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In statistics and machine learning, model accuracy is traded off with complexity, which can 

be viewed as the amount of information extracted from the data. Here, we discuss how 

cognitive costs can be expressed in terms of similar information costs, i.e. as a function of the 

amount of information required to update a person’s prior knowledge (or internal model) to 

effectively solve a task. We then examine the theoretical consequences that ensue from this 

assumption.  This framework naturally explains why some tasks – for example, unfamiliar or 

dual tasks – are costly and permits to quantify these costs using information-theoretic 

measures. Finally, we discuss brain implementation of this principle and show that subjective 

cognitive costs can originate either from local or global capacity limitations on information 

processing or from increased rate of metabolic alterations. These views shed light on the 

potential adaptive value of cost-avoidance mechanisms.  
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1. Introduction 

  

Demanding cognitive tasks, such as mental arithmetic, are strongly aversive: we tend to avoid 

partaking in such tasks and they lead to unpleasant subjective feeling of mental exertion 

(Inzlicht et al., 2015). Various studies have revealed that we take into consideration these 

cognitive costs when deciding whether or not to engage in a task (Benoit et al., 2017; Kool et 

al., 2010; Manohar et al., 2015; Schmidt et al., 2012; Westbrook et al., 2013; Westbrook and 

Braver, 2015). Furthermore, prolonged performance of demanding tasks leads to cognitive 

fatigue, which is characterized by a subjective dimension – i.e. feeling of exhaustion, 

impression of worsened ability and decreased willingness to engage in mental activities 

(Hockey, 2011; van der Linden et al., 2003) – and an objective dimension, with an actual 

decrease of task performance (Bailey et al., 2007; Tanaka, 2015; van der Linden et al., 2003). 

However, it is still unclear what is the origin of cognitive costs (i.e., what is costly about 

cognitive processing?), how to specify them quantitatively, and whether cognitive costs and 

cognitive fatigue have some adaptive value. 

In this article, we address this set of questions from the angle of information theory, by 

establishing a connection between cognitive costs and computational or information 

measures, e.g. the amount of information required to update a person’s prior knowledge. 

Throughout the article, we will use the term “cognitive costs” to refer to the percept of effort 

and the task avoidance associated with cognitive tasks. Conversely, “computational costs” 

will designate the cost of cognitive tasks from the point of view of computational theory or 
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artificial intelligence, and “information costs” represent one particular instance in which 

computational costs are framed in terms of information theory.  

 

2. The information cost of cognitive processes 

 

Recent advances in artificial intelligence and computational neuroscience have led to 

formalization of cognition as a bounded rationality process (Friston, 2010; Kingma and 

Welling, 2013; Ortega and Braun, 2013; Tishby et al., 2000; Tkačik and Bialek, 2014). 

According to this view, rather than aiming systematically at the optimal solution to 

computational problems, cognitive processes trade off performance with computational costs. 

Remarkably, the way computational costs are formalized across these different studies is very 

consistent, despite their different approaches. In fact, whether one starts from an inference 

problem, in which the evidence for a model is maximized given some data (Genewein et al., 

2015; Kingma and Welling, 2013; Tishby et al., 2000), or whether one is more generally 

attempting to minimize the entropy of future states (Friston, 2010), or whether one takes a 

decision making perspective, in which expected utility is maximized (Ortega et al., 2015), or 

even from the point of view of thermodynamics (Ortega and Braun, 2013; Sengupta et al., 

2013), computational cost is framed as a measure of divergence between an initial belief (or 

prior probability distribution over a variable of interest x, such as expected reward) and an 

updated belief (or posterior probability distribution over the same variable x) obtained after 

receiving new data (Donnarumma et al., 2016; Kappen et al., 2012; Maisto et al., 2016, 2015; 

Polani, 2009; Stoianov et al., 2016; Tishby and Polani, 2011). This measure of difference 

between probability distributions, called the Kullback-Leibler (KL) divergence, represents the 

amount of information one needs to collect in order to update the prior to the posterior (

KL(P || Q) = P log
P

Q
∑   for probability distributions P and Q). Here, “amount of information” is 
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meant in the sense of Shannon’s definition of information in terms of surprisal or the 

negative log probability of the data (Shannon, 1948). In other words, expected data provides 

little information while unexpected data is very informative. If one wants to encode such data 

without error, the number of binary symbols that will be needed is at least equal to the 

average surprisal, or entropy of the data (entropy is often represented by the letter H: 

H (P) = − P log
2

P∑  ). 

Whether we are considering an inference problem (identifying latent causes of observations) 

or a decision making problem (deciding what to do), cognitive activity can be viewed as a 

process in which input data allows us to refine our previous assumption (about the most 

probable cause or the best action) to a new, more accurate belief and the cost of this process, 

from the perspective of information theory, corresponds to the reduction in the entropy that it 

causes. 

The question of the information cost of cognitive control – i.e. the selection of appropriate 

behaviour in the face of environmental stimulation, on the basis of internal goals (Miller and 

Cohen, 2001; Pezzulo et al., 2018) - has been addressed for more than 50 years, pioneered, 

separately, by Hick and Hyman (Hick, 1952; Hyman, 1953). In these early works, 

information cost was framed in terms of the entropy of the response choice (we will refer 

henceforth to response choices by the variable name y): H(p(y)). A typical example is the 

digit-key association task, in which participants have to press the key that corresponds to the 

digit they see on the screen. In this task, participants need to update their prior distribution of 

responses p0(y) to a posterior distribution p(y|x) (read as the probability of y given x, where x 

refers to the input data) in which all the probability mass is in one stimulus-response 

association (see Figure 1, dark grey). If there are 4 possible digits and their probabilities of 

occurrence are equal, the KL divergence between p0(y) and p(y|x) is equal to H(p0(y)), which 

in the present case is -log(1/4) or log(4). Strikingly, what Hick and Hyman showed is that 
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reaction time is a linear function of H(p0(y)) (Hick, 1952; Hyman, 1953), confirming that it is 

an accurate measure of information cost in this context and suggesting that the rate of 

information for this task is constant (i.e. the number of bits processed per unit of time is 

constant).  

However, the uncertainty in the response is clearly not the sole determinant of task 

complexity. In the task above, if one varies the number of stimuli associated to each button 

press while keeping the number of responses constant (e.g. 2 stimuli become associated to the 

same button presses, leading to 8 stimuli for 4 buttons), H(p0(y)) remains constant but 

reaction times increase, and they do so linearly with H(p0(x)) (Wifall et al., 2016). A similar 

increase in reaction time was reported in other tasks in which the complexity of the stimulus 

varies, while the number of response choices remains constant (Fan, 2014; Fan et al., 2008). 

To explain these findings, it is necessary to extend the aforementioned information theoretic 

framework, such that information costs depend on both p(x) and p(y).  

It is worth noting that x stands for sensory data coming from the outside world and not an 

internal variable of the agent – hence it cannot be used directly for our formalization. For this, 

we need to introduce an auxiliary variable x’ that would stand for the internal representation 

of x, which the system uses to choose the action y: x → x ' → y . The addition of this 

intermediate variable x’ affords different levels of compression of the input x (x’ can extract 

more or less of the information that is available in x), which is an important feature for a 

model of cognition (Grau-Moya and Braun, 2015; Park and Pillow, 2017; Tishby et al., 

2000). 

