rAs : Y 1pxq “ ApxqY pxq and rBs : Z 1pxq “ BpxqZpxq are called equivalent over k (or
gauge equivalent over k) when there exists P pxq P GLnpkq such that

Bpxq “ P´1pxqApxqP pxq ´ P´1pxqP 1pxq.

The notation is B “ P rAs and P is called a gauge transformation matrix.

Solutions of rAs and rBs are then linked by the relation Y pxq “ P pxqZpxq.

Definition 1.6. Let Apxq PMnpkq. We say that the system rAs : Y 1pxq “ ApxqY pxq is
in reduced form (or in Kolchin-Kovacic reduced form) when Apxq P gpkq.

Otherwise, we say that a matrix Bpxq P Mn

`

k
˘

(resp. a system rBs) is a reduced
form of rAs when there exists P pxq P GLnpkq such that Bpxq “ P pxqrApxqs and Bpxq is in
reduced form, i.e. Bpxq P gpkq.

The existence and relevance of reduced forms are given by the following Kolchin-Kovacic
reduction result. A proof can be found in [PS03], Proposition 1.31 and Corollary 1.32. See
also [BSMR10], Theorem 5.8, and [AMCW13], § 5.3 after Remark 31.

Proposition 1.7 (Kolchin-Kovacic reduction theorem). Let Apxq PMnpkq. Let G be the
differential Galois group of the differential system rAs : Y 1pxq “ ApxqY pxq and g be the Lie
algebra of G. Let H Ă GLn pCq be a connected linear algebraic group, with Lie algebra h,
such that Apxq P hpkq.

(1) The Galois group G is contained in (a conjugate of) H.
(2) There exists a gauge transformation P pxq P Hpkq such that P pxqrApxqs P gpkq.

If we further assume that G is connected and that k is a C1-field, then there exists a
gauge transformation P pxq P Hpkq such that P pxqrApxqs P gpkq.

We now construct a Lie algebra h such that h is the Lie algebra of some algebraic group
H, Apxq P hpkq and h has minimal dimension for that property.
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Following [WN63, AMCW13], a Wei-Norman decomposition of Apxq is a finite sum of
the form

Apxq “
ÿ

aipxqMi,

where the matrices Mi have coefficients in C and the aipxq P k form a basis of the C-vector
space spanned by the entries of Apxq. TheMi depend on the choice of aipxq but the C-vector
space generated by the Mi is independent of the choice of the aipxq. This shows that the
notation LiepAq below does not depend upon the choice of the Wei-Norman decomposition
and is well defined.

Recall that a Lie algebra is called an algebraic Lie algebra when it is the Lie algebra of
an algebraic group.

Definition 1.8. For a matrix Apxq PMnpkq, let constant matricesMi denote the generators
of a Wei-Norman decomposition of Apxq.
We define LiepAq, called the Lie algebra associated to A, as the smallest algebraic Lie algebra
which contains all matrices Mi, i.e. the algebraic envelope of the Lie algebra generated by
the Mi.

The link between g and LiepAq is made in the following remark.

Remark 1.9. By Proposition 1.7, g Ă LiepAq. We see that the system Y 1pxq “ ApxqY pxq is
in reduced form if and only if g “ LiepAq.

The approach that we elaborate in this paper was initiated in [AMW11, AMDW16] and
[CW18]. It is based on a criterion for reduced forms, which is given in the following lemma.

Lemma 1.10 ([AMDW16], Lemma 1.3). Given Apxq PMn pkq, let G be the differential
Galois group of the system rAs : Y 1pxq “ ApxqY pxq and g be its Lie algebra. Let H be the
connected linear algebraic group whose Lie algebra is LiepAq. Assume that G is connected.
The system rAs is in reduced form, i.e. G “ H and g “ LiepAq, if and only if, for all gauge
transformation matrices P pxq in Hpkq, we have LiepAq “ LiepP rAsq.

2. Decomposition and Flags for the Off-Diagonal Part

Let us consider a matrix

Apxq :“

ˆ

A1pxq 0
Spxq A2pxq

˙

PMnpkq

where Aipxq are square matrices inMnipkq. We have Apxq “ Adiagpxq `Asubpxq, where

Adiagpxq :“

ˆ

A1pxq 0
0 A2pxq

˙

and Asubpxq :“

ˆ

0 0
Spxq 0

˙

.

Let us assume that Y 1pxq “ AdiagpxqY pxq is in reduced form. The aim of the paper is
to show how to then put the full system Y 1pxq “ ApxqY pxq in reduced form, see §4. We
are going to see in §5 that solving this problem will give us a complete algorithm to put a
general system into reduced form.

2.1. The Off-Diagonal Algebra glsub. Let gdiag :“ LiepAdiagq be the Lie algebra as-

sociated to Adiagpxq. Let glsub :“

"ˆ

0 0
C 0

˙

, C PMn2ˆn1pCq
*

denote the space of

off-diagonal constant matrices.
We now list some useful simple properties of glsub.
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Lemma 2.1. Let us consider a block-diagonal matrix M “

ˆ

N1 0
0 N2

˙

P gdiag and

off-diagonal matrices B1 “

ˆ

0 0
C1 0

˙

and B2 “

ˆ

0 0
C2 0

˙

P glsub.

(1) B1.B2 “ p0q and glsub is an abelian Lie algebra.

(2) M.B1 “

ˆ

0 0
N2C1 0

˙

P glsub and B1.M “

ˆ

0 0
C1N1 0

˙

P glsub.

(3) rM,B1s “

ˆ

0 0
N2C1 ´ C1N1 0

˙

P glsub.

Proof. This is a simple calculation. �

As a consequence of the third point we obtain the following lemma.

Lemma 2.2. The Lie algebra glsub is stable under rgdiag, ‚s.

Remark 2.3. Lemma 1.4 applied to glsub gives that
!

Idn ` B,B P glsub

)

is a connected
algebraic group with Lie algebra glsub. More generally, given a vector subspace W of glsub,
for every M,N PW , we have MN P p0q. Then W is an algebraic abelian Lie algebra with
additive abelian group tIdn `B,B PW u.

2.2. The Shape of the Reduction Matrix. The aim of this subsection is to generalize
Theorem 3.3 of [AMDW16] to our context. As above, we consider a system rAs given by

Apxq “ Adiagpxq `Asubpxq,

with
Adiagpxq :“

ˆ

A1pxq 0
0 A2pxq

˙

and Asubpxq :“

ˆ

0 0
Spxq 0

˙

.

We assume in the sequel that rAdiags is in reduced form.

Theorem 2.4. There exists a gauge transformation

P pxq P
!

Idn `Bpxq, Bpxq P glsub pkq
)

,

such that Y 1pxq “ P pxqrApxqsY pxq is in reduced form.

We first prove the following auxiliary lemma. Let G be the differential Galois group of
Y 1pxq “ ApxqY pxq and g be the Lie algebra of G. Let H be the connected algebraic group
with Lie algebra LiepAq.

Lemma 2.5. The differential Galois group G is connected.

Proof of Lemma 2.5. The elements of G are of the form
ˆ

G1 0
G2,1 G2

˙

P GLn pCq. Let Gu

be the subgroup of elements of G of the form
ˆ

Idn1 0
G2,1 Idn2

˙

. As we have seen in §1.2, Gu

is a normal subgroup of G and G » Gu oGdiag, where Gdiag denotes the differential Galois
group of Y 1pxq “ AdiagpxqY pxq.
Since the system Y 1pxq “ AdiagpxqY pxq is in reduced form, we find that Gdiag is connected,
see Lemma 32 in [AMCW13]. Now Gu is a vector group and hence it is a connected linear
algebraic group as well. �
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Proof of Theorem 2.4. The differential Galois group G satisfies the inclusion G Ă H
(because of the first point of Proposition 1.7). Lemma 2.5 shows that G is con-
nected. So we may use the second point of Proposition 1.7 to obtain the existence of

Qpxq :“

ˆ

D1pxq 0
SQpxq D2pxq

˙

P Hpkq such that the linear differential system QpxqrApxqs is

in reduced form.
Since rAdiags is in reduced form, Remark 1.9 implies that Gdiag, the differential Galois

group of rAdiags, admits gdiag as Lie algebra. By construction, LiepAq is included in the
smallest algebraic Lie algebra containing gdiag ‘ glsub. As a consequence of Lemma 2.1, we
deduce that gdiag ‘ glsub is a Lie algebra. It is even an algebraic Lie algebra whose algebraic
group is Gdiagˆ

!

Idn`B,B P glsub

)

, proving that LiepAq Ă gdiag‘ glsub. As Qpxq P Hpkq,

we have
ˆ

D1pxq 0
0 D2pxq

˙

P Gdiagpkq. Now, as Gdiag » G{Gu, Remark 1.3 shows that

Gpkq contains a block-triangular matrix of the form Rpxq :“

ˆ

D1pxq 0
T2,1pxq D2pxq

˙

. Then

Rpxq´1 “

ˆ

D´1
1 pxq 0

´D´1
2 T2,1D

´1
1 pxq D´1

2 pxq

˙

P Gpkq.

By hypothesis, LiepQrAsq “ g (as rQrAss is in reduced form). Now, a gauge transformation
of an element QrAs P gpkq by an element of Gpkq transforms QrAs into another element of
gpkq, see [MS02, Proposition 5.1]. Then, rR´1rQrAsss is in reduced form. A fundamental
solution of rQrAss is given by Q´1U , where U is a fundamental solution of rAs. There-
fore, rR´1rQrAsss has a fundamental solution RQ´1U “ pQR´1q´1U , and we find that
R´1rQrAss “ pQR´1qrAs. It follows that rpQR´1qrAss is in reduced form. We have

QR´1 “

ˆ

Idn1 0

pSQ ´ T2,1qD
´1
1 Idn2

˙

P

!

Idn ` glsub pkq
)

.

Then, QR´1 is the expected gauge transformation. �

The following corollary will be a key ingredient for the reduction procedure of §4.

Corollary 2.6. Assume that, for all gauge transformations of the form
P pxq P

!

Idn `Bpxq, Bpxq P glsub pkq
)

, we have LiepAq Ď LiepP rAsq. Then, the lin-
ear differential system Y 1pxq “ ApxqY pxq is in reduced form.

Proof. Theorem 2.4 provides P pxq “ Idn `Bpxq with Bpxq P glsub pkq such that the system
Y 1pxq “ P pxqrApxqsY pxq is in reduced form. By assumption, we have LiepAq Ď LiepP rAsq.
But since Y 1pxq “ P pxqrApxqsY pxq is in reduced form, we have LiepP rAsq “ g. This shows
that LiepAq Ď g. By Remark 1.9, we had g Ď LiepAq so LiepAq “ g, which proves the
result. �

2.3. The Adjoint Action Ψ “ rAdiagpxq, ‚s. We refer to §1 and §2.1 for the notations
and definitions used in this subsection. The adjoint action is rAdiagpxq, ‚s for consistence
of formulas. In §2.2, we have proved the existence of a gauge transformation matrix
P pxq P

!

Idn `Bpxq, Bpxq P glsub pkq
)

such that the system Y 1pxq “ P pxqrApxqsY pxq is in
reduced form. Let B1, . . . , Bσ PMn pCq be a basis of glsub. The next proposition generalizes
[AMDW16, Proposition 3.6] in our context.
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Proposition 2.7. Let P pxq :“ Idn`
řσ
i“1 fipxqBi, with fipxq P k. The gauge transformation

of [A] by P pxq is

P pxqrApxqs “ Adiagpxq `Asubpxq `
σ
ÿ

i“1

fipxqrAdiagpxq, Bis ´
σ
ÿ

i“1

f 1ipxqBi.

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

off-diagonal part to be reduced

Proof. The gauge transformation of rAs by P pxq is given by the formula
P pxqrApxqs “ P pxq´1ApxqP pxq ´ P´1pxqP 1pxq, see Definition 1.5. Computations are made
simple by the fact that the product of two elements of glsubpkq is zero. We have the
equalities P´1pxq “ Idn ´

řσ
i“1 fipxqBi and P´1pxqApxq “ Apxq ´

řσ
i“1 fipxqBiAdiagpxq.

As Apxq “ Adiagpxq `Asubpxq, we find that

P pxq´1ApxqP pxq “ pAdiagpxq `Asubpxq ´
řσ
i“1 fipxqBiAdiagpxqq pIdn `

řσ
i“1 fipxqBiq

“ Adiagpxq `Asubpxq `
řσ
i“1 p´fipxqBiAdiagpxq ` fipxqAdiagpxqBiq

“ Adiagpxq `Asubpxq `
řσ
i“1 fipxqrAdiagpxq, Bis.

