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Visualising the role of non-perturbative environment dynamics in the dissipative generation of coherent electronic motion

Targeted exciton transport is crucial for efficient light-harvesting, but its microscopic description in biological systems is complicated by strong environmental coupling, highly structured vibrational environments and non-Markovian open system dynamics. In this article we employ the non-perturbative hierarchical equations of motion (HEOM) technique to explore how structured environments and tuned electronic properties can lead to the generation of coherent motion across a directed transport network, i.e. one containing an energy gradient. By further exploiting the information contained in the auxiliary HEOM matrices, we also visualize the complete displacement distributions of the main reaction coordinate during the ultrafast relaxation, and show that highly non-Gaussian profiles emerge when the electronic dynamics become quasi-reversible and involve bath-induced delocalized states. These coherent dynamics are spontaneously generated by earlier incoherent relaxation events, and we also demonstrate the correlation between the environmental coordinates and a quantitative volume-based measure of non-Markovianity.

Regardless of this, the understanding of directed, ultra-

I. INTRODUCTION

Transporting and focusing photoexcitations in realspace is the primary function of photosynthetic lightharvesting antennas [START_REF] Valkunas | Photosynthetic excitons[END_REF][START_REF] Blankenship | Molecular mechanisms of photosynthesis[END_REF] , and Nature -across Its vast zoo of photosynthetic organisms -has evolved a diverse range of strategies and supramolecular nano-machinery to solve this problem [START_REF] Valkunas | Photosynthetic excitons[END_REF][START_REF] Blankenship | Molecular mechanisms of photosynthesis[END_REF][START_REF] Scholes | [END_REF] . In many cases this functionality is achieved by exploiting the sub-nm precision with which identical chromophores can be co-ordinated in pigmentprotein complexes (PPCs), while in others a variety of different co-factors may be employed to guide energy [START_REF] Valkunas | Photosynthetic excitons[END_REF][START_REF] Blankenship | Molecular mechanisms of photosynthesis[END_REF][START_REF] Scholes | [END_REF] . However, the strategy used to direct transport is essentially universal: the establishment of an excited-state energy gradient that causes the lowest energy exciton states to appear at the spatial locations where the photonic energy is ultimately needed, i.e. the photosynthetic reaction centers (See Fig. 1).

These low-disorder 'funnel' landscapes can be extremely effective, and photosynthetic excitons can consequently trigger charge separation in reactions centers up to 10 -100nm away from their points of injection. In contrast, the exciton diffusion lengths found in disordered organic photovoltaic materials (OPVs) rarely exceed 1 nm, which necessitates the inconvenient bulk heterojunction morphology employed in the best OPVs 4 . Understanding the essential spatio-temporal physics of PPC models is thus an important problem, and interest in this problem has exploded over the last decade due to the striking contention that quantum coherence and non-classical effects may play a role in the photosynthetic light reactions [START_REF] Scholes | [END_REF] .

For excitons to be directed by energy gradients, an external source of dissipation is also required, and the enormous dynamical range of molecular vibrations and protein motions in PPCs provides the necessary 'environmental' heat bath 26 . The essential 'device' characteristics of these biological machines -which in low-light operate at the level of single quanta/excitons -are therefore emergent properties of the microscopic physics of these open quantum systems. At a first glance, the need for efficient energy dissipation to relax excitation towards the target location seems at odds with the possible role, or even existence, of coherent phenomena, as dissipation also implies strong stochastic fluctuations which induce dephasing and decoherence. However, unlike the typical weakly coupled open systems that are studied in solid state materials and other platforms for quantum technologies, PPCs exist in a fairly unique parameter space where the bio-engineered electronic properties of PPCs can be : (1) very strongly coupled to certain environmental degrees of freedom; (2) spectrally tuned to the frequencies of such vibrations and (3) subject to environmental fluctuations that evolve on comparable timescales to the electronic dynamics. This results in complexly structured spectral densities and highly non-Markovian open system dynamics. With recent theoretical and experimental works demonstrating a very close link between vibrations and possible observations of electronic coherence in PPCs, it has been suggested that strong system-bath coupling could indeed be relevant for optimizing molecular light-harvesting [27][28][29][30][31][32][33][34][35][36] . However, it is worth noting that a growing number of studies point to the neutral impact of quantum effects for in vivo light harvesting functions [START_REF] Duan | Proc. Natl. Acad. Sci[END_REF]37 .