Therefore, information cost  becomes the KL divergence between the prior internal 

representation of the input p0(x’) and its posterior after observing the outside world p(x’|x), to 

which we need to add the KL divergence between the prior distribution of responses p0(y) and 

their posterior distribution p(y|x’): 
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It is worth adding that if one considers the average of these information costs across many 

trials, and assuming usage of an optimal, marginal prior (see below and Tishby et al., 2000), 

the total information cost becomes: 

  

where I(x;x’) refers to the mutual information between x and x’, which indicates the reduction 

in the entropy of x’ after observing x (which is closely related to the notion of epistemic value 

in active inference; see Friston et al., 2015), while I(x’;y) represents the reduction in entropy 

of the response given some internal representation of the input x’. We can see from the above 

formula that this framework implements the property of that we wanted: its dependence on 

both the complexity of the input data representation x’ and the complexity of the responses y.  

Finally, in order to account for the cognitive costs associated with classic tasks such as the 

Stroop task for example, we need to make one last addition to our framework, in agreement 

with earlier proposals by Koechlin and Summerfield (2007). In the Stroop task, subjects must 

either read a colour word or name the colour of the ink with which the word is written. When 

both sources of information are incongruent (e.g. the word “blue” is written with red ink), it 

is more difficult to name the ink colour than to read the word (MacLeod, 1991). This 

indicates that the stimulus triggers an action (reading the word) that is independent of the task 

context and that interferes with the response instructed by the task  (naming the ink colour) 

(Cohen et al., 1990). In order to account for this, we need to add a new variable T that 

represents the context of the task. The stimulus then triggers a default, automatic conditional 

distribution of responses p(y|x’) (that is thus independent of context), which is finally updated 

to the final, context-dependent distribution: p(y|x’,T). The optimal automatic response 
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distribution is the marginal of the final response distribution (i.e. the final distribution 

averaged over all contexts):  

p( y | x ') = p( y | x ',T ) p(T )
T

∑   

Our final formula for total information cost with optimal priors becomes (see also Figure 2): 

  1 

Note that under this formula,  should not be interpreted as a general measure of the 

information cost of a task since it depends on the pattern of response . If  is taken to be 

equal to the optimal response, then can be interpreted as the information cost of 

performing the task optimally. More generally, there will be a trade-off between and 

performance. This will be discussed in more detail in section 3.5. 

 

3. Predictions of the framework 

 

So far, we have shown that information cost of a cognitive task can be framed as the sum of 

three terms: the mutual information between inputs and their internal representations; the 

mutual information between internal representations and automatic responses; and the mutual 

information between contextual information and automatic responses. Now we explain in 

more details how to apply this framework in practice and discuss its predictions in terms of 

expected cost of different types of tasks. This theory predicts that certain kinds of tasks - 

those that have many degrees of freedom, are unfamiliar, necessitate to go against natural 

                                                 
1  Cost of the context-dependent process: 

p(T )KL( p(y | x ',T ) || p( y | x ')) = p(T ) p(x ')
x '

∑
T

∑
T

∑ p( y | x ',T )log
p( y | x ',T )

p( y | x ')y

∑
  

= p(x ') p( y,T | x ') log
p( y | x ',T ) p(T )

p( y | x ') p(T )
= p(x ') p( y,T | x ') log

p( y,T | x ')

p( y | x ') p(T )
= I (T ; y | x ')

y ,T

∑
x '

∑
y ,T

∑
x '

∑
  



 

 8 

biases, have variable statistical structure or low signal to noise ratios - will lead to large 

information costs. 

 

3.1 The costs of tasks that have many degrees of freedom 

Tasks that have many degrees of freedom, or equivalently, a wide probability distribution of 

state-action combinations, are expected to be cognitively costly under the proposed 

information theoretical framework, as they imply low, widely spread prior probabilities - and 

thus significant information costs to update the priors (see Figure 3). Arithmetic tasks, chess 

games or creative writing, which are well known for being cognitively demanding (Hess and 

Polt, 1964; Kellogg, 1987; Marshall, 2002; Westbrook and Braver, 2015b) all assign a small 

prior probability mass for each possible decision and hence, lead to large divergence with the 

final posterior obtained when the choice has been made. Intuitively, this would be equivalent 

to having a very wide response space in Figure 1, with the same, small probability for each 

possible stimulus-response association. Similarly, tasks that demand a deep contextualisation 

of the stimulus-response associations (e.g. learning to navigate in a complex maze) will lead 

to multidimensional prior distributions whose space can inflate very fast, also leading  to fast 

increase in complexity.  

Interestingly, the complexity of the environment x has no impact on cognitive costs. Only the 

complexity of x’, its internal representation, will affect information cost . This can be 

understood intuitively if one considers, for example, that during the digit-key association 

task, the digit presented on the screen could be represented as an image of arbitrary size and 

complexity. Indeed, all x’ needs to encode about x is the identity of the digit (i.e. 1 to 4) and 

what will matter for task difficulty is only the probability of occurrence of that digit (see 

above). An interesting implication is that – as known since the beginning of artificial 

intelligence – the way one encodes or represents the task drastically affects the complexity 
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(or even the possibility) of solving it (Minsky, 1961; Simon, 1956). We will return to the 

issue of information compression below.  

 

3.2 The costs of novel or unfamiliar tasks 

 

A similar issue arises with unfamiliar tasks, that is, tasks in which the statistical structure of 

the sensory states, state transition probabilities (conditional on the performed actions) or 

action policies (e.g. sequences of motor actions) are poorly known (see Figure 4). This lack 

of knowledge of statistical properties of the task leads to non-optimal encoding and large 

information costs. This is because participants will have to start from uninformative prior 

distributions p0(x’), p0(y) and p0(y|x’) that may be far from the true marginal distributions of 

the task, which they will have to learn across trial repetitions (Genewein et al., 2015; Tishby 

et al., 2000). In this case the additional cost of starting with the wrong priors can be 

formalized as: 

 2 

Importantly, here we are assuming that participants have understood the rules of the task and 

know how to perform it correctly. Therefore, this additional cost of imperfect priors 

represents the extra information participants need to process because of their poor assumption 

of task statistics - p0(x’), p0(y) and p0(y|x’) - not the cost of learning the task rules. This 

corresponds to the notion of cross-entropy in information theory: the number of symbols 

needed to encode data when using the wrong encoding scheme - i.e. one that is based on the 

wrong probability distribution - is always larger than entropy (the number of symbols 

                                                 
2  Derivation for the perceptual cost I(x;x’): 

  

= p(x) p(x ' | x)
x '

∑ log
p(x ')

p
0
(x ')

= p(x,x ') log
p(x ')

p
0
(x ')

= KL( p(x ' || p
0
(x '))

x

∑
x '

∑
x

∑
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necessary when the correct distribution is assumed). In behavioural terms, this corresponds to 

the well-known effect of training on reaction time (Teichner and Krebs, 1974), subjective 

effort (Mykityshyn et al., 2002), or pupil size (Hyönä et al., 1995; Recarte and Nunes, 2000; 

Solopchuk et al., 2016), regarded as a reliable index of effort (Beatty and Lucero-Wagoner, 

2000; van der Wel and van Steenbergen, 2018). It is also interesting to note that training 

typically leads to decreased (not increased) brain activation - plausibly, by increased 

knowledge of task contingencies and the ensuing decrease of the metabolic costs associated 

with task-related information processing (Solopchuk et al., 2017; Wiestler and Diedrichsen, 

2013).  

