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Abstract

Understanding the collisional fragmentation and subsequent reaccumulation

of fragments is crucial for studies of the formation and evolution of the small-

body populations. Using an SPH / N-body approach, we investigate the

size-frequency distributions (SFDs) resulting from the disruption of 100 km-

diameter targets consisting of porous material, including the effects of pore-

crushing as well as friction. Overall, the porous targets have a significantly

higher impact strength (Q∗
D) than the rubble-pile parent bodies investigated

previously (Benavidez et al., 2012) and show a behavior more similar to non-

porous monolithic targets (Durda et al., 2007). Our results also confirm that

for a given specific impact energy, the SFDs resulting from a parent body

disruption are strongly dependent on the size scale.
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1. Introduction

The observed asteroid families are composed of bodies that are thought to

have originated from energetic collisions, which in turn lead to disruptions of

larger parent bodies (e.g. Farinella et al., 1996). Understanding the collisional

fragmentation and the subsequent reaccumulation of fragments is crucial for

studies of processes taking place during the formation of the solar system and

to reconstruct the internal structure of small bodies. As a complement to

experimental and theoretical approaches, numerical modeling has become an

important component to study asteroid collisions and impact processes (e.g.

Jutzi et al., 2015; Michel et al., 2015). The process of large-scale disruptions

consists of two distinct phases: the impact and fragmentation phase, and the

gravitational reaccumulation phase. They are characterized by very different

time scales and therefore can be studied by a hybrid modeling approach,

coupling shock-physics code models and gravitational N-body methods (e.g.

Michel et al., 2001, 2003). In numerous modeling studies, the effects of

various target properties and impact conditions on the outcome of disruptive

asteroid collisions have been investigated. Monolithic, pre-shattered, micro-

porous or rubble-pile targets (e.g. Michel et al., 2003; Durda et al., 2007; Jutzi

et al., 2010; Benavidez et al., 2012) have been studied and different parent

body sizes have been explored (e.g. Benavidez et al., 2018; Ševeček et al.,

2017). Effects related to the numerical scheme (such as the resolution) have

been investigated as well (Genda et al., 2015, 2017). Recently, the collisional

disruption of planetesimals in the gravity regime has also been explored with

the grid-based iSALE code (Suetsugu et al., 2018).

The comparison between simulation outcomes for various kinds of parent-
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body structures and the observed properties of asteroid family properties can

help to constrain the internal structures of the parent body of the considered

families.

The size-frequency distributions (SFDs) resulting from the disruption of

100 km-diameter targets have been determined for bodies consisting of ei-

ther monolithic non-porous basalt (Durda et al., 2007) or non-porous basalt

blocks held together by gravity (’rubble piles’) (Benavidez et al., 2012). Here

we use the same range of collision speeds, impact angles, and specific impact

energies and extend those studies to targets consisting of micro-porous mate-

rial. Recent studies have shown that the presence of microporosity influences

the outcome of a catastrophic disruption (Jutzi et al., 2008, 2010). Many as-

teroid families are of dark taxonomic type, such as C-type, which is often

considered to contain a high fraction of porosity (including microporosity)

based on measured bulk densities of C-type asteroids (e.g. Britt et al., 2002).

Therefore, to determine the impact conditions for the formation of dark-type

asteroid families, a comparison is needed between the actual family SFDs

and those of impact disruptions of porous bodies. Moreover, the comparison

between the disruptions of non-porous, rubble-pile, and porous targets is im-

portant to assess the influence of various internal structures on the outcome.

For the modeling of the impact and fragmentation phase we use a shock-

physics code based on the Smoothed Particle Hydrodynamics (SPH) tech-

nique. The code includes a well-tested porosity model as well as updated

strength and friction models (section 2.1.1), which were not included in the

previous studies (Durda et al., 2007; Benavidez et al., 2018; Ševeček et al.,

2017). It has been shown recently that the effects of porosity as well as
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friction can lead to significant differences in the outcome of asteroid colli-

sions (Jutzi, 2015). In addition to the effect of material properties, we also

investigate the dependence of the SFDs on the parent body size.

In section 2, our model approach is described and the differences com-

pared to previous studies are indicated. The results of our study are presented

in section 3; conclusions and outlook are in section 4.

2. Model approach

In this section we describe our modeling approach as well as the assump-

tions regarding the internal structures and initial conditions.

2.1. Numerical method

To model the collision process and subsequent reaccumulation, we use

an SPH / N-body approach as introduced by Michel et al. (2001, 2003).