fast quantum dynamics in the domain of non-Markovian dissipation remains an important and timely goal, not just for present applications, such as improved OPV and singlet fission solar cells 19,38,39 , but also for the design of a new generation of explicitly quantum-enhanced molecular devices. This latter topic -which might be termed as 'molecular quantum technology' -covers everything from sensors to energy applications, and its dependence on stabilizing robust coherence effects in organic materials is closely connected to some of the insights gleaned from the open system physics of PPCs and other biological nanostructures [40][41][42] . At the same time, there is also growing interest in the fundamental roles of quantum correlations and fluctuations in the efficiency of nanoscale 'machines', and the cyclic, dissipative operation of optoelectronically functional PPCs could also provide useful insights for the expanding field of quantum thermodynamics [43][44][45] . This rich open system problem also clearly requires non-perturbative methods, and this field has become an important area for the development of transposable ideas and numerical techniques for open system simulation. Numerous powerful computational methods have been proposed for strongly dissipative quantum systems, based on tensor network machine learning 46 , path-integral approach 47-50 , time-dependent variational matrix product states (DMRG) 27,[51][52][53] , tensor transfer method 54,55 , stochastic Schrödinger equation 56-58 , Multi-layer-Multi configuration time-dependent Hartree (ML-MCTDH) 59,60 , hierarchical equations of motion (HEOM) 61-74 and optimized auxiliary oscillators method 75 .

Using the HEOM technique, we have recently demonstrated that non-Markovian dynamics can spontaneously generate electronic coherence through fast downhill energetic relaxation in a configuration of three qubit (twolevel system) 'chromophores' where the ordering of energy levels arises solely from the formation of delocalized exciton states, as in LHII complexes 76 . This, in principle, may allow for the appearance of spontaneously coherent electronic motion without an externally coherent excitation source, i.e. a laser, and was shown to arise in both quantum and classical environments. Such a model was recently realized in an experimental quantum simulator for light-harvesting systems built from superconducting qubits 77 , and a number of other platforms for simulating quantum light-harvesting have now been presented in ion traps 78 and NMR systems 79 .

Here we consider a different type of energy funnel where the chromophore site energies decrease uniformly across real space and have gaps that are typically larger than the coherent interactions between sites. Such a configuration could be realized in the experimental set up of Ref. 77 , and corresponds more closely to PPCs such as the FMO complex, where local protein effects shift the individual pigment energies in a spatially coordinated way 80,81 . It also matches the energy landscape for electron transfer found in reaction centers; indeed, this is probably the most common type of gradient used in Nature for exciton and charge transfer. Intriguingly, ultrafast nonlinear optical studies have recently reported a number of coherent vibronic phenomena with potential implications for charge transfer in the PSII reaction center 82,[START_REF] Niedringhaus | Proc.Natl. Acad. Sci[END_REF] , and we wish to explore if any of the dissipative coherence-generation physics of Ref. 76 can exist in these more 'classical' gradient systems.

With HEOM methods, we now investigate how structured spectral densities can affect the electronic transport in such an energy funnel system, particularly when the environment dynamics are tuned to be resonant with the energy gaps along the gradient, as sketched in Fig. 1c. As discussed in previous works [27][28][29][30][31][32][33][34][35][36] , such an alignment may lead to new vibronic eigenstates and rapid, reversible motion of an excitation in real space (see Fig. 1c). Here, we explore the details of this process across a general and wide parameter space, and introduce a number of non-standard quantities that allow us to analyze these dynamics. To understand the possible role of non-Markovianity, we compute a formal measure of it based on the volume of accessible states in the generalized Bloch sphere [START_REF] Lorenzo | [END_REF][85][86] . Finally, we also present the first exploitation of HEOM techniques that enable us to access the complete quantum probability distribution of the effective 'reaction coordinate' of the environment 67,68 . This powerful method allows us to visualize the exact role of the environment during these dynamics, as well as to reveal the non-classical states of the environment that appear during the relaxation.

The structure of our paper is as follows. In Section II we present the microscopic model of the dissipative directed chromophore network and in Section III we briefly describe the simulation approach (HEOM) and define the various observables and other quantities that we compute. Section IV presents our numerical results alongside an analytical commentary, and we draw together our conclusions in Section V. A short appendix giving further details about how we are able to extract the full reaction coordinate probability distribution is also presented.