 

3.3 The costs of counteracting priors or default policies 

 

Following the same reasoning as above, our framework also predicts that tasks that require 

counteracting deep priors or default policies would be particularly demanding (see Figure 5). 

Indeed, if priors are not just uninformative, as assumed in the previous paragraph, but also 

counter-productive, assuming strong statistical relationships that are no longer true, the KL 

divergence with the true joint distribution will be even larger.  

Similarly to the case of unfamiliar tasks exposed in section 3.2, the extra cost of using the 

wrong priors can be formalized as: 

KL( p
opt

(x ') || p
0
(x ')) + KL( p

opt
( y) || p

0
( y)) + KL( p

opt
( y | x ') || p

0
( y | x '))   

However, whereas the priors p0 are easy to estimate in the case of novel tasks, since they are 

simply non-informative (e.g. uniform distributions), in the present case, they can take many 

different forms and will have usually to be inferred on the basis of participants’ behaviour.  

In the example of the Stroop task, the prior on the response issued from the automatic process 

p(y|x’) will be counterproductive in cases of incongruent colour naming task. One plausible 
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way to model this incorrect prior is by taking the marginal p( y | x ',T ) p
0
(T )

T

∑    in which the 

probability of the word-reading context p0(T=word-reading) largely dominates the 

probability of the colour-naming context. This is incorrect in the sense that in the context of 

the Stroop task, word-reading is no longer more likely than colour-naming. This results in a 

marginal which favours word-reading responses, leading to extra processing costs in 

incongruent colour-reading trials (see Figure 5 A). The advantage of this approach is that cost 

depends only on the task structure p(x,y) and on the assumed prior context probability p0(T). 

Here, for simplicity, we considered point estimates for p0(T), but Dirichlet distributions could 

also be used, with the advantage of associating a precision to the belief on context 

probabilities. Very high precisions would be associated with very rigid beliefs on context 

probabilities, leading to costs that would be relatively insensitive to training.  

The present framework can explain why counteracting habits – or default responses to 

environmental stimuli – is so costly. Habitual behaviour is characterized by fast, automatic 

processing, low effort and lack of flexibility (Kahneman, 2011; Moors and De Houwer, 2006; 

Schneider and Chein, 2003). Under the present framework, with overtraining, the encoding of 

task-specific information follows so closely the statistical task structure that all the task-

irrelevant information gets ignored. The ensuing cognitive processing is thus extremely 

efficient but also crucially dependent on the particular task contingencies that have been 

learned. Expected stimuli and their associated actions have very large prior probabilities 

p0(x’), p0(y), p0(y|x’) and are therefore encoded with minimal cost, while unexpected stimuli 

or actions have very low prior probabilities and are therefore very costly to encode. This 

implies that a person following habitual policies has lower costs to engage in familiar tasks 

but higher costs to engage in novel tasks. This impact of familiarity on cognitive cost could 

explain why novel environments (e.g. new places, new languages, new people, etc.) are 
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generally described as being more fatiguing than familiar ones, while natural, familiar 

environments would have, on the contrary, restoring effects (Kaplan and Berman, 2010).  

Priors can also have a deeper meaning from the perspective of the active inference framework 

(Friston, 2010). Under that view, agents are equipped with hierarchical generative models and 

perform Bayesian inference; and have the general objective to minimize their free energy or, 

with some simplifications, their surprise - or the discrepancy between what they expect, 

based on their beliefs, and what they sense. Importantly, they can minimize their surprise in 

two ways: by changing their beliefs to make them more similar to what they sense about the 

world (i.e. perceptual processing) or by changing the world to make it more similar to their 

prior beliefs (i.e. using actions to fulfil one's own expectations). This duality is possible if one 

considers that active inference agents are hierarchically organized. While hierarchically lower 

prior beliefs might faithfully adapt to the external world, hierarchically deeper priors would 

prescribe what states an agent should achieve by acting (Friston et al., 2012; Pezzulo et al., 

2015). These latter, deeper priors hence play the role of goals and motivational factors that 

are relatively less permeable to learning (i.e., in Bayesian terms, they have very high 

precision or inverse uncertainty) because they are key to survival. Indeed, a key statement of 

active inference is that biological agents need to minimize their long-term surprise in order to 

survive; if one thinks of these deep priors as describing the "good" states in an agent's 

ecological niche, minimizing surprise means that the agent should attempt to remain always 

close to these states. One example of deep (and perhaps hard-coded) prior is a homeostatic 

drive, such as the prior probability of body nutrients being within acceptable physiological 

range. A discrepancy (prediction error) between such deep prior (e.g., be satiated) and the 

current interoceptive sensations (e.g., feeling hungry) would not lead to the revision of the 

prior - since the prior is largely impermeable in virtue of having high precision. Instead, the 

prediction error would steer a cascade of predictions about the conditions that might restore 
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body nutrients (e.g., consuming food), which in turn would steer an adaptive policy or action 

sequence to fulfil these predictions (e.g., open the fridge and take some food). This 

formulation makes it apparent that a hungry active inference agent would assign a high 

probability to (predicted) states and policies associated to consuming food. Since the 

information theoretic perspective on the costs of cognition advanced here assumes that 

counteracting such high-probability states (or equivalently, pursuing low-probability states) 

has high information costs, any task that necessitates counteracting deep priors or their 

ensuing policies should lead to large information and cognitive costs (see Figure 5 B). This 

perspective may help to explain the effortful nature of self-control (Kool et al., 2010), which 

consists precisely in going against natural biases, as investigated in the large, but still very 

controversial literature on ego depletion (Hagger et al., 2016, 2010; Job et al., 2010; Kurzban 

et al., 2013; Muraven and Baumeister, 2000). The same arguments, based on strong (deep / 

homeostatic or shallow / habitual) priors can help understand the phenomenology associated 

to some pathological situations, such as Tourette syndrome and obsessive-compulsive 

disorders. These and other syndromes have been associated to strong priors that are, however, 

maladaptive and lead to inappropriate behaviour (Adams et al., 2013; Friston et al., 2014). 

Patients suffering from these disorders typically describe being able to overcome their 

(habitual) tics (Delorme et al., 2016) or compulsive behaviour but at the price of tremendous 

cognitive effort (Kawohl et al., 2009). 

 

3.4 The costs of task switching and dual tasks 

 

Another classic cause of cognitive effort is task switching. Changing from a task set to 

another is associated to a significant cost in performance, usually measured as increased 

reaction time (Wylie and Allport, 2000). Task switching is also accompanied with a 
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subjective cognitive effort cost (Apps et al., 2015; Kool et al., 2010) and leads to cognitive 

fatigue (Borragán et al., 2017). Reaction time costs in task switching have already been 

modelled by means of information theoretic approaches (Cooper et al., 2015). Here we 

propose to frame switching costs within our general framework. This can be done by 

considering that tasks A and B, for example, correspond to two different contexts T associated 

with different probabilities p(T). Following one trial in task A, p(T=A) increases and the 

marginal p( y | x ') = p( y | x ',T ) p(T )
T

∑  becomes closer to the correct response probabilities 

for task A: p( y | x ',T = A). However, and for the same reason, when the task switches to B, 

the context-dependent cost I(T;y|x’) becomes larger. Therefore, the faster the participant 

learns the task structure, and the longer she/he is trained on that task, the more expensive the 

switch cost will be. Practically, this situation can be parametrized by the speed of learning of 

the context probability p(T). This relationship between p(T) and information cost is illustrated 

in Figure 6, where we simulate an experiment in which participants must switch between two 

tasks every other trial. Repeated trials are associated with smaller information costs (Figure 

6A), because the context distribution p(T) was updated in the previous trial in favour of the 

same context (Figure 6B). 