This modelling approach has been applied in a number of recent studies (e.g.

Durda et al., 2007; Benavidez et al., 2012; Benavidez et al., 2018; Ševeček

et al., 2017) using the original method. However, both the SPH shock-physics

codes as well as the N-body code pkdgrav have been extended and improved

significantly in recent years. Here we briefly describe the basic methods and

recent improvements.

2.1.1. Shock-physics code

We use a parallel (distributed memory) SPH impact code (Benz and As-

phaug, 1994, 1995; Nyffeler, 2004; Jutzi et al., 2008; Jutzi, 2015) that includes

self-gravity as well as material strength models. To model fractured, gran-

ular material, a pressure-dependent shear strength (friction) is included by
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using a standard Drucker-Prager yield criterion (Jutzi, 2015). In most pre-

vious SPH / N-body simulations, fully damaged material was treated as a

strengthless fluid, which can lead to a significant underestimation of the ’im-

pact strength’ of the target asteroid (Jutzi, 2015). The effect of friction can

also lead to increased impact heating (Kurosawa and Genda, 2018). Poros-

ity is modeled using a sub-resolution approach based on the P-alpha model

(Jutzi et al., 2008). The material properties (crush-curve) of the porous tar-

get used here are those that provided the best match to impact experiments

on pumice targets (Jutzi et al., 2009). The porosity model takes into account

the enhanced dissipation of energy during compaction of porous materials,

an effect not included in the ’rubble-pile’ models used by Benavidez et al.

(2012) and Benavidez et al. (2018). We further use the Tillotson Equation

of State (EOS) with parameters for basalt (except for the density) as given

in Jutzi et al. (2009).

2.1.2. N-body code pkdgrav

We use the same procedure as in previous papers (Michel et al., 2003;

Jutzi et al., 2010). Fragments represented by SPH particles in the previous

phase are replaced by spherical particles that can interact under their mutual

gravity, collide and bounce or merge when their relative speed is larger or

smaller than their mutual escape speed. In case of merger, the two particles

are replaced by a spherical particle with the same momentum. In case of

bouncing, a normal coefficient of restitution set to 0.3 and a tangential coef-

ficient of restitution set to 1 are used to model an inelastic collision between

two porous fragments (hence the choice of a rather low normal coefficient;

see also Jutzi et al. (2010)). This approach prevents us from obtaining in-
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formation on the shape of reaccumulated fragments, but allows us to obtain

their size and ejection velocity distributions, which is our main interest in

this paper, for comparison with previous studies.

2.1.3. Handoff between the two methods

Once the fragmentation phase is over, the hydrodynamical simulations are

stopped and the SPH particles and their corresponding velocity distribution

are fed into the N-body code that computes the dynamical evolution of the

system to late time. For the transfer time we use t = 400 s, except for

the case of the large 200 km target (section 2.3) where t = 1200 s is used.

This procedure is the same as used previously (e.g. Jutzi et al., 2010). The

gravitational phase was carried out to a simulated time of about 12 days,

after which the outcome essentially does not change anymore.

2.2. Model of the internal structure

As noted in section 1, we consider porous parent bodies in this study. The

scale of porosity is defined in comparison with the other relevant dimensions

involved in the problem, such as the size of the projectile and/or crater.

Using a sub-resolution P-alpha type porosity model implicitly assumes that

the scale of the porosity is smaller than the scale of the impactors (i.e., the

scale of porosity is assumed to be smaller than a few 100 meters).

A body containing such small-scale porosity may be crushable: cratering

on a microporous asteroid is an event involving compaction rather than ejec-

tion (Housen et al., 1999). Thus, for an impact into a microporous material,

a part of the kinetic energy is dissipated by compaction, which leads to less

ejected mass and lower speeds of the ejected material. These effects can-
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not be reproduced by hydrocodes developed for the modeling of non-porous

solids.

In contrast, Benavidez et al. (2012); Benavidez et al. (2018) used targets

that were constructed by filling the interior of a spherical shell with an uneven

distribution of non-porous basalt spheres, leading to a structure with large-

scale voids.

2.3. Initial conditions

We use the same matrix of impact conditions as explored in Durda et al.

(2007) and Benavidez et al. (2012), covering a wide range of impact speeds

(from 3 to 7 km/s), impact angles (from 15◦ to 75◦ with 15◦ increments)

and impactor diameters (chosen to obtain the same range of specific impact

energies as in the previous studies). We use non-porous basalt impactors

with initial densities of 2.7 g/cm3 and porous targets with an initial density

of 1.3 g/cm3, corresponding to a porosity of ∼ 50%.