II. MODEL

We consider a three-site network. An energy gradient is imposed among the first excited states of each site. The excited electronic states are diabatic states associated with a dominant configuration. They are coupled by a coherent electronic coupling due to dipolar interaction. The delocalized adiabatic (or excitonic) states are obtained by diagonalizing the electronic diabatic matrix for each nuclear geometry. In the harmonic model, each diabatic potential energy surface accommodates vibrational modes leading to strong fluctuations of the electronic energy gaps. The normal modes are assumed to be the same in the ground and excited states but the equilibrium positions may be displaced in the excited states. The electronic transfer is described here by truncating In the presence of strong coupling to the environmental reaction coordinate, reversible energy exchange may occur that leads to new spatially delocalized eigenstates. The subsequent dissipative interactions of these 'dressed' vibronic wavepackets with the residual environment may be very different from the bare excitons and the relaxation dynamics is qualitatively altered by emerging system-bath correlations.

the basis set to the first diabatic excited state of each site. In mass weighted coordinates, each diagonal element of the Hamiltonian corresponding to the excited state of the n th site reads

H n = ε n + 1/2 k p 2 k + ω 2 k q k -q (n) 0k 2 (1)
where ε n is the electronic diabatic energy at the equilibrium position, q

(n) 0k are the displacements from the reference position corresponding to the ground state equilibrium position. The intersite electronic coupling W nm is assumed to be independent of the nuclear coordinates so that the off diagonal bath coupling will not be treated here but has been examined in several recent studies of organic photovoltaics [87][88][89] and in simulation of conical intersections 90,91 . The full Hamiltonian is then partitioned into the electronic subsystem, the bath of vibrational modes and the system-bath or vibronic coupling

H = H S + H B + H SB (2)
where the electronic Hamiltonian is written in the diabatic representation and includes the renormalization

energies λ n = 1/2 k ω 2 k q (n)2 0k H S =   ε 1 + λ 1 W 12 0 W 12 ε 2 + λ 2 W 23 0 W 23 ε 3 + λ 3   . (3) 
An energy funnel is achieved by choosing the following electronic energies : ε 1 = 1000 cm -1 , ε 2 = 0 and ε 3 = -1000 cm -1 . The electronic coupling is sequential with W 12 = W 23 = W varying from 0 to 400 cm -1 and W 13 = 0. The normal mode frequencies of the bath are assumed to be the same in each electronic state

H B = 1 2 k p 2 k + ω 2 k q 2
k but the electro-nuclear coupling is very different. This is due to the displacements of the oscillator equilibrium positions q (n) 0k with respect to the one of the ground state. For each site, the spectral density in the delta function discrete representation is defined as

J (n) (ω) = π/2 k c (n)2 k ω -1 k δ(ω -ω k ) with c (n) k = ω 2 k q (n) 0k
. By defining a single spectral density J(ω) linked to reference displacements q 0k , one sets q (n) 0k = ∆ n q 0k so that H SB takes the form

H SB = S.B =   ∆ 1 0 0 ∆ 2 0 0 ∆   B ( 4 
)
where

B = k ω 2 k q 0k q k = k c k q k is
a collective effective coordinate having the dimension of an energy. By varying the ∆ n parameters, one may simulate different coupling schemes for each site. The S operator is defined here as:

S =   -1 0 0 0 0 0 0 0 1   (5) 
In other words, the equilibrium position of the intermediate excited state corresponds to that of the ground state while the baths of the first and third excited states are anti-correlated (q

(1) 0k = -q (3) 0k ). The individ- ual renormalization energies are λ n = ∆ 2 n λ with λ = 1/2 k c 2 k ω -2 k .
When moving to a continuous distribution of frequencies, the renormalization energy is given by λ = 1/π ∞ 0 J(ω)ω -1 dω. We consider different spectral densities which are schematized in Fig. 2a. The analytical expressions are given in Appendix A. Case J a (full line) is a thin peak (width 100 cm -1 ) in resonance with the diabatic energy gap ∆ε = ε 1 -ε 2 = ε 2 -ε , case J b (long dashes) is the same peak with a smooth weak background, case J c (dots) presents a large background and case J d (short dashes) is similar to J a with a larger width). The amplitude is calibrated to get similar reorganization parameters λ. Fig. 2b gives the corresponding two-time correlation functions of the collective mode