The same arguments may apply to more mundane situations in which one is required to 

switch continuously between multiple tasks (multi-tasking); or to dual-task situations, in 

which one has either to maintain a sophisticated internal model where the probability 

distribution spans the contingencies of both tasks, or to rapidly and repeatedly switch 

between the tasks to be executed concurrently.  

Interestingly, our model makes the specific prediction that switching tasks involving common 

stimuli (e.g. switching between colour-naming and word-reading Stroop task (Wylie and 

Allport, 2000)), should lead to larger costs than when switching between tasks with different 

stimuli, in agreement with the literature (Rubin and Meiran, 2005). This is because when 
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different stimuli are involved, the automatic process will lead to different response 

probabilities for each stimulus p(y|x’A) and p(y|x’B), decreasing interference between the 

tasks. Moreover, our model also naturally explains task set inertia: the observation that 

interference from task A persists long after switching to task B (Allport et al., 1994). Indeed, 

following the switch, p(T) will update in each trial, getting larger and larger for task B, and 

smaller and smaller for task A, thereby progressively improving performance of task B. 

 

3.5 Trade-off between performance and information rate 

Another task feature that is well known to affect cognitive cost is signal to noise ratio. When 

the ratio between signal and noise in sensory data is low, performance decreases, pupil size 

increases and subjective cognitive effort increases (Manohar et al., 2015; Sarampalis et al., 

2009; Zekveld et al., 2014). Since performance and information costs are subjected to a trade-

off (Sims, 2016), increasing task performance implies larger information costs. Likewise, 

when sensory information is immersed in high noise, and one wants to maintain reasonable 

performance, one needs to raise the encoding precision by decreasing the level of 

compression of x into x’ (the encoding of sensory data) and hence increase information costs 

by raising I(x,x’). Rate distortion theory provides a framework for addressing this type of 

problem, by describing the relation between minimal information rate (i.e. number of bits 

used per symbol encoded) and performance (or distortion) in a given information processing 

system (Shannon, 1959; Sims, 2016). Simply put, in order to minimize information cost, one 

should compress input data in order to discard information that is irrelevant to the task. For a 

given task, achieving null distortion (i.e. perfect performance) requires a minimal information 

rate that is equal to the entropy of the task (i.e. its average surprisal). Beyond this level of 

compression, relevant information is necessarily discarded and distortion starts to increase, 

leading to lossy compression. This trade-off is usually implemented as a parameter that 
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constraints the capacity (or maximal mutual information) of the system (Alemi et al., 2016; 

Denève et al., 2017; Genewein et al., 2015; Kingma and Welling, 2013; Ortega and Braun, 

2013; Tishby et al., 2000):   , where U represents some utility measure 

and β is a (Lagrangian) factor that adjusts the trade-off between costs and performance. In 

order to apply this framework to behavioural data, this β parameter then has to be fit to 

observed performance data (Sims, 2016). 

This adjustability of information rate evokes the concept of task engagement and the fact that 

motivational factors and reward incentives can influence task performance by putting high 

information rate at a premium (Camerer et al., 1999). This mechanism implies some cost-

benefit computation to select the optimal trade-off between the cost of information rate and 

the value associated with performance, akin to many earlier models of effort-based decision 

making (Chong et al., 2017; Christie and Schrater, 2015; Rigoux and Guigon, 2012; Shenhav 

et al., 2013; Verguts et al., 2015). In Figure 7, we illustrate how such a trade-off could play 

out in an example task in which subjects have to report the direction of motion of a random 

dot kinetogram in two conditions of motion coherence (Zénon and Krauzlis, 2012). Dot 

motion directions are distributed according to Gaussian distribution (variance=2) and 

distortion (i.e. error rate) is quantified as the mean-squared error between correct and 

reported directions (see Figure 7A). Utility is represented as a decreasing function of 

distortion (U (D(R)) = e1−D( R) , see Figure 7B) and information cost is a convex function of 

information rate . The particular form of these formulas is chosen arbitrarily for 

the sole purpose of illustration. The optimal trade-off between distortion and information rate 

is the one associated with maximal net value (utility minus cost), and depends on the motion 

coherence (i.e. amount of noise), as shown on the plots of Figure 7 (dashed line, panels C, D). 
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This schematic example shows how the present framework can help to explain why 

increasing signal noise (i.e. decreasing motion coherence) leads to increased information cost. 

 

3.6 Summary so far 

To summarize, we have offered a unitary perspective that may explain many experimental 

findings on cognitive effort and fatigue - by appealing to the fact that tasks that are known to 

be cognitively costly, such as novel tasks or those that require counteracting habitual policies 

or switching contingencies, all have high information costs associated to encoding or revising 

probability distributions within the generative models that support task performance. 

Equipped with this formalization of cognitive costs, we can now turn to their relationship to 

effort and their potential implementation in the brain.  

 

4. Relevance for subjective effort and task avoidance 

As mentioned in the introduction, the cost of cognition manifests itself behaviourally as a 

subjective percept of effort and as a tendency to avoid demanding tasks. Previous 

characterizations of the origin of cognitive effort can be classified into two broad categories. 

First, effort can be framed as a consequence of resource limitations such as depletable 

metabolic precursors (reviewed in Shenhav et al., 2017). Second, cognitive effort can be 

described as the phenomenological manifestation of the opportunity cost of engaging limited 

cognitive resources in demanding cognitive tasks (Kurzban et al., 2013). In the following, we 

will detail the expected consequences of the implementation of information costs in the brain, 

as described above. We will show that these consequences can be reconciled with the two 

aforementioned views on effort, while adding some novel quantitative predictions. 

Before that, a methodological caveat is necessary. We have discussed how cognitive 

computational costs should be evaluated in terms of KL divergence between priors and 
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posteriors. However, to apply this framework – and measures of information like surprisal, 

entropy and mutual information – to understand brain cognitive costs, it is necessary to 

assume that the brain uses an optimal strategy to encode its variables of interest. In such a 

code, each datapoint is represented with an average number of symbols which is proportional 

to the negative log of its probability (Shannon, 1948). Here probability is meant in the sense 

of predicted occurrence, given all the information we have at our disposal. For instance, the 

word “hatter” is not very common in English sentences in general but a sentence starting with 

“As mad as a” is much more likely to be continued with the word “hatter”. In this latter case, 

the word “hatter”, under optimal encoding strategy, should be encoded with small number of 

symbols (Lai, 2009). So, in order for the proposed framework to be applicable to brain 

processes, we need to assume that the brain indeed approaches such an optimal encoding 

strategy. This assumption is at the core of the efficient coding hypothesis (Collell and 

Fauquet, 2015; Harremoës and Tishby, 2007; Laughlin, 2001; Sims, 2016; Tkačik and Bialek, 

2014; Wei and Stocker, 2015). Efficient coding was initially described as a theory of 

redundancy reduction, according to which biological systems decorrelate sensory signals to 

avoid redundancy (Attneave, 1954; Barlow, 1961; Simoncelli and Olshausen, 2001). The 

theory has been successively extended to include other mechanisms through which neural 

coding adapts to the statistical structure of its environment (Simoncelli, 2003; Smith and 

Lewicki, 2006; Tkačik and Bialek, 2014). One crucial aspect of efficient coding is the usage 

of an adaptive code, in which the cost for encoding each symbol is inversely proportional to 

its frequency in the environment - given the agent's model of the environment (Collell and 

Fauquet, 2015; Fairhall et al., 2001).  