Similarly, we have

P´1pxqP 1pxq “

˜

Idn ´
σ
ÿ

j“1

fjpxqBj

¸˜

σ
ÿ

i“1

f 1ipxqBi

¸

“

σ
ÿ

i“1

f 1ipxqBi.

This yields the desired result. �

The Lie algebra glsub is stable under the bracket rgdiag, ‚s, see Lemma 2.2. This implies
that the k-linear map Ψ :“ rAdiagpxq, ‚s, which is the adjoint action of gdiag pkq on glsub pkq,
is well defined:

Ψ : glsub pkq ÝÑ glsub pkq
Bpxq ÞÝÑ rAdiagpxq, Bpxqs.

Writing

Bpxq “

ˆ

0 0
Bspxq 0

˙

,

the action of Ψ on B induces an action Ψ̄ on Bs given by

Ψ̄pBspxqq “ A2pxqBspxq ´BspxqA1pxq.

Lemma 2.8. With the above notations, the matrix Ψ of the adjoint action of Adiagpxq on
glsub is

Ψ “ A2 b Idn1 ´ Idn2 bA
T
1 .

Proof. The row-vec operator transforms a matrix into a vector by transposing each row
and stacking them into a vector. It it well known that, for general matrices, the row-vec
operator satisfies vecpMXq “ pM b IdqvecpXq and vecpXMq “ pId bMT qvecpXq, see
[PP`08], Section 10.2. It follows that vecpΨ̄pBsqq “

`

A2 b Idn1 ´ Idn2 bA
T
1

˘

¨vecpBsq. �

Remark 2.9. In this remark, we use the language of differential modules as in [PS03,
AMCW13]. The differential system rA2 b Idn1 ´ Idn2 bA

T
1 s corresponds to the differential

moduleM2bM‹
1, where the connections on eachMi have matrices Ai respectively. Let us

show that rΨs is in reduced form. Indeed, Ψ is the matrix of the connection onM2 bM‹
1

which is a submodule of a tensor construction on M1 ‘M2. So any semi-invariant of
M2 bM‹

1 in a construction, i.e. an exponential solution of the corresponding differential
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system, can be extended, by adding zeroes, into a semi-invariant ofM1 ‘M2. Now, the
matrix of the connection onM1 ‘M2 is Adiag which is in reduced form. So, Theorem 1 of
[AMCW13] shows that any semi-invariant ofM1 ‘M2 has constant coefficients. It follows
that any semi-invariant ofM2 bM‹

1 will then have constant coefficients. So, Theorem 1 of
[AMCW13] implies that rΨs is in reduced form.

2.4. Decomposition of glsub into Ψ-spaces.

2.4.1. Isotypical decomposition of glsub into Ψ-spaces. Proposition 2.7 shows that reduc-
tion will be essentially governed by the adjoint map Ψ. We had the Wei-Norman de-
composition Adiagpxq “

řδ
i“1 gipxqMi, where the gipxq P k were C-linearly independent.

For each i P t1, . . . , δu, we define the C-linear map Ψi :
glsub ÝÑ glsub

B ÞÝÑ rMi, Bs
so that

Ψ “
řδ
i“1 gipxqΨi.

Definition 2.10. Consider a vector space W Ă glsub. We say that W is a Ψ-space when
ΨpW q ĂW bC k.
Let R :“ CrΨ1, . . . ,Ψδs denote the C-algebra generated by the Ψi. We say that W is an
R-module (or submodule of glsub) when, for all i P t1, . . . , δu, ΨipW q ĂW .

Note that, by Remark 2.3, any vector subspace of glsub is an algebraic Lie algebra so any
Ψ-space is an algebraic Lie algebra. The map Ψ acts naturally on the Lie algebra g; its
action on the off-diagonal matrices of g will govern our reduction strategy, as suggested by
the following lemma.

Lemma 2.11. Let gsub :“ glsub

Ş

g denote the subspace of off-diagonal matrices of g. Then
gsub is a Ψ-space.

Proof. Let
ˆ

C1 0
0 C2

˙

P gdiag; as noted in Remark 1.3, there exists a corresponding

element
ˆ

C1 0
C C2

˙

P g. Let
ˆ

0 0
C 1 0

˙

P gsub. We have
„ˆ

C1 0
C C2

˙

,

ˆ

0 0
C 1 0

˙

“

ˆ

0 0
C2C

1 ´ C 1C1 0

˙

P gsub

and so gsub is stable under the bracket with gdiag. Since rAdiags is in reduced form, the Mi

of its Wei-Norman decomposition are in gdiag so that gsub is stable under the bracket with
each Mi. The result follows with Ψ “

řδ
i“1 gipxqΨi. �

In this section, we describe the structure of the Ψ-subspaces of glsub and how to compute
them in order to be able to reduce the off-diagonal part of the Lie algebra of the system.

Lemma 2.12. A vector subspace W of glsub is a Ψ-space if and only if for all i P t1, . . . , δu,
ΨipW q ĂW , i.e. if and only if W is an R-module.

Proof. By construction, we have Ψ “
řδ
i“1 gipxqΨi. If for all i P t1, . . . , δu, ΨipW q ĂW , it

is clear that ΨpW q ĂWbCk. Conversely, let us assume thatW is a Ψ-space. Let E1, . . . , Eκ
be a basis of W ; we complete it into a basis E1, . . . , Eσ of glsub. We recall that the Ψi are
C-linear maps. For i P t1, . . . , δu and u P W , let ci,j,u P C such that Ψipuq “

řσ
j“1 ci,j,uEj .

Since Ψ “
řδ
i“1 gipxqΨi, we find that Ψpuq “

řδ
i“1

řσ
j“1 gipxqci,j,uEj . For u PW , the fact

that Ψpuq PWbCk implies that we have, for all j P tκ` 1, . . . , σu,
řδ
i“1 gipxqci,j,u “ 0. But
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the gipxq P k are C-linearly independent so, for all i P t1, . . . , δu and all j P tκ`1, . . . , σu, we
have ci,j,u “ 0. This proves that, for all i P t1, . . . , δu, Ψipuq PW and hence ΨipW q ĂW . �

Lemma 2.12, applied with W “ glsub, tells us that for all i P t1, . . . , δu, Ψipglsubq Ă glsub.
So the abelian Lie-algebra glsub is endowed with a natural structure of R-module.

An R-module W is called decomposable if it admits two proper R-submodules W1 and
W2 such that W “ W1 ‘W2; it is indecomposable otherwise. A morphism φ : W1 Ñ W2

is a morphism of R-modules if each Wi is an R-module and, for all M P R and N P W1,
φpM.Nq “M.φpNq. We write W1 »R W2 when the Wi are isomorphic R-modules.

Proposition 2.13 (Krull-Schmidt, [Lam01], Corollary 19.22, page 288). The R-module
glsub admits a decomposition glsub “

Àκ
i“1Wi, such that:

‚ Each Wi is an R-module.
‚ Each Wi admits a decomposition Wi “

Àνi
j“1 Vi,j, where the pVi,jq1ďjďνi are pairwise

isomorphic indecomposable R-modules.
‚ For i1 ‰ i2, all non zero indecomposable R-modules Vi1,s ĂWi1 and Vi2,t ĂWi2 are
non-isomorphic R-modules.

Moreover, this decomposition is unique up to R-module isomorphisms.

Remark 2.14. With a standard slight abuse of notations, we may write Wi »R νiVi, for some
indecomposable R-module Vi. The numbers κ and νi, as well as the R-module isomorphism
class of Vi are uniquely determined in the isotypical decomposition.

Definition 2.15. The decomposition glsub “
Àκ

i“1Wi in Proposition 2.13 is called the
isotypical decomposition of the R-module glsub.
A maximal direct sum of pairwise isomorphic indecomposable R-modules, i.e. one of the
spaces Wi, is called an isotypical block in the isotypical decomposition of glsub.

Computing an isotypical decomposition is classically achieved by studying the eigenring

EndRpglsubq :“ tM P EndCpglsubq | @i P t1, . . . , δu, M.Ψi “ Ψi.Mu,

where EndCpglsubq is the algebra of C-linear endomorphisms of glsub. We review in the
next paragraph how to use EndRpglsubq to compute a decomposition. This will follow, for
example, from Fitting’s Lemma in [Lam01], Lemma 19.16, page 285, or [Bar07], where the
process is described in the context of Ore-modules and [BCW05], where the case of several
matrices is addressed. The following known algorithm ([Bar07]) computes the isotypical
decomposition of glsub.
Input: the list of matrices Ψi.
Output: isotypical decomposition of glsub.

(1) Pick a matrix M with indeterminate coefficients. Solving the linear conditions
M.Ψi “ Ψi.M gives a basis of the eigenring EndRpglsubq.

(2) Pick a “sufficiently general” element P P EndRpglsubq (see [Bar07]).
(3) Factor its characteristic polynomial as χP pλq “

ś

i χipλq
mi .

(4) For each factor, compute a basis of the generalized eigenspaces ker pχipP q
miq.

Return: A matrix T whose columns are bases of the ker pχipP q
miq.

Note that the invariant subspaces of P are the R-submodules of glsub and T´1ΨT is in
block diagonal form, where each block is an indecomposable R-module. This process is
described in detail in [Bar07], see also [PS03], Proposition 2.40 or [BSW19]. Indeed, as the
differential system rΨs is in reduced form, see Remark 2.9, Theorem 1 of [AMCW13] shows
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that EndRpglsubq is the eigenring of rΨs (in the usual sense) and [Bar07] applies mutatis
mutandis. In [BSW19], refinements are given on how to use the eigenring structure to
compute the isomorphism classes inside each isotypical block; this will be used in problem
P2 below.

Remark 2.16. It would be tempting to use the factors of ΠΨ, the minimal polynomial of Ψ,
to compute an isotypical decomposition. However, this would be the source of mistakes, as
the characteristic spaces of Ψ are defined over k, not over C. There are examples, see §2.5,
where glsub is indecomposable while ΠΨ is the product of several coprime polynomials.

2.4.2. The flag decomposition of an indecomposable Ψ-space. Let U be a Ψ-space. We say
that U is an irreducible Ψ-space if its only Ψ-subspaces are t0u and U . Schur’s lemma shows
that any automorphism of an irreducible Ψ-space is a scalar multiple of the identity. This is
generalized in the following lemma, which is sometimes known as Goursat’s lemma.

Lemma 2.17 (Goursat’s lemma, [CS98], Lemma 2.2). Let V :“ U1 ‘ ¨ ¨ ¨ ‘ Uν where
U1, . . . , Uν denote pairwise isomorphic irreducible Ψ-spaces. Let rφj : U1 Ñ Uj be an
isomorphism from U1 to Uj. Let W be an irreducible Ψ-subspace of V . Then, there exist
c1, . . . cν P C such that W “ Uc, where Uc :“ t

řν
j“1 cj

rφjpuq, u P U1u. Any Ψ-subspace of
such a V is a direct sum of modules Uc as described in the lemma.

We now construct a special flag for an isotypical bloc, called a Ψ-isotypical flag, adapted
to our reduction process. We are going to proceed in two steps.
First, we construct such a flag in the case of an indecomposable Ψ-space V . Let U1 be an
irreducible Ψ-subspace of V . There may be other subspaces which are Ψ-isomorphic to U1;
let n1 be the maximal number of Ψ-subspaces of V whose direct sum is a subspace of V and
which are all isomorphic to U1. We define V r1s as this direct sum, so that V r1s » n1U1 Ă V .
If V r1s “ V we are done. Otherwise, we look at the quotient V {V r1s and apply the same
construction: we obtain a subspace W̃2 :“ n2U2 of V {V r1s. Note that if E1, . . . , En denotes
a basis of V such that E1, . . . , Ek is a basis of V r1s, then V {V r1s is isomorphic, as a vector
space, to VectCpEk`1, . . . , Enq Ă V . Then, we may lift W̃2 to a Ψ-subspace V r2s of V which
contains V r1s and such that V r2s{V r1s “ W̃2. We iterate and the result of this construction
is what we call a Ψ-isotypical flag :

V “ V rµs ) V rµ´1s ) ¨ ¨ ¨ ) V r1s ) V r0s “ t0u,

such that each V rjs{V rj´1s is a direct sum of pairwise isomorphic irreducible Ψ-spaces.

