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a b s t r a c t 

The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth ob- 

jects (NEOs) provide a fundamental frame of reference for studies of individual NEOs and more complex 

population-level questions. We present a new four-dimensional model of the NEO population that de- 

scribes debiased steady-state distributions of semimajor axis, eccentricity, inclination, and absolute mag- 

nitude H in the range 17 < H < 25. The modeling approach improves upon the methodology originally de- 

veloped by Bottke et al. (20 0 0, Science 288, 2190–2194) in that it is, for example, based on more realistic 

orbit distributions and uses source-specific absolute-magnitude distributions that allow for a power-law 

slope that varies with H . We divide the main asteroid belt into six different entrance routes or regions 

(ER) to the NEO region: the ν6 , 3:1J, 5:2J and 2:1J resonance complexes as well as Hungarias and Pho- 

caeas. In addition we include the Jupiter-family comets as the primary cometary source of NEOs. We 

calibrate the model against NEO detections by Catalina Sky Surveys’ stations 703 and G96 during 2005–

2012, and utilize the complementary nature of these two systems to quantify the systematic uncertainties 

associated to the resulting model. We find that the (fitted) H distributions have significant differences, al- 

though most of them show a minimum power-law slope at H ∼ 20. As a consequence of the differences 

between the ER-specific H distributions we find significant variations in, for example, the NEO orbit dis- 

tribution, average lifetime, and the relative contribution of different ERs as a function of H . The most 

important ERs are the ν6 and 3:1J resonance complexes with JFCs contributing a few percent of NEOs 

on average. A significant contribution from the Hungaria group leads to notable changes compared to the 

predictions by Bottke et al. in, for example, the orbit distribution and average lifetime of NEOs. We pre- 

dict that there are 962 +52 
−56 

( 802 +48 
−42 

× 10 3 ) NEOs with H < 17.75 ( H < 25) and these numbers are in agree- 

ment with the most recent estimates found in the literature (the uncertainty estimates only account for 

the random component). Based on our model we find that relative shares between different NEO groups 

(Amor, Apollo, Aten, Atira, Vatira) are (39.4,54.4,3.5,1.2,0.3)%, respectively, for the considered H range and 

that these ratios have a negligible dependence on H . Finally, we find an agreement between our esti- 

mate for the rate of Earth impacts by NEOs and recent estimates in the literature, but there remains a 

potentially significant discrepancy in the frequency of Tunguska-sized and Chelyabinsk-sized impacts. 

© 2018 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Glossary of acronyms and terms. 

Acronym/ Definition 

term 

703 Catalina Sky Survey (telescope) 

AICc corrected Akaike Information Criteria 

CSS Catalina Sky Survey (703 and G96) 

ER escape/entrance route/region 

G96 Mt. Lemmon Survey (part of CSS) 

HFD H -frequency distribution 

IMC intermediate Mars-crosser 

JFC Jupiter-family comet 

MAB main asteroid belt 

MBO main-belt object 

ML maximum likelihood 

MMR mean-motion resonance 

MPC Minor Planet Center 

MOID minimum orbital intersection distance 

NEO near-Earth object (asteroid or comet with q < 1.3 au and a < 4.2 au) 

PHO NEO with MOID < 0.05 au and H < 22 

RMS root-mean-square 

SR secular resonance 

YORP Yarkovsky-O’Keefe-Radzievskii-Paddack effect 

Amor NEO with 1.017 au < q < 1.3 au 

Apollo NEO with a > 1.0 au and q < 1.017 au 

Aten NEO with a < 1.0 au and Q > 0.983 au 

Atira NEO with 0.718 au < Q < 0.983 au 

Vatira NEO with 0.307 au < Q < 0.718 au 

a semimajor axis 

e eccentricity 

i inclination 

� longitude of ascending node 

ω argument of perihelion 

M 0 mean anomaly 

H absolute magnitude in V band 

D diameter 

q perihelion distance 

Q aphelion distance 
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acronyms and terms, see Table 1 ) is one of the key topics in con-

temporary planetary science ( Binzel et al., 2015; Harris et al., 2015;

Abell et al., 2015 ). Here we present a new model describing the de-

biased absolute-magnitude ( H ) and orbital (semimajor axis a , ec-

centricity e , inclination i ) distributions for NEOs. The model also

enables a probabilistic assessment of source regions for individual

NEOs. 

We follow the conventional notation and define an NEO as

an asteroid or comet (active, dormant or extinct) with perihe-

lion distance q < 1.3 au and semimajor axis a < 4.2 au. The lat-

ter requirement is not part of the official definition, which

has no limit on a , but it limits NEOs to the inner solar sys-

tem and makes comparisons to the existing literature easier

(cf. Bottke et al., 2002a ). The population of transneptunian ob-

jects may contain a substantial number of objects with q < 1.3 au

that are thus not considered in this work. NEOs are further di-

vided into the Amors (1.017 au < q < 1.3 au), Apollos ( a > 1.0 au and

q < 1.017 au), Atens ( a < 1.0 au and aphelion distance Q > 0.983 au),

Atiras (0.718 au < Q < 0.983 au) that are detached from the Earth,

and the so-called Vatiras (0.307 au < Q < 0.718 au) that are detached

from Venus ( Greenstreet et al., 2012a ). NEOs are also classified as

potentially hazardous objects (PHOs) when their minimum orbital

intersection distance (MOID) with respect to the Earth is less than

0.05 au and H < 22. 

Several papers have reported estimates for the debiased orbit

distribution and/or the H -frequency distribution (HFD) for NEOs

over the past 25 years or so. The basic equation that underlies

most of the studies describes the relationship between the known

NEO population n , the discovery efficiency ε, and the true popula-

tion N as functions of a, e, i , and H : 

n (a, e, i, H) = ε(a, e, i, H) N(a, e, i, H) . (1)
Rabinowitz (1993) derived the first debiased orbit distribution

nd HFD for NEOs. The model was calibrated by using only 23 as-

eroids discovered by the Spacewatch Telescope between Septem-

er 1990 and December 1991. The model is valid in the diameter

ange 10 m � D � 10 km, and the estimated rate of Earth impacts

y NEOs is about 100 times larger than the current best estimates

t diameters D ∼ 10 m ( Brown et al., 2013 ). Rabinowitz (1993) con-

luded that the small NEOs have a different HFD slope compared

o NEOs with D � 100 m and suggested that future studies should

assess the effect of a size-dependent orbit distribution on the

erived size distribution.” Rabinowitz et al. (20 0 0) used methods

imilar to those employed by Rabinowitz (1993) to estimate the

FD based on 45 NEOs detected by the Jet Propulsion Laboratory’s

ear-Earth-Asteroid Tracking (NEAT) program. They concluded that

here should be 700 ± 230 NEOs with H < 18. 

Although the work by Rabinowitz (1993) showed that it is

ossible to derive a reasonable estimate for the true population,

he relatively small number of known NEOs ( ∼ 10 2 –10 4 ) implies

hat the maximum resolution of the resulting four-dimensional

odel is poor and a scientifically useful resolution is limited to

arginalized distributions in one dimension. Therefore additional

onstraints had to be found to derive more useful four-dimensional

odels of the true population. Bottke et al. (20 0 0) devised a

ethodology which utilizes the fact that objects originating in dif-

erent parts of the main asteroid belt (MAB) or the cometary re-

ion will have statistically distinct orbital histories in the NEO re-

ion. Assuming that there is no correlation between H and ( a, e,

 ), Bottke et al. (20 0 0) decomposed the true population N ( a, e,

, H ) into N ( H ) �R s ( a, e, i ), where R s ( a, e, i ) denotes the steady-

tate orbit distribution for NEOs entering the NEO region through

ntrance route s . The primary dynamical mechanisms responsi-

le for delivering objects from the MAB and cometary region into

he NEO region were already understood at that time, and mod-

ls for R s ( a, e, i ) could therefore be obtained through direct or-

ital integration of test particles placed in, or in the vicinity of,

scape routes from the MAB. The parameters left to be fitted de-

cribed the relative importance of the steady-state orbit distribu-

ions and the overall NEO HFD. Fitting a model with three escape

outes from the MAB, that is, the ν6 secular resonance (SR), the

ntermediate Mars crossers (IMC), and the 3:1J mean-motion res-

nance (MMR) with Jupiter, to 138 NEOs detected by the Space-

atch survey, Bottke et al. (20 0 0) estimated that there are 910 +100 
−120 

EOs with H < 18. Their estimates for the contributions from the

ifferent escape routes had large uncertainties that left the rel-

tive contributions from the different escape routes statistically

ndistinguishable. Bottke et al. (2002a) extended the model by

lso accounting for objects from the outer MAB and the Jupiter-

amily-comet (JFC) population, but their contribution turned out

o be only about 15% combined whereas the contributions by

he inner MAB escape routes were, again, statistically indistin-

uishable. The second column in Table 2 provides the numbers

redicted by Bottke et al. (2002a) for all NEOs as well as NEO

ubgroups. 

D’Abramo et al. (2001) presented an alternative method for es-

imating the HFD that is based on the re-detection ratio, that is,

he fraction of objects that are re-detections of known objects

ather than new discoveries. They based their analysis on 784

EOs detected by the Lincoln Near-Earth Asteroid Research (LIN-

AR) project during 1999–20 0 0. Based on the resulting HFD, that

as valid for 13.5 ≤ H ≤ 20.0, they estimated that there should ex-

st 855 ± 101 NEOs with H < 18. Harris and D’Abramo (2015) ex-

ended the method and redid the analysis with 11,132 NEOs dis-

overed by multiple surveys. They produced an HFD that is valid

or 9 < H < 30.5 and estimated that there should be 1230 ± 27

990 ± 20) NEOs with H < 18 ( H < 17.75). Later an error was dis-

overed in the treatment of absolute magnitudes that the Minor
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Table 2 

The Bottke et al. (2002a) estimate for the number of 

NEOs with H < 18 and a < 7.2 au, and the known pop- 

ulation (ASTORB a 2018-01-30) with H < 18, H < 17 and 

H < 16 as a function of NEO subgroup. 

Group B02 Known Known Known 

H < 18 H < 18 H < 17 H < 16 

Amor 310 ± 38 504 218 81 

Apollo 590 ± 71 532 226 84 

Aten 58 ± 9 36 17 5 

Atira 20 ± 3 3 2 0 

Vatira – 0 0 0 

NEO 960 ± 120 1075 463 170 

a ftp://ftp.lowell.edu/pub/elgb/astorb.dat.gz . 
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3  
lanet Center (MPC) reports to only a tenth of a magnitude. Cor-

ecting for the rounding error reduced the number of NEOs by 5%

 Stokes et al., 2017 ). 

Stuart (2001) used 1343 detections of 606 different NEOs by the

INEAR project to estimate, in practice, one-dimensional debiased

istributions for a, e, i , and H by using a technique relying on the

 ( a, e, i, H )/ ε( a, e, i, H ) ratio, where N ( a, e, i, H ) had to be marginal-

zed over three of the parameters to provide a useful estimate for

he fourth parameter. They estimated that there are 1227 +170 
−90 

NEOs

ith H < 18 and, in terms of orbital elements, the most prominent

ifference compared to Bottke et al. (20 0 0) was a predicted excess

f NEOs with i � 20 °. Stuart and Binzel (2004) extended the model

y Stuart (2001) to include the taxonomic and albedo distributions.

hey estimated that there would be 1090 ± 180 NEOs with diame-

er D > 1 km, and that 60% of all NEOs should be dark, that is, they

hould belong to the C, D, and X taxonomic complexes. 

Mainzer et al. (2011) estimated that there are 981 ± 19 NEOs

ith D > 1 km and 20,500 ± 3,000 with D > 100 m based on in-

rared (IR) observations obtained by the Widefield Infrared Sur-

ey Explorer (WISE) mission. They also observed that the fraction

f dark NEOs with geometric albedo p V < 0.1 is about 40%, which

hould be close to the debiased estimate given that IR surveys are

ssentially unbiased with respect to p V . Mainzer et al. (2012) ex-

ended the analysis of WISE observations to NEO subpopulations

nd estimated that there are 4700 ± 1450 PHOs with D > 100 m. In

ddition, they found that the albedos of Atens are typically larger

han the albedos for Amors. 

Greenstreet et al. (2012a) improved the steady-state orbit dis-

ributions that were used by Bottke et al. (2002a) by using six

imes more test asteroids and four times shorter timesteps for the

rbital integrations. The new orbit model focused on the a < 1 au

egion and discussed, for the first time, the so-called Vatira pop-

lation with orbits entirely inside the orbit of Venus. The new

ntegrations revealed that near-Earth asteroids (NEAs) can evolve

o retrograde orbits even in the absence of close encounters with

lanets ( Greenstreet et al., 2012b ). Similar retrograde orbits must

ave existed in the integrations carried out by Bottke et al. (20 0 0,

002a) , but have apparently been overlooked. The fraction of NEAs

n retrograde orbits was estimated at about 0.1% (within a fac-

or of two) of the entire NEO population. We note that the model

y Greenstreet et al. (2012a) did not attempt a re-calibration of

he model parameters but used the best-fit parameters found by

ottke et al. (2002a) . 

Granvik et al. (2016) used an approach similar to

ottke et al. (2002a) to derive a debiased four-dimensional

odel of the HFD and orbit distribution. The key result of that

aper was the identification of a previously unknown sink for

EOs, most likely caused by the intense solar radiation experi-

nced by NEOs on orbits with small perihelion distances. They also

howed that dark NEOs disrupt more easily than bright NEOs, and

oncluded that this explains why the Aten asteroids have higher
lbedos than other NEOs ( Mainzer et al., 2012 ). Based on 7952

erendipitious detections of 3632 distinct NEOs by the Catalina

ky Survey (CSS) they predicted that there exists 1008 ± 45 NEOs

ith H < 17.75, which is in agreement with other recent estimates.

Tricarico (2017) analyzed the data obtained by the 9 most pro-

ific asteroid surveys over the past two decades and predicted

hat there should exist 1096.6 ± 13.7 (920 ± 10) NEOs with H < 18

 H < 17.75). Their method relied, again, on computing the n ( a, e,

, H )/ ε( a, e, i, H ) ratio. The chosen approach implied that the re-

ulting population estimate is systematically too low, because only

ins that contain one or more known NEOs contribute to the over-

ll population regardless of the value of ε( a, e, i, H ). Detailed tests

howed that the problem caused by empty bins remains moderate

hen optimizing the bin sizes. Tricarico (2017) also showed that

he cumulative HFDs based on individual surveys were similar and

his lends further credibility to their results. 