An impressive body of experimental evidence has been accumulated in favour of this 

hypothesis (Tkačik and Bialek, 2014). Low-level vision and audition show data filtering 

properties and neural codes that are closely similar to predictions issued from efficient coding 
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models (Borst and Theunissen, 1999; Gutnisky and Dragoi, 2008; Laughlin, 2001; Olshausen 

and Field, 2004; Sharpee et al., 2006; Smith and Lewicki, 2006). Predictability leads to 

diminished brain activation (Auksztulewicz and Friston, 2016; Bell et al., 2016; Carreiras et 

al., 2009; Garrido et al., 2013; Lieder et al., 2013; Mars et al., 2008; Meyniel et al., 2016; 

Overath et al., 2007; Wacongne et al., 2012)  and pupil responses (Friedman et al., 1973), but 

increases reliability of encoding (Kok et al., 2012), in agreement with the idea that 

predictable stimuli, carrying little information, are encoded more economically. Along the 

same line, decreased brain activation following training (Chen and Wise, 1995; Solopchuk et 

al., 2017; Toni et al., 1998; Wiestler and Diedrichsen, 2013) suggests that training decreases 

metabolic cost by allowing learners to leverage task statistics to optimize brain 

representations, while increasing the quantity of information being processed. Even though 

these pieces of evidence do not yet allow us to consider the brain usage of optimally efficient 

coding as an established fact, we will assume here that the brain indeed uses an efficient code 

since this assumption remains a pre-condition for our framework to be applicable.  

Another important question, if one is to apply the present information theoretic perspective to 

the brain, concerns the ways different brain areas are taxed by costs. The brain is massively 

parallel, and while the total information cost of a task can be evaluated, it remains to be 

determined how the cost affects (and is shared between) specific brain areas and individual 

neurons within these areas. One possible starting point would be to assume that brain 

networks supporting perceptual and decision processes would be taxed by the three kinds of 

costs considered in our proposal; namely, the costs associated to a perceptual stage, in which 

the sensory input x would be represented through an internal variable x’; the cost of the 

automatic stage, in which the stimulus leads to a response independently of context; and the 

costs associated to context-dependent response selection, which would amount to updating 

p(y|x’) to the final response p(y|x’,T). While this is certainly a simplification (as perceptual 
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and decision processes are not segregated in the brain), it would provide a first rough set of 

hypotheses on the ways different brain areas would be affected by different kinds of costly 

tasks. However, a more complete view should consider the hierarchical organization of 

perception-action loops in the brain (Fuster, 1990), and relate different kinds of costs to 

hierarchical lower and higher stages of cognitive processing.  

It is worth noting that hierarchical processing can be viewed either as serial or parallel. Serial 

processing has the major drawback that total information capacity of the system is equal to 

the information capacity of its weakest link (Genewein et al., 2015). In contrast, parallel 

processing consists in architectures in which the outputs from high-level processes provide 

priors, rather than inputs, to low-level processes (Genewein et al., 2015) and in which the 

information capacities of the individual parts sum up. Here, while we consider perceptual 

processing as a serial process (information is first stored in a variable x’ and is then further 

processed to provide response y) automatic and context-dependent processes follow a parallel 

architecture, in which the outcome of the automatic process is fed as a prior into the context-

dependent one. This parallel hierarchical architecture evokes predictive coding and active 

inference, which are built on this type of organization (Bastos et al., 2012; Clark, 2013; 

Friston et al., 2009; Pezzulo et al., 2018; Rao, 2010), or the work of Koechlin and 

Summerfield, which proposed such a parcellation of cognitive control costs in terms of depth 

of contextualization (Koechlin and Summerfield, 2007). Naturally, one can leverage the vast 

neuroimaging literature in order to estimate the decomposition of cognitive tasks into relevant 

sub-processes but studies using directly information theoretic approaches to study brain 

activations will be necessary to achieve better specificity (Kriegeskorte and Bandettini, 2007; 

Wu et al., 2017).  

These caveats in mind, we can propose two (non exclusive) approaches to explain why 

information cost should lead to the phenomenological perception of effort and to task 
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avoidance. The first approach is to consider that the information capacity of brain areas (i.e. 

the maximum of the mutual information between the data and its neural representation) is 

limited. Therefore, increasing the information demand necessarily leads to decreased capacity 

for other concurrent processes and when a given process utilizes the full capacity, larger 

information demands translate into longer reaction times. The second approach consists in 

considering that information costs have direct equivalence in terms of energetic demands. 

According to this view, the constraint on the system is energetic, rather than informational. 

This metabolic constraint leads in turn to two potential consequences on subjective cognitive 

costs in terms of global opportunity costs and metabolic alterations. These different points of 

view are detailed below (see also Figure 2, blue panel).  

 

4.1 The information capacity perspective on cognitive costs 

Neurons have limited information processing capacity (Schneidman et al., 2000), and so do 

brain areas (Marois and Ivanoff, 2005; Verghese and Pelli, 1992). Therefore, taxing of brain 

area capacity by a cognitive task will decrease the capacity left for other processes. The 

functional significance of this decrease depends on the affected brain regions. Here, for 

brevity, we focus on two brain networks: sensory cortices and the multiple demand system. 

The sensory cortices encompass large area, with topographic organization, in which 

processing of different input features or spatial locations leads to activations of different 

cortical regions (Purves et al., 2001). Declines in capacity in such topographic areas are easy 

to compensate. The situation may be different in the case of the multiple demand system: an 

ensemble of brain areas engaged in a large variety of tasks (Fedorenko et al., 2013), including 

interoceptive processing (Kleckner et al., 2017), i.e. the adaptation of behaviour to fullfil 

physiological needs, a function essential to survival. Thus, decrease of information capacity 

within this network may have more adverse behavioural consequences (and presumably more 
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severe effort and fatigue phenomenology). This bridges the present framework with the 

opportunity cost view on mental effort (Kurzban et al., 2013), according to which effort must 

be understood as the cost of forfeiting potentially more valuable courses of action than the 

current task, due to taxing of limited cognitive resources. This view is also in line with the 

concept of representational capacity limitation, according to which tasks must compete to 

access shared processing resources, leading to trade-offs and opportunity costs (Shenhav et 

al., 2017).  

So, when a task taxes part of the information capacity of a brain structure, its cost can be 

expressed in terms of the limitation it imposes on the other processes, dependent on the same 

structure, which could be run in parallel (Kurzban et al., 2013). However, another important 

determinant of this opportunity cost is how long the task lasts, or in other words, its 

associated reaction time. This is especially crucial for tasks whose performance depends on 

information bottlenecks, i.e. on brain structures whose capacity is fully engaged in the task. 

The original findings of Hick and Hyman suggested that such capacity limit was reached for 

tasks as simple as stimulus-response associations (Hick, 1952; Hyman, 1953), since reaction 

times in their studies was a linear function of information cost. This suggests that in many 

circumstances, rather than a limit on multi-tasking, information cost must be understood in 

terms of the opportunity cost of time (Niv et al., 2006; Payne et al., 1996; Zénon et al., 2016), 

i.e. how long brain resources remain dedicated to the same cognitive activity. In an attempt to 

formalize these ideas, we propose that, according to the capacity perspective, subjective costs 

are proportional to the maximum, across all subprocesses, of the ratio between local 

information costs and local capacity. Thus, subjective cost  of a cognitive activity could be 

approximated as  , considering that the cognitive activity is composed of 

an ensemble P of subprocesses p, that  is the information cost of a specific subprocess and 



 

 23 

that Lp is the information capacity of the corresponding brain structure (we use L rather than 

the standard symbol C to avoid confusion with the cost symbol).  