In addition, we perform a few exploratory runs at different scales (target

diameters ranging from 25 km to 200 km, with scaled impactor sizes). For

our nominal simulations, a resolution of 4×105 particles is used. As recently

shown by Genda et al. (2015), the outcome of disruption simulations (i.e. the

catastrophic disruption threshold Q∗
D) depends on the numerical resolution,

in particular for very low particle numbers. With the moderately high reso-

lution used here, the outcomes are reasonably close to convergence, given the

much larger effects of material properties (strength/friction, porosity) on the

outcome (e.g. Jutzi, 2015). Although a deeper investigation may be needed,

a few runs performed with 1×105 and 1×106 particles showed similar mass

ratios of the largest remnant to the parent body to that obtained with 4×105
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particles.

3. Results

3.1. Size of largest remnant

An overview of the simulation results in terms of the size of the largest

remnant for each collision is shown in Figure 1 as a function of the specific

impact energy. The results are compared to the results obtained in previous

studies using non-porous monolithic (Durda et al., 2007) and rubble-pile (Be-

navidez et al., 2012) parent bodies. Overall, the porous targets investigated

here show a behavior more similar to the non-porous monolithic targets than

the rubble-pile ones. It has already been suggested in Jutzi et al. (2010) that,

in the gravity regime, there is not a large difference between Q∗
D for porous

and non-porous materials because different effects compensate for each other

(e.g. energy dissipation by compaction for porous targets vs. higher material

strength and stronger gravity because of higher density in non-porous tar-

gets). On the other hand, our results show that the porous targets considered

here have a significantly higher impact strength than the rubble-pile targets

used by Benavidez et al. (2012), confirming the findings by Jutzi (2015).

As argued by Jutzi (2015), the rubble-pile targets as modeled by Benavidez

et al. (2012) behave more like porous fluids rather than real rubble-pile bod-

ies. This is because friction of fully damaged material is not included in their

SPH model, which therefore may have omitted an important effect governing

granular flow.
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3.2. Size distributions

3.2.1. Results for D = 100 km parent body

The SFDs resulting from our simulations using porous targets are dis-

played in Figures 2-6. As in previous studies, a wide range of morphologies

is observed, depending on specific impact energy and impact angle. Low-

energy and/or highly oblique impacts lead to cratering-type SFDs, while

high-energy and/or close-to-head-on impacts lead to catastrophic or super-

catastrophic disruptions (the corresponding size of largest remnant in each

case is given in Figure 1).

3.2.2. Effect of parent body size

Recent studies (Benavidez et al., 2018; Ševeček et al., 2017) have investi-

gated the dependence of the collision outcomes (such as the SFD) for given

specific impact energies on the parent body size. In these studies, the results

using two different targets sizes (either 100 km and 400 km; or 10 km and 100

km) were compared. Here, we systematically investigate the SFDs for 3 dif-

ferent impact regimes (cratering, disruption, super-catastrophic disruption)

using a range of target radii (25, 50, 75, 100, 200 km). We consider the initial

conditions of the cases ”3 45 3”, ”3 45 18” and ”7 45 18” (see Figure 4; the

first number is the impact velocity in km/s, the second the impact angle and

the third the approximate projectile radius in km) and adjust the projectile

sizes to obtain the same specific impact energy for the various target sizes

(i.e., the same mass ratio Mp/Mt is used). Figure 7 displays the resulting size

distributions. As expected, there is a clear dependence of the SFDs on the

target size because of the change of Q∗
D caused by the varying gravity poten-

tial (e.g. Jutzi, 2015). Interestingly, the differences are more pronounced in
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the cratering and super-catastrophic regimes. Overall, these results confirm

the findings by Benavidez et al. (2018) and Ševeček et al. (2017), and strongly

affirm that the ’linear scaling’ of SFDs to different target sizes (Durda et al.,

2007) can only be applied over a limited size range.

3.3. Velocity distributions

In addition to the SFDs we also compute the ejection velocity distribu-

tions (with respect to the target’s center of mass). In Figures 8 - 12, the

normalized fragment diameters are shown as a function of ejection velocity.

Generally, there is a large range of ejection speeds, but only the small frag-

ments reach high velocities. Interestingly, in some cases the highest ejection

velocities are even larger than the impact velocity for a small fraction of the

fragments. This may be related to the ’jetting effect’, which can accelerate

material to speeds larger than the impact velocity (e.g. Johnson et al., 2014).