Schunová-Lilly et al. (2017) derived the NEO HFD based on

EO detections obtained with the Panoramic Survey Telescope

nd Rapid Response System 1 (Pan-STARRS 1). Their methodol-

gy was, again, based on computing the ratio n ( a, e, i, H )/ ε( a, e,

, H ), where the observational bias was obtained using a realis-

ic survey simulation ( Denneau et al., 2013 ). Marginalizing over

he orbital parameters to provide a useful estimate for the HFD,

chunová-Lilly et al. (2017) found a distribution that agrees with

ranvik et al. (2016) and Harris and D’Abramo (2015) . 

Estimates for the number of km-scale and larger NEOs have

hus converged to about 90 0–10 0 0 objects but there still remains

ignificant variation at the smaller sizes (in particular, H � 23). In

hat follows we therefore primarily focus on the sub-km-scale

EOs. 

Of the models described above only Bottke et al. (20 0 0,

002a) and Granvik et al. (2016) are four-dimensional models,

hat is, they simultaneously and explicitly describe the correla-

ions between all four parameters throughout the considered H

ange. These are also the only models that provide information

n the source regions for NEOs although Granvik et al. (2016) did

ot explicitly report this information. Although the model by

ottke et al. (2002a) has been very popular and also able to

eproduce the known NEO population surprisingly well, it has

ome known shortcomings. The most obvious problem is that

he number of currently known H < 18 Amors exceeds the pre-

icted number of H < 18 Amors by more than 5 σ ( Table 2 ).

ottke et al. (2002a) are also unable to reproduce the NEO, and

n particular Aten, inclination distribution ( Greenstreet and Glad-

an, 2013 ). These shortcomings are most readily explained by

he limited number of detections that the model was calibrated

ith, but may also be explained by an unrealistic initial inclination

istribution for the test asteroids which were used for comput-

ng the orbital steady-state distributions, or by not accounting for

arkovsky drift when populating the so-called intermediate source

egions in the MAB. An intermediate source region refers to the es-

ape route from, e.g., the MAB and into the NEO region whereas

 source region refers to the region where an object originates. In

hat follows we do not explicitly differentiate between the two

ut refer to both with the term entrance/escape route/region (ER)

or the sake of simplicity. Bottke et al. (2002a) also used a single

ower law to describe the NEO HFD, that is, neither variation in

he HFD between NEOs from different ERs nor deviations from the

ower-law form of the HFD were allowed. The ERs, such as the

ntermediate Mars-crossers (IMCs) in Bottke et al. (20 0 0, 20 02a) ,

ave been perceived to be artificial because they are not the ac-

ual sources in the MAB. The IMC source also added to the de-

eneracy of the model because the steady-state orbit distribution

or asteroids escaping the MAB overlaps with the steady-state or-

it distributions for asteroids escaping the MAB through both the

:1J MMR and the ν6 SR. On the other hand, objects can and do

ftp://ftp.lowell.edu/pub/elgb/astorb.dat.gz
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escape out of a myriad of tiny resonances in the inner MAB, feed-

ing a substantial population of Mars-crossing objects. Objects trav-

eling relatively rapidly by the Yarkovsky effect are more suscepti-

ble to jumping across these tiny resonances, while those moving

more slowly can become trapped ( Bottke et al., 2002b ). Modeling

this portion of the planet-crossing population correctly is there-

fore computationally challenging. In this paper, we employ certain

compromises on how asteroids evolve in the MAB rather than in-

voke time-consuming full-up models of Yarkovsky/YORP evolution

(e.g., Vokrouhlický et al., 2015 ). The penalty is that we may miss

bodies that escape the MAB via tiny resonances. Our methods to

deal with this complicated issue are discussed in Granvik et al.

(2016, 2017) and below. We stress that the observational data used

for the Bottke et al. (2002a) model, 138 NEOs observed by the

Spacewatch survey, was well described with the model they de-

veloped. The shortcomings described above have only become ap-

parent with the > 100 times larger sample of known NEOs that is

available today (15,624 as of 2017-02-09). The most notable short-

coming of the Bottke et al. (2002a) model in terms of application

is that it is strictly valid only for NEOs with H < 22, roughly equiv-

alent to a diameter of � 100 m. In addition, the resolution of the

steady-state orbit distribution limits the utility of models that are

based on it (see, e.g., Granvik et al., 2012 ). 

The improvements presented in this work compared to

Bottke et al. (2002a) are possible through the availability of

roughly a factor of 30 more observational data than used by

Bottke et al. (2002a) , using more accurate orbital integrations with

more test asteroids and a shorter time step, using more ERs (7 vs

5), and by using different and more flexible absolute-magnitude

distributions for different ERs. 

The (incomplete) list of questions we will answer are: 

• What is the total number of Amors, Apollos, Atens, Atiras, and

Vatiras in a given size-range? 
• What is the origin for the observed excess (as compared to pre-

diction by Bottke et al. (2002a) ) of NEOs with 20 °� i � 40 °?
Is there a particular source or are these orbits in a particular

phase of their dynamical evolution, like the Kozai cycle? 
• What is the relative importance of each of the ERs in the MAB?
• What is the fraction of comets in the NEO population? 
• Is there a measurable difference in the orbit distribution be-

tween small and large NEOs? 
• Are there differences in the HFDs of NEOs from different ERs?

What are the differences? 
• What is the implication of these results for our understanding

of the asteroid-Earth impact risk? 
• How does the predicted impact rate compare with the observed

bolide rate? 
• What is the HFD for NEOs on retrograde orbits? 
• How does the resulting NEO HFD compare with independent

estimates obtained through, for example, crater counting? 
• Is the NEO population in a steady state? 

2. Theory and methods 

Let us, for a moment, assume that we could correctly model

all the size-dependent, orbit-dependent, dynamical pathways from

the MAB to the NEO region, and we knew the orbit and size dis-

tributions of objects in the MAB. In that case we could estimate

the population statistics for NEOs by carrying out direct integra-

tions of test asteroids from the MAB through the NEO region un-

til they reach a sink. While it has been shown that such a di-

rect modeling is reasonably accurate for km-scale and larger ob-

jects, it breaks down for smaller objects ( Granvik et al., 2017 ). The

most obvious missing piece is that we do not know the orbit and

size distributions of small main-belt objects (MBOs) — the current
est estimates suggest that the inventory is complete for diameters

 � 1.5 km ( Jedicke et al., 2015 ). 

Instead we take another approach that can cope with our im-

erfect knowledge and gives us a physically meaningful set of

nobs to fit the observations. We build upon the methodology

riginally developed by Bottke et al. (20 0 0) by using ER-dependent

FDs that allow for a smoothly changing slope as a function of H .

q. (1) can therefore be rewritten as 

 (a, e, i, H) = ε(a, e, i, H) 

×
N ER ∑ 

s =1 

N s (H; N 0 ,s , αmin ,s , H min ,s , c s ) R s (a, e, i ) , (2)

here N ER is the number of ERs in the model, and the equation for

he differential H distribution allows for a smooth, second-degree

ariation of the slope: 

 s (H; N 0 ,s , αmin ,s , H min ,s , c s ) 

= N 0 ,s 10 

∫ H 
H 0 

[ αmin ,s + c s (H ′ −H min ,s ) 
2 ] dH ′ 

= N 0 ,s 10 

αmin ,s (H−H 0 )+ c s 3 [ (H−H min ,s ) 
3 −(H 0 −H min ,s ) 

3 ] . (3)

he steady-state orbital distributions, R s ( a, e, i ), are estimated nu-

erically by carrying out orbital integrations of numerous test

steroids in the NEO region and recording the time that the

est asteroids spend in various parts of the ( a, e, i ) space (see

ections 2.2 and 5 ). The orbit distributions are normalized so that

or each ER s 
 ∫ ∫ 

R s (a, e, i ) d a d e d i = 1 . (4)

n practice the integration over the corresponding NEO orbital

pace in Eq. (4) is replaced with a simple summation over a grid

f finite cells. 

With the orbit distributions R s ( a, e, i ) fixed, the free param-

ters to be fitted describe the HFDs for the different ERs: the

umber density N 0, s at the reference magnitude H 0 (common to

ll sources and chosen to be H 0 = 17 ), the minimum slope αmin ,s 

f the absolute magnitude distribution, the curvature c s of the

bsolute-magnitude-slope relation, and the absolute magnitude

 min ,s corresponding to the minimum slope. Note that at H = H 0 

n our parametrization, the (unnormalized) N 0, s effectively take the

ame role as the (normalized) weighting factors by which different

Rs contribute to the NEO population in the Bottke et al. (20 0 0,

002a) models. Because HFDs are ER-resolved in our approach, the

elative weighting at H � = H 0 is not explicitly available but has to be

omputed separately. 

As shown by Granvik et al. (2016) it is impossible to find an ac-

eptable fit to NEOs with small perihelion distances, q = q (a, e ) =
 (1 − e ) , when assuming that the sinks for NEOs are collisions

ith the Sun or planets, or an escape from the inner solar sys-

em. The model is able to reproduce the observed NEO distri-

ution only when assuming that NEOs are completely destroyed

t small, yet nontrivial distances from the Sun. In addition to

he challenges with numerical models of such a complex disrup-

ion event in a detailed physical sense, it is also computation-

lly challenging to merely fit for an average disruption distance.

ranvik et al. (2016) performed an incremental fit to an accuracy of

.001 au. The incremental fit was facilitated by constructing multi-

le different steady-state orbit distributions, each with a different

ssumption for the average disruption distance, and then identify-

ng the orbit distribution which leads to the best agreement with

he observations. Each of the steady-state orbit distributions were

onstructed so that the test asteroids did not contribute to the or-

it distribution after they crossed the assumed average disruption

istance. Granvik et al. (2016) used the perihelion distance q as the

istance metric. While it is clear that super-catastrophic disrup-

ion can explain the lack of NEOs on small- q orbits, such a simple
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odel does not allow for an accurate reproduction of the observed

 distribution. For instance, Granvik et al. (2016) explicitly showed

hat the disruption distance depends on asteroid diameter and ge-

metric albedo. 

Here we take an alternative and non-physical route to fit the

mall-perihelion-distance part of the NEO population to improve

he quality of the fit: we use orbit distributions that do not account

or disruptions at small q and instead fit a linear penalty function,

 ( a, e ), with an increasing penalty against orbits with smaller q . Eq.

1) now reads 

 (a, e, i, H) = ε(a, e, i, H) 

×
N ER ∑ 

s =1 

N s (H; N 0 ,s , αmin ,s , H min ,s , c s ) 

× [ 1 − p(a, e ) ] R s (a, e, i ) ∑ 

a,e,i [ 1 − p(a, e ) ] R s (a, e, i ) 
, (5) 

here 

p(a, e ) = 

{ 

k (q 0 − q (a, e )) for q ≤ q 0 , 
0 for q > q 0 , 

nd we solve for two additional parameters—the linear slope, k , of

he penalty function and the maximum perihelion distance where

he penalty is applied, q 0 . Note that the penalty function does

ot have a dependence on H although it has been shown that

mall NEOs disrupt at larger distances compared to large NEOs

 Granvik et al., 2016 ). We chose to use a functional form indepen-

ent of H to limit the number of free parameters. 

In total we need to solve for N par = 4 N ER + 2 parameters. In the

ollowing three subsections we will describe the methods used to

stimate the orbital-element steady-state distributions and discov-

ry efficiencies as well as to solve the efficiency equation. 

.1. Estimation of observational selection effects 

All asteroid surveys are affected by observational selection ef-

ects in the sense that the detected population needs to be cor-

ected in order to find the true population. The known distribu-

ion of asteroid orbits is not representative of their actual distri-

ution because asteroid discovery and detection is affected by an

bject’s size, lightcurve amplitude, rotation period, apparent rate

f motion, color, and albedo, and the detection system’s limiting

agnitude, survey pattern, exposure time, the sky-plane density

f stars, and other secondary factors. Combining the observed or-

it distributions from surveys with different detection characteris-

ics further complicates the problem unless the population under

onsideration is essentially ‘complete’, i.e., all objects in the sub-

opulation are known. Jedicke et al. (2016) provide a detailed de-

cription of the methods employed for estimating selection effects

n this work. Their technique builds upon earlier methods ( Jedicke

nd Metcalfe, 1998; Jedicke et al., 2002; Granvik et al., 2012 ) and

akes advantages of the increased availability of computing power

o calculate a fast and accurate estimate of the observational bias. 

The ultimate calculation of the observational bias would pro-

ide the efficiency of detecting an object as a function of all the

arameters listed above but this calculation is far too complicated,

omputationally expensive, and unjustified for understanding the

EO orbit distribution and HFD at the current time. Instead, we in-

oke many assumptions about unknown or unmeasurable parame-

ers and average over the underlying system and asteroid proper-

ies to estimate the selection effects. 

The fundamental unit of an asteroid observation for our pur-

oses is a ‘tracklet’ composed of individual detections of the as-

eroid in multiple images on a single night ( Kubica et al., 2007 ).

t the mean time of the detections the tracklet has a position and
ate of motion ( w ) on the sky and an apparent magnitude ( m ; per-

aps in a particular band). Note that Jedicke et al. (2016) use a

ifferent notation. The tracklet detection efficiency depends on all

hese parameters and can be sensitive to the detection efficiency

n a single image due to sky transparency, optical effects, and the

ackground of, e.g., stars, galaxies, and nebulae. We average these

ffects over an entire night and calculate the detection efficiency

 ̄ε(m ) ) as a function of apparent magnitude for the CSS images us-

ng the system’s automated detection of known MBOs. To correct

or the difference in apparent rates of motion between NEOs and

BOs we used the results of Zavodny et al. (2008) who measured

he detection efficiency of stars that were artificially trailed in CSS

mages at known rates. Thus, we calculated the average nightly

EO detection efficiency as a function of the observable tracklet

arameters: ε̄(m, w ) . 

The determination of the observational bias as a function of the

rbital parameters ( ε( a, e, i, H )) involved convolving an object’s

bservable parameters ( m, w ) with its ( a, e, i, H ) averaged over

he orbital angular elements (longitude of ascending node �, ar-

ument of perihelion ω, mean anomaly M 0 ) that can appear in the

elds from which a tracklet is composed. For each image we step

hrough the range of allowed topocentric distances ( 	) and deter-

ine the range of angular orbital elements that could have been

etected for each ( a, e, i, H ) combination. Since the location of the

mage is known ((R.A.,Dec.) = ( α, δ)) and the topocentric location of

he observer is known, then, given 	 and ( a, e, i ) it is possible to

alculate the range of values of the other orbital elements that can

ppear in the field. Under the assumption that the distributions of

he angular orbital elements are flat it is then possible to calcu-

ate ε( a, e, i, H ) in a field and then in all possible fields using the

ppropriate probabilistic combinatorics. While JeongAhn and Mal-

otra (2014) have shown that the argument of perihelion, longi-

ude of ascending node and longitude of perihelion distributions

or NEOs have modest but statistically-significant non-uniformities,

e consider them to be negligible for our purposes compared to

he other sources for systematics. 