 

4.2 The metabolic perspective on cognitive costs  

Information processing requires energy expenditure (Landauer, 1996; Ortega and Braun, 

2013; Sengupta et al., 2013; Still et al., 2012). The relation between informational and 

energetic costs was central in early theories of efficient coding (Atick, 1992; Attneave, 1954; 

Barlow, 1961; Borst and Theunissen, 1999; Niven and Laughlin, 2008), which assumed that 

neural responses, carrying large energetic costs, impose a constraint on brain information 

processing capacity. Under this framework, the brain attempts to maximize the amount of 

(mutual) information it processes, given this fixed energetic constraint. More recent 

approaches have relaxed this principle by considering the constraint to be adjustable (Denève 

et al., 2017; Ortega and Braun, 2013; Park and Pillow, 2017; Sengupta et al., 2013), opening 

the door to cost-benefit adjustments of the kind exposed above (see Figure 7), which allow 

metabolic costs to be adjusted as a function of demands in performance (Genewein et al., 

2015; Park and Pillow, 2017; Sims, 2016). So, the metabolic perspective on cognitive costs 

assumes that subjective effort and task avoidance have a fundamental energetic origin, and 

that energetic costs E are a function of information costs as defined above: . Even 

though determining function f  precisely is difficult,  it is possible to approximate it with 

standard neuroscience techniques. For instance, tackling this question with neuroimaging in 

the sensory domain could be done by relating the amplitude of the haemodynamic response 

of brain areas (approximating energy demands) to the mutual information between their 

activations and their inputs.   

If multiple subprocesses p are running in parallel, the energetic cost depends on the sum over 

the information costs of these tasks. However, we now must add another constraint to this 
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formula, which is that the total energetic cost across the ensemble of brain processes B should 

be constant:   

This constraint comes from the observation that global cerebral energy consumption does not 

vary between resting and active conditions (Lennie, 2003; Sokoloff, 2009; Sokoloff et al., 

1955). Blood delivers glucose and oxygen to brain in excess of demand, such that in 

physiological conditions (i.e. in absence of hypoxia or hypoglycaemia), the availability of 

energetic precursors is not a limiting factor to cognitive activity (Brown and Ransom, 2014). 

However, total blood delivery to the brain is a constant that cannot be upregulated in response 

to cognitive demand (Brown and Ransom, 2014). Therefore, the cost of cognitive activity can 

hardly be explained by the need to curb total energetic consumption. It is noteworthy, 

however, that despite this lack of change in global energetic demand of the brain, global 

glucose intake increases in the brain during cognitive activity (Volkow et al., 2008). This 

utilization of glucose in excess of oxygen consumption is referred to as aerobic glycolysis 

(Vaishnavi et al., 2010). It is modulated by arousal (Dienel and Cruz, 2016) and while the 

function of aerobic glycolysis remains debated, it may be linked to cortical plasticity (Goyal 

et al., 2014) and the replenishment of glutamate and GABA reserves (Hertz and Chen, 2017). 

This increased glucose demand during active behaviour may appear to justify resource 

depletion theories of cognitive effort, according to which glucose is the main resource that 

puts a constraint on cognitive activity (Gailliot and Baumeister, 2007). However, this theory, 

and the experimental evidence on which it is based, have been put under increased criticism 

recently (Hagger et al., 2016, 2010; Kurzban et al., 2013; Molden et al., 2012; Shenhav et al., 

2017).  

Here we propose two alternative views. First, if total brain energetic consumption is constant 

and each brain region consumes energy in proportion to the amount of information it 

processes, then we must assume that neural activity tied to the execution of a cognitive task, 
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irrespective of where it takes place in the brain, should decrease the total capacity available to 

other processes. This generalizes the point made in the previous section, which considered 

capacity as a local feature, imposed by limited information capacity of neurons and brain 

structures. In other words, the brain as a whole has limited capacity, due to its constant energy 

consumption, and allocating metabolic resources to one process leads to opportunity costs 

related to the reduced capacity available to other processes:  , in which P 

represents all subprocesses involved in a specific task.  

Therefore, increased metabolic costs in specific brain regions would entail decreased 

demands in other regions, which is in line with the findings that brain activations during 

cognitive tasks are accompanied by commensurate deactivations in resting-state brain areas 

(Fox and Raichle, 2007). Conversely, following training on a task A, its information cost 

should decrease (see section 3.2 above), leading to progressively smaller proportion of the 

total energetic resources being allocated to this task (Solopchuk et al., 2016). This extra 

capacity gained over the course of training can, therefore, be gradually allocated to other 

concurrent tasks, such as planification of future actions, or background interoceptive 

processes.  

A second metabolic point of view on the question of why demanding tasks are avoided is that 

local information costs lead to progressive local metabolic alterations that accumulate over 

time. The rate of accumulation of these alterations  would then be a function of neural 

activity, itself proportional to information costs:    

Cognitive costs would then be proxies that the brain uses to prevent these local metabolic 

alterations to occur. This point of view has the advantage of providing a direct link between 

effort, which would become the subjective experience of the rate of accumulation of local 

metabolic alterations (Tucker and Noakes, 2009), and fatigue, which would be the 
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anticipation (Benoit et al., 2017) or the direct consequence of these alterations (Gergelyfi et 

al., 2015; Hockey, 1997; van der Linden et al., 2003).  

Evidence that prolonged local brain activation leads to functional alterations supports this 

hypothesis (Mednick et al., 2002), but the exact nature of these alterations can only be 

speculated at this point. Some have proposed that glycogen reserves could deplete (Christie 

and Schrater, 2015), or amyloid peptides accumulate over time (Holroyd, 2015). Others have 

suggested that the accumulation of deviations from metabolic steady-state could lead cortical 

regions to enter a local sleep mode, characterized by slow-wave synchronization and 

associated with disturbed processing capacity (Siclari and Tononi, 2017). Confirming the 

existence and deciphering the nature of these metabolic alterations is an important challenge 

for future research on effort and fatigue.  

 

4.3 The possible roles of arousal within this framework 

Arousal could be defined as a global brain state characterized by the amplitude of 

synchronized low-frequency oscillations and sensory responsiveness (McGinley et al., 2015) 

and is controlled by brainstem nuclei and neuromodulators such as noradrenaline and 

acetylcholine (Reimer et al., 2016). An impressive amount of evidence has shown that arousal 

correlates with cognitive workload (Beatty and Lucero-Wagoner, 2000; Richter et al., 2016; 

van der Wel and van Steenbergen, 2018). Interestingly, arousal also responds strongly to 

prediction errors, or surprise (Ferreira-Santos, 2016; Friedman et al., 1973; Kloosterman et 

al., 2015; Lavín et al., 2014; O’Reilly et al., 2013; Preuschoff et al., 2011). Taken together, 

these two sets of observations are in line with the view that the modulation of arousal is 

ultimately a function of uncertainty (Yu and Dayan, 2003), or equivalently, of information 

load (entropy is uncertainty that needs to be resolved) – which permits to link nicely arousal 

to our proposed information-theoretic framework.  
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The functional role of increased arousal in response to information costs remains unclear. 