We now define a Ψ-isotypical flag for an isotypical block W among the Wi given by the
isotypical decomposition glsub “

Àκ
i“1Wi of Proposition 2.13.

Let W denote an isotypical block in the isotypical decomposition of glsub. We have a
decomposition W “

Àν
j“1 Vj , where the pVjq1ďjďν are pairwise isomorphic indecomposable

R-modules. We first construct, as above, a Ψ-isotypical flag for V1:

V1 “ V
rµ1s

1 ) V
rµ1´1s

1 ) ¨ ¨ ¨ ) V
r1s

1 ) V
r0s

1 “ t0u,

such that each V
rks

1 {V
rk´1s

1 is a direct sum of several pairwise isomorphic irreducible Ψ-
spaces.
Now let φj : V1 Ñ Vj denote an R-module isomorphism. We set V rksj :“ φjpV

rks
1 q for all k

and this defines a Ψ-isotypical flag for Vj . Now, we define W rks by W rks :“
Àν

j“1 V
rks
j .
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Definition 2.18. Let W denote an isotypical block in the isotypical decomposition of glsub.
The flag

W “W rµs )W rµ´1s ) ¨ ¨ ¨ )W r1s )W r0s “ t0u,

constructed above is called an isotypical flag (or Ψ-isotypical flag) for W .

We now discuss how to compute such a Ψ-isotypical flag. We have explained how to
compute the isotypical decomposition so we start by computing the Ψ-isotypical flag of an
indecomposable Ψ-space. We thus need to be able to solve the following two problems:

P1: Given a Ψ-space V , find an irreducible Ψ-subspace U Ď V .
P2: If U Ă V is an irreducible Ψ-subspace, determine the maximal n P N˚ such that V

contains a direct sum of n subspaces Ψ-isomorphic to U , i.e. nU Ď V .
In order to address Problem P1, we will use the following notion.

Definition 2.19. Given a subspace W of glsubpkq stable under Ψ, its associated Ψ-space is
the smallest Ψ-subspace W of glsub such that W ĂW bC k.

Computation of the Ψ-space W associated to W can be achieved as follows.
Input: W, a subspace of glsubpkq.
Output: the associated Ψ-space W .

(1) For each element of a basis of W, compute its Wei-Norman decomposition.
(2) Compute a basis B of the orbits under R of all elements of these Wei-Norman

decompositions.
(3) The Ψ-space W is the vector space generated by B.

Let V denote a Ψ-subspace of glsub. We now show how to find an irreducible Ψ-subspace
U Ď V .

We apply the eigenring method for the isotypical decomposition as above; we let U be
an indecomposable subspace in the decomposition (or U “ V if V is indecomposable).
We identify Ψ with its restriction to U bC k in this paragraph. Let χΨpλq denote its
characteristic polynomial. If Ũ is an irreducible Ψ-subspace of U , then the characteristic
polynomial of the restriction of Ψ to Ũ bC k divides χΨpλq. We compute a factorization
χΨpλq “ f1pλq

m1 ¨ ¨ ¨ fdpλq
md where the fi are pairwise coprime irreducible polynomials over

k. For each i, we compute Ei :“ kerpfipΨqq; then we compute the Ψ-space‡ Wi Ă glsub

associated to Ei. If all Wi are equal to U then U is an irreducible Ψ-space and we return U .
Otherwise, pick a Wi of minimal dimension and repeat the above steps with Wi in place of
U (eigenring, generalized eigenspaces, Ψ-space).

The dimension decreases strictly at each step so the process terminates and produces an
irreducible Ψ-subspace U Ď V .
Input: V , a Ψ-subspace of glsub.
Output: an irreducible Ψ-space U Ă V .

(1) Compute an isotypical decomposition. Let U denote one of the indecomposable
subspaces.

(2) Factor the characteristic polynomial of Ψ on U bC k: χΨpλq “ f1pλq
m1 ¨ ¨ ¨ fdpλq

md

where the fi are coprime irreducible polynomials.
(3) Compute the Ei :“ ker pfipΨqq and the associated Ψ-space Wi.

‡Note that Ei is a vector space over k whereas Wi is a vector space over C; even though Ei is an irreducible
subspace of U bC k, the space Wi may still be a reducible Ψ-space: see the B3ˆB2 Example in §2.5.3.
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(4) If all Wi are equal to U , then U is irreducible: return U .
Otherwise, apply recursively this procedure to a Wi of minimal dimension.

Now let us consider Problem P2. Assume that we have found an irreducible Ψ-subspace
U of V . Finding R-submodules of V which are Ψ-isomorphic to U amounts to finding
elements in HomRpU, V q. Let s be the dimension of U and d be the dimension of V . We
have s ď d. The matrix of Ψ restricted to V is of the form

Ψ|V “

ˆ

Φ ‹

0 ‹

˙

,

where Φ is a square matrix of size s representing Ψ|U . Let Ψj denote the constant matrices in
a Wei-Norman decomposition of Ψ|V . They induce matrices Φj that generate a Wei-Norman
decomposition of Φ. Elements of HomRpU, V q are represented by matrices L PMdˆspCq
such that, for all j, we have Ψj ¨ L “ L ¨ Φj . This gives a linear system of equations for the
entries of L. Once a basis L1, . . . , Lm of these L is found, we let

P :“

¨

˝ L1 . . . Lm 0
Idd´sm

˛

‚.

The conjugation given by P´1Ψ|V P puts Ψ|V in a form where the north-west block is a
direct sum of m copies of Φ.

2.5. Examples of Decomposition. In this subsection, we compute the isotypical decom-
position and the flags with the desired properties in several examples. A Maple worksheet§
with these examples may be found at [DW20]. In what follows, the Ei,j are the elementary
matrices forming the canonical basis of Mn, i.e. Ei,j has a 1 on the pi, jq entry and 0
elsewhere. We first focus on the isotypical decomposition ; we will first expose our reduction
technique on these examples as we believe that it may help the reader when we establish the
theory in §4. In each of the five examples below, we compute the isotypical decomposition
using only the block-diagonal part of systems which will be fully be written down in §3.

2.5.1. The “SO3 ˆ SL2” Example. We consider a system whose diagonal part is given by

Adiagpxq :“

¨

˚

˚

˚

˚

˝

0 1 x 0 0
´1 0 0 0 0
´x 0 0 0 0
0 0 0 0 1
0 0 0 ´x 0

˛

‹

‹

‹

‹

‚

.

This matrix is the block-diagonal part of the system studied later in Section 3.1. The
diagonal blocks are in the Lie algebras so3 of the 3-dimensional special orthogonal group
and sl2 of the special linear group.

The matrix Adiagpxq is in reduced form and its associated Lie algebra is of dimension
6, as we may see using [AMCW13, BCDVW16]. In this example and the following one,
pBiq1ďiďn1n2 , denotes the canonical basis of glsub, i.e. in this example B1 :“ E4,1, B2 :“ E4,2,
B3 :“ E4,3, B4 :“ E5,1, B5 :“ E5,2, B6 :“ E5,3.

§The reader may also find a pdf version at
http://www.unilim.fr/pages_perso/jacques-arthur.weil/DreyfusWeilReductionExamples.pdf



18 GALOIS-LIE ALGEBRA OF A REDUCIBLE DIFFERENTIAL SYSTEM

Using this basis tB1, . . . , B6u of glsub, we find the corresponding matrix of the adjoint
action, given by

Ψ “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 x 1 0 0
´1 0 0 0 1 0
´x 0 0 0 0 1
´x 0 0 0 1 x
0 ´x 0 ´1 0 0
0 0 ´x ´x 0 0

˛

‹

‹

‹

‹

‹

‹

‚

.

The eigenring contains only the identity, which shows that glsub is Ψ-indecomposable. The
characteristic polynomial of Ψ has two factors.

χΨpλq “
`

λ2 ` x
˘ `

λ4 ` 2λ2x2 ` x4 ` 2λ2x´ 2x3 ` 2λ2 ` 3x2 ´ 2x` 1
˘

.

The corresponding generalized eigenspaces (over k) are:

E1 “

〈
¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
´x
1

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0
´x
1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

〉
and E2 “

〈
¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
0
1
x
1

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
1
0
0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0
1
x
1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

1
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

〉
.

For each of them, the associated Ψ-space, see Definition 2.19, is the whole glsub. We conclude
that glsub is Ψ-irreducible. The “flag” only has one level in this case:

glsub“ xB1, B2, B3, B4, B5, B6y

Remark 2.20. In the spirit and notations of Remark 2.9, we note thatM1 andM2 are irre-
ducible modules soM‹

1bM2 is a completely reducible module. As glsub is an indecomposable
Ψ-space, this shows that it is actually irreducible.

2.5.2. The “SO3 ˆB2” Example. Consider the system rAdiags given by:

Adiagpxq :“

¨

˚

˚

˚

˚

˝

0 1 x 0 0
´1 0 0 0 0
´x 0 0 0 0
0 0 0 x 1
0 0 0 0 ´x

˛

‹

‹

‹

‹

‚

“

ˆ

A1pxq 0
0 A2pxq

˙

.

The diagonal blocks are respectively in the Lie algebras so3 of the 3-dimensional special
orthogonal group and in the Lie algebra

b2 :“ VectC

"ˆ

1 0
0 ´1

˙

,

ˆ

0 1
0 0

˙*

of the two-dimensional Borel group. The matrix Adiagpxq is in reduced form as we may see
using [AMCW13, BCDVW16].
Using the canonical basis of glsub as previously, the matrix for the adjoint action
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Ψ “ rAdiag, ‚s, acting on glsub, is

Ψ “

¨

˚

˚

˚

˚

˚

˚

˝

x 1 x 1 0 0
´1 x 0 0 1 0
´x 0 x 0 0 1
0 0 0 ´x 1 x
0 0 0 ´1 ´x 0
0 0 0 ´x 0 ´x

˛

‹

‹

‹

‹

‹

‹

‚

“: Ψ0 ` xΨ1.

As above, we let R :“ CrΨ0,Ψ1s. Computation shows that the eigenring EndRpglsubq is
spanned by the identity. So glsub is Ψ-indecomposable. Looking at the matrix Ψ, we
immediately see that the space spanned by the first three vectors is a Ψ-space. Let us
recover that using the algorithm in §2.4.2 to illustrate the method.

If a subspace V Ă glsub is a Ψ-space in glsub then V bC k is invariant. Such an invariant
subspace is found from the generalized eigenspaces of Ψ. The characteristic polynomial χΨpλq
of Ψ has four factors f1pxq “ pλ´ xq, f2pxq “ pλ` xq , f3pxq “

`

λ2 ´ 2λx` 2x2 ` 1
˘

and
f4pxq “

`

λ2 ` 2λx` 2x2 ` 1
˘

. The corresponding generalized eigenspaces in glsub bC k
are respectively

E1 “

〈
¨

˚

˚

˚

˚

˚

˚

˝

0
´x
1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

〉
, E2 “

〈
¨

˚

˚

˚

˚

˚

˚

˝

0
1
2

´ 1
2x

0
´x
1

˛

‹

‹

‹

‹

‹

‹

‚

〉
,

E3 “

〈
¨

˚

˚

˚

˚

˚

˚

˝

0
1
x
1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

1
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

〉
, E4 “

〈
¨

˚

˚

˚

˚

˚

˚

˝

0
´1
2x2
´1
2x
0
1
x
1

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

´1
2x
0
0
1
0
0

˛

‹

‹

‹

‹

‹

‹

‚

〉
.

We compute the smallest subspace V 1 of glsub such that E1 “ V 1 bC k: it is found from a
Wei-Norman decomposition of the generator of E1. Now we let V1 be the orbit of V 1 under
R. We find that V1 “ă B1, B2, B3 ą. Proceeding similarly with E2, E3 and E4, we find
respectively V3 “ V1 and V2 “ V4 “ glsub. Note that V1 bC k “ E1 ‘ E3. As the dimension
of V1 is minimal, it is Ψ-irreducible.

We let Br1si :“ Bi, for i “ 1, 2, 3, W r1s :“ V1 and then B
r2s
1 , B

r2s
2 , B

r2s
3 “ B4, B5, B6 to

obtain the flag glsub “W r2s )W r1s ) t0u:

xB
r2s
1 , B

r2s
2 , B

r2s
3 y

xB
r1s
1 , B

r1s
2 , B

r1s
3 y

glsub“
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This example is continued in §3.2.