.2. Orbit integrator 

The orbital integrations to obtain the NEO steady-state orbit

istributions are carried out with an augmented version of the

WIFT RMVS4 integrator ( Levison and Duncan, 1994 ). The nu-

erical methods, in particular those related to Yarkovsky model-

ng (not used in the main simulations of this work but only in

ome control simulations to attest its importance), are detailed in

ranvik et al. (2017) . The only additional feature implemented in

he software was the capability to ingest test asteroids (with dif-

erent initial epochs) on the fly as the integration progresses, and

his was done solely to reduce the computing time required. 

.3. Estimation of model parameters 

We employ an extended maximum-likelihood (EML) scheme

 Cowan, 1998 ) and the simplex optimization algorithm ( Nelder and

ead, 1965 ) when solving Eqs. (2) and (5) for the parameters P

hat describe the model. 

Let (n 1 , n 2 , . . . , n N bin 
) be the non-zero bins in the binned ver-

ion of n ( a, e, i, H ), and (ν1 , ν2 , . . . , νN bin 
) be the corresponding

ins containing the expectation values, that is, the model pre-

iction for the number of observations in each bin. The joint

robability-density function (PDF) for the distribution of observa-

ions (n 1 , n 2 , . . . , n N bin 
) is given by the multinomial distribution: 

p joint = n tot ! 

N bin ∏ 

k =1 

1 

n k ! 

(
νk 

n tot 

)n k 

, (6) 
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where νk / n tot gives the probability to be in bin k . In EML the mea-

surement is defined to consist of first determining 

n tot = 

N bin ∑ 

k =1 

n k (7)

observations from a Poisson distribution with mean νtot and then

distributing those observations in the histogram (n 1 , n 2 , . . . , n N bin 
) .

That is, the total number of detections is regarded as an addi-

tional constraint. The extended likelihood function L is defined as

the joint PDF for the total number of observations n tot and their

distribution in the histogram (n 1 , n 2 , . . . , n N bin 
) . The joint PDF is

therefore obtained by multiplying Eq. (6) with a Poisson distribu-

tion with mean 

νtot = 

N bin ∑ 

k =1 

νk (8)

and accounting for the fact that the probability for being in bin k

is now νk / νtot : 

p ′ joint = 

νn tot 

tot exp (−νtot ) 

n tot ! 
n tot ! 

N bin ∏ 

k =1 

1 

n k ! 

(
νk 

νtot 

)n k 

= νn tot 

tot exp (−νtot ) 

N bin ∏ 

k =1 

1 

n k ! 

(
νk 

νtot 

)n k 

= exp (−νtot ) 

N bin ∏ 

k =1 

1 

n k ! 
νn k 

k 
(9)

Neglecting variables that do not depend on the parameters that

are solved for, the logarithm of Eq. (9) , that is, the log-likelihood

function, can be written as 

log L = −νtot + 

N bin ∑ 

k =1 

n k log νk , (10)

where the first term on the right hand side emerges as a conse-

quence of accounting for the total number of detections. 

The optimum solution, in the sense of maximum log-likelihood,

log L max , is obtained using the simplex algorithm ( Nelder and

Mead, 1965 ) which starts with N par + 1 random N par -dimensional

solution vectors P l ( l = 1 , N par + 1 ) where N par is the number of pa-

rameters to be solved for. The simplex crawls towards the optimum

solution in the N par -dimensional phase space by improving, at each

iteration step, the parameter values of the worst solution log L min 

towards the parameter values of the best solution log L max accord-

ing to the predefined sequence of simplex steps. The optimization

ends when log L max − log L min < ε and all | P i,m 

− P j,m 

| < ε1 , where

i, j refer to different solution vectors, m is the index for a given

parameter, and ε1 ∼ 2 × 10 −15 . To ensure that an optimum solu-

tion has been found we repeat the simplex optimization using the

current best solution and N random solution vectors until log L max 

changes by less than ε2 in subsequent runs, where ε2 ∼ 10 −10 .

We found suitable values for ε1 and ε2 empirically. Larger values

would prevent the optimum solutions to be found and smaller val-

ues would not notably change the results. Finally, we employ 10

separate simplex chains to verify that different initial conditions

lead to the same optimum solution. 

As an additional constraint we force the fitted parameters P to

be non-negative. The reasoning behind this choice is that nega-

tive parameter values are either unphysical ( N 0, s , αmin ,s , c s , k, q 0 )

or unconstrained ( H min ,s ). A minimum slope occurring for H min ,s <

0 is meaningless because all NEOs have H � 9.4 and we fit for

17 < H < 25. Hence H min ,s � 0 is an acceptable approximation in

the hypothetical case that the simplex algorithm would prefer

H min ,s < 0 . 
In what follows we use low-resolution orbit distributions ( δa =
 . 1 au , δe = 0 . 04 , δi = 4 ◦) to fit for the model parameters, because

t was substantially faster than using the default resolution of the

teady-state orbit distributions ( δa = 0 . 05 au , δe = 0 . 02 , δi = 2 ◦). In

oth cases we use a resolution of δH = 0 . 25 mag for the absolute

agnitude. We combine the best-fit parameters obtained in low

esolution with the orbit distributions in default resolution to pro-

ide our final model. We think this is a reasonable approach be-

ause the orbit distributions are fairly smooth regardless of resolu-

ion and the difference between fitting in low or default resolution

eads to negligible differences in the resulting models. 

Although Granvik et al. (2017) identified about two dozen dif-

erent ERs, concerns about degeneracy issues prevented us from in-

luding all the ERs separately in the final model. Instead we made

ducated decisions in combining the steady-state orbit distribu-

ions into larger complexes by, e.g., minimizing Akaike’s Informa-

ion Criteria (AIC; Akaike, 1974 ) with a correction for multinomial

ata and sample size (Eq. 7.91 in Burnham and Anderson, 2002 ): 

ICc = 2 N par − 2 log L max + 

2 N par (N par + 4) 

4 N bin − N par − 4 

. (11)

. Distribution of NEOs as observed by CSS 

The Mt. Lemmon (IAU code G96) and Catalina (703) stations

f the Catalina Sky Survey (CSS; Christensen et al., 2012 ) discov-

red or accidentally rediscovered 4035 and 2858 NEOs, respec-

ively, during the 8-year period 2005–2012. The motivation for us-

ng the data from these telescopes during this time period is that

ne of these two telescopes was the top PHO discovery system

rom 2005 through 2011 and the two systems have a long track

ecord of consistent, well-monitored operations. The combination

f these two factors provided us reliable, high-statistics discoveries

f NEOs suited to the debiasing procedure employed in this work. 

Details of CSS operations and performance can be found else-

here (e.g. Christensen et al., 2012; Jedicke et al., 2016 ) but gen-

rally, the G96 site with its 1.5-m telescope can be considered a

arrow-field ‘deep’ survey whereas the 0.7-m 703 Schmidt tele-

cope is a wide-field but ‘shallow’ survey. The different capabil-

ties provide an excellent complementarity for this work to val-

date our methods as described below. To ensure good quality

ata we used NEO detections only on nights that met our cri-

eria ( Jedicke et al., 2016 ) for tracklet detection efficiency ( ε0 ),

imiting magnitude ( V lim 

), and a parameter related to the stabil-

ty of the limiting magnitude on a night ( V width ). About 80% of

ll 703 fields and nearly 88% of the G96 fields passed our re-

uirements. The average tracklet detection efficiency for the fields

hat passed the requirements were 75% and 88% for 703 and G96,

espectively, while the limiting magnitudes were V = 19 . 44 and

 = 21 . 15 ( Jedicke et al., 2016 ). 

All NEOs that were identified in tracklets in fields acquired on

ights that met our criteria were included in this analysis. It is

mportant to note that the selection of fields and nights was in

o way based on NEO discoveries. The list of NEOs includes new

iscoveries and previously known objects that were independently

e-detected by the surveys. The ecliptic coordinates of the CSS de-

ections at the time of detection show that the G96 survey concen-

rates primarily on the ecliptic whereas the wide-field 703 survey

mages over a much broader region of the sky ( Fig. 1 , top 2 pan-

ls). It is also clear from these distributions that both surveys are

ocated in the northern hemisphere as no NEOs were discovered

ith ecliptic latitudes < −50 ◦. 

The detected NEOs’ a, e, i , and H distributions are also shown

n Fig. 1 and display similar distributions for both stations. The en-

ancement near the q = 1 au line in the ( a, e ) plots is partly caused

y observational biases. The small NEOs that can be detected by
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Fig. 1. Ecliptic coordinates at discovery for NEOs detected by (top left) G96 and (top right) 703. Observed ( a, i, e, H ) distributions for NEOs detected by (middle left) G96 and 

(middle right) 703. The gray line in the ( a, e ) panels corresponds to q = 1 au . Observed ( q, H ) distributions for NEOs detected by (bottom left) G96 and (bottom right) 703. 
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round-based surveys must be close to Earth to be brighter than a

ystem’s limiting magnitude, and objects on orbits with perihelia

ear the Earth’s orbit spend more time near the Earth, thereby en-

ancing the number of detected objects with q ∼ 1 au. This effect is

bvious in the bottom panels in Fig. 1 in which it is clear that de-

ections of small NEOs ( H � 25) are completely lacking for q > 1.1 au

 q > 1.05 au for 703); in other words, very small objects can be de-

ected only when they approach close to the Earth. Thus, the NEO

odel described herein is not constrained by observational data in

hat region of ( q, H ) space. Instead the constraints derive from our

nderstanding of NEO orbital dynamics. 

It is also worth noting the clear depletion of objects with H ∼ 22

n the two bottom plots of Fig. 1 (also visible in the H − a panels

n the middle of the figure). The depletion band in this absolute

agnitude range is clearly not an observational artifact because

here is no reason to think that objects in this size range are more

hallenging to detect than slightly bigger and slightly smaller ob-

ects. The explanation is that the HFD cannot be reproduced with
 simple power-law function but has a plateau around H ∼ 22. This

lateau reduces their number statistics simultaneously and com-

ined with their small sizes reduces their likelihood of detection.

oing to slightly smaller objects will increase the number statis-

ics and they are therefore detected in greater numbers than their

arger counterparts. 

. Observational selection effects of CSS 

The observed four-dimensional ( a, e, i, H ) distributions in

ig. 1 are the convolution of the actual distribution of NEOs

ith the observational selection effects ε( a, e, i, H ) as described

n Section 2.1 . The calculation of the four-dimensional ε( a, e, i,

 ) is non-trivial but was performed for the Spacewatch survey

 Bottke et al., 2002a ), for the Catalina Sky Survey G96 and 703

ites employed herein ( Jedicke et al., 2016 ), and most recently for

 combination of many NEO surveys ( Tricarico, 2016; 2017 ). It is

mpossible to directly compare the calculated detection efficiency



188 M. Granvik et al. / Icarus 312 (2018) 181–207 

Fig. 2. A 2-d slice through the 4-d detection efficiency, ε( a, e, i, H ), with i = 2 ◦ and 

H = 22 . 875 for the G96 survey ( H = 22 . 875 corresponds to objects of about 100 m 

diameter). To enhance the regions with small efficiency the fig shows log ε( a, e, i, 

H ) as a function of semi-major axis and eccentricity. 
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in these publications because they refer to different asteroid sur-

veys for different periods of time. The fact that Tricarico ’s (2017) fi-

nal cumulative H distribution is in excellent agreement with the H

distribution found in this work suggests that both bias calculations

must be accurate to within the available statistics. 

The ε( a, e, i, H ) slice in Fig. 2 illustrates some of the features of

the selection effects that are manifested in the observations shown

in Fig. 1 . The ‘flat’ region with no values in the lower-right re-

gion represents bins that do not contain NEO orbits. The flat re-

gion in the lower-left corresponds to orbits that can not be de-

tected by CSS because they are usually too close to the Sun. There

is a ‘ridge’ of relatively high detection efficiency along the q = 1 au

line that corresponds to the enhanced detection of objects in the

e vs. a panels in Fig. 1 . That is, higher detection efficiency along

the ridge means that more objects are detected. Perhaps counter-

intuitively, the peak efficiency for this ( i, H ) combination occurs

for objects with ( a ∼ 1.15 au, e ∼ 0.05) while objects on orbits with

1.0 au ≤ a ≤ 1.1 au are less efficiently detected. This is because the

synodic period between Earth and an asteroid with a = 1 . 1 au is

11 years but only about 7.5 years for objects with a = 1 . 15 au ,

close to the 8-year survey time period considered here. Thus, as-

teroids with a = 1 . 1 au are not detectable as frequently as those

with a = 1 . 15 au . Furthermore, those with smaller semi-major axis

have faster apparent rates of motion when they are detectable. In-

terestingly, the detection efficiency is relatively high for Aten-class

objects on orbits with high eccentricity because they are at aphe-

lion and moving relatively slowly when they are detectable in the

night sky from Earth. 

The bias against detecting NEOs rapidly becomes severe for

smaller objects (Supplementary Animation 1 and Supplementary

Fig. 1), and only those that have close approaches to the Earth on

low-inclination orbits are even remotely detectable. For more de-

tails on the bias calculation and a discussion of selection effects in

general and for the CSS we refer the reader to Jedicke et al. (2002,

2016) . 
. Orbit distributions of NEOs 

.1. Identification of ERs in the MAB 

In order to find an exhaustive set of ERs in the MAB,

ranvik et al. (2017) used the largest MBOs with H magnitudes

elow the assumed completeness limit and integrated them for

00 Myr or until they entered the NEO region. 

Granvik et al. (2017) started from the orbital elements and H

agnitudes of the 587,129 known asteroids as listed on July 21,

012 in the MPC’s MPCORB.DAT file. For MBOs interior to the 3:1

MR with Jupiter (centered at a ∼ 2.5 au) they selected all non-

EOs ( q > 1.3 au) that have H ≤ 15.9. Exterior to the 3:1 MMR they

elected all non-NEOs that have H ≤ 14.4 and a < 4.1 au. To ensure

hat the sample is complete they iteratively adjusted these criteria

o result in a set of objects that had been discovered prior to Jan

, 2012—that is, no objects fulfilling the above criteria had been

iscovered in the ∼ 7-month period leading to the extraction date.