One possibility is that arousal mobilizes the metabolic apparatus orchestrated by astrocytes in 

response to neural activity (O’Donnell et al., 2012; Paukert et al., 2014), including glycogen 

reserves (Hertz and Zielke, 2004; O’Donnell et al., 2012), while also restricting the 

circulation of cerebrospinal fluid, thus limiting the capacity of the brain to eliminate 

potentially harmful metabolites (Xie et al., 2013). Interestingly, although arousal is a global 

phenomenon, its effect in cortex is believed to be restricted to active regions (Mather et al., 

2016). Increased arousal would thus lead to increased metabolic rate in these active regions, 

while dampening activation in already less active background structures (Mather et al., 2016). 

 

6. Conclusions and related work 

 

The phenomenology of cognitive cost and cognitive effort - in terms of subjective feeling of 

exhaustion experienced when performing a cognitive task and its associated task-avoidance - 

is relatively well known. Yet, several aspects of the problem of the costs of cognition are 

currently debated, including the specification of what is costly in cognitive processing, how 

to quantify these costs and what is their adaptive value.  

 

We have defended a view that starts from the idea that, if the brain encodes information in 

accordance with the principles of efficient coding, then the cognitive costs associated to task 

execution should be a function of the amount of information required to update priors to 

posterior beliefs. We have used this framework to explain the cognitive costs associated to 

different classes of tasks known to be subjectively demanding, and have showed that this 

informational perspective can provide a unitary perspective on several experimental findings 

in the literature. Furthermore, we have discussed how information costs could translate into 
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cognitive effort (i.e., the subjective feeling associated to performing costly tasks). We have 

described three hypotheses regarding this link. First, subjective effort may arise from the 

usage of limited, local information capacity, chiefly in the multiple demand system, leading 

to opportunity costs. Second, subjective effort may be the consequence of the global limit on 

information capacity, caused by the constant energy consumption of the brain, also leading to 

opportunity costs, of a slightly different nature. Third, subjective effort could be caused by 

the accumulation of local metabolic alterations, whose rate is a function of information 

demand. In that case, effort and cognitive fatigue that ensue from long-term engagement in 

costly tasks could be considered as adaptive mechanisms that prevent individuals from 

performing activities that may have adverse consequences in the long run, i.e., activities that 

imply huge local metabolic demands. Importantly, these three proposals are experimentally 

testable and could help guiding future research in this domain.  

 

Our perspective is coherent with several recent theories, which proposed that task avoidance 

stems from the (optimal) choice between potential policies while accounting for their 

respective cost. In this framework, cognitive effort is assumed to depend on the degree to 

which the task depends on cognitive control (Shenhav et al., 2017, 2013). The present work is 

in continuity with these earlier proposals as it relies on optimality principles and describes 

cognitive effort as a cost, which discounts the expected utility of a given course of actions 

(Apps et al., 2015; Chong et al., 2017; Manohar et al., 2015; Westbrook and Braver, 2015). 

However, our proposal departs from these theories as it addresses more directly the question 

of the causes of cognitive cost - and casts them in terms of information principles. In 

particular, the present framework attributes costs to general informational aspects of 

cognitive processing, rather than specifically to cognitive control. What determines cognitive 

cost is the amount of information to be processed and tasks involving cognitive control may 
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be more costly in general because they require updating of entire task sets or control policies 

(Bhandari and Badre, 2018), which results in cascade reconfiguration or updating of the 

whole sensory and motor representations, which entails large information costs. Additionally, 

cognitive control tasks could be more costly because they tax particularly the multiple 

demand system (Koechlin and Summerfield, 2007; Wu et al., 2017), where the opportunity 

cost associated to utilization of limited information capacity may be larger. These (not 

mutually exclusive) hypotheses remain to be tested in future research.  

 

Koechlin and Summerfield have proposed an information theoretical approach to cognitive 

control that shares several aspects with our own framework. In their study, the total cost of 

selecting an action is framed as the sum of two terms (Koechlin and Summerfield, 2007). The 

first is an automatic, goal-independent association between stimuli and actions whose cost is 

measured as the mutual information between stimuli and actions: I(x;y). The remaining cost 

of action selection H(y)-I(x;y) then corresponds to cognitive control and could be 

decomposed further into several hierarchical processes with different levels of 

contextualization. Similarly to Koechlin and Summerfield’s proposal (and others (Genewein 

et al., 2015; Pezzulo et al., 2013)), our framework assumes a hierarchical architecture in 

which the cognitive control process takes the outcome of the automatic process as a prior, 

making their contributions additive (Genewein et al., 2015). The present paper differs from 

these earlier treatments in various ways, as it focuses on effort costs; considers the cost of  

perceptual processing, which is necessary to account for known behavioural results (Fan et 

al., 2008; Wifall et al., 2016); and explicitly discusses rate-distortion theory. Furthermore, our 

proposal is more explicit in the adoption of a specific formalism to clarify the different 

potential sources of cost. Finally, the present paper discusses in detail the application of the 

framework to different types tasks that are known to be demanding. 
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Another proposal which relates to ours, addresses cognitive effort from a normative 

perspective  in which apparently maladaptive states (cognitive fatigue) constitute the adaptive 

response of an optimal controller that has (or feels having) low self-efficacy and limited 

control over one's own environment, similar to learned helplessness in the animal learning 

literature (Stephan et al., 2016). Although we have not addressed the long-term consequences 

of being exposed to complex cognitive tasks, our model would be coherent with this proposal 

in assuming that prolonged expectations of poor outcomes, or poor control, would crystallize 

task-avoidance behaviour. In other words, an agent whose local metabolic resources are 

frequently depleted, could develop an adaptive task aversion, manifested, for example, as 

chronic fatigue syndrome.  

 

The present framework has also some limitations that will need to be covered in future works. 

For example, it does not fully explain important features of switching costs, such as the fact 

that moving from a preferred to a less preferred stimulus-response association is less costly 

than the other way around (Wylie and Allport, 2000), or the fact that preparation periods, no 

matter how long, cannot suppress the switching costs (Wylie and Allport, 2000). It is also 

challenging to explain why switching between tasks that are based on similar stimulus 

features or similar response modalities is associated with smaller costs than switching 

between dissimilar tasks (Arrington et al., 2003). Explaining this finding would require the 

model to account for some hierarchical categorization of perceptual and response 

representations x' and y (Zhao et al., 2017), that go beyond the scope of the present paper. 

Another limitation of the current framework is that it does not fully account for adaptive 

(positive) aspects of costly cognitive processing; for example, engaging in (costly) 

information-foraging behaviour during learning. Challenging cognitive activity is not always 
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experienced as aversive but may even be sought for its own sake (Cacioppo et al., 1984; 

Inzlicht et al., 2018); and on the contrary, idling or engaging in repetitive, monotonous tasks 

can be unpleasant (Nakamura and Csikszentmihalyi, 2002). Costly information-seeking is in 

apparent contradiction with our framework, but it can be explained by the mediating 

influence of intrinsic motivation and epistemic value (Friston et al., 2015, 2017). Complex 

tasks need mastery, and intrinsic motivation appears to depend in large part on the feeling of 

competence and autonomy, i.e. the feeling of being capable of performing a task, despite its 

difficulty (Ryan and Deci, 2000) - and in the active inference setting, on the necessity to 

improve one’s internal models (Friston et al., 2017). In other words, improving one’s internal 

model to minimize surprise in the future can compensate the short-term costs of investing 

effort in the present moment. Spontaneous engagement in demanding tasks would therefore 

depend on the cost-benefit comparison between immediate informational and/or metabolic 

costs and future needs, mediated by mechanisms of exploration, model learning or intrinsic 

motivation that are part and parcel of active inference (Friston et al., 2017) – and which 

complement nicely the information theoretic framework advanced here.  