C (t) = T r B [B (t) B (0) ρ eq B ] where ρ eq B = exp (-βH B ) /T r B [exp (-βH B )] is the Boltzmann equi- librium density matrix of the bath with β = 1/k B T and B (t) = exp (iH B t) B exp (-iH B t).
The correlation function is related to the spectral density through the fluctuation-dissipation relation:

C (t) = 1/π +∞ -∞ dωJ (ω) e βω -1
-1 e iω(t) . (6) Narrow resonant spectral density Ja (solid blue line), narrow peak with weak background J b (red long dashes), narrow peak with large background Jc (black dots) and broad peak J d (orange small dashes). The functions are scaled to give a similar renormalization energy parameter λ. Lower panel: real part of the corresponding normalized bath correlation functions (Eq.6). The imaginary parts have the same order of magnitude and are not shown for the clarity of the figure. The complete decay time for Ja and J b is about 400 fs.

III. METHODS

A. HEOM master equation

We recall here the main equations of the HEOM formalism 57,61-73 . For the efficiency of this algorithm, the two-time bath correlation function is conveniently expressed as a sum of n cor complex exponential functions:

C (t) = ncor k=1 α k e iγ k (t) (7) 
This can be achieved by using an analytical parametrization of the spectral density for which the integration of Eq.6 can be performed analytically leading to explicit expressions for the α k , γ k parameters. Here we choose the super-Ohmic parametrization in terms of four-pole Lorentzian functions:

J (ω) = pω 3 Λ 1 (Ω 1 , Γ 1 )Λ 2 (Ω 2 , Γ 2 ) . ( 8 
)
where

Λ k = (ω + Ω k ) 2 + Γ 2 k (ω -Ω k ) 2 + Γ 2 k .
The number of terms in the correlation function n cor is then the sum of four terms for each super-Ohmic Lorentzian and in principle an infinite number of terms related to the poles of the Bose function on the imaginary axis ∀j ∈ N * / 0, ν j = 2π β j , ν j being the so-called Matsubara frequencies. In practice, convergence is reached with few Matsubara terms at room temperature. The complex conjugate of the correlation function can be recast by keeping the same coefficients γ k in the exponential functions with modified coefficients αk according to

C * (t) = ncor k=1 αk e iγ k (t) (9) with α1 = α * 2 , α2 = α * 1 , α3 = α * 4 , α4 = α *
3 and αj,matsu = α j,matsu where the α m with m = 1, 4 are related to the four poles of the super-Ohmic Lorentzian function and α j,matsu refer to the Matsubara terms 92 . With expressions 7 and 9, the master equation in interaction representation is written as a time-local hierarchical system of coupled differential equations among auxiliary operators:

• ρ n (t) = i ncor k=1 n k γ k ρ n (t) -i S (t) , ncor k=1 ρ n + k (t) -i ncor k=1 n k α k S (t) ρ n - k -αk ρ n - k S (t) (10) 
where S (t) = e iH S t Se -iH S t . The auxiliary operators are denoted by a collective index n = {n 1 , • • • , n ncor } where n j is the quantum number giving the excitation in the pseudo mode j (j = 1, n cor ) of the correlation function.

The system density matrix

ρ(t) = T r B [ρ tot (t)] is given by the first row, i.e. n = {0, • • • , 0} resulting in ρ(t) = ρ I (t) = ρ {0,••• ,0} (t).
The level of the hierarchy is equal to the sum of the quantum numbers of the modes.

n ± k = {n 1 , • • • , n k ± 1, . . . ,
n ncor } is the index of the auxiliary operator for which the pseudo mode k has been excited or de-excited by one quanta (each matrix can communicate only with the higher and lower level in the hierarchy). A factorization of the initial conditions for the system and the bath is valid for ultrafast electronic decay occurring prior to vibrational relaxation. The bath is then assumed to keep the configuration of the ground state after the fast excitation. Initial correlations are taking into account for instance in Refs. 71,93 .