To guarantee a reasonable accuracy for the orbital elements and

 magnitudes Granvik et al. (2017) also required that the selected

bjects have been observed for at least 30 days, which translates to

 relative uncertainty of about 1% for semimajor axis, eccentricity

nd inclination for MBOs ( Muinonen et al., 2006 ). It is well known

hat the H magnitudes may have errors of some tenths of a magni-

ude. However, what is important for the present study is that any

ystematic effects affect the entire sample in the same way, so that

he H cut is done in a similar fashion throughout the MAB. In the

nd Granvik et al. (2017) were left with a sample of 92,449 MBO

rbits where Hungaria and Phocaea test asteroids were cloned 7

nd 3 times, respectively ( Fig. 3 , top and middle). They then as-

igned a diameter of 100 m and a random spin obliquity of ± 90 °
o each test asteroid. The test asteroids were integrated with a

-day timestep for 100 Myr under the influence of a Yarkovsky-

riven semimajor-axis drift and accounting for gravitational per-

urbations by all planets (Mercury through Neptune). During the

ourse of the integrations 70,708 test asteroids entered the NEO

egion ( q < 1.3 au) and their orbital elements were recorded with a

ime resolution of 10 kyr. 

The orbital elements ( a, e, i , �, ω, M 0 ) at the MBO-NEO bound-

ry ( q = 1 . 3 au ) define the locations of the escape routes from the

B and form the initial conditions for the NEO residence-time in-

egrations ( Fig. 3 , bottom). We cloned the test asteroids associated

ith the ν6, o SR, and the 7:2J and 8:3J MMRs 5 times to increase

he sample in these otherwise undersampled ERs. The total num-

er of test asteroids was thus increased to 80,918. 

Our approach to limit ourselves to only 100-m-diameter test as-

eroids could be problematic because Yarkovsky drift in the MAB

ay affect the resultant NEO steady-state orbit distribution. The

ffect would arise because different drift rates imply that asteroids

rifting into resonances will spend a different amount of time in

r close to the resonances. In cases where the bodies are drift-

ng slowly, they could become trapped in tiny resonances and

ushed out of the MAB prior to when our model results predict

e.g., Nesvorný and Morbidelli, 1998; Bottke et al., 2002b ). In other

ases, SRs such as the ν6 with the adjacent ν16 can change the

nclination of the asteroid ( Froeschle and Scholl, 1986; Scholl and

roeschle, 1986 ) and the amount of change depends on the time it

akes for the asteroid to evolve to the NEO region. Unfortunately,

e are not yet at the point where full-up models including ac-

urate representations of the Yarkovsky and YORP effects can be

ncluded for tens of thousands of asteroids across the MAB. Our

ork in this paper represents a compromise between getting the

ynamics as correct as possible and ensuring computational expe-

iency. Our main concern here is that using a drift rate that varies

ith size could lead to steady-state orbit distributions that are cor-

elated with asteroid diameter. 



M. Granvik et al. / Icarus 312 (2018) 181–207 189 

Fig. 3. (Top) Initial ( a, i ) distribution of test asteroids. (Middle) Initial ( a, i ) distribu- 

tion for test asteroids that entered the NEO region ( q = 1 . 3 au ) during the 100-Myr 

integration. (Bottom) ( a, i ) distribution of test asteroids at the time they entered 

the NEO region ( q = 1 . 3 au ). The color coding in the middle and bottom plots cor- 

respond to the nominal set of ERs defined in Section 6.1 . The ERs were defined 

based on initial orbital elements (Hungarias and Phocaeas) or on orbital elements 

at the epoch when the test asteroids enter the NEO region (the ν6 , 3:1J, 5:2J, and 

2:1J complexes). (For an accurate interpretation of the color coding in the middle 

and bottom plots we refer the reader to the electronic version of this article.) 
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To test this scenario we selected the test asteroids in set ’B’ in

ranvik et al. (2017) that entered the NEO region and produced

teady-state distributions for D = 0 . 1 km and D = 3 km NEOs that

scape through the 3:1J MMR and the ν6 SR. There was thus a fac-

or of 30 difference in semimajor-axis drift rate. To save time we

ecided to continue the integrations for only up to 10 Myr instead

f integrating all test asteroids until they reach their respective

inks. Since the average lifetime of all NEOs is � 10 Myr this choice

evertheless allowed most test asteroids to reach their sinks. We

hen discretized and normalized the distributions ( Eq. (4) ), and
omputed the difference between the distributions for small and

arge test asteroids. 

In the case of the 3:1J MMR we found no statistically significant

ifferences in NEO steady-state orbit distributions between large

nd small test asteroids when compared to the noise (Supplemen-

ary Fig. 2). For ν6 we found that while the “signal” is stronger

ompared to 3:1J so is the noise for the D = 3 km case. A priori we

ould expect a stronger effect for the ν6 resonance because the

emi-major axis drift induced by the Yarkovsky effect can change

he position of the asteroid relative to an SR, but not relative to an

MR, which reacts adiabatically. However, based on our numeri-

al simulations we concluded that the Yarkovsky drift in the MAB

esults in changes in the NEO steady-state orbit distributions that

re negligible for the purposes of our work. Therefore we decided

o base the orbital integrations, that are required for constructing

he steady-state NEO orbit distributions, on the test asteroids with

 = 0 . 1 km that escape the MAB ( Granvik et al., 2017 ). 

.2. Orbital evolution of NEOs originating in the MAB 

Next we continued the forward integration of the orbits of the

0,918 100-meter-diameter test asteroids that entered the NEO re-

ion with a slightly different configuration as compared to the

BO integrations described in the previous subsection. To build

mooth orbit distributions we recorded the elements of all test

steroids with a time resolution of 250 yr. The average change

n the orbital elements over 250 yr based on our integrations is

a = 0 . 004 au , 	e = 0 . 006 , and 	i = 0 . 728 ◦. The average change

ets a limit on the resolution of the discretized orbit distribution

n order to avoid artifacts, although the statistical nature of the

teady-state orbit distribution softens discontinuities in the orbital

racks of individual test asteroids. 

A non-zero Yarkovsky drift in semimajor axis has been mea-

ured for tens of known NEOs ( Chesley et al., 2003; Nugent et al.,

012; Farnocchia et al., 2013; Vokrouhlický et al., 2015 ), but the

ommon assumption is that over the long term the Yarkovsky

ffect on NEO orbits is dwarfed by the strong orbital perturba-

ions caused by their frequent and close encounters with terrestrial

lanets. For a km-scale asteroid the typical measured drift in semi-

ajor axis caused by the Yarkovsky effect is ∼ 2 × 10 −4 au Myr −1 

r ∼ 5 × 10 −8 au (250 yr ) −1 whereas the average change of semi-

ajor axis for NEOs from (size-independent) gravitational pertur-

ations is ∼ 4 × 10 −3 au (250 yr ) −1 . The rate of change of the semi-

ajor axis caused by Yarkovsky is thus several orders of magni-

ude smaller than that caused by gravitational perturbations. We

oncluded that the effect of the Yarkovsky drift on the NEO steady-

tate orbit distribution is negligible compared to the gravitational

erturbations caused by planetary encounters. Hence we omitted

arkovsky modeling when integrating test asteroids in the NEO

egion. 

Integrations using a 1-day timestep did not correctly resolve

lose solar encounters. This results in the steady-state orbital dis-

ribution at low a and large e to be very “unstable”, as one can

ee by comparing the distributions in the top left corners of the

 a, e ) plots in Supplementary Fig. 1, obtained by selecting alter-

atively particles with even or odd identification numbers. So we

educed the nominal integration timestep to 12 h and restarted

he integrations. These NEO integrations required on the order of

 million CPU hours and solved the problem (see top left cor-

ers of left-hand-side ( a, e ) plots in Figs. 4 and 5 ). We note that

reenstreet et al. (2012a) used a timestep of only 4 hours to ensure

hat encounters with Venus and Earth are correctly resolved even

n the fastest encounters. Considering that the required comput-

ng time would have tripled if we had used a four-hour integration

tep and considering that all the evidence we have suggests that

he effect is negligible, we saw no obvious reason to reduce the
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Fig. 4. Steady-state orbit distributions (left) and the corresponding uncertainty distributions (right) for NEOs originating in asteroidal ERs: Hungarias (top panel), ν6 complex 

(middle panel), and Phocaeas (bottom panel). (For an accurate interpretation of the color coding, the reader is referred to the electronic version of this article.) 
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timestep by an additional factor of 3. We stress, however, that the

integration step is automatically substantially reduced when the

integrator detects a planetary encounter. 

The orbital integrations continued until every test asteroid had

collided with the Sun or a planet (Mercury through Neptune), es-
aped the solar system or reached a heliocentric distance in excess

f 100 au. For the last possibility we assume that the likelihood of

he test asteroid re-entering the NEO region ( a < 4.2 au) is negligi-

le as it would have to cross the outer planet region without be-

ng ejected from the solar system or colliding with a planet. The
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Fig. 5. Steady-state orbit distributions (left) and the corresponding uncertainty distributions (right) for NEOs originating in asteroidal ERs: 3:1J (top panel), 5:2J complex 

(middle panel), and 2:1J complex (bottom panel). (For an accurate interpretation of the color coding, the reader is referred to the electronic version of this article.) 
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ongest lifetimes among the integrated test asteroids are several

yr. 

Out of the 80,918 test asteroids about to enter the NEO region

e followed 79,804 (98.6%) to their respective sink. The remaining
.4% of the test asteroids did not reach a sink for reasons such as g  
nding up in a stable orbit with q > 1.3 au. As the Yarkovsky drift

as turned off these orbits were found to remain virtually stable

ver many Gyr and thus the test asteroids were unable to drift into

esonances that would have brought them back into the NEO re-

ion. In addition, the output data files of some test asteroids were
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Fig. 6. JFC steady-state orbit distribution. (For an accurate interpretation of the 

color coding, the reader is referred to the electronic version of this article.) 
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corrupted, and in order not to skew the results we omitted the

problematic test asteroids when constructing the NEO steady-state

orbit distributions. 

5.2.1. Lifetimes and sinks of NEOs 

As expected, the most important sinks are (i) a collision with

the Sun and (ii) an escape from the inner solar system after a close

encounter with, primarily, Jupiter ( Table 3 ). 

The estimation of NEO lifetimes, that is, the time asteroids and

comets spend in the NEO region before reaching a sink when

starting from the instant when they enter the NEO region (that

is, q ≤ 1.3 au for the first time), is complicated by the fact that

NEOs are also destroyed by thermal effects ( Granvik et al., 2016 ).

The typical heliocentric distance for a thermal disruption depends

on the size of the asteroid. For large asteroids with D � 1 km the

typical perihelion distance at which the disruption happens is

q ∼ 0.058 au. We see a 10–50% difference in NEO lifetimes when

comparing the results computed with and without thermal disrup-

tion ( Table 3 ). For smaller asteroids the difference is even greater

because the disruption distance is larger. 

We define the mean lifetime of NEOs to be the average time

it takes for test asteroids from a given ER to reach a sink when

starting from the time that they enter the NEO region. Our esti-

mate for the mean lifetime of NEOs originating in the 3:1J MMR

is comparable to that provided by Bottke et al. (2002a) , but for

ν6 and the resonances in the outer MAB our mean lifetimes are

about 50% and 200% longer, respectively ( Table 3 ). These differ-

ences can, potentially, be explained by different initial conditions

and the longer timestep used for the integrations carried out by

Bottke et al. (2002a) . A longer timestep would have made the or-

bits more unstable than they really are and close encounters with

terrestrial planets would not have been resolved. An accurate treat-

ment of close encounters would pull out test asteroids from reso-

nances whereas an inability to do this would lead to test asteroids

rapidly ending up in the Sun and thereby also to a shorter average

lifetime. 

5.2.2. Steady-state orbit distributions and their uncertainties 

We combined the evolutionary tracks of test asteroids that en-

ter the NEO region through 12 ERs and from 2 additional source

regions into 6 steady-state orbit distributions by summing up the

time that the test asteroids spend in various parts of the binned

( a, e, i ) space (left column in Figs. 4 and 5 ). 

To understand the statistical uncertainty of the orbit distribu-

tions, we divided the test asteroids for each orbit distribution into

even-numbered and odd-numbered groups and estimated the un-

certainty of the overall orbit distribution by computing the differ-

ence between the orbit distributions composed of even-numbered

and odd-numbered test asteroids. The difference distribution was

then normalized by using the combined orbit distribution so as to

result in a distribution with the same units as the combined dis-

tribution (right column in Figs. 4 and 5 ). 

5.2.3. Steady-state orbit distribution of Jupiter-family comets 

There are several works in the published literature which

computed the steady-state orbital distribution of Jupiter-family

comets by integrating particles coming from the trans-Neptunian

region up to their ultimate dynamical removal. The pioneer-

ing work was that of Levison and Duncan (1997) , followed by

Levison et al. (2006) , Di Sisto et al. (2009) , and Brasser and Mor-

bidelli (2013) . The resulting JFC orbital distributions have been

kindly provided to us by the respective authors. We have compared

them and selected the one from the Levison et al. (2006) work

because it is the only one constructed using simulations that ac-

counted for the gravitational perturbations by the terrestrial plan-

ets. Thus, unlike the other distributions, this one includes “comets”
n orbits decoupled from the orbit of Jupiter (i.e., not under-

oing close encounters with the giant planet at their aphelion)

uch as comet Encke. We think that this feature is important to

odel NEOs of trans-Neptunian origin. We remind the reader that

ottke et al. (2002a) used the JFC distribution from Levison and

uncan (1997) , given that the results of Levison et al. (2006) were

ot yet available. Thus, this is another improvement of this work

ver Bottke et al. (2002a) . The JFC orbital distribution we adopted

s shown in Fig. 6 . 

There is an important difference between what we have done in

his work and what was done in the earlier models of the orbital

istribution of active JFCs because they included a JFC fading pa-

ameter. In essence, a comet is considered to become active when

ts perihelion distance decreases below some threshold (typically

.5 au) for the first time. That event starts the “activity clock”. Par-

icles are assumed to contribute to the distribution of JFCs only

p to a time T active of the activity clock. Limiting the physical life-

ime is essential to reproduce the observed inclination distribution

f active JFCs, as first shown in Levison and Duncan (1997) . What

appens after T active is not clear. The JFCs might disintegrate or

hey may become dormant. Only in the second case, of course, can

he comet contribute to the NEO population with an asteroidal ap-

earance. We believe the second case is much more likely because

FCs are rarely observed to disrupt, unlike long period comets. Be-

ides, several studies argued for the existence of dormant JFCs (e.g.,

ernández et al., 2005; Fernández and Morbidelli, 2006 ). Thus, in

rder to build the distribution shown in Fig. 6 we have used the

riginal numerical simulations of Levison et al. (2006) but sup-

ressed any limitation on a particle’s age. 