2.5.3. The “B3 ˆB2” Example. Let us consider

Adiagpxq :“

¨

˚

˚

˚

˚

˝

1 x 0 0 0
0 ´x´ 1 0 0 0
0 0 x 0 0
0 0 0 x 1
0 0 0 0 ´x

˛

‹

‹

‹

‹

‚

.

The associated Lie algebra has dimension 4 and it turns out that this system is in reduced
form. First, the diagonal Diagp1,´x´ 1, x, x,´xq is in reduced form : its associated Lie
algebra has dimension 2 while the associated Picard-Vessiot extension is generated over Cpxq
by ex and e

x2

2 , which are algebraically independent ; the remaining reduction (applying the
full algorithm at the end of this paper) is a simple integration exercise¶ .

The matrix of the adjoint action Ψ “ rAdiag, ‚s in the canonical basis is

Ψ “

¨

˚

˚

˚

˚

˚

˚

˝

x´ 1 0 0 1 0 0
´x 2x` 1 0 0 1 0
0 0 0 0 0 1
0 0 0 ´x´ 1 0 0
0 0 0 ´x 1 0
0 0 0 0 0 ´2x

˛

‹

‹

‹

‹

‹

‹

‚

.

Using the eigenring decomposition algorithm from §2.4.2, we find a decomposition
glsub “W1 ‘W2 as a direct sum of two indecomposable subspaces Wi of respective di-
mensions 4 and 2. The restrictions of Ψ to these subspaces have respective matrices

Ψ|W1 “

¨

˚

˚

˝

1 ´x 0 0
0 ´1´ x 0 0
1 0 2x` 1 ´x
0 1 0 x´ 1

˛

‹

‹

‚

and Ψ|W2 “

ˆ

0 1
0 ´2x

˙

.

We have W1 “ xC1, C2, C3, C4y and W2 “ xC5, C6y, with C1 “ B5, C2 “ B4,
C3 “ B2, C4 “ B1, C5 “ B6, C6 “ B3. The characteristic polynomial of Ψ|W1 is
pλ´ 1q p´2x´ 1` λq p´x` 1` λq px` 1` λq. For the factor f1pλq :“ λ ´ 2x ´ 1, the
eigenspace is V1 :“ E1 “ 〈C3〉 . It has a constant basis and hence its generator spans a
Ψ-space. For the factor f2pλq :“ λ ´ 1, we have E2 “ 〈´2xC1 ` C3〉 . The associated
Ψ-space is

V2 :“ 〈C1, C3〉 .

Note that V2 is a reducible Ψ-space, even though E2 was an irreducible krΨs-module: we
have V1 ( V2. Continuing in this way, we find a basis for the flag on W1 :

B
r1s
1 :“ C3, B

r2s
1 :“ C1, B

r3s
1 :“ C3 ` C4, B

r4s
1 :“ C2.

¶This gives, in turn, a proof that ex, e
x2

2 ,
şx

e
t2

2 dt and
şx

e´
1
2
pt`2q2 dt are algebraically independent.
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Similarly, the flag on W2 is given by Br2s1 :“ C5, B
r1s
1 :“ C6. The matrix of Ψ in this new

basis is
¨

˚

˚

˚

˚

˚

˚

˝

2x` 1 1 ´x 0 0 0
0 1 0 ´x 0 0
0 0 x´ 1 1 0 0
0 0 0 ´x´ 1 0 0
0 0 0 0 0 1
0 0 0 0 0 ´2x

˛

‹

‹

‹

‹

‹

‹

‚

.

To summarize, our isotypical flag‖ glsub “W1 ‘W2 in this “B3 ˆB2” example is given by:

xB
r1s
1 y

xB
r2s
1 y

xB
r1s
1 y

xB
r2s
1 y

xB
r3s
1 y

xB
r4s
1 y

W1“ W2“

2.5.4. A nilpotent example. Let us consider

Adiagpxq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 1
x

0 0 0 0 0
1

x´1
1 0 ´ 1

x
0 0 0 0

0 0 1 0 0 0 0 0
0 0 1

x´1
1 0 0 0 0

0 0 0 0 1 0 1
x

0
0 0 0 0 1

x´1
1 0 ´ 1

x

0 0 0 0 0 0 1 0
0 0 0 0 0 0 1

x´1
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

As shown in the maple worksheet, see [DW20], or direct computation, see [DW21], Example 3,
the system is in reduced form. The matrix Ψ of the adjoint action in the canonical basis
of glsub is Ψ :“ 1

xΨ0 `
1

x´1Ψ1, see the worksheet [DW20]. It turns out that Ψ is nilpotent
and that its minimal polynomial is χΨpλq “ λ3. The eigenring has dimension 32. The
eigenring decomposition algorithm provides a decomposition of glsub as a direct sum of three
indecomposable Ψ-spaces W1,W2,W3 of respective dimensions 1, 5, and 10.

‖We stress the fact that there is another possible choice of flag in this example. All choices are equivalent,
by the Krull-Schmidt theorem, see Proposition 2.13, so our choice is essentially cosmetic but does not
influence the complexity of the computations.
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xB
r1s
1 y

xB
r2s
1 y xB

r2s
2 y

xB
r3s
1 y xB

r3s
2 y xB

r3s
3 y xB

r3s
4 y

xB
r4s
1 y xB

r4s
2 y

xB
r5s
1 y

W3

‘ ‘ ‘

‘

‘xB
r1s
1 y xB

r1s
2 y

xB
r2s
1 y

xB
r3s
1 y xB

r3s
2 y

W2

‘

‘

xB
r1s
1 y

W1

‘ ‘

Figure 1. The isotypical flag of the nilpotent example.

The matrix of Ψ acting on the 5-dimensional block W2 is given in [DW20]. The flag
reduction method provides a new basis on which the matrix of Ψ|W2 is

Λ2 “

¨

˚

˚

˚

˚

˝

0 0 1
x´1 0 0

0 0 1
x 0 0

0 0 0 1
x

1
x´1

0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

We note that, although W2 is an indecomposable Ψ-space, it has decomposable quotients
and subspaces, namely W2{VectCtB

r2s
1 , B

r1s
1 , B

r1s
2 u and VectCtB

r1s
1 , B

r1s
2 u are decomposable.

Similarly, the flag reduction method provides a new basis on which the matrix of Ψ|W3 is

Λ3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1
x

1
x´1 0 0 0 0 0 0 0

0 0 0 1
x ´ 1

x´1 0 0 0 0 0

0 0 0 0 0 ´ 1
x

1
x´1 0 0 0

0 0 0 0 0 0 0 1
x´1 0 0

0 0 0 0 0 0 0 0 1
x´1 0

0 0 0 0 0 0 0 1
x 0 0

0 0 0 0 0 0 0 0 1
x 0

0 0 0 0 0 0 0 0 0 1
x´1

0 0 0 0 0 0 0 0 0 1
x

0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

3. Examples of Reduction on an Isotypical Flag

As the next part of the algorithm is a bit technical and may be cumbersome to read, we
start by performing our reduction technique on the above four examples. They are presented
in increasing order of complexity. They are chosen so that the phenomena can be better
understood before stating the general reduction procedure.
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3.1. The “SO3 ˆ SL2” Example Continued. This example is our simplest. Note that
the Berman-Singer algorithm [BS99, Ber02] applies to this example (and leads to the same
conclusion). Let

Apxq :“

¨

˚

˚

˚

˚

˝

0 1 x 0 0
´1 0 0 0 0
´x 0 0 0 0

´ 1
x `

1
x´1 1´ 1

x2
x 0 1

x` 1
px´1q2

1´ 1
x´1 ´1´ 1

x´1 ´x 0

˛

‹

‹

‹

‹

‚

.

In §2.5.1, we have seen that glsub has dimension 6 and is Ψ-irreducible. We recall the notation
gsub :“ glsub X g. Since glsub has no proper Ψ-space here, we have either gsub “ glsub (in
which case Apxq is already in reduced form) or gsub “ t0u (in which case Adiagpxq is a
reduced form of rApxqs, as we had assumed that Adiagpxq was in reduced form).

We look for a reduction matrix of the form P “ Id`
ř6
i“1 fipxqBi such that P rAs “ Adiag.

Writing down this equality, see Proposition 2.7, we find that the vector of coefficients
~F :“ pf1pxq, . . . , f6pxqq

T must be a rational solution of the system

Y 1 “ Ψ.Y `~b, where ~b :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ 1
x `

1
x´1

1´ 1
x2

x
x` 1

px´1q2

1´ 1
x´1

´1´ 1
x´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Using the Maple implementation of the Barkatou algorithm in the package
IntegrableConnections∗∗ from [BCEBW], we find a unique rational solution

~F “

¨

˚

˚

˚

˚

˚

˚

˝

1
1
x
0

´ 1
x´1
0
0

˛

‹

‹

‹

‹

‹

‹

‚

and it follows that Adiagpxq is a reduced form of rApxqs with reduction matrix equal to

P pxq :“

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

1 1
x 0 1 0

´ 1
x´1 0 0 0 1

˛

‹

‹

‹

‹

‚

.

3.2. The “SO3 ˆB2” Example, Continued. We continue with the example from §2.5.2.

Adiagpxq :“

¨

˚

˚

˚

˚

˝

0 1 x 0 0
´1 0 0 0 0
´x 0 0 0 0
0 0 0 x 1
0 0 0 0 ´x

˛

‹

‹

‹

‹

‚

, Asubpxq :“

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x` 3 0 ´1 0 0
´x2 ´ 3x x2 x2 ` 1 0 0

˛

‹

‹

‹

‹

‚

.

∗∗The Maple command is RationalSolutions([Psi],[x],[’rhs’,[B]]);
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In §2.5.2, we have found that glsub has dimension 6, that it is indecomposable, that it admits
only one proper subspace and a flag glsub “W r2s )W r1s ) t0u:

xB
r2s
1 , B

r2s
2 , B

r2s
3 y

xB
r1s
1 , B

r1s
2 , B

r1s
3 y

glsub“

This means that the only proper Ψ-subspace of glsub isW r1s. So there are three possibilities
for the reduced matrix. We start by trying to perform reduction on the first level of the flag,
namelyW r2s{W r1s. We look for a gauge transformation of the form P r2s “ Id`

ř3
i“1 fipxqB

r2s
i .

There is a (partial) reduction if and only if we can find fipxq P k such that P r2srAs has no
component in W r2s{W r1s. This means that ~F :“ pf1pxq, f2pxq, f3pxqq

T must be a rational
solution of the linear differential system

Y 1 “

¨

˝

´x 1 x
´1 ´x 0
´x 0 ´x

˛

‚Y `

¨

˝

´x2 ´ 3x
x2

x2 ` 1

˛

‚.

Using again IntegrableConnections from [BCEBW], we find a unique rational solution
and we derive an intermediate reduction matrix P r2s given by

P r2spxq :“

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
´1 x x` 1 0 1

˛

‹

‹

‹

‹

‚

.

We let Ar2spxq :“ P r2spxqrApxqs “

¨

˚

˚

˚

˚

˝

0 1 x 0 0
´1 0 0 0 0
´x 0 0 0 0

2` x x x x 1
0 0 0 0 ´x

˛

‹

‹

‹

‹

‚

. We now try to re-

duce the level W r1s of the flag. So we look for a gauge transformation of the form
P r1s “ Id`

ř3
i“1 fipxqB

r1s
i . As W r1s is irreducible, there will be (partial reduction) if and

only if P r1srAr2spxqs has no components inW r1s. This means that ~F :“ pf1pxq, f2pxq, f3pxqq
T

must be a rational solution of the linear differential system

Y 1 “

¨

˝

x 1 x
´1 x 0
´x 0 x

˛

‚Y `

¨

˝

2` x
x
x

˛

‚.

As there is no such rational solution, we find that Ar2s cannot be reduced any further so
that it is in reduced form. Computing LiepAr2sq shows that it has dimension 8.
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To summarize, the flag of the “SO3 ˆB2” example after the reduction is as follows; the
red rectangles correspond to the part we have deleted via the reduction matrix, and the
blue rectangles correspond to the non removable part, i.e. the reduced matrix:

hhhhhhhh((((
((((xB

r2s
1 , B

r2s
2 , B

r2s
3 y

xB
r1s
1 , B

r1s
2 , B

r1s
3 y

3.3. The “B3 ˆ B2” Example Continued. We continue with the example from §2.5.3.
We have

Adiagpxq :“

¨

˚

˚

˚

˚

˝

1 x 0 0 0
0 ´x´ 1 0 0 0
0 0 x 0 0
0 0 0 x 1
0 0 0 0 ´x

˛

‹

‹

‹

‹

‚

, Asubpxq :“

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
´x 1 ´1´ x 0 0
x` 1 x`1

x 2x2 ` 1 0 0

˛

‹

‹

‹

‹

‚

.