However, we note that some of these high velocity ejecta may be vaporized

during ejection. Specific high-resolution simulations with more-sophisticated

EOS models will be required to investigate this effect in more detail.

4. Conclusions and outlook

We have investigated the size-frequency distributions (SFDs) resulting

from the disruption of 100 km-diameter targets consisting of porous material.

Overall, the porous targets investigated here show a behavior more similar

to the non-porous monolithic targets (Durda et al., 2007) than the rubble-

pile ones (Benavidez et al., 2012), as they have a significantly higher impact

strength (Q∗
D) than the latter (see also Jutzi, 2015). Various effects are

important at these scales, such as self-gravity, material strength, friction and
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porosity, and partly compensate each other (e.g. higher material strength

and densities (i.e. gravity) of non-porous objects vs. energy dissipation by

pore-crushing of porous objects).

Our results confirm that the SFDs resulting from a parent-body disrup-

tion are strongly dependent on the size scale (for a given specific impact

energy), as shown in recent studies (Benavidez et al., 2018; Ševeček et al.,

2017), and that the linear scaling approach is only valid over a limited size

range. This emphasizes the need for additional studies, exploring a much

larger range of the parameter space.

The calculations and results presented here serve as a basis for a number

of subsequent studies, comparing the SFDs to observed families (manuscript

in prep.), as well as investigating the shapes of the largest remnants (Walsh

et al., in prep.) and smaller ones (Barnouin et al., in prep.). They are also

used for the development of general scaling laws for small-body disruptions

in the strength and gravity regime (Jutzi et al., in prep.).
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impactor is considered for the same angles and medium-sized and
largest impactors for 60! and 75!, respectively. In other words, the
maximum number of SMATS are produced by log(Mtarg/Mimp) !2.6
to !3 (impactors of !10 to !14 km) at almost head-on impacts;
these collisions left a largest remnant around 50–60% of the target
diameter. In the case of 75! impact angle, larger impactors are
needed to get almost similar number of SMATS.

Figs. 4 and 5a show an arc trend, leaving a paucity in the largest
remnant diameter from !50 to !80 km for rubble-piles, and from
!20 to !60 km for monolithic targets. That paucity is the conse-
quence of the strong dependence between the size of the largest
remnant and the impact energy. On the other hand, a high-energy
impact (big impactors) on a rubble-pile target left very few and
smaller SMATs than in case of monolithic targets.

3.3. EEBs

Figs. 6 and 7 show the largest EEB primary diameter and the
number of EEBs created in each simulation, as a function of the
diameter of the largest remnant for rubble-pile and monolithic tar-
gets, respectively. The largest EEB primary diameter increases lin-
early with the largest remnant diameter for impact angles as
oblique as 45! and becomes more spread for more oblique impacts.
The number of EEBs increases also with the largest remnant size,
but the trend is somewhat more bow-shaped. The highest target-
to-impactor mass ratios (or the smallest impactors) produce more
and larger EEBs when the impact angle is as oblique as 60!, while
when the impact angle is 75! the largest impactors are what pro-
duce more and bigger EEBs.

In the monolithic case, moderately catastrophic impacts at low
speed produced a large amount of EEBs, but for rubble-pile targets
the largest number of EEBs is not limited to low impact speeds.
However, the maximum number of EEBs from rubble-pile targets
is about a factor !7 lower than from monolithic parent bodies
(see Fig. 7). It is interesting to note that when monolithic targets
are impacted at 75! very large EEBs are produced. In these cases
not much energy is transferred in the impact and the target is
hardly damaged. These large EEB primaries are thus formed from
the projectile material, much of which remains intact as the projec-
tile ‘‘shears off’’ a side of the target. The fact that few binaries are

observed in asteroid families may suggest that the parent bodies
of these families may be rubble-piles (cf. Section 4).

3.4. SFD morphologies

Fig. 8 shows a wide range of morphologies of the fragment SFDs
resulting from our rubble-pile simulations, compared with the
monolithic runs from Durda et al. (2004), Durda et al. (2007). For
rubble-pile targets, as was true for monolithic targets, low-energy
impacts (produced by small impactors and/or oblique impacts) re-
sult in cratering events, while high-energy impacts (mainly large
impactors) result in catastrophic or super-catastrophic events. No
significant changes are observed in the general morphology of
the SFDs by varying the impact speed for a given size impactor
and angle (except for a minor features discussed below). In partic-
ular, for an impact angle of 75!, the shape of rubble-pile SFDs re-
mains quite similar even varying the impact speed and impactor
size, becoming steeper and more continuous (smaller size ratio be-
tween the two largest remnants) than the monolithic ones. This
implies that at some point, more energy does not translate into a
significantly different fragment SFD.