. Debiased NEO orbit and absolute-magnitude distributions 

.1. Selecting the preferred combination of steady-state orbit 

istributions 

We first needed to find the optimum combination of ERs. To

trike a quantitative balance between the goodness of fit and the

umber of parameters we used the AICc metric defined by Eq. (11) .

e tested 9 different ER models out of which all but one are based

n different combinations of the steady-state orbit distributions

escribed in Section 5 . The one additional model is the integra-

ion of Bottke-like initial conditions by Greenstreet et al. (2012a) .

he combination of different ERs was done by summing up the

esidence-time distributions of the different ERs, that is, prior to

ormalizing the orbit distributions. Hence the initial orbit distri-
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ution and the direct integrations provided the relative shares be-

ween the different orbit distributions that were combined. 

As expected, the maximum likelihood (ML) constantly improves

s the steady-state orbit distribution is divided into a larger num-

er of subcomponents ( Fig. 7 ). The ML explicitly shows that our

teady-state orbit distributions lead to better fits compared to

he Bottke-like orbit distributions by Greenstreet et al. (2012a) ,

ven when using the same number of ERs, that is, four asteroidal

nd one cometary ER. The somewhat unexpected outcome of the

nalysis is that we do not find a minimum for the AICc metric,

hich would have signaled an optimum number of model param-

ters ( Fig. 7 ). Instead the AICc metric improves all the way to

he most complex model tested which contains 23 different ERs

nd hence 94 free parameters! The largest drop in AICc per ad-

itional source takes place when we go from a five-component

odel to a six-component model. The difference between the two

eing that the former divides the outer MAB into two components

nd lack Hungarias and Phocaeas whereas the latter has a single-

omponent outer-MAB ER and includes Hungarias and Phocaeas.

ontinuing to the seven-component model we again split up the

uter-MAB ER into two components (the 5:2J and 2:1J complexes).

he difference between the five-component model and the seven-

omponent model is thus the inclusion of Hungarias and Phocaeas

n the latter. The dramatic improvement in AICc shows that the

ungarias and Phocaeas are relevant components of an NEO orbit

odel. 

Although a model with 94 free parameters is formally accept-

ble, we had some concern that it would lead to degenerate sets

f model parameters. It might also (partly) hide real phenomena

hat are currently not accounted for and thus should show up as

 disagreement between observations and our model’s predictions.

herefore we took a heuristic approach and compared the steady-

tate orbit distributions to identify those that are more or less

verlapping and can thus be combined. After a qualitative eval-

ation of the orbit distributions we concluded that it is sensible

o combine the asteroidal ERs into six groups ( Figs. 4 and 5 ). Of

hese six groups the Hungaria and Phocaea orbit distributions are

niquely defined based on the initial orbits of the test asteroids

hereas the four remaining groups are composed of complexes of

scape routes ( ν6 , 3:1J, 5:2J, and 2:1J) that produce overlapping

teady-state orbit distributions. 

In principle one could argue, based on Fig. 7 , that it would

ake sense to use 9 ERs because then the largest drop in the AICc

etric would have been accounted for. The difference between 7

nd 9 ERs is that the 4:1J has been separated from the ν com-
6 
lex ( Fig. 8 ) and the ν6 component exterior to the 3:1J has been

eparated from the 3:1J ( Fig. 9 ). However, the differences between

he ν6 complex and the 4:1J orbit distributions are small with the

ost notable difference being that the ν6 distribution extends to

arger a . Similarly, the ν6 component exterior to the 3:1J has some

lear structure compared to the 3:1J component but this structure

s also clearly visible in the combined 3:1J orbit distribution (top

anel in Fig. 5 ). There is thus a substantial overlap in the orbit dis-

ributions and we therefore decided to include one cometary and

ix asteroidal ERs in the model. 

.2. The best-fit model with 7 ERs 

Having settled on using 7 steady-state orbit distributions for the

ominal model we then turned to analyzing the selected model

n greater detail. As described in the Introduction, it is impossi-

le to reach an acceptable agreement between the observed and

redicted orbit distribution unless the disruption of NEOs at small

 is accounted for ( Granvik et al., 2016 ). Here we solved the dis-

repancy by fitting for the two parameters that describe a penalty

unction against NEOs with small q (see Section 2 ), in addition to

he parameters describing the H distributions. The best-fit param-

ters for the penalty function are k = 1 . 40 ± 0 . 07 au 

−1 and q 0 =
 . 69 ± 0 . 02 au . Although a direct comparison of the best-fit penalty

unction and the physical model by Granvik et al. (2016) is im-

ossible we find that the penalty function p = 0 . 86 ± 0 . 05 at q =
 . 076 au and, of course, even higher for q < 0.076 au. Considering
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Fig. 9. Steady-state orbit distributions for 3:1J (top) and the low- i and high- i com- 

ponents of the outer ν6 (bottom). (For an accurate interpretation of the color cod- 

ing, the reader is referred to the electronic version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Comparison between G96 and 703 detections (blue; n ( a, e, i, H )) and pre- 

diction based on the best-fit model (red; ε( a, e, i, H ) N ( a, e, i, H )). The purple color 

indicates overlapping distributions. (For interpretation of the references to color in 

this figure legend, the reader is referred to the electronic version of this article.) 

Fig. 11. As Fig. 10 but for perihelion distance q . 
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that the 3 σ value at q = 0 . 076 au reaches unity we find the agree-

ment satisfactory. 

A comparison between the observed and predicted number (i.e.,

marginal distributions of ε( a, e, i, H ) N ( a, e, i, H )) of NEO detec-

tions shows that the best-fit model accurately reproduces the ob-

served ( a, e, i, H ) distributions ( Fig. 10 ) as well as the observed

q distribution ( Fig. 11 ). Thus the penalty function is able to mit-

igate the problem caused by not including a physical model of

NEO disruptions close to the Sun. We used the same approach as

Bottke et al. (2002a) to evaluate the statistical uncertainty of the

30 parameters (four parameters for each of the 7 HFDs and two

parameters for the penalty function) that define our model. We

first generated 100 random realizations of the biased best-fit four-

dimensional model (the marginal distributions of which are shown

in red in Fig. 10 ). Each realization contains 7769 virtual detections,

that is, the number of detections reported by the G96 and 703 sur-

veys that we used for the nominal fit. When re-fitting the model

to each of these synthetic data sets we obtained slightly different

values for the best-fit parameters (Supplementary Figs. 3 and 4),

which we interpret as being caused by the statistical uncertainty.

Note that the parameter distributions are often non-Gaussian but

nevertheless relatively well constrained. 

We interpret the RMS with respect to the best-fit parameters

obtained for the real data to be a measure of the statistical uncer-

tainty for the parameters. The best-fit parameters describing the

HFDs as well as their uncertainties are reported in Table 4 . The

best-fit parameters for the penalty function are k = 1 . 40 ± 0 . 07 and
 0 = 0 . 69 ± 0 . 02 . The minimum HFD slope is statistically distinct

rom zero only for ν6 and 3:1J and the slope minimum typically

ccurs around H ∼ 20. This implies that the HFD slope should be

t its flattest around H ∼ 20 as seen in the apparent H distribution

bserved by G96 ( Fig. 1 ). A constant slope is acceptable (curvature

ithin 1 σ of zero) only for Phocaeas and 5:2J, which shows that

he decision to allow for a more complex functional form for the

FDs law was correct. 

Fig. 12 shows a graphical representation of the parameters de-

cribing the HFDs ( Table 4 ). The statistical uncertainty for the num-

er of Phocaeas, 5:2J, 2:1J and JFCs is around 1–2 orders of mag-

itude for H � 23 whereas the uncertainty for Hungarias, ν6 and

:1J is within a factor of a few throughout the H range. The expla-

ation for the large uncertainties for the former group is that their

bsolute observed numbers are smaller than for the NEOs originat-

ng in the latter group and hence their numbers are more difficult

o constrain. The ratio between the HFD for each ER and the over-

ll HFD shows that the contribution from the different ERs varies

s a function of H ( Fig. 13 ). The ν6 and 3:1J complexes are the

argest contributors to the steady-state NEO population regardless
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Fig. 12. Debiased, incremental absolute-magnitude distributions for NEOs from dif- 

ferent ERs. (For a correct interpretation of the colors in the plot, the reader is re- 

ferred to the electronic version of this article.) 

Fig. 13. Relative importance of 7 different NEO ERs as a function of the absolute 

magnitude. (For a correct interpretation of the colors in the plot, the reader is re- 

ferred to the electronic version of this article.) 
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Fig. 14. Relative shares between the 4 main NEO classes as a function of the ab- 

solute magnitude. (For a correct interpretation of the plot, the reader is referred to 

the color version of the plot found in the electronic version of this article.) 

Fig. 15. The average lifetime of NEOs as a function of absolute magnitude H 

weighted by the relative contribution from each ER. 
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f H as expected. The ν6 dominates the large NEOs whereas the

:1J is equally important at about D ∼ 100 m. The Hungarias and

FCs have a non-negligible contribution throughout the H range

hereas Phocaeas and the 5:2J and 2:1J complexes have a neg-

igible contribution at small sizes. The varying contribution from

ifferent ERs as a function of H leads to the overall orbit distribu-

ion also varying with H despite the fact that the ER-specific orbit

istributions do not vary (Supplementary Animation 2 and Supple-

entary Fig. 5). 

Next we propagated the uncertainties of the model parameters

nto the number of objects in each cell of the ( a, e, i, H ) space.

ven though the errors in individual cells can be larger than 100%

particularly when the expected population in the cell is small) the

verall statistical uncertainty on the number of NEOs with H < 25

s � 5% ( Table 5 ). 

Given that the relative importance of the 7 ERs vary substan-

ially with H ( Fig. 13 ) it is somewhat surprising that the relative

hares of the 4 different NEO classes is hardly changing with H

 Fig. 14 ). Another consequence of the varying contribution from

ifferent ERs as a function of H is that also the average lifetime

f NEOs changes with H when weighted by the relative contribu-

ion from each ER ( Fig. 15 ). The average lifetime ranges from about

 to 11 Myr with the mid-sized NEOs having the shortest lifetimes.

he increased average lifetime for both the largest and the smallest

EOs considered is driven by the contribution from the Hungaria

R, because NEOs from that ER have about 4–100 times longer life-
imes than NEOs from the other ERs considered. Note also the clear

orrelation between the average lifetime and the relative contri-

ution of the Hungaria ER ( Fig. 13 ). The analysis above does not

ccount for the systematic uncertainties arising, for instance, from

n imperfect evaluation of the biases or of the construction of the

teady-state orbit distributions of the NEOs coming from the vari-

us ERs. We will next assess systematic uncertainties quantitatively

y (i) comparing models constructed using two independent sets

f orbit distributions ( Section 6.3 ), and (ii) by comparing models

ased on two independent surveys ( Section 6.4 ). 

.3. Sensitivity to variations in orbit distributions 

To assess the sensitivity of the model on statistical variations in

he 7 included steady-state orbit distributions corresponding to the

Rs we divided the test asteroids into even-numbered and odd-

umbered sets to construct two independent orbit distributions.

hen we constructed the biased marginal a, e, i , and H distribu-

ions by using the two sets of orbit distributions and the best-fit

arameters found for the nominal model ( Table 4 ). A comparison

f the biased distributions with the observed distributions show

hat both sets of orbit distributions lead to an excellent agree-

ent between model and observations ( Fig. 16 ). The largest dis-

repancy between the biased marginal distributions is found for

he a and e distributions ( a ∼ 1.3 au and e ∼ 0.2). In general, the

ariations in the orbit distributions are small and the systematic
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Fig. 16. As Fig. 10 but using steady-state orbit distributions based on (top row) even-numbered and (bottom row) odd-numbered test asteroids. 
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uncertainties arising from the orbit distributions are negligible as

far as the nominal model is concerned. 

6.4. Sensitivity to observational data 

To assess the sensitivity of the model on the data set used

for its calibration, we first divided the observations into two sets:

those obtained by G96 and those obtained by 703. Then we con-

structed two models based on the data sets by using an approach

otherwise identical to that described in Section 6.2 . The marginal

( a, e, i, H ) distributions of the biased model, ε( a, e, i, H ) N ( a, e, i, H ),

compared to the observations show that both models accurately

reproduce the observations from which they were derived (top and

bottom panels in Fig. 17 ). 

The critical test is then to predict, based on a model of G96

(703), what the other survey, 703 (G96), should have observed and

compare this to the actual observations. For example, we should

be able to detect problems with the input inclination distribu-

tion or the bias calculations, because the latitude distribution of

NEO detections by 703 is wider than the latitude distribution by

G96. It turns out that the shapes of the model distributions accu-

rately match the observed distributions, but there are minor sys-

tematic offsets in the absolute scalings of the distributions (upper

and lower middle panels in Fig. 17 ). The model based on detec-

tions by 703 only predicts about 9% too many detections by G96

whereas the model based on detections by G96 only predicts about

8% too few detections by 703. We interpret the discrepancy as a

measure of the systematic uncertainty arising from the data set

used for the modeling. Given that the models are completely in-

dependent of each other we consider the agreement satisfactory.

In fact, none of the models described in the Introduction (except

that of Granvik et al., 2016 ) have undergone a similar test of their

predictive power. We also stress that the nominal model combines

the 703 and G96 data sets and thus the systematic error is reduced

from the less than 10% seen here. 

We can take the test further by making predictions about the

relative importance of different source regions as a function of H

( Fig. 18 ). The overall picture is consistent with our expectations in
hat the ν6 and 3:1J dominate both models. The difference for ν6 

an largely be described by a constant such that the G96 model

ives is a systematically smaller (by a few %-units) importance

ompared to the 703 model. The Hungarias show similar trends

n both models, but the difference cannot be described as a sim-

le systematic offset. Phocaeas show a clear difference in that their

elative importance peaks at H = 17 and H ∼ 19.5 for 703 and G96,

espectively. The common denominator for Phocaeas is that both

odels give them negligible importance for H � 23. The 3:1J shows

 similar overall shape with the importance peaking at H ∼ 23 al-

hough the 703 model predicts a lesser importance at H � 21 com-

ared to the G96 model. The G96 model gives a similar importance

or 5:2J throughout the H range whereas the 703 model gives a

imilar overall importance but limiting it to H � 23. The 2:1J has

he opposite behaviour compared to the 5:2J in that its impor-

ance in the G96 model is primarily limited to H � 21 whereas

ts importance in the 703 model gives it a non-negligible impor-

ance throughout the H range. Finally, the G96 model gives JFCs a

early constant (a few %-units) importance throughout the H range

hereas the 703 model predicts that their importance is negligible

or 19 � H � 23.5. We stress that this analysis does not account for

ncertainties in model parameters which would make a difference

n the relative importance more difficult to assess, in particular at

arge H (see, e.g., Fig. 12 ). 