The isotypical flag has the form glsub “W1 ‘W2 with the following flag structures on the
Wi:

xB
r1s
1 y

xB
r2s
1 y

xB
r1s
1 y

xB
r2s
1 y

xB
r3s
1 y

xB
r4s
1 y

W1 “ W2 “

We take the matrix of Ψ in the adapted basis computed in §2.5.3.
We first perform the reduction on W2, with its adapted flag basis. We look for a gauge

transformation P r2s :“ Id` f2pxqB
r2s
1 to remove Br2s1 from P r2srA1s. We find that f2 should

be a rational solution of 1´ 2xf2 pxq ` 2x2 ´ f 12 pxq “ 0. The only rational solution is x so
P r2s :“ Id`xB

r2s
1 . Similarly, we look for the last gauge transformation P r1s :“ Id`f1pxqB

r1s
1 .

We find f1pxq “ ´x` c1 for an arbitrary constant parameter c1. So the reduction matrix
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on W2 is PW2 “ P r2s.P r1s. The reduction on W2 is then of the form

A2 :“ PW2rAs “

¨

˚

˚

˚

˚

˝

1 x 0 0 0
0 ´1´ x 0 0 0
0 0 x 0 0
´x 1 0 x 1
x` 1 x`1

x 0 0 ´x

˛

‹

‹

‹

‹

‚

We now perform the reduction on W1, with its adapted flag basis. We look for a gauge
transformation P r4s “ Id ` f4pxqB

r4s
1 so that Br4s1 would be absent from P r4srAs. The

condition is ´p1 ` xqf4 pxq ` 1 ` x ´ f 14 pxq “ 0. This equation has the unique rational
solution 1 so we take P r4s “ Id`B

r4s
1 and let Ar3s :“ P r4srA2s. Now we want to remove Br3s1

from Ar3s via P r3s “ Id` f3pxqB
r3s
1 . The condition is ´p1´ xqf3 pxq ` 1´ x´ f 13 pxq “ 0

which admits the unique rational solution f3pxq “ 1 so P r3s “ Id ` B
r3s
1 . We now set

P r2s “ Id` f2pxqB
r2s
1 , look at the condition for Br2s1 to vanish from P r2srAr2ss. We obtain

f 12 pxq “ f2 pxq ´
x2´x´1

x . This equation has no rational solution so we see that we can no
further reduce on W1. So we let PW1 :“ P r4s.P r3s be the reduction matrix on W1.

Finally, letting P :“ PW1PW2 , we find

Ared :“ P rAs “

¨

˚

˚

˚

˚

˝

1 x 0 0 0
0 ´1´ x 0 0 0
0 0 x 0 0
0 ´x` 1 0 x 1
0 ´x` 1` 1

x 0 0 ´x

˛

‹

‹

‹

‹

‚

.

Note that Ared does not depend upon c1. Now LiepAredq has dimension 6 and its off-diagonal
part is spanned by the matrices of Br1s1 and Br2s1 of W1. Our construction shows that any
gauge transformation of the form Id `M with M P VectCpB

r1s
1 , B

r2s
1 q will keep B

r2s
1 (and

then Br1s1 ) in the Lie algebra so Corollary 2.6 shows that rAreds is in reduced form.
To summarize, the flag of the “B3 ˆ B2” example after the reduction is as follows; the

red rectangles correspond to the part we have deleted via the reduction matrix, and the
blue rectangles correspond to the non removable part, i.e. the reduced matrix:

HHHH��
��

xB
r1s
1 y

HH
HH��
��

xB
r2s
1 y

xB
r1s
1 y

xB
r2s
1 y

HH
HH��
��

xB
r3s
1 y

H
HHH�
��
�

xB
r4s
1 y

W1 “ W2 “
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3.4. The Nilpotent Example, Continued. We continue with the example of §2.5.4. We
let pÑiqi“1...16 denote the adapted basis of glsub found in §2.5.4. We recall that we have
three indecomposable Ψ-spaces of dimensions 1, 5 and 10 respectively. We will study

Asubpxq :“
16
ÿ

i“1

fipxqÑi,

where the fipxq are the following

f1pxq :“ 0,

f2pxq :“ 1
x2
, f3pxq :“ 0, f4pxq :“ 2´x

2x2
, f5pxq :“ 1´x

x2
,

f6pxq :“ 3´x
x2
,

f7pxq :“ 0, f8pxq :“ ´ 1
2x , f9pxq :“ ´ 1

2px´1q , f10pxq :“ 1
x ,

f11pxq :“ ´ 1
2x , f12pxq :“ 0, f13pxq :“ ´ 1

2px´1q , f14pxq :“ ´ 1
2px´1q ,

f15pxq :“ 1
x2
´ 1

2px´1q , f16pxq :“ 2
x2
` 1

x´1 .

Since the coefficient in front of Ñ1 is 0, the reduction to the 1-dimensional block is already
completed.

xB
r1s
1 y

xB
r2s
1 y

HHHH��
��

xB
r2s
2 y

xB
r3s
1 y

HHHH��
��

xB
r3s
2 y

HHHH��
��

xB
r3s
3 y

HHHH��
��

xB
r3s
4 y

HHHH��
��

xB
r4s
1 y

HHHH��
��

xB
r4s
2 y

HHHH��
��

xB
r5s
1 y

W3

HHHH��
��

xB
r1s
1 y

HHHH��
��

xB
r1s
2 y

HHHH��
��

xB
r2s
1 y

HHHH��
��

xB
r3s
1 y

HHHH��
��

xB
r3s
2 y

W2

HHHH��
��

xB
r1s
1 y

W1

‘ ‘

Figure 2. The action of the adjoint map on the isotypical flag of the nilpotent
example §3.4. The spaces W1 (left), W2 (center) and W3 (right) satisfy
glsub “W1 ‘W2 ‘W3. The red rectangles correspond to the part that
we get rid of via the reduction matrix, and the blue rectangles correspond
to what will remain in the reduced matrix.

Reduction of the 5-dimensional block.
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To remove all of W2, it would be enough to have a rational solution of the system

~Y 1 “ Λ2.~Y `~b with Λ2 “

¨

˚

˚

˚

˚

˝

0 0 1
x´1 0 0

0 0 1
x 0 0

0 0 0 1
x

1
x´1

0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

and ~b “

¨

˚

˚

˚

˚

˝

2
x

2x`1
x2
x`1
x2

0
1
x2

˛

‹

‹

‹

‹

‚

.

Although it is simple to find such a solution in this case, we detail the calculations to
illustrate the general method. The following differential systems give the conditions for
reduction at the three levels of the flags.

pW r3sq :

"

f 13,1 pxq “ 1
x2

f 13,2 pxq “ 0

pW r2sq :
 

f 12,1 pxq “ 1
x´1f3,1 pxq `

1
xf3,2 pxq `

2´x
2x2

pW r1sq :

"

f 11,1 pxq “ 1
xf2,1 pxq `

1´x
x2

f 11,2 pxq “ 1
x´1f2,1 pxq `

3´x
x2
.

We proceed level by level. The first two equations correspond to the first level W r3s
2 of

the flag. The condition to remove an element from W
r3s
2 is that there should be a rational

solution to the equation y1 “ c1.
1
x2
` c2.0. We look for a basis of the C-vector space of pairs

pc1, c2q P C2 such that there exists f P k with f 1 “ c1.
1
x2
` c2.0. This space is found to be

2-dimensional; for c “ p1, 0q, we have f3,1 :“ ´ 1
x ` c3,1; for c “ p0, 1q, we have f3,2 :“ c3,2,

where the c3,i are arbitrary constants (their importance will soon be visible). Our gauge
transformation is P r3s “ Id` f3,1B

r3s
1 ` f3,2B

r3s
2 and Ar2s :“ P r3srAs does not contain any

terms from W
r3s
2 .

Now W
r2s
2 is 1-dimensional. The equation for the reduction on W r2s

2 is

y1 “ ´
2

x´ 1
f3,1 ´

2

x
f3,2 `

x` 1

x2
“ ´

2

x´ 1

ˆ

´
1

x
` c3,1

˙

´
2

x
c3,2 `

x` 1

x2

“
´2 c3,2 ´ 1

x
`
´2 c3,1 ` 2

x´ 1
`

1

x2
.

We have necessary and sufficient conditions on the parameters c3,i to have a rational solution,
namely c3,1 “ 1, c3,2 “ ´

1
2 and then a general rational solution f2,1 :“ ´1

x ` c2,1. Our new
gauge transformation is P r2s “ Id` p´ 1

x ` c2,1qB
r2s
1 and Ar1s :“ P r2srAs does not contain

any term from W
r3s
2 nor from W

r2s
2 .

Now we look for pairs pc1, c2q P C2 such that there exists f P k that is a rational solution
of

y1 “ c1

ˆ

´
2

x
f2,1 `

2x` 1

x2

˙

` c2

ˆ

´
2

x´ 1
f2,1 `

2

x

˙

“ c1

ˆ

´
2

x

ˆ

´1

x
` c2,1

˙

`
2x` 1

x2

˙

` c2

ˆ

´
2

x´ 1

ˆ

´1

x
` c2,1

˙

`
2

x

˙

“
´2c1c2,1 ` 2 c1

x
`

2c2 p´c2,1 ` 1q

x´ 1
`

3c1

x2
.

This integral is rational if and only if both residues are zero. As the solution c1 “ c2 “ 0 is
not admissible, we see that a necessary and sufficient condition is c2,1 “ 1. The set of desired
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pairs pc1, c2q is of dimension 2. For c “ p1, 0q, we have f1,1 :“ ´ 3
x ` c1,1; for c “ p0, 1q, we

have f1,2 :“ c1,2, where the c1,i are constants and can be chosen arbitrarily. For the simplicity
of the expression of the gauge transformation, we can choose c1,1 “ c1,2 “ 0 (but the other
choice is valid too). Our last gauge transformation matrix will be P r1s “ Id´ 3

xB
r1s
1 .

Finally, the reduction matrix on W2 is

P2 :“ P r3sP r2sP r1s “ Id`

ˆ

´
1

x
` 1

˙

B
r3s
1 ´

1

2
B
r3s
2 `

ˆ

´
1

x
` 1

˙

B
r2s
1 ´

3

x
B
r1s
1

and the matrix A2 :“ P2rAs is reduced on W2.
Reduction of the 10-dimensional block.

We now turn to the 10-dimensional block W3. The reduction equations are

pW r5sq :
 

f 15,1 pxq “ 0

pW r4sq :

#

f 14,1pxq “ 1
xf5,1pxq ´

1
2x

f 14,2pxq “ 1
x´1f5,1pxq ´

1
2px´1q

pW r3sq :

$

’

’

&

’

’

%

f 13,1pxq “ 1
xf4,1pxq `

1
x

f 13,2pxq “ 1
xf4,2pxq ´

1
2x

f 13,3pxq “ 1
x´1f4,1pxq

f 13,4pxq “ 1
x´1f4,2pxq ´

1
2px´1q

pW r2sq :

#

f 12,1pxq “ 1
x´1f3,1pxq ´

1
xf3,2pxq ´

1
2px´1q

f 12,2pxq “ ´ 1
x´1f3,3pxq `

1
xf3,4pxq ´

1
2px´1q `

1
x2

pW r1sq :
!

f 11,1pxq “
1

x´1f2,1pxq `
1
xf2,2pxq `

2
x2
` 1

x´1 .

The first equation gives f5,1 “ c5,1 P C. The equations on W r4s both have rational solutions
if and only if c5,1 “

1
2 . We then have f4,i “ c4,i P C.

Letting y :“
ř4
i“1 ci.f3,i for unknown ci, the equations on W r3s are

y1 “
c1pc4,1 ` 1q ` c2pc4,2 ´ 1{2q

x
`
c3c4,1 ` c4pc4,2 ´ 1{2q

x´ 1
.

and we investigate values of c :“ pc1, . . . , c4q (and c4,i) for which this may have a rational
solution. Of course, this has a rational solution if and only if both residues are zero. The
algebraic conditions for both residues to be zero are

(3.1)
"

c1pc4,1 ` 1q ` c2pc4,2 ´ 1{2q “ 0
c3c4,1 ` c4pc4,2 ´ 1{2q “ 0.