The largest remnant in rubble-pile simulations is (in general)
smaller than that obtained for impacts into monolithic targets. This
leads to a more continuous and steeper slope in the rubble-pile
SFDs. A gradual change in the SFDs is observed (for impact angles
up to 45!) with increasing impactor size, until log(Mtarg/Mimp) > 1.8
(impactors around 25 km).

Due to the similarities in the SFD for catastrophic disruption
events, the SFD morphology alone is not particularly diagnostic
of the circumstances of the impact event. The SFDs from sub-cata-
strophic events in contrast, produced by small impactors at impact
angles smaller or equal to 45!, are sensitive to impact conditions
(including parent body structure), and can potentially give us more
information about the internal structure of a parent body than cat-
astrophic or super-catastrophic events produced by large
impactors.

4. Comparing simulation outcomes with observational data

In this section, we investigate whether the features seen in the
modeled SFDs and satellite systems described in Section 3 share

(a) (b)

Fig. 3. Largest remnant diameter versus specific impact energy for (a) rubble-pile target and (b) monolithic target. Dot sizes are coded according to impactor diameter,
smaller dots represent smaller impactors (which size are: 7, 10, 14, 18, 25, 34 and 46 km). Note that some deviation of the evident general trend are expected in the largest
fragment diameter due to the random internal distribution (see Section 2.4).

P.G. Benavidez et al. / Icarus 219 (2012) 57–76 65

impactor is considered for the same angles and medium-sized and
largest impactors for 60! and 75!, respectively. In other words, the
maximum number of SMATS are produced by log(Mtarg/Mimp) !2.6
to !3 (impactors of !10 to !14 km) at almost head-on impacts;
these collisions left a largest remnant around 50–60% of the target
diameter. In the case of 75! impact angle, larger impactors are
needed to get almost similar number of SMATS.

Figs. 4 and 5a show an arc trend, leaving a paucity in the largest
remnant diameter from !50 to !80 km for rubble-piles, and from
!20 to !60 km for monolithic targets. That paucity is the conse-
quence of the strong dependence between the size of the largest
remnant and the impact energy. On the other hand, a high-energy
impact (big impactors) on a rubble-pile target left very few and
smaller SMATs than in case of monolithic targets.

3.3. EEBs

Figs. 6 and 7 show the largest EEB primary diameter and the
number of EEBs created in each simulation, as a function of the
diameter of the largest remnant for rubble-pile and monolithic tar-
gets, respectively. The largest EEB primary diameter increases lin-
early with the largest remnant diameter for impact angles as
oblique as 45! and becomes more spread for more oblique impacts.
The number of EEBs increases also with the largest remnant size,
but the trend is somewhat more bow-shaped. The highest target-
to-impactor mass ratios (or the smallest impactors) produce more
and larger EEBs when the impact angle is as oblique as 60!, while
when the impact angle is 75! the largest impactors are what pro-
duce more and bigger EEBs.

In the monolithic case, moderately catastrophic impacts at low
speed produced a large amount of EEBs, but for rubble-pile targets
the largest number of EEBs is not limited to low impact speeds.
However, the maximum number of EEBs from rubble-pile targets
is about a factor !7 lower than from monolithic parent bodies
(see Fig. 7). It is interesting to note that when monolithic targets
are impacted at 75! very large EEBs are produced. In these cases
not much energy is transferred in the impact and the target is
hardly damaged. These large EEB primaries are thus formed from
the projectile material, much of which remains intact as the projec-
tile ‘‘shears off’’ a side of the target. The fact that few binaries are

observed in asteroid families may suggest that the parent bodies
of these families may be rubble-piles (cf. Section 4).

3.4. SFD morphologies

Fig. 8 shows a wide range of morphologies of the fragment SFDs
resulting from our rubble-pile simulations, compared with the
monolithic runs from Durda et al. (2004), Durda et al. (2007). For
rubble-pile targets, as was true for monolithic targets, low-energy
impacts (produced by small impactors and/or oblique impacts) re-
sult in cratering events, while high-energy impacts (mainly large
impactors) result in catastrophic or super-catastrophic events. No
significant changes are observed in the general morphology of
the SFDs by varying the impact speed for a given size impactor
and angle (except for a minor features discussed below). In partic-
ular, for an impact angle of 75!, the shape of rubble-pile SFDs re-
mains quite similar even varying the impact speed and impactor
size, becoming steeper and more continuous (smaller size ratio be-
tween the two largest remnants) than the monolithic ones. This
implies that at some point, more energy does not translate into a
significantly different fragment SFD.