.5. Uniqueness 

Although the similarity of the solutions based on different data

ets suggest that the overall solution is stable, it does not directly

mply that the parameters are unique. To study the uniqueness of

he solution we computed a correlation matrix based on the pa-

ameters of the best-fit solution and the parameters of the 100 al-

ernate solutions used for the uncertainty analysis described above.

he correlation matrix shows that the 7 ERs and the penalty func-

ion are largely uncorrelated, but the parameters describing a sin-

le absolute-magnitude distribution or the penalty function are

ypically strongly correlated ( Fig. 19 ). This suggests that the use
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Fig. 17. (Top row) Comparison between detections by 703 (blue; n ( a, e, i, H )) and prediction based on the best-fit model using data by 703 (red; ε( a, e, i, H ) N ( a, e, i, 

H )). (Upper middle row) Comparison between detections by 703 (blue) and prediction based on the best-fit model using data by G96 (red). The purple color indicates 

overlapping distributions. (Lower middle row) Comparison between detections by G96 (blue) and prediction based on the best-fit model using data by 703 (red). (Bottom 

row) Comparison between detections by G96 (blue) and prediction based on the best-fit model using data by G96 (red). (For interpretation of the references to color in this 

figure legend, the reader is referred to the electronic version of this article.) 
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f 7 ERs does not lead to a degenerate set of model parameters.

eak correlations are present between the Hungarias and the ν6 

omplex as well as between the ν6 and the 3:1J complexes. Both

orrelations are likely explained by partly overlapping orbit dis-

ributions. Somewhat surprisingly there is hardly any correlation

etween the two outer-MAB ERs — the 5:2J and 2:1J com-

lexes. This suggests that they are truly independent compo-

ents in the model. A caveat with this analysis is that the
amples of synthetic detections used for the alternative solu-

ions are based on the steady-state orbit distributions and we

sed the same orbit distributions for fitting the model parame-

ers. The small correlation between ERs might thus be explained

y the fact that the synthetic orbits belong a priori to differ-

nt ERs. We assume that the non-negligible overlap between

he steady-state orbit distributions mitigate some or all of these
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Fig. 18. Relative importance of 7 different NEO source regions as a function of the 

absolute magnitude when the model is based only on (top) 703 and (bottom) G96. 

(For a correct interpretation of the colors in the plot, the reader is referred to the 

electronic version of this article.) 

 

 

 

 

Fig. 19. Correlations between model parameters. (For a correct interpretation of the 

color scale, the reader is referred to the electronic version of this article.) 
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7. Discussion 

7.1. Comparison to other population estimates 

Our estimates for the incremental and cumulative NEO HFDs

agree the most recent estimates published in the literature ( Fig. 20

and Table 6 ). The relatively large uncertainties in the cumulative

HFD are a reflection of the large uncertainties in the extrapolation

to H < 17. 
Fig. 20. Our estimates for the debiased incremental (left) and cumulative (right) absolute

outside the validity regions for the different models are marked with dashed lines. The er

uncertainties. The latter component is estimated to be 10% ( Sections 6.3 and 6.4 ). (For co

plots that are available in the electronic version of the article.) 
Our estimates also both agree and disagree with older esti-

ates such as that by Bottke et al. (2002a) , for reasons we ex-

lain below. The estimate by Bottke et al. (2002a) is based on

he work by Bottke et al. (20 0 0) . The ML technique used by both

ottke et al. (20 0 0) and Bottke et al. (2002a) was able to char-

cterize the slope of the NEO HFD where most of their data ex-

sted, namely between 17 < H < 22. The HFD slope they found,

= 0 . 35 , translates into a cumulative power-law size-distribution

lope of −1.75. These values match our results and those of

thers (see, e.g., Harris and D’Abramo, 2015 ). The challenge for

ottke et al. (20 0 0) was setting the absolute calibration of the

FD. Given that the slope of their HFD was likely robust, they

ecided to extend it so that it would coincide with the expected

umber of NEOs with 13 < H < 15, a population that was much
-magnitude distributions for NEOs compared to published estimates. Extrapolations 

ror bars for the model presented in this paper include both random and systematic 

rrect interpretations of the plots, the reader is referred to the color versions of the 
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Fig. 21. Our estimate for the debiased inclination distribution for NEOs with 

17 < H < 18.5 compared to currently known NEOs in the same H range (ASTORB 

2018-01-30). The uncertainties were computed as single-sided RMS estimates with 

respect to the nominal model by utilizing 100 alternative models as explained in 

Section 6.2 . The error bars do not account for systematic uncertainties. 
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loser to completion. This latter population would serve as the

alibration point for the model. At the time of the analysis by

ottke et al. (20 0 0) there were 53 known NEOs in this H range and

hey assumed a completeness ratio of 80% based on previous work

y Rabinowitz et al. (20 0 0) . The expected number of NEOs with

3 < H < 15 was therefore assumed to be about 66 whereas today

e know that there are 50 such NEOs. The most likely explana-

ion for the reduced number of known NEOs with 13 < H < 15 over

he past 17 years (from 53 to 50) is that the orbital and absolute-

agnitude parameters of some asteroids have changed (i.e., im-

roved) and they no longer fall into the interval considered. We

lso now know that the HFD has a wavy shape with an inflec-

ion point existing near H = 17 , as shown in our work ( Figs. 12

nd 20 ). Thus, while the Bottke et al. (2002a) estimates for H < 18

re on the low side but in statistical agreement with those pro-

ided here (i.e., 960 ± 120 H < 18 NEOs for Bottke et al. (2002a) vs.

1250 here), their population estimate for H < 16 is progressively

oo high. We confirm that the slope of the HFD reaches a mini-

um at H ∼ 20 ( Fig. 20 ) and, since it is also seen for different ERs

 Fig. 12 ), conclude that it cannot be caused by the combination of

ifferently-sloped and power-law shaped HFDs. Instead the wavy

hape is likely related to the nature of how asteroids disrupt (see,

.g., Durda et al., 1998; Bottke et al., 2005; 2015a ). Small aster-

ids are considered part of the so-called strength-scaling regime,

here the fragmentation of the target body is governed by its

ensile strength, while large asteroids are considered part of the

o-called gravity-scaling regime, where fragmentation is controlled

y the self-gravity of the target. Laboratory experiments and hy-

rocode modeling work suggest the transition between the two

egimes occurs near 10 0–20 0-meter-diameter bodies, which cor-

esponds to 21 � H � 22 assuming a geometric albedo p V = 0 . 14

smaller H for higher albedos). It has also been suggested that it

s caused by the transition from the strong “monolithic” structures

o the weaker “rubble-pile” structures held together by gravita-

ional forces, as proposed by Harris and D’Abramo (2015) . Objects

ith 21 � H � 22 fall in between these categories and are more

asily disrupted than larger or smaller objects. An alternative ex-

lanation is that the physical size distribution can be described

y a powerlaw but the albedo distribution varies as a function of

ize. This could effectively lead to a dip in the HFD. However, this

ould probably require an unrealistically large change in the aver-

ge albedo as a function of H ( Werner et al., 2002 ). 

Our results for the orbital distributions also mostly agree with

esults found in the literature. For large NEOs ( H < 18.5) we can

ompare our debiased marginal ( a, e, i ) distributions with those

y Stuart (2001) and Tricarico (2017) . Whereas we find a good

greement for the a and e distributions we do not confirm the

trong peak in the inclination distribution at 20 °� i � 30 ° pre-

icted by Stuart (2001) . However, we do predict that the distri-

ution has a lesser bump at 20 °� i � 40 ° ( Fig. 21 ) in agreement

ith Tricarico (2017) . We also note that the inclination distribu-

ion for the known NEOs shows a similar bump suggesting that

e are looking at a real phenomenon, although the exact shape

f the bump is sensitive to the bin size. The bump was not pre-

icted by the model by Bottke et al. (2002a) , because it is caused

y the Hungarias and Phocaeas and those ERs were not included

n their model. For NEOs with 22 < H ( < 25) there are no debiased

rbit models available and hence we cannot compare our results

o the literature. 

.2. Extrapolation to larger and smaller NEOs 

Although the calibration of our model is limited to 17 < H < 25,

e may occasionally want to extrapolate to larger and/or smaller

bjects. The limitation of such extrapolations is that the orbit dis-

ributions, and hence the relative ratios between the ERs, are fixed
o either H = 17 or H = 25 , depending on if the extrapolation is

owards larger or smaller NEOs, respectively. 

When extrapolating to larger NEOs, that is, to those with H < 17,

e use a power-law function for the extrapolation and obtain the

lope from our estimate for 17 < H < 17.5 NEOs. We also rescale the

xtrapolation so that the cumulative number of NEOs with H < 16

oincides with the current number of known NEOs, that is, 170.

n extrapolation to smaller H values would predict 207 H < 16

EOs without the rescaling. The extrapolation predicts a few too

any NEOs at 12 � H � 15 but we think that the agreement with

he known population is still reasonable for most purposes ( Fig. 20

ight). Considering that the NEO inventory is virtually complete for

 < 17 one may alternatively choose to simply append the known

opulation for the H < 17 part. 

An issue, however, is that many larger MBOs escape the MAB

ut of the “forest” of weak resonances in the inner MAB (e.g.,

esvorný and Morbidelli, 1998; Morbidelli and Nesvorný, 1999 ).

he bigger they are, the more difficult time they will have reach-

ng one of the main NEO sources via Yarkovsky drift ( Bottke et al.,

006 ). As discussed above, a potential problem with our model for

arge asteroids is that the test asteroids we have chosen to rep-

esent them have such high Yarkovsky semimajor axis drift rates

hat most will jump over these weak resonances. Given that most

arge NEOs are known, this does not present a problem for our

EO model per se, but a future NEO model wanting to make pre-

ictions about, e.g., planetary impacts by large NEOs will need to

orry about getting the dynamics right for these bodies. In addi-

ion, Nesvorný and Roig (2018) have recently shown that the large

nd of the NEO population does not appear to be in steady-state

hich is the assumption behind the modeling carried out here.

ence it is not surprising that an extrapolation of the model de-

cribed here cannot accurately reproduce the large end of the NEO

FD. 

When extrapolating to smaller NEOs, that is, those with H > 25

e can estimate the slope from our model for 24.5 < H < 25

nd use that for the extrapolation. However, that approach does

ot lead to a good agreement with the HFD by Harris and

’Abramo (2015) for H ≥ 27. When converted to the rate of Earth

mpacts, Harris and D’Abramo (2015) is in reasonable agreement
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Fig. 22. Known (ASTORB 2018-01-30; histogram) and predicted (dot with errorbars) 

marginal orbital-element distributions for NEOs with 17 < H < 18. The uncertainties 

were computed as single-sided RMS estimates with respect to the nominal model 

by utilizing 100 alternative models as explained in Section 6.2 . The error bars do 

not account for systematic uncertainties. 
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with the observed rate of impacts on the Earth ( Brown et al., 2002;

2013 ). A more accurate extrapolation, that is, one that is more in

line with the literature, can be obtained by using a slope found by

others (e.g., Brown et al., 2002; 2013 ) for H > 25. 

7.3. Completeness of the current inventory of NEOs 

The surveys have so far found 905 NEOs with the esti-

mated D > 1 km ( H < 17.75; ASTORB 2018-01-30). Assuming that

the H < 16 population is essentially complete and currently in-

cludes 170 NEOs, we predict a population of 962 +52 
−56 

for NEOs with

H < 17.75 (the uncertainty estimates only account for the random

component; Fig. 20 right and Table 6 ). This implies that about 94%

of all NEOs with H < 17.75 have been found to date. 

The orbits of the undiscovered large NEOs are characterized

by high inclinations and relatively small semimajor axes ( Fig. 22 ).

NEOs with such orbital characteristics are challenging to detected

because they can have relatively long synodic periods and they

may be bright enough only at perihelion when they can be in the

southern hemisphere. Finding these NEOs thus require longer sur-

veys carried out (also) in the southern hemisphere and/or using

larger apertures. An example of such a challenging NEO to discover

is 2017 MK 8 ( a = 2 . 51 au , e = 0 . 67 , i = 31 . 6 ◦, H = 16 . 5 ) which was

discovered by Pan-STARRS as recently as in June 2017. This partic-

ular object crosses the ecliptic approximately at perihelion when

inside the Earth’s orbit and at aphelion (at a distance of about 4 au

from the Sun). 

For smaller objects with 17 < H < 20 the need for improved in-

strumentation becomes even more urgent as in addition to high- i

NEOs also large- a NEOs remain undiscovered ( Fig. 23 ). Smaller and

more distant NEOs are difficult to detect due to their greater aver-

age distances from the observer and higher rates of motion when

close to the Earth. 

The main difference between the orbits of undiscovered small

( Fig. 23 ) and large ( Fig. 22 ) NEOs is that the former are more no-

tably characterized by large eccentricities. As most of the known

high-inclination NEOs have been discovered prior to, e.g., Pan-

STARRS, which is the most prolific survey telescope currently oper-

ating, we find it unlikely that the remaining large, high-inclination

NEOs would be discovered in the next decade without substantial

improvements in observation strategy and/or instrumentation. 

7.4. Flux of NEOs from different ERs 

The relative flux of asteroids and comets into the NEO popula-

tion as a function of ER is strongly size dependent ( Table 4 ). The

number-weighted flux of NEOs in general (17 < H < 25) is dom-

inated by inner-MAB ERs whereas the number-weighted flux of

D > 100 m (17 < H < 22) NEOs is dominated by outer-MAB ERs. The

domination of outer-MAB ERs for large NEOs has been seen before

( Bottke et al., 2002a ) but the change to domination by inner-MAB

ERs for smaller NEOs has not been shown before. 