We view (3.1) as a linear system in the c in coefficients in Cpc4,iq. We study for which c4,i

the space of solutions c of (3.1) has maximal dimension. Here, it would be 4 if and only if
c4,1 ` 1 “ c4,1 “ c4,2 ´ 1{2 “ 0 which cannot occur. We see that it has dimension 3 if and
only if either c4,1 ` 1 “ c4,2 ´ 1{2 “ 0 or c4,1 “ c4,2 ´ 1{2 “ 0. Then, the only possibilities
are
tc3 “ 0, c4,1 “ ´1, c4,2 “ 1{2u and tc1 “ 0, c4,1 “ 0, c4,2 “ 1{2u. We need to study each

component separately. It turns out that both lead to the same result, a reduced form. We
show how things go on the second component. The computations for the first component
may be found in the Maple Worksheet [DW20] and are detailed in [DW21].
We have c4,1 “ 0 and c4,2 “

1
2 . The set of c for which the equation has a rational solution

is a 3-dimensional C-vector space; it is generated by p0, 1, 0, 0q, p0, 0, 1, 0q and p0, 0, 0, 1q.
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We have thus have f3,ipxq “ c3,i P C for i “ 2, 3, 4 and f3,1 remains unknown: the equation
f 13,1pxq “ ´

1
x has no rational solution.

So we cannot remove Br3s1 from the result. However, the constant c3,1 will play a role in the
reduction process.

Remark 3.1. As Br3s1 appears in g, the adjoint action of Adiag implies that Br2s1 and Br1s1
will be present in g, even if we found transformations which might seem to remove them
from the reduced matrix. In the matrices of g given at the end of the computation, the
third one has Br3s1 as its off-diagonal part, the fourth one has Br2s1 and the fifth one is Br1s1 .

Letting y “ c1.f2,1 ` c2.f2,2, the family of reduction equations on W2 is now:

y1 “
´c1c3,2 ` c2c3,4

x
`
c1pc3,1 ´ 1{2q ´ c2pc3,3 ` 1{2q

x´ 1
`
c2

x2
.

The condition for both residues to be zero gives again a linear system on c1 and c2
"

´ c1c3,2 ` c2c3,4 “ 0
` c1pc3,1 ´ 1{2q ´ c2pc3,3 ` 1{2q “ 0.

The space of solutions pc1, c2q has maximal dimension 2 when c3,2 “ c3,4 “ 0, c3,1 “ 1{2 and
c3,3 “ ´

1
2 . Now, for c “ p1, 0q, we obtain f2,1 “ ´

1
x ` c2,1; for c “ p0, 1q, we find f2,2 “ c2,2.

The last equation is

f 11,1pxq “
1

x´ 1

ˆ

´
1

x
` c2,1

˙

`
c2,2

x
`

2

x2
`

1

x´ 1
“

1

x
´

1

x´ 1
`

c2,1

x´ 1
`
c2,2

x
`

2

x2
`

1

x´ 1
.

This imposes c2,1 “ 0 and c2,2 “ ´1 and f1,1pxq “
1
x ` c1,1, where c1,1 is a constant that

can be chosen arbitrary. We obtain the reduced form

Aredpxq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 1
x 0 0 0 0 0

1
x´1 1 0 ´ 1

x 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1

x´1 1 0 0 0 0

0 0 0 ´ 1
x 1 0 1

x 0
0 0 0 0 1

x´1 1 0 ´ 1
x

0 0 0 0 0 0 1 0
0 0 0 0 0 0 1

x´1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The associated Lie algebra is spanned by
¨

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0 0 1 0 0 0 0 0
0 0 0 ´1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ´1 0 0 1 0
0 0 0 0 0 0 0 ´1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1{2 0 0 0 0 0
0 0 0 ´1{2 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‚

.
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This gives us the Lie algebra g “ LiepAredpxqq of the differential Galois group. It is 5-
dimensional, whereas the Lie algebra associated to the original matrix Apxq had dimension
14. This shows that the Picard-Vessiot extension is obtained from Kdiag by performing only
one integral.

Remark 3.2. We recall that gdiag is the Lie algebra associated to Adiagpxq and (cf. the proof
of Theorem 2.4)

gdiag “

"ˆ

D1 0
0 D2

˙
ˇ

ˇ

ˇ

ˇ

DS, such that
ˆ

D1 0
S D2

˙

P g

*

.

Let us set

gs :“ g{gdiag “

"ˆ

0 0
S 0

˙ ˇ

ˇ

ˇ

ˇ

DD1, D2, such that
ˆ

D1 0
S D2

˙

P g

*

.

Note that neither gdiag nor gs are subalgebras of g. Here, g has dimension 5, gdiag has
dimension 4 and gsub :“ g X glsub has dimension 1. However, we see that the set gs of
“off-diagonal” parts of elements of g has dimension 3 so that g ( gdiag ‘ gs. Our reduction
process computes a subalgebra g of LiepAq such that its gs has minimal dimension. Now, an
odd phenomenon occurs; in the course of the reduction, an off-diagonal element in LiepAq
may be "absorbed" as the triangular part of an element that was present. For example, in
the third matrix, an element of glsub has a coefficient ´ 1

x after reduction so it becomes the
lower triangular part of the constant matrix from LiepAdiagq corresponding to 1

x . So the
minimization of the dimension of gs is a necessary, but a priori not sufficient condition to
reduce the system. To prove that the reduction process is complete, we need to show that
there are no gauge transformation which send the last matrix to nilpotent elements whose
coefficients are in the Wei-Norman decomposition of Adiag. A simple computation shows
that the last element gsub cannot be “absorbed” as the off-diagonal part of an element of
gdiag so our system is indeed in reduced form.

4. Computation of the Reduction Matrix on an Isotypical Flag.

Let h :“ LiepAq. As above, we let

hdiag :“

"ˆ

D1 0
0 D2

˙ ˇ

ˇ

ˇ

ˇ

DS such that
ˆ

D1 0
S D2

˙

P h

*

,

hs :“ h{hdiag “

"ˆ

0 0
S 0

˙ ˇ

ˇ

ˇ

ˇ

DD1, D2 such that
ˆ

D1 0
S D2

˙

P h

*

and

hsub :“

"ˆ

0 0
S 0

˙

P h

*

.

We have hdiag “ LiepAdiagq. Neither hdiag nor hs are subalgebras of h. We have h Ă hdiag‘hs
but the nilpotent example, see §3.4, shows that the inclusion may be strict. Our reduction
strategy will consist of three steps.

1 Find a gauge transformation P “ Id`B, where†† B P glsubpkq, and h̃ :“ LiepP rAsq

such that h̃s has minimal dimension. The result will depend on parameters.

††Here, it would actually be enough to take B P hspkq but our choice simplifies both the exposition and
the implementation for a minor additional cost.
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2 Look for an eventual gauge transformation P “ Id`B, where B P glsubpkq which,
maps each element of h̃sub to an element of h̃sub whose coefficients are in the
Wei-Norman decomposition of Adiag. This depends again on parameters.

3 Compute, with a Groebner basis, conditions on the remaining parameters to have a
Lie algebra LiepP rAsq of minimal dimension.

Step 1 is the main part of the algorithm. It consists in trying to eliminate as many
generators as possible in hs. Heuristically, Step 1 seems to be always sufficient to obtain a
reduced form. However, Steps 2 and 3 are necessary to have a mathematically guaranteed
procedure.
We use the isotypical decomposition glsub “

Àκ
i“1Wi of Proposition 2.13. Proposition 2.7

tells us that in the reduction process, we may (and will) perform a reduction on each
isotypical block Wi independently.
We consider an isotypical blockW “ V1 ‘ ¨ ¨ ¨ ‘ Vν where the Vi are indecomposable pairwise
isomorphic Ψ-spaces. We follow the construction above Definition 2.18 to obtain a Ψ-
isotypical flag on W :

W “W rµs )W rµ´1s ) ¨ ¨ ¨ )W r1s )W r0s “ t0u,

with W rks “
Àνk

j“1 V
rks
j and we have a Ψ-isomorphism φj : V

rks
1 Ñ V

rks
j . Recall that

W rks{W rk´1s is a direct sum of pairwise isomorphic irreducible Ψ-spaces. Before we continue,
we need to enrich our toolbox with the following fundamental classical algorithm.

4.1. Differential systems with a parametrized right-hand side. We recall a classical
computational lemma on rational solutions of differential systems with a parametrized
right-hand side. We reprove it here for self-containedness though it is well known to
specialists.

Lemma 4.1 ([Sin91, Bar99, Ber02]). Let m P N˚. Given a matrix Λpxq PMmpkq and t
vectors ~bipxq P km, we consider the differential system with parametrized right-hand-side

Y 1pxq “ ΛpxqY pxq `
t
ÿ

i“1

si~bipxq,

where the si are scalar parameters.
The set of tuples pF pxq, pc1, . . . , ctqq P km ˆ Ct, such that the differential system
Y 1pxq “ ΛpxqY pxq `

řt
i“1 ci

~bipxq admits a rational solution Y pxq “ F pxq is a finite-
dimensional C-vector space. Furthermore, with our assumptions on k, one can effectively
compute a basis of this vector space.

Proof. We give a short proof of this well known fact, from [Ber02], page 889.
A vector F pxq “ pf1pxq, . . . , fmpxqq

T P km is a rational solution of the differential sys-
tem Y 1pxq “ ΛpxqY pxq `

řt
i“1 ci

~bipxq, for given constants ci, if and only if the vector
Zpxq :“ pf1pxq, . . . , fmpxq, c1, . . . , ctq

T is a rational solution of the homogeneous first order
system

Z 1pxq “

ˆ

Λpxq ~b1pxq, . . . ,~btpxq
0 0

˙

Zpxq.

The rational solutions of the latter form a C-vector space which, by Assumption 2©, see §1.1,
can be explicitly computed. �
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Remark 4.2. Regarding the proof of Lemma 4.1, we see that we may replace k by any field
which satisfies Assumption 2© of Section 1.1. By [Sin91], Lemma 3.5, we may thus replace
the base field k by kpt1, . . . , t`q where t1i “ 0 and the new constant field Cpt1, . . . , t`q is a
transcendental extension of C.

4.2. Reduction on a level W rks{W rk´1s of the isotypical block W . Let us
fix k P t1, . . . , µu. Assume that we have performed reductions on the levels
W rµs{W rµ´1s, . . . ,W rk`1s{W rks (this assumption being void if k “ µ) and that we
want to perform reduction on the level W rks{W rk´1s. Our matrix A has thus been
transformed into a matrix Arks. As in the nilpotent example, see §3.4, the reduction on the
previous levels may have introduced a set Tk of parameters in the off-diagonal coefficients
of this matrix Arks, and an affine variety Tk defined by the algebraic conditions satisfied
by these parameters. So, at this stage the matrix Arkspx, tq has off-diagonal coefficients in
kpTkq with the constraint t P Tk. The construction below will show how Tk, Tk, and Arks
are built with a decreasing recursion from Tµ “ ∅, Tµ “ ∅, and Arµs “ A. The matrix Ψ of
the adjoint action of Adiag is unchanged at each step and does not depend on the parameters.

Let B1,1, . . . , Br,1 be a basis of V rks1 {V
rk´1s

1 . It induces a basis of V rks1 {V
rk´1s

1 bC CpTkq.
The isomorphism φj : V

rks
1 Ñ V

rks
j induces an isomorphism φ̃j : V

rks
1 {V

rk´1s
1 Ñ V

rks
j {V

rk´1s
j

so we may define Bi,j :“ φ̃jpBi,1q to obtain an adapted basis of V rksj {V
rk´1s
j and, hence, of

V
rks
j {V

rk´1s
j bC CpTkq. In this basis, the restriction of Ψ to each V rksj {V

rk´1s
j bC CpTkq will

have the same matrix, which we call Λrks. This matrix Λrks has coefficients in k.
Let Ψrks :“ Ψ|W rks{W rk´1s be the restriction of Ψ to W rks{W rk´1s. We still call Ψrks the

restriction to pW rks{W rk´1sq bC kpTkq. In our adapted basis of W rks{W rk´1s, the matrix of
Ψrks is block diagonal with all blocks equal to Λrks.