Another limitation of the present work stems from its reliance on a series of assumptions: it is 

valid only to the extent that those assumptions are true. First and foremost, it relies on the 

concept of efficient coding, according to which brain’s encoding of information makes 

optimal use of its metabolic resource, such that energetic cost is proportional to the entropy of 

the encoded information. Even though this concept is based on a large body of evidence, it 

cannot yet be viewed as an established fact. Second, we assume a certain cognitive 

architecture, in which perceptual encoding of sensory information occurs first and is then fed 

into two parallel cognitive processes: one automatic and one context-dependent. We believe 

that this architecture is the simplest one that can account for all the categories of demanding 

cognitive tasks reviewed in the paper. Naturally, more complex architectures could be 
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considered. Finally, we also base our estimation of cognitive cost on the priors used by 

subjects for perceptual encoding and cognitive control processing. The accuracy of the 

predictions made by the model will, therefore, depend crucially on the choice of those priors. 

A possible approach to this problem is to base the choice of the priors on observed data. 

Indeed, since priors are the only unknown parameters in the model, they can be fitted to 

participants’ behaviour (Sims, 2016).  

 

In sum, we have reviewed an information theoretical perspective on the costs of cognition 

that links cognitive effort to principles of efficient coding and active inference. This 

framework systematizes and extends previous treatments that used information theoretic 

principles to explain cognitive control processes (Koechlin and Summerfield, 2007; Ortega 

and Braun, 2013; Sengupta et al., 2013). Furthermore, we have discussed how this framework 

permits to harmonize theories that link cognitive costs to capacity limitations and metabolic 

principles, while also producing novel empirical predictions.  
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Figure legends 

Figure 1. Probability distribution of responses in a simple digit-key association task, before 

(light gray) and after (dark gray) seeing the to-be-pressed digit on the screen.  

 
Figure 2. Summary of the present theoretical framework. The upper panel, shaded in green, 

illustrates the mathematical formulation of information costs C. The lower panel, shaded in 

blue, shows the three proposals that we make regarding how these information costs C could 

translate into subjective effort F.  

 

Figure 3. Schematic illustration of the probability distribution of different chess moves. The 

large size of the state-action space leads to small prior probabilities for all options. The 

information cost associated with the selection of the final choice is shown as a thick blue line, 

which represents the KL divergence between the prior and the posterior probability 

distribution of the chess moves. Log probabilities are shown on the y-axis for consistency 

with the mathematical definition of the KL divergence, such that for the chosen action, the 

sum of its log prior probability log(p0) and KL equals 0 (since KL equals to -log(p0), given 

that p(y|x’,T) for the chosen action is equal to one). 

 

Figure 4. Example of the difference in information costs between learned and novel task 

contingencies. The example is inspired by the (Chalk et al., 2010) study, where subjects learn 

to perform a motion discrimination task in which motion direction is distributed non-

uniformly. After learning (in blue), the cost of performing the task when presented with a 

frequent motion direction is smaller than before learning (in orange). Conventions are similar 

to Figure 3. 
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Figure 5. A. Simulation of Stroop task. The different sources of information cost are shown 

for word-reading (WR) and colour-naming (CN) Stroop trials. Units of information cost are 

in nats, since they were computed with natural logs. The inset shows the assumed probability 

of the two task contexts. The larger probability of word-reading task leads to biased 

automatic output p(y|x’), which explains the difference in the information cost between the 

two conditions. The present simulation assumes three possible colours. The different values 

are computed as follows (here x’ is assumed to be equal to x, representing the different 

stimulus configurations): p
0
(T ) = 0.9,0.1{ } , while p

opt
(T ) = 1,0{ }for the word-reading task 

and {0, 1} for the colour reading task. 

p(x ') = p(x ', y |T ) p
opt

(T )
T ,y

∑  and p( y) = p(x ', y |T ) p
opt

(T )
T ,x '

∑   

p
opt

( y | x ') =
p(x ', y |T ) p

opt
(T )

T

∑

p(x ')
 while p

0
( y | x ') =

p(x ', y |T ) p
0
(T )

T

∑

p(x ')
  

I (x;x ') = H ( p(x ')) − H( p(x ' | x)) = H ( p(x ')) , since H(x’|x) is assumed to be zero 

I(x '; y) = p
opt

( y | x ') p(x ') log
p

opt
( y | x ') p(x ')

p(x ') p( y)x ',y

∑   

p(T , y | x ') = p(x ', y,T )

p(x ')
  

I(c; y | x ') = p(x ', y,T ) log
p(T , y | x ')

p
opt

(T ) p
opt

( y | x ')x ',y ,T

∑   

Perceptual cost = I(x;x’); Automatic cost = I(x’;y);  

Cognitive control cost = I (c; y | x) + KL( p
opt

( y | x ') || p
0
( y | x '))  

 

B. Informal illustration of the marshmallow test, which is an example of a task requiring to 

counteract default policies and deep priors (Mischel, 2014). Children are told that they will 
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receive 2 marshmallows if they don’t eat the one in front of them. The prior (and/or default 

policy) associated to consumption of high carbohydrate food is skewed in favour of 

immediate consumption. This results in KL divergence between prior and posterior being 

larger for longer delays. These larger information costs associated with delayed consumption 

may explain, informally, why restraining from eating the marshmallow requires self-control 

and effort.  

 

Figure 6. Simulation of switching task. Two tasks, A and B, alternate every other trials. Both 

tasks involve the same stimuli but different stimulus-response associations. A. Total 

information cost is shown for switch (green) and repeat trials (red). The difference between 

these two types of trials is entirely explained by the change in p(T), shown in panel B.  

B. The change in the modelled p(T=task A) is shown as a function of trials. The experiment 

begins with uniform task (or context) probability distribution p(T). In each trial p(T) is 

updated with a learning rate α of 0.3:   

p
t+1

(current task) = p
t
(current task) + α (1− p

t
(current task)) , and  

p
t+1

(other task) = p
t
(other task) +α (0 − p

t
(other task)) . Changes of p(T) following 

switch and repeat trials are shown in green and red, respectively.  

 

Figure 7. Adjustment of information rate as a function of noise levels. A. Schematic 

relationship between information rate and distortion in an example motion discrimination 

task in two conditions of motion coherence. Given that distortion is quantified as the mean-

squared error and that the signal follows Gaussian distribution with variance σ2, distortion 

can be evaluated as: D(R) = σ 2

22 R
 . B. Utility U associated to distortion as a function of 

information rate in the 2 motion coherence conditions (arbitrary concave function: 
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U (D(R)) = e1−D( R)). C. Cost function of information rate. This cost function is independent 

of motion coherence, leading to overlapping curves. An arbitrary convex function was 

chosen: . The dashed lines indicate the cost corresponding to the optimal 

information rates in both conditions. D. Net value, corresponding to the value associated to 

distortion levels, to which the cost of information rate is subtracted. The optimal trade-off 

between distortion and information rate is indicated with the dashed line. 

 