Recently Granvik et al. (2017) estimated the relative flux of as-

teroids into the NEO population from different ERs through di-

rect integrations of MBOs. They found a good agreement with

( Bottke et al., 2002a ) for D = 3 km objects but unfortunately the

smallest diameter considered, D = 0 . 1 km ( H ∼ 22.7), is still fairly

close to the “large” group and hence they do not see the transi-

tion to inner-MAB domination. Instead the relative fluxes for all

the diameters considered (0.1 km–3.0 km) are statistically indistin-

guishable. Focusing on the large group only we find that the flux

through the 5:2J complex is the highest ( Table 4 ) followed by the

3:1J, 2:1J and ν6 complexes and Phocaeas and Hungarias in de-

scending order. The relative numbers are remarkably close to those

predicted by Granvik et al. (2017) for D = 0 . 1 km asteroids through

direct orbital integrations. The largest relative difference between
ur estimates and those by Granvik et al. (2017) is found for Hun-

arias in that our estimate is a factor of about three higher. 

.5. NEAs on retrograde orbits 

We find that the fraction of retrograde objects ranges from

bout 1% to 2.5% depending on the range in H magnitude and

he main ERs are the 3:1J complex and JFCs ( Fig. 24 ). In par-
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Fig. 23. Known (ASTORB 2018-01-30; histogram) and predicted (dot with errorbars) 

marginal orbital-element distributions for NEOs with 17 < H < 20. The uncertainties 

were computed as single-sided RMS estimates with respect to the nominal model 

by utilizing 100 alternative models as explained in Section 6.2 . The error bars do 

not account for systematic uncertainties. 

Fig. 24. Debiased, incremental absolute-magnitude distributions for NEOs on ret- 

rograde orbits from different ERs. (For a correct interpretation of the colors in the 

plot, the reader is referred to the electronic version of this article.) 

Fig. 25. NEO steady-state ( a, i ) distribution for 17 < H < 25. (For an accurate inter- 

pretation of the color coding, the reader is referred to the electronic version of this 

article.) 

Fig. 26. Cumulative annual rate of impacts on terrestrial planets predicted by our 

model and observed rate of bolides on the Earth ( Brown et al., 2013; 2002 ). The 

dashed line marks a linear extrapolation based on our prediction for the slope 

at 24.5 < H < 25. The conversion from bolide energy to absolute magnitude H as- 

sumes a spherical shape, a bulk density of 30 0 0 kg m 

−3 , an average impact speed 

of 20 . 3 km s −1 , and a geometric albedo of 0.14. The error bars (and the nominal 

value) for the Tunguska event are approximate assuming that similar events hap- 

pen every 10 0–50 0 years and that the diameter of the impactor is about 50 m with 

the geometric albedo ranging from 0.05 to 0.25. 
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Table 3 

Fraction of test asteroids ending up in various sinks (collisions with the Sun or planets, or an escape from the inner solar system, a > 100 au) and mean lifetime of test asteroids 

in the NEO region ( q < 1.3 au, a < 4.2 au, e < 1, i < 180 °) as a function of the ER that is provided in the left column. We provide four different scenarios for each ER-sink pair: 

no thermally-driven destruction at small q , and thermally-driven destruction when q < 0.058 au, q < 0.076 au, q < 0.184 au. The three perihelion distances correspond to km-scale, 

average, and dm-scale NEOs ( Granvik et al., 2016 ). The horizontal lines divide the ERs into the six asteroidal groups that are used for the nominal model in Section 6.2 . Note that 

the relatively high fraction of Earth-impacts from 11:5J is due to small number statistics. 

ER No. of test Sun Mercury Venus Earth Mars Jupiter Escape 〈 L 〉 
asteroids [%] [%] [%] [%] [%] [%] [%] [Myr] 

Hungaria 

Hung. 8128 77.5/0.0/0.0/0.0 1.1/0.7/0.6/0.3 6.2/4.9/4.6/3.4 6.4/5.4/5.2/4.3 2.2/2.1/2.0/2.0 0.1/0.1/0.1/0.1 6.9/5.8/5.6/4.1 43.3/37.2/36.0/32.5 

ν6 complex 

ν6 13,029 81.2/0.0/0.0/0.0 0.5/0.4/0.3/0.1 2.5/2.0/1.9/1.4 2.3/1.9/1.8/1.5 0.4/0.4/0.4/0.4 0.2/0.2/0.2/0.1 12.9/11.8/11.3/8.4 9.4/7.2/6.8/5.5 

4:1 1899 75.8/0.0/0.0/0.0 0.7/0.5/0.5/0.2 4.4/3.7/3.6/2.5 3.7/3.2/3.1/2.8 0.2/0.2/0.2/0.2 0.1/0.1/0.1/0.1 15.2/14.0/13.5/9.7 10.2/8.5/8.2/6.6 

7:2 4969 83.2/0.0/0.0/0.0 0.1/0.1/0.1/0.1 1.2/0.9/0.8/0.5 1.3/1.1/1.1/0.9 0.3/0.3/0.3/0.2 0.3/0.3/0.3/0.2 13.7/12.5/12.1/8.9 6.7/5.5/5.3/4.2 

Phocaea 

Phoc. 8309 89.5/0.0/0.0/0.0 0.2/0.1/0.1/0.0 1.3/1.0/0.9/0.5 1.0/0.6/0.6/0.4 0.4/0.3/0.3/0.3 0.1/0.0/0.0/0.0 7.9/5.0/4.7/2.9 14.3/11.2/10.7/8.9 

3:1J complex 

3:1J 7753 76.1/0.0/0.0/0.0 0.1/0.0/0.0/0.0 0.4/0.4/0.3/0.2 0.2/0.1/0.1/0.1 0.0/0.0/0.0/0.0 0.6/0.5/0.5/0.4 22.6/20.4/19.7/14.6 2.2/1.5/1.3/0.9 

ν6, o 3792 70.9/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.2/0.1/0.1/0.1 0.3/0.2/0.2/0.2 0.2/0.2/0.2/0.2 0.3/0.3/0.3/0.3 28.1/26.1/25.3/22.4 3.5/2.5/2.3/1.9 

5:2J complex 

8:3J 3080 45.1/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.2/0.2/0.2/0.2 0.0/0.0/0.0/0.0 1.0/1.0/1.0/1.0 53.6/50.6/49.9/46.1 2.2/1.7/1.6/1.4 

5:2J 5955 16.9/0.1/0.1/0.1 0.0/0.0/0.0/0.0 0.1/0.1/0.1/0.1 0.1/0.1/0.1/0.1 0.0/0.0/0.0/0.0 1.2/1.1/1.1/1.1 81.8/79.4/78.8/75.0 0.5/0.4/0.4/0.3 

7:3J 2948 7.4/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 1.1/1.1/1.1/1.1 91.5/90.2/89.7/87.7 0.2/0.2/0.2/0.2 

2:1J complex 

9:4J 443 25.3/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.9/0.9/0.9/0.9 73.8/69.3/68.2/63.0 0.5/0.4/0.4/0.3 

z 2 929 14.3/0.1/0.1/0.1 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 1.3/1.2/1.2/1.0 84.4/82.1/81.5/77.7 0.6/0.3/0.3/0.3 

11:5J 133 43.6/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.8/0.8/0.8/0.8 0.0/0.0/0.0/0.0 0.8/0.8/0.0/0.0 54.9/47.4/45.9/39.8 0.5/0.4/0.4/0.4 

2:1J 5321 22.1/0.3/0.2/0.1 0.0/0.0/0.0/0.0 0.0/0.0/0.0/0.0 0.1/0.1/0.1/0.1 0.0/0.0/0.0/0.0 1.0/0.9/0.9/0.8 76.8/70.8/69.2/61.5 0.5/0.4/0.4/0.3 
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Table 4 

The best-fit model parameters N 0 (H 0 = 17) , c , H min , and αmin . The average lifetime 〈 L 〉 in NEO region ( q < 1.3 au and a < 4.2 au) as computed from the 

orbital integrations. The model prediction for the debiased number of NEOs N (17 < H < 22) and N (17 < H < 25); the relative fraction of NEOs from each 

ER β(17 < H < 22) and β(17 < H < 25); the absolute flux of NEOs from each ER into the NEO region F (17 < H < 22) and F (17 < H < 25); and the relative 

flux of NEOs from each ER into the NEO region γ (17 < H < 22) and γ (17 < H < 25). 

ER Hungaria ν6 complex Phocaea 3:1J complex 5:2J complex 2:1J complex JFC 

N 0 (H 0 = 17) 23.1 ± 3.0 34.6 ± 2.6 10.3 ± 3.7 25.1 ± 6.0 19.3 ± 5.1 3.6 ± 1.9 6.6 ± 2.6 

c 0.013 ± 0.007 0.037 ± 0.003 0.008 ± 0.027 0.009 ± 0.007 0.008 ± 0.019 0.062 ± 0.023 0.024 ± 0.019 

H min 15.6 ± 1.5 20.4 ± 0.1 23.4 ± 3.9 18.0 ± 4.6 25.0 ± 3.0 20.9 ± 0.8 18.0 ± 2.1 

αmin 0.00 ± 0.06 0.24 ± 0.01 0.00 ± 0.09 0.33 ± 0.10 0.00 ± 0.10 0.00 ± 0.04 0.12 ± 0.08 

〈 L 〉 [Myr] 37.19 ± 0.23 6.98 ± 0.50 11.16 ± 0.37 1.83 ± 0.03 0.68 ± 0.11 0.40 ± 0.05 –

N (17 < H < 22) 1 , 400 +130 
−160 

11 , 470 +280 
−220 

670 +190 
−110 

7 , 250 +420 
−480 

3 , 020 +290 
−290 

890 +120 
−70 

470 +100 
−80 

β(17 < H < 22) 0 . 056 +0 . 005 
−0 . 007 

0 . 456 +0 . 011 
−0 . 009 

0 . 027 +0 . 008 
−0 . 004 

0 . 288 +0 . 017 
−0 . 019 

0 . 120 +0 . 012 
−0 . 012 

0 . 035 +0 . 005 
−0 . 003 

0 . 019 +0 . 004 
−0 . 003 

F (17 < H < 22) [Myr −1 ] 38 +4 
−4 

1 , 640 +130 
−120 

60 +17 
−10 

3 , 950 +240 
−270 

4 , 420 +860 
−860 

2 , 200 +410 
−330 

–

γ (17 < H < 22) 0 . 003 +0 . 001 
−0 . 001 

0 . 133 +0 . 010 
−0 . 010 

0 . 005 +0 . 001 
−0 . 001 

0 . 321 +0 . 019 
−0 . 022 

0 . 359 +0 . 070 
−0 . 070 

0 . 179 +0 . 033 
−0 . 027 

–

N (17 < H < 25) 143 , 500 +26 , 200 
−26 , 600 

296 , 400 +17 , 800 
−16 , 500 

1 , 300 +25 , 200 
−200 

286 , 400 +25 , 200 
−34 , 0 0 0 

7 , 200 +15 , 400 
−800 

4 , 400 +7 , 900 
−1 , 200 

62 , 700 +11 , 600 
−12 , 200 

β(17 < H < 25) 0 . 179 +0 . 033 
−0 . 033 

0 . 370 +0 . 022 
−0 . 021 

0 . 002 +0 . 031 
−0 . 0 0 0 

0 . 357 +0 . 031 
−0 . 042 

0 . 009 +0 . 019 
−0 . 001 

0 . 005 +0 . 010 
−0 . 001 

0 . 078 +0 . 014 
−0 . 015 

F (17 < H < 25) [Myr −1 ] 3 , 900 +700 
−700 

42 , 500 +40 0 0 
−3900 

100 +2300 
−20 

156 , 100 +14 , 0 0 0 
−18 , 700 

10 , 600 +22 , 600 
−2 , 100 

10 , 900 +19 , 600 
−3 , 200 

–

γ (17 < H < 25) 0 . 017 +0 . 003 
−0 . 003 

0 . 190 +0 . 018 
−0 . 017 

0 . 0 0 05 +0 . 0103 
−0 . 0 0 01 

0 . 697 +0 . 062 
−0 . 083 

0 . 047 +0 . 101 
−0 . 009 

0 . 049 +0 . 087 
−0 . 014 

–
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Table 5 

Absolute and relative shares belonging to 5 NEO 

classes based on the number-weighted average over 

17 < H < 25. The uncertainty estimates only account 

for the random component. 

NEO class N (17 < H < 25) Relative share [%] 

Amor 316 , 0 0 0 +19 , 0 0 0 
−12 , 0 0 0 

39 . 4 +2 . 3 
−1 . 5 

Apollo 436 , 0 0 0 +21 , 0 0 0 
−12 , 0 0 0 

54 . 4 +2 . 6 
−1 . 5 

Aten 27 , 700 +900 
−800 

3 . 46 +0 . 12 
−0 . 10 

Atira 9200 +300 
−300 

1 . 15 +0 . 04 
−0 . 03 

Vatira 1970 +60 
−70 

0 . 25 +0 . 01 
−0 . 01 
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t  
n orbital space ( a, e, i ) considered in our NEO model, we have

omputed the collision probability P col ( a, e, i ) and impact veloc-

ty v col ( a, e, i ) with the considered planet, using an Öpik-like code

escribed in Vokrouhlický et al. (2012) and Pokorný and Vokrouh-

ický (2013) . This code is superior to the one originally described

n Wetherill (1967) , because it accounts for the fact that the ec-

entricity and the inclination of an object oscillate in a coupled

anner together with the precession of the argument of perihe-

ion ω. This oscillation is prominent when the z -component of the

ngular momentum is small (i.e., the well-known Lidov–Kozai os-

illations: Lidov, 1962; Kozai, 1962 ). Thus, the code requires that

he values of a, e, i of the projectile be specified as well as the cor-

esponding value of ω. Because ω was not tracked in our model,

or each cell we considered 10 particles, each with the ( a, e, i )

alues corresponding to the center of the cell, and values of ω 

anging from 0 to 90 degrees, with steps of 10 °. For simplicity

e have assumed that each planet has a null inclination relative

o the reference plane, but we used its actual orbital eccentricity.

or each of these 10 particles, the code outputs a different col-

ision probability P ( a, e, i ) ( ω) and velocity v ( a, e, i ) ( ω). The collision

robability and velocity for objects in the cell P col ( a, e, i ), v col ( a,

, i ) are computed as the averages of these quantities. In com-

uting the averages we recognize the symmetry of the ω-induced

ynamics relative to the axes sin ω = 0 and cos ω = 0 and there-

ore the values of P ( a, e, i ) , v ( a, e, i ) for ω � = 0, 90 ° are considered

wice while P ( a, e, i ) (0), v ( a, e, i ) (0), P ( a, e, i ) (90), v ( a, e, i ) (90) only once.

oreover, in computing the average of v ( a, e, i ) we weight with

 ( a, e, i ) . 