The largest remnant in rubble-pile simulations is (in general)
smaller than that obtained for impacts into monolithic targets. This
leads to a more continuous and steeper slope in the rubble-pile
SFDs. A gradual change in the SFDs is observed (for impact angles
up to 45!) with increasing impactor size, until log(Mtarg/Mimp) > 1.8
(impactors around 25 km).

Due to the similarities in the SFD for catastrophic disruption
events, the SFD morphology alone is not particularly diagnostic
of the circumstances of the impact event. The SFDs from sub-cata-
strophic events in contrast, produced by small impactors at impact
angles smaller or equal to 45!, are sensitive to impact conditions
(including parent body structure), and can potentially give us more
information about the internal structure of a parent body than cat-
astrophic or super-catastrophic events produced by large
impactors.

4. Comparing simulation outcomes with observational data

In this section, we investigate whether the features seen in the
modeled SFDs and satellite systems described in Section 3 share

(a) (b)

Fig. 3. Largest remnant diameter versus specific impact energy for (a) rubble-pile target and (b) monolithic target. Dot sizes are coded according to impactor diameter,
smaller dots represent smaller impactors (which size are: 7, 10, 14, 18, 25, 34 and 46 km). Note that some deviation of the evident general trend are expected in the largest
fragment diameter due to the random internal distribution (see Section 2.4).
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Figure 1: Size of largest fragment as a function of specific impact energy. Note: projectile

material is not included in the mass computations. Top: results of this study; bottom

left: monolithic targets (Durda et al., 2007); bottom right: rubble-pile targets (Benavidez

et al., 2012). We note that for a given specific impact energy, the projectile sizes are

slightly different from the previous studies due to different target densities.
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Figure 2: Cumulative size distributions for impact angle θ = 15◦. For each run, the first

number of the legend is the impact velocity in km/s, the second the impact angle and the

third the approximate projectile radius in km.16
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Figure 3: Cumulative size distributions for impact angle θ = 30◦. For each run, the first

number of the legend is the impact velocity in km/s, the second the impact angle and the

third the approximate projectile radius in km.17
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Figure 4: Cumulative size distributions for impact angle θ = 45◦. For each run, the first

number of the legend is the impact velocity in km/s, the second the impact angle and the

third the approximate projectile radius in km.18
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Figure 5: Cumulative size distributions for impact angle θ = 60◦. For each run, the first

number of the legend is the impact velocity in km/s, the second the impact angle and the

third the approximate projectile radius in km.19
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Figure 6: Cumulative size distributions for impact angle θ = 75◦. For each run, the first

number of the legend is the impact velocity in km/s, the second the impact angle and the

third the approximate projectile radius in km.20
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Figure 7: Cumulative SFDs for different target sizes, normalized by target mass. Left:

cratering regime; impact conditions correspond to case ”3 45 3”. Middle: disruption

regime, case ”3 45 18”. Right: super-catastrophic regime, case ”7 45 18” (see Figure 4

and main text for the different cases). In each regime, the same specific energies and mass

ratios Mp/Mt are used for the different target sizes.
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Figure 8: Velocity distributions for impact angle θ = 15◦. For each run, the first number

of the legend is the impact velocity in km/s, the second the impact angle and the third

the approximate projectile radius in km. 22



Figure 9: Velocity distributions for impact angle θ = 30◦. For each run, the first number

of the legend is the impact velocity in km/s, the second the impact angle and the third

the approximate projectile radius in km. 23



Figure 10: Velocity distributions for impact angle θ = 45◦. For each run, the first number

of the legend is the impact velocity in km/s, the second the impact angle and the third

the approximate projectile radius in km. 24



Figure 11: Velocity distributions for impact angle θ = 60◦. For each run, the first number

of the legend is the impact velocity in km/s, the second the impact angle and the third

the approximate projectile radius in km. 25



Figure 12: Velocity distributions for impact angle θ = 75◦. For each run, the first number

of the legend is the impact velocity in km/s, the second the impact angle and the third

the approximate projectile radius in km. 26
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