For any matrix B PW rks, we have

(4.1) ΨpBq “ ΨrkspBq ` rB, with rB PW rk´1s.

Simplifying notations, let us set ν “ νk. We decompose the matrix Arks of our system at
this stage as

Arkspx, tq “ Apx, tq `
ν
ÿ

j“1

˜

r
ÿ

i“1

ai,jpx, tqBi,j

¸

.

The coefficients ai,jpx, tq are in kpTkq; the matrix Apx, tq represents the remaining compo-
nents of parts of Arks, including the components W r`s{W r`´1s bC kpTkq with ` ‰ k.

We look for a gauge transformation of the form

(4.2) P px, tq “ Idn `B where B “
ν
ÿ

j“1

˜

r
ÿ

i“1

fi,jpx, tqBi,j

¸

,

with fi,jpx, tq P kpTkq. We apply Propositions 2.7 and (4.1) to obtain the existence of
rBi,j PW

rk´1s (the part of ΨpBq which is sent to W rk´1s) such that
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(4.3) P rArkss “

«

Apx, tq `
ν
ÿ

j“1

˜

r
ÿ

i“1

fi,jpx, tq rBi,j

¸ff

`

ν
ÿ

j“1

r
ÿ

i“1

´

ai,jpx, tqBi,j ` fi,jpx, tqΨ
rkspBi,jq ´ f

1
i,jpx, tqBi,j

¯

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

components of P rArkss on W rks{W rk´1s

.

Suppose we hoped to remove all the Bi,j . We would have to remove all of the second sum
in (4.3). For each j P t1, . . . , νu, let

~Yj :“

¨

˚

˝

f1,jpx, tq
...

fr,jpx, tq

˛

‹

‚

and ~bj :“

¨

˚

˝

a1,jpx, tq
...

ar,jpx, tq

˛

‹

‚

.

The elimination conditions would become
$

’

&

’

%

~Y 11 “ Λrks~Y1 ` ~b1
...

~Y 1ν “ Λrks~Yν ` ~bν .

However, some of these systems may have no rational solution whereas some combination of
the ~Yi could be rational and lead to (partial) reduction. Indeed, by performing reduction,
we are trying to eliminate irreducible Ψ-subspaces of W rks{W rk´1s bC CpTkq. By Goursat’s
Lemma, see Lemma 2.17, these are of the form t

řν
i“1 cjφ̃ipvq, v P V

rks
1 {V

rk´1s
1 bCCpTkqu with

ci P CpTkq. In order to perform reduction, we thus need to look for constants c “ pc1, . . . , cνq
with ci P CpTkq such that the following system has a nonzero rational solution in kpTkq:

(4.4) ~Y 1 “ Λrks~Y `
ν
ÿ

i“1

ci~bi.

Note that Λrks does not depend on the parameters and Lemma 4.1 stays valid with the
field k replaced by kpTkq, see Remark 4.2. To decide when the system has nonzero rational
solutions, one first finds bounds on valuations at the poles and at infinity (this is possible
because Λrks does not depend on the parameters); this reduces the problem to solving a
system of linear equations whose right hand side depends linearly on the parameters ci. The
compatibility conditions for this system (obtained, for example, by gaussian elimination)
yield a matrixMptq with coefficients in CpTkq so that the system (4.4) has a rational solution
if and only if

(4.5) Mptq.

¨

˚

˝

c1
...
cν

˛

‹

‚

“ 0.

We want Mptq with t P Tk to have a kernel of maximal dimension, as this kernel allows
us to compute irreducible Ψ-subspaces that can be removed in the reduction process. Let
Vk denote the algebraic conditions on Tk which encode the fact that Mptq with t P Tk has
minimal rank ν ´ d; this can be computed for example with a Groebner basis, see [CLO07].
We set Tk´1 :“ TkXVk. Now Tk´1 is a finite union of irreducible algebraic varieties; this can
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again be computed with a Groebner basis [CLO07]. For each of these irreducible varieties,
we proceed as follows. Applying these conditions to the matrix Mptq, we choose a basis B of
kerpMptqq in CpTkqν . For cj in B, we compute the corresponding general rational solution
~Fj to the system Y 1 “ ΛrksY `

řν
i“1 ci,j

~bi. Note that rΛrkss may have rational solutions
(this was the case in our nilpotent example, see §3.4) hence the need for a general solution.
Note that at this stage it may be necessary to introduce additional parameters in order to
express this general solution, in which case we add these new additional parameters to Tk
to form Tk´1.

Remark 4.3. As we saw in the nilpotent example §3.4, the process of passing from Tk to
Tk´1 may add constraints that fix the value of a constant, thus withdrawing it from later
computations.

Now we have found a new adapted basis Bi,jptq of W rks{W rk´1s bC CpTkq and a gauge
transformation

P rkspx, tq “ Idn `
d
ÿ

j“1

˜

r
ÿ

i“1

fi,jpx, tqBi,jptq

¸

.

Applying this gauge transformation will remove from W rks{W rk´1s the Ψ-spaces spanned
by the Bi,jptq with j ď d. Because of the condition on minimality of the rank of M and the
nature of the Ψ-subspaces ofW rks{W rk´1sbCCpTkq, no other matrix inW rks{W rk´1sbCCpTkq
can be removed using a gauge transformation as in (4.2).

4.3. The Full Reduction. We now perform the reduction on the whole isotypical block
W with its isotypical flag

W “W rµs )W rµ´1s ) ¨ ¨ ¨ )W r1s )W r0s “ t0u.

Step 1. We start from a set of parameters Tµ “ ∅ and algebraic conditions Tµ “ ∅. The
matrix of the system is Arµs :“ A. We perform the reduction process of Section 4.2 on
W rµs{W rµ´1s; we obtain a gauge transformation P rµs and Arµ´1s :“ P rµspArµsq. If µ ą 1,
we go down to W rµ´1s and iterate until the level W r1s. The complete gauge transformation

used for the successive reductions on W is PW px, tq :“

µ
ź

k“1

P rkspx, tq. It contains a set

TW :“ T0 of parameters ti, subject to the set TW :“ T0 of algebraic conditions. Note that,
by construction, the matrices P rks all commute pairwise so the product PW px, tq is well
defined. The same remark will hold for the reduction matrix of Theorem 4.4 below.
Step 2. As explained in Remark 3.2, in the course of this reduction some “off-diagonal”
element of the Lie algebra may be “absorbed” by turning a diagonal element of gdiag into a
triangular one. Let g1pxq, . . . , gδpxq P k be the C linearly independent elements appearing
in the Wei-Norman decomposition of Adiagpxq. Let B1, . . . , Bk be a basis of hW , the Ψ-
space obtained after this step of reduction process. Let AW px, tq :“ PW px, tqrAs. We
have to compute the set of fi P kpTW q, C1, . . . , Cδ P MnpCpTW qq such that rPW rAW s “

AW ` C1g1 ` ¨ ¨ ¨ ` Cδgδ, where rPW pxq “ Idn `
řk
i“1 fiBi. By Proposition 2.7, this is

equivalent to solving an inhomogeneous linear differential equation in the same form as the
one in Lemma 4.1 in the field kpTW q. This provides a new set of parameters that we must
add to TW and additional algebraic constraints TW . Using again a Groebner basis, compute
an element t0 P TW such that Liep rPW px, t0qrAW px, t0qsq has minimal dimension (this is a
rank optimization computation). Finally, set PW pxq :“ rPW px, t0q.
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Theorem 4.4. For each isotypical block Wi in the isotypical decomposition glsub “
Àκ

i“1Wi,
let PWipxq denote the (partial) reduction matrix constructed in the above paragraph. Now let
P pxq :“

śκ
i“1 PWipxq and Aredpxq :“ P pxqrApxqs. Then the system rAredpxqs is in reduced

form and P pxq is the corresponding reduction matrix.

Remark 4.5. In many situations, like the first three examples, no parameters are required to
reduce the system. In that case, no Groebner bases are needed and only linear algebra is
used in the reduction process, making the algorithm quite effective.

Proof. In virtue of Theorem 2.4, we deduce that there exists a gauge transformation
Q P

!

Idn `Bpxq, Bpxq P glsub pkq
)

, such that rQrAredss is in reduced form. We have

QrAreds “ QP rAs, where QP P

!

Idn ` Bpxq, Bpxq P glsub pkq
)

. Let h :“ LiepAredq.
As above, for ‹ P tg, hu, we let

‹diag :“

"ˆ

D1 0
0 D2

˙ ˇ

ˇ

ˇ

ˇ

DS such that
ˆ

D1 0
S D2

˙

P ‹

*

,

‹s :“

"ˆ

0 0
S 0

˙
ˇ

ˇ

ˇ

ˇ

DD1, D2 such that
ˆ

D1 0
S D2

˙

P ‹

*

and

‹sub :“

"ˆ

0 0
S 0

˙

P ‹

*

.

Since rQrAredss is in reduced form, its Lie algebra is g. By Remark 1.9, g Ă h. Then,
gs Ă hs. By construction, the gauge transformation P minimize hs, so hs Ă gs and we have
hs “ gs. By Proposition 2.7, hdiag “ gdiag. Now, as explained in Remark 3.2, we still could
have a strict inclusion g ( h. If that were the case, the condition g ( h would imply by
minimality of gs, that a gauge transformation in hsubpkq would transform the coefficient of
an off-diagonal element into one that is present in the Wei-Norman decomposition of Adiag

(the "absorption" mechanism described in Remark 3.2, turning a diagonal element of h into
a triangular one). By the second minimality condition, see Step 2 above, this phenomenon
does not occur and we conclude that g “ h and rAreds is in reduced form. �

5. A General Algorithm for Reducing a Differential System

We now have tools to put general linear differential systems, i.e. those whose diagonal
part may have more than two diagonal blocks, into reduced form.

5.1. An Iteration Lemma. In order to iterate the reduction process of §4 to block
triangular systems, we need the following lemma.

Lemma 5.1. Let n1, n2, n3 P N˚, and for i P t1, 2, 3u, let Ai PMnipkq. Assume that the
differential systems with respective matrices (in what follows, S is an n3 ˆ n2 matrix with
coefficients in k)

¨

˝

A1 0 0
0 A2 0
0 0 A3

˛

‚ and

ˆ

A2 0
S A3

˙

are in reduced form. Then, letting

A :“

¨

˝

A1 0 0
0 A2 0
0 S A3

˛

‚,
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the system rAs is in reduced form.

Proof. By our first assumption, we may apply the reduction process of §4, see Theorem 4.4,
to the system with matrix

¨

˝

A1 0 0
0 A2 0
0 S A3

˛

‚.

Let n :“ n1 ` n2 ` n3. Due to Theorem 2.4, there exists a reduction matrix of the form

P :“

¨

˝

Idn1 0 0
0 Idn2 0
P1 P2 Idn3

˛

‚PMnpkq.

We then find

Ψ
`

pP1 P2q
˘

“ ´ pP1 P2q

ˆ

A1 0
0 A2

˙

`A3 pP1 P2q

“ pA3P1 ´ P1A1 A3P2 ´ P2A2q.

With Proposition 2.7, we find that

P rAs “

¨

˝

A1 0 0
0 A2 0

A3P1 ´ P1A1 ´ P
1
1 S `A3P2 ´ P2A2 ´ P

1
2 A3

˛

‚.

Since the latter is reduced, we know that LiepP rAsq “ g, where g is the Lie algebra
of the differential Galois group of rAs. By Remark 1.9, we find LiepP rAsq “ g Ă LiepAq.

By construction of LiepAq, any matrix in LiepAq must have the form

¨

˝

‹ 0 0
0 ‹ 0
0 ‹ ‹

˛

‚. As

g Ă LiepAq, the same holds for g. Since P1 acts only on the bottom left block of P rAs,
we thus find that without loss of generality, we may assume P1 “ 0. Then we see that
the reduction matrix will have no effect on the A1 block but will only act on the block
A2 0
S A3

. As the latter is in reduced form, we find, see Proposition 1.7, that for all P2,

the Lie algebra of

ˆ

Idn2 0
P2 Idn3

˙„ˆ

A2 0
S A3

˙

“

ˆ

A2 0
S `A3P2 ´ P2A2 ´ P

1
2 A3

˙

contains the Lie algebra of
ˆ

A2 0
S A3

˙

. It is now clear that we have the inclusion

LiepAq Ă LiepP rAsq “ g. By Remark 1.9 g Ă LiepAq and we find LiepAq “ g, i.e. rAs is in
reduced form. �

5.2. The Algorithm. Let us now describe the global reduction process. Let Apxq PMnpkq
and consider the linear differential system Y 1pxq “ ApxqY pxq. The contribution of this
paper to this general algorithm is part p4q below.
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(1) Factor the linear differential system, see e. g. [CW04, Bar07, vdH07] and references
therein. We obtain a matrix Apxq PMnpkq such that the system Y 1pxq “ ApxqY pxq
is equivalent to Y 1pxq “ ApxqY pxq, where

Apxq “

¨

˚

˚

˚

˚

˝

A1pxq 0
. . .