B. Environmental observables and dynamical information

As discussed in Refs. 67,68 , information about the bath dynamics can be extracted from the HEOM auxiliary operators. Of particular importance is the first moment or expectation value of the collective coordinate B in each electronic state, which is given by the k th diagonal element X k (t) of the matrix X [START_REF] Valkunas | Photosynthetic excitons[END_REF] 

(t) = T r B [Bρ tot (t)].
The latter can be obtained from the sum of the first level auxiliary matrices X [START_REF] Valkunas | Photosynthetic excitons[END_REF] (t) =ñ ρ ñ(t), where the sum runs over all index vectors ñ = {n 1 , • • • , n ncor } with l n l = 1. This quantity provides a simple, intuitive signature of the bath dynamics by revealing excitations of damped vibrational motions which follow the electronic transitions and the evolution towards the final equilibrium state. However, it is now also possible to extract full counting statistics for the collective coordinate by following the procedure set out in Ref. 68 and summarized in Appendix B. We shall present and analyze the full time-dependent probability distributions of B in Section IV.

C. Effective mode

It is interesting to compare information about the dynamics of the collective coordinate B extracted from the HEOM auxiliary operators with the description of the transfer in terms of the effective mode representation. This is actually obtained by transforming the initial normal mode basis set and including the principal mode which induces the main vibronic coupling as part of an expanded 'system'. This effective coordinate denoted Q 1 is still coupled to residual modes by generally weak potential couplings, since the Hessian matrix, in terms of the new coordinates, is no more diagonal 94? -106 . In particular, the evolution of the first moment X 1 (t) should correspond to the average position of the wave packets in the different electronic states. The comparison of X 1 (t) given by the exact damped dynamics with the evolution of the average position predicted by the undamped effective mode model (without the residual bath) provides information about the damping induced by the residual bath. Note that the effective coordinate Q 1 is massweighted and thus has not the same dimension as the collective coordinate B. By a unitary transformation of the bath modes of each site, one selects the effective mode EM which describes the largest variation of the electronic energy gap and therefore the largest vibronic coupling. The normal modes and the system-bath couplings are expressed as q = M i=1 q i e i and c = M i=1 c i e i respectively by defining a canonical basis e i , (i = 1 • • • M ). We construct a new basis g i , (i = 1 • • • M ) within this vector space, such that one of the new basis vectors, denoted g 1 , induces the coupling to the bath so that

g 1 = c/ c = c/D 0 with D 0 = c = M i=1 c i 2 .
One can express q in terms of the new basis g i by

q = Q 1 g 1 + M i=2 Q i g i . The EM frequency is given by Ω 1 2 = M i=1 c i 2 ω i 2 /D 0 2 .
For each site, this new coordinate representation leads to the generic model of harmonic potential energy curves shifted along the EM coordinate Q 1 by a displacement D 0 /Ω 2 1 . In the continuous frequency limit, the effective mode frequency Ω 1 and the new coupling constant D 0 can be expressed as:

D 2 0 = 2 π +∞ 0 dωJ (ω) ω (11) 
Ω 2 1 = 2 πD 0 2 +∞ 0 dωJ (ω) ω 3 . ( 12 
)
It is noteworthy to stress that those two integrals are analytical for the super-Ohmic parametrization adopted in the present paper.

In the three-site model, the normal modes are assumed to be identical and the modulus of the displacement is the same for the first and third sites, while that of the intermediate site has the reference equilibrium position. The three excited effective potential energy curves may be expressed as a function of the same coordinate Q 1 and take the form:

V n (Q 1 ) = ε n + Ω 2 1 2 Q 2 1 + ∆ n D 0 Q 1 + ∆ n λ
where the ∆ n parameters are given in Eq.4.

D. Non-Markovianity signatures

Numerous non-Markovianity witnesses have been proposed in the literature [107][108][109][110][111] . We focus here on a geometric measure given by the volume of the accessible states in the generalized Bloch sphere representing the system [START_REF] Lorenzo | [END_REF] . For the N -level system, HEOM defines a non-Markovian dynamical map ρ(t) = φ t [ρ(0)] that may be expressed in a basis set of N 2 operators in the Liouville space which includes the identity G 0 = I/ √ N and the N 2 -1 generators of SU (N ), G i (i = 1, ..., N 2 -1). These generators are the Pauli spin matrices when N = 2. In the present case (N = 3), these basis matrices are the Gell-Mann matrices 112 . In matrix form the map reads

F m,n (t) = T r (G m φ t [G n ]
) and the volume of accessible states is obtained from