Once the values P col ( a, e, i ), v col ( a, e, i ) are computed for each

ell, the total collision probability with the planet (impacts per

ear) is computed as 

 tot = R 

2 
p 

∑ 

a,e,i 

N tot (a, e, i ) P col (a, e, i ) 

(
1 + 

v 2 esc 

v 2 
col 

(a, e, i ) 

)
(12)

here R p is the radius of the planet, v esc is the escape velocity

or its surface, and N tot (a, e, i ) = 

∑ 

H N(a, e, i, H) is the number of

steroids in each orbital-magnitude cell of our model. Note that

he term in parentheses on the right hand side implies that our

ollision probability calculation accounts for gravitational focusing.

The result is illustrated in Fig. 26 in a cumulative form (num-

er of impacts per year on a planet for impactors brighter

han a given magnitude H ). The cumulative rate of Earth im-

acts by NEOs with H < 25 is approximately once per millen-

ium ( Fig. 26 ). The results are in very good agreement with

hose reported in Morbidelli et al. (2002) ( Table 5 ) for H < 17.3,
 < 19.0, and H < 20.6. While our nominal rate is about 3 times

maller than another contemporary estimate for H < 25 ( Harris and

’Abramo, 2015 ), we stress that this difference is explained by the

ifference in the HFDs rather than in the calculation of the impact

ate. The estimates overlap at the 1 σ level when accounting for the

ncertainties of the HFDs ( Fig. 20 ). A linear extrapolation of the

umulative impact rate in the ( H , log N ( < H )) space reproduces the

bserved rate of decameter-scale and smaller asteroids and mete-

roids to within an order of magnitude (Fig.26; Brown et al., 2013;

002 ). A better match to the observed rate of bolide impacts would

equire a steeper slope at 24 � H � 26. If the higher-than-expected

ate of large bolides is more than just a statistical anomaly, the ex-

rapolation suggests that the NEO HFD has a bump at 24 � H � 28

hat has not been predicted by NEO models so far to the best of

ur knowledge. However, one has to bear in mind that the largest

olides are single events and therefore their frequency is uncertain

see, e.g., Boslough et al., 2015 ). 

The impact-flux ratios are fairly stable throughout the con-

idered H range ( Fig. 27 ). The uncertainty on these estimates

s driven by the uncertainty in the orbit distribution and HFD,

nd not more than about 10% based on the discussion in

ection 6.2 . Our total impact flux ratio for Venus and Earth

 ∼ 1.2) agrees with Vokrouhlický et al. (2017) whereas our esti-

ates for the impact flux ratios per surface area for Venus and

arth ( ∼ 1.4) and Mercury and Earth ( ∼ 0.75) do not agree with

he ones reported in Greenstreet et al. (2012a) but are about

0% higher and 40% lower, respectively. Given the rather triv-

al conversion from the total impact-flux ratio to the impact-

ux ratio per surface area it seems that also Vokrouhlický

t al. (2017) and Greenstreet et al. (2012a) are at odds with each

ther. Fig. 28 shows the relative contribution of each source to

he terrestrial impact rate. About 80% of the impacts come from

he ν SR. Thus, the inner MAB is the predominant source of
6 
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Table 6 

Incremental ( N ( H )) and cumulative ( N ( < H )) HFD in the fitted H interval. The cumulative HFD has 

been scaled so that an extrapolation to smaller H will predict 170 NEOs with H < 16. The uncertainty 

estimates only account for the random component. 

H N ( H ) σ N(H), - σN(H) , + N ( < H ) σ N( < H), - σN(< H) , + 

17.125 1.378e + 02 −5.90 0e+0 0 5.40 0e + 0 0 5.695e + 02 −4.640e+01 4.550e + 01 

17.375 1.739e + 02 −5.70 0e+0 0 5.20 0e + 0 0 7.434e + 02 −5.110e+01 4.960e + 01 

17.625 2.187e + 02 −6.0 0 0e+0 0 4.80 0e + 0 0 9.620e + 02 −5.590e+01 5.200e + 01 

17.875 2.728e + 02 −5.80 0e+0 0 5.20 0e + 0 0 1.235e + 03 −5.900e+01 5.500e + 01 

18.125 3.370e + 02 −6.80 0e+0 0 5.50 0e + 0 0 1.572e + 03 −6.100e+01 5.600e + 01 

18.375 4.113e + 02 −7.10 0e+0 0 7.30 0e + 0 0 1.983e + 03 −6.100e+01 5.800e + 01 

18.625 4.960e + 02 −8.60 0e+0 0 9.20 0e + 0 0 2.479e + 03 −6.300e+01 5.700e + 01 

18.875 5.914e + 02 −1.080e+01 1.130e + 01 3.071e + 03 −6.600e+01 5.500e + 01 

19.125 6.979e + 02 −1.300e+01 1.380e + 01 3.768e + 03 −7.100e+01 5.600e + 01 

19.375 8.165e + 02 −1.680e+01 1.480e + 01 4.585e + 03 −7.800e+01 5.900e + 01 

19.625 9.490e + 02 −2.140e+01 1.580e + 01 5.534e + 03 −8.600e+01 6.800e + 01 

19.875 1.098e + 03 −2.300e+01 2.0 0 0e + 01 6.632e + 03 −9.600e+01 8.100e + 01 

20.125 1.269e + 03 −2.800e+01 2.400e + 01 7.901e + 03 −1.140e+02 9.600e + 01 

20.375 1.467e + 03 −3.300e+01 2.800e + 01 9.368e + 03 −1.390e+02 1.130e + 02 

20.625 1.701e + 03 −4.0 0 0e+01 3.500e + 01 1.107e + 04 −1.800e+02 1.300e + 02 

20.875 1.985e + 03 −4.700e+01 4.500e + 01 1.305e + 04 −2.100e+02 1.700e + 02 

21.125 2.334e + 03 −5.600e+01 5.800e + 01 1.539e + 04 −2.500e+02 2.100e + 02 

21.375 2.775e + 03 −7.0 0 0e+01 7.200e + 01 1.816e + 04 −2.900e+02 2.800e + 02 

21.625 3.343e + 03 −9.500e+01 8.800e + 01 2.151e + 04 −3.700e+02 3.500e + 02 

21.875 4.088e + 03 −1.210e+02 1.170e + 02 2.559e + 04 −4.400e+02 4.700e + 02 

22.125 5.088e + 03 −1.570e+02 1.560e + 02 3.068e + 04 −5.800e+02 5.900e + 02 

22.375 6.453e + 03 −2.020e+02 2.170e + 02 3.713e + 04 −7.500e+02 7.700e + 02 

22.625 8.358e + 03 −2.850e+02 2.860e + 02 4.549e + 04 −1.010e+03 1.0 0 0e + 03 

22.875 1.107e + 04 −3.900e+02 4.0 0 0e + 02 5.656e + 04 −1.360e+03 1.340e + 03 

23.125 1.502e + 04 −5.700e+02 5.400e + 02 7.158e + 04 −1.850e+03 1.840e + 03 

23.375 2.090e + 04 −8.400e+02 7.700e + 02 9.247e + 04 −2.630e+03 2.480e + 03 

23.625 2.988e + 04 −1.270e+03 1.120e + 03 1.224e + 05 −3.800e+03 3.400e + 03 

23.875 4.399e + 04 −2.030e+03 1.690e + 03 1.663e + 05 −5.400e+03 5.100e + 03 

24.125 6.685e + 04 −3.280e+03 2.900e + 03 2.332e + 05 −8.400e+03 7.500e + 03 

24.375 1.051e + 05 −5.490e+03 5.600e + 03 3.383e + 05 −1.350e+04 1.210e + 04 

24.625 1.717e + 05 −1.040e+04 1.160e + 04 5.101e + 05 −2.220e+04 2.290e + 04 

24.875 2.923e + 05 −1.890e+04 2.920e + 04 8.024e + 05 −4.240e+04 4.790e + 04 
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2 http://neo.ssa.esa.int/neo-population . 
3 http://www.iki.fi/mgranvik/data/Granvik+ _ 2018 _ Icarus . 
impactors. Given that the population of primitive asteroids in the

inner MAB is more than 20% of the total ( DeMeo and Carry, 2014 ),

this implies that most of the primitive NEOs also come from the

ν6 SR. This is in agreement with the results of Campins et al.

(2010, 2013) and Bottke et al. (2015b) who investigated the most

likely origin of specific primitive NEOs. The production rate of

D > 20 km craters across the Earth’s surface over the last 100 Myr

or so has been estimated from lunar craters to be (2 . 5 ± 1 . 1) ×
10 −15 km 

−2 yr −1 and from terrestrial craters to be (2 . 8 ± 1 . 1) ×
10 −15 km 

−2 yr −1 ( Mazrouei et al., 2018 ). Hughes (20 0 0) , using

a different method, estimated the production rate of D > 22 km

craters across the Earth’s surface over the last 125 Myr to be

(3 . 0 ± 0 . 3) × 10 −15 km 

−2 yr −1 . We can compare these values to

predictions from our model, assuming that the scaling relation-

ship to turn projectiles into terrestrial craters is a factor of 20

(see, e.g., Melosh, 1989 ). Combining our collision probability results

with 962 km-sized NEOs ( H < 17.75), 58% which are on Earth cross-

ing orbits, yields a model production rate for terrestrial D > 20 km

craters of 2 . 4 × 10 −15 km 

−2 yr −1 . This value is in statistical agree-

ment with the estimates from Mazrouei et al. (2018) but slightly

outside the error bars for Hughes (20 0 0) . The difference for the

latter, however, could simply suggest we need to slightly modify

our crater scaling laws (see, e.g., Bottke et al., 2016 ). 

7.7. The European Space Agency’s NEO service and access to 

realizations of the model 

The model and tools for survey simulations have been made

available by the European Space Agency through their Space Sit-
ational Awareness website dedicated to NEOs. 2 The tool for gen-

rating a realization of the model produces a distribution of or-

ital elements and absolute magnitudes in the range 17 < H < 25

y default, but the user has the option to extrapolate to larger

nd/or smaller H magnitudes. The user may either define his/her

wn slope for the HFD outside the default range or use one of the

redefined slopes. To improve the statistics it is also possible to

rovide a scaling factor, which is unity for the nominal model and,

.g., 10 for a population 10 times larger than the nominal popula-

ion for the same H range. 

To simplify access to the model, we also provide direct access

o a realization of the nominal model for the default H range. The

at file 3 contains orbital elements and absolute magnitudes ( a, e, i,

 ) for 802,0 0 0 NEOs with a < 4.2 au and 17 < H < 25. 

. Conclusions 

We have developed a four-dimensional model describing the

ebiased NEO orbit ( a, e, i ) and absolute-magnitude ( H ) distribu-

ions. The free parameters in our modeling approach describe H

istributions for asteroids and comets that entered the NEO re-

ion through 7 different ERs in the MAB or the cometary region.

ur modeling methodology, tools and results have been carefully

etted by comparing independent predictions of NEO detections

http://neo.ssa.esa.int/neo-population
http://www.iki.fi/mgranvik/data/Granvik+_2018_Icarus
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nd actual detections by CSS’s stations 703 and G96 — to the best

f our knowledge such detailed and independent quality-control

easures have so far not been employed during the development

f NEO population models. 

We see statistically-significant differences in the shapes of the

tted H distributions for the different ERs. The shapes range from

lmost flat (Phocaeas and the 5:2J complex) to simple power-law

3:1J complex) to increasing slope (Hungarias and JFCs) to waves

the ν6 and 2:1J complexes). Understanding the reason behind

hese differences is challenging because the shapes of the H distri-

utions are a convolution of the dynamical mechanisms (such as

arkovsky and YORP) that replenish the NEO population and the

steroids’ material properties. 

The fitted H distributions also provide direct estimates for the

bsolute contributions of NEOs from 7 different ERs. Our pre-

icted fractional contributions agree with previous estimates by

ottke et al. (2002a) in the sense that the ν6 and 3:1J complexes

re the most significant ERs. Most NEOs thus originate in the inner

AB. The outer MAB and the JFCs contribute only about 10–25%

f the steady-state NEO population depending on H . The JFCs con-

ribution alone is about 2–10% depending on H . In addition, our

odel shows for the first time that the Hungaria group is an im-

ortant source for NEOs whereas the Phocaea group is a less im-

ortant source. Combined these high-inclination groups solve the

ontroversy as to (initially) the existence ( Stuart, 2001 ) and (later)

he origin of high-inclination NEOs. 

Our estimate for the number of NEOs on retrograde orbits is

n agreement with Greenstreet et al. (2012a,b) . These retrograde

EOs are dominated by the asteroids from the 3:1J complex with

 lesser contribution from JFCs. This results in a substantially dif-

erent overall shape for the HFD compared to NEOs on prograde

rbits. We also note that these results clearly imply that the 3:1J

MR plays a key role in the production of NEOs on retrograde

rbits. 

Our results for the debiased marginal a, e, i and H distribu-

ions for large NEOs generally agree with the most recent literature

ith the exception that the inclination distribution is weakly bi-

odal due to the contribution from the Hungaria group. Although

he main features of the orbit distribution are fairly stable across

he considered H range due to the substantial contribution from ν6 

nd 3:1J complexes across H , there is a clear but complex fluctu-

tion with H on top of that. Most of the fluctuation is explained

y variation in contributions from the 5:2J complex and the Hun-

arias. In particular, the contribution from Hungarias is largest

t the smallest sizes whereas the opposite is true for the 5:2J

omplex. 

The relative fractions of Amors, Apollos, Atens, Atiras, and

atiras are fairly insensitive to H . Our estimates for the rel-

tive fractions for 17 < H < 25 are markedly different com-

ared to the estimates by both Greenstreet et al. (2012a) and

ottke et al. (2002a) for H < 18. A difference with respect to both

reenstreet et al. (2012a) and Bottke et al. (2002a) suggests that

tatistical uncertainties in the ER-specific steady-state orbit distri-

utions that are used for the orbit models is not the culprit. In-

tead we think that the difference is driven by improved estimates

f the relative contributions from different ERs. 

Based on our NEO model and Öpik-like impact analysis we find

 good agreement to earlier estimate for the impact rate on ter-

estrial planets in the literature for large NEOs. For smaller NEOs

e can compare a linear extrapolation of our model to smaller

izes with the observed rate of bolides on the Earth. The agree-

ent is reasonably good apart for 24 < H < 28 where the frequency

f Tunguska-sized impacts remains an unsettled issue. We also

nd a good agreement between our prediction and lunar cratering

ecords. 
Finally, our work suggests that the NEO population is in a

teady state, at least for H ≥ 17, because our model is based

n that assumption and it accurately reproduces the observed

opulation. 
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