Si,jpxq
. . .

Akpxq

˛

‹

‹

‹

‹

‚

,

and each diagonal block Y 1pxq “ A`pxqY pxq, ` “ 1 . . . k, is irreducible.
(2) Using for example [BCDVW16, AMCW13], compute a reduced form of the block-

diagonal system

Y 1pxq “

¨

˚

˝

A1pxq 0
. . .

0 Akpxq

˛

‹

‚

Y pxq.

Note that the reduced form

¨

˚

˝

A1,redpxq 0
. . .

0 Ak,redpxq

˛

‹

‚

may have entries in a

finite algebraic extension k0 of k. Let Pdiagpxq P GLnpk0q be the corresponding
gauge transformation.

(3) Compute

Adiag,redpxq :“ PdiagpxqrApxqs “

¨

˚

˚

˚

˚

˝

A1,redpxq 0
. . .

...
. . . Ak´1,redpxq

Sk,1pxq . . . Sk,k´1pxq Ak,redpxq

˛

‹

‹

‹

‹

‚

.

(4) Let Ak :“ Ak,red and ` :“ k.
While ` ě 2 do
(a) Apply the reduction process of §4, see Theorem 4.4 with k replaced by k0, see

Remark 5.2, to compute a reduced form of

ˆ

A`´1,redpxq 0
S`´1pxq A`pxq

˙

, where S`´1pxq :“

¨

˚

˝

S`,`´1pxq
...

Sk,`´1pxq

˛

‹

‚

,

is the block column below A`´1,redpxq in Adiag,redpxq.
(b) Let A`´1pxq be this new reduced form. Let ` :“ `´ 1 and iterate.
End do.

The correctness of Step 4a is ensured by Lemma 5.1. It follows that the resulting system
Y 1pxq “ A1pxqY pxq is a reduced form of Y 1pxq “ ApxqY pxq.

Remark 5.2. In Step 4a, we may have to introduce an algebraic extension k0 of Cpxq
and compute solutions in k0 of linear differential systems with coefficients in k0 and a
parameterized right hand side. This can be reduced (see [Sin91]) to computing solutions in
k of a system of bigger dimension. From §1.1, we see that it is still possible. Although it
would require some extra work, it would not be a practical obstacle.
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Example 5.3. When k “ 3, Step 4 performs the following. Consider the matrix given by
Step 3.

Adiag,redpxq “

¨

˝

A1,redpxq 0 0
S2,1pxq A2,redpxq 0
S3,1pxq S3,2pxq A3,redpxq

˛

‚.

We start by reducing the matrix
ˆ

A2,redpxq 0
S3,2pxq A3,redpxq

˙

to obtain A2pxq. Then we reduce
ˆ

A1,redpxq 0
S3pxq A2pxq

˙

, with S3pxq :“

ˆ

S2,1pxq
S3,1pxq

˙

, to obtain the final reduced matrix.

6. Computation of the Lie algebra of the differential Galois group

We consider a differential system rApxqs : Y 1pxq “ ApxqY pxq with Apxq PMnpkq. In
this section, we review how to compute the Lie algebra g of the differential Galois group
G. We first assume that rApxqs is in reduced form; the non-reduced case is addressed in
Remark 6.1. We stress the fact that, from now on, all the results are mostly well known
and are included for completeness.
We can find a Wei-Norman decomposition of Apxq. We compute the smallest C-vector space
containing its generators and stable under the Lie bracket. Let B1, . . . , Bσ be a basis of this
space. We know that the smallest algebraic Lie algebra containing the Bi is g.

An algorithm for computing the smallest algebraic Lie algebra containing the Bi can be
found in [FdG07]. In order to be self-contained, we are going to summarize this work.

It follows from [Che51], Chapter II, Theorem 14, that the Lie algebra generated by a
finite family of algebraic Lie algebras is algebraic. Therefore, to compute g it is sufficient to
be able to compute gi :“ LiepBiq for all i P t1, . . . , σu.

To be able to compute g, we are thus reduced to the following problem: given a matrix
B PMnpCq, compute LiepBq. Let B “ D ` N be the additive Jordan decomposition of
B, where D is diagonalizable, N is nilpotent, and DN “ ND. From [Che51], Chapter II,
Theorem 10, we deduce that

LiepBq “ LiepDq ‘ LiepNq.

Let us compute LiepNq. The matrix N is nilpotent. As we can see in [Che51], Chapter II,
§13, Proposition 1, the C-vector space spanned by N is an algebraic Lie algebra, with
corresponding algebraic group texppαNq, α P Cu, which is a vector group. Therefore,

LiepNq “ VectCpNq.

Let us compute LiepPD0P
´1q, where PD0P

´1 “ D, P is an invertible matrix, and
D0 “ Diagpd1, . . . , dnq is a diagonal matrix. Set

∆ :“
!

pe1, . . . , enq P Zn
ˇ

ˇ

ˇ

n
ÿ

`“1

e`d` “ 0
)

.

By Chevalley, see for instance [FdG07], Theorem 2, we obtain

LiepD0q “

#

Diagpa1, . . . , anq P Cn
ˇ

ˇ

ˇ

n
ÿ

`“1

e`a` “ 0,@pe1, . . . , enq P ∆

+

,

and
LiepDq “ PLiepD0qP

´1.
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Remark 6.1. If we start from a system rApxqs which is not in reduced form, the algorithm
presented in §5 will compute a finite field extension k0 of k and a matrix Aredpxq PMnpk0q

such that rAredpxqs is a reduced form of rApxqs.
Let Gk0 be the differential Galois group over k0. Since the gauge transformation that
performs the reduction has entries in k0, and the Galois group is invariant under gauge
transformation, Gk0 is the differential Galois group of rAredpxqs over k0. By Lemma 32
in [AMCW13], Gk0 is connected. Note that by the Galois correspondence, see [PS03],
Proposition 1.34, G{Gk0 is finite, which means that Gk0 is the connected component of
the identity of G. So the Lie algebras of G and Gk0 coincide and we may apply the above
construction to obtain LiepAredpxqq and hence g.

7. Computation of the differential Galois group of a reduced form

Let Apxq P Mnpkq; let G be the differential Galois group of rApxqs and g be the Lie
algebra. We now know, using §6, how to compute g. The goal of this section is to explain
how, theoretically, one may recover G from g when rApxqs is in reduced form. The problem
of recovering a connected group from its Lie algebra is solved in [dG09]. In this section, we
propose a solution, based on ideas from [DJK05, Section 3], but we do not claim originality
nor algorithmic efficiency in what follows; this section is included for completeness.

Since rApxqs is in reduced form, by Lemma 32 in [AMCW13], we obtain that G is
connected. Let B1, . . . , Bσ be a basis of the C-vector space g. As G is connected, it is the
smallest algebraic group containing exppgq. It follows that

G “ xexppB1q, . . . , exppBσqy

it is the smallest algebraic group that contains the matrices exppBiq.
So let us compute xexppB1q, . . . , exppBσqy. This problem has been solved in full generality

in [DJK05, Section 3]. It is simpler here, since the algebraic group we are looking for is
connected. We start by a classical observation taken from [DJK05, Section 3.1].

Lemma 7.1 ([DJK05], Section 3.1). Let V1, V2 be affine varieties over C and ψ : V1 Ñ V2 be
a morphism of affine varieties. Let X Ă V1 be a Zariski closed subset. If we have generators
for the vanishing ideal f Ă CrV1s of X, then we may compute xψpXqy.

Proof. For self-containedness, we reproduce the proof from [DJK05, Section 3.1]. The
morphism ψ : V1 Ñ V2 corresponds to a homomorphism ψ‹ : CrV2s Ñ CrV1s of the
coordinate rings (see [CLO07], Proposition 8 in Chapter 4]). Given generators of the
vanishing ideal f Ă CrV1s of X, one can compute generators of the ideal pψ‹q´1pfq using a
Groebner basis. The latter are the generators of xψpXqy. �

We begin by computing the Zariski closure of the group generated by a single matrix
M :“ exppBq, with B P g. We have a Dunford decomposition B “ S`N with S semi-simple,
N nilpotent and rS,N s “ 0. So exppBq “ D ¨ U with D :“ exppSq diagonalizable and
U :“ exppNq unipotent.

As rD,U s “ 0, we find that xMy “ xDy.xUy. Using Lemma 7.1, if we are able to compute
xDy and xUy, we see that we may compute xMy “ xDy.xUy. Thus, what is left for us to do
is to treat the cases where M is unipotent or diagonalizable.

We start with the unipotent case. As N is nilpotent, the map

ψ : t ÞÑ expptNq
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is an algebraic map from V1 :“ C to V2 :“ GLnpCq; moreover, expptNq is a linear combination
of a finite number of powers of N . Pick a matrix M “ pxi,jq of indeterminates and eliminate
t from the equations M ´ expptNq “ 0; this makes sense because expptNq is polynomial in
t. As shown in Lemma 7.1, this allows us to recover the Zariski closure of the image of C
under ψ, which is xUy.

We now treat the diagonalizable case. We have D “ exppSq with S semi-simple. We may
diagonalize S so that, letting

D :“ Diagpλ1, . . . , λnq, D0 :“ exppDq “ Diagpd1, . . . , dnq with di “ exppλiq,

we have S “ PDP´1 and D “ PD0P
´1 for some P P GLnpCq. In order to compute xDy, it

is sufficient to understand the algebraic relations between the eigenvalues of D. This will be
done in the same way as in the computation of the Lie algebra of a diagonal matrix. As
we see in [DJK05], Section 3.3., the ideal that generates xD0y will be obtained from the
e1, . . . , en P C such that pd1q

e1 ¨ ¨ ¨ pdnq
en “ 1 with di “ exppλiq. So, we set

∆1 :“
!

pe1, . . . , enq P Zn
ˇ

ˇ

ˇ

n
ÿ

`“1

e`λ` “ 0
)

,

and we find

xD0y “

!

pd1, . . . , dnq P pC˚qn
ˇ

ˇ

ˇ

n
ź

`“1

pd`q
e` “ 1,@pe1, . . . , enq P ∆1

)

.

As the map X ÞÑ PXP´1 is algebraic, Lemma 7.1 tells us that we may compute xDy from
the relation

xDy “ P xD0yP
´1.

Now that we know how to compute the xexppBiqy, for every i P t1, . . . , σu, Lemma 7.1
shows that we may compute xexppB1q, . . . , exppBσqy “ G and we are done.

Remark 7.2. If we start from a system rApxqs which is not in reduced form, the algorithm
presented in §5 will compute a finite field extension k0 of k and a matrix Aredpxq PMnpk0q

such that rAredpxqs is a reduced form of rApxqs. By Remark 6.1, the differential Galois groups
over k0 of rAredpxqs and rApxqs coincide and are equal to G˝, the connected component of
the identity of G. The defining ideal of G˝ gives the algebraic relations over k0 inside the
Picard-Vessiot extension.
Example 7.3. We have given in §3.4, the generators of the Lie algebra of the nilpotent
example. A Zariski-dense subgroup of the differential Galois group is generated by t1Id8
with t1 P C˚, and the family of the following matrices, with t2, . . . , t5 P C:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 t2 0 0 0 0 0
0 1 0 ´t2 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
t2 0 0 0 1 0 t2 0
0 ´t2 0 0 0 1 0 ´t2
0 0 ´t2 0 0 0 1 0
0 0 0 t2 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 1 t3 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
t3 0 0 0 0 1 t3 0
0 0 0 0 0 0 1 0
0 0 ´t3 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
2 t4 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 2 t4 1 0 0 0 0
´t4 0 0 0 1 0 0 0
0 t4 0 0 2 t4 1 0 0
0 0 ´t4 0 0 0 1 0
0 0 0 t4 0 0 2 t4 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 t5 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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Using the above procedure, one may recover the equations of the Galois group from the
data of these generators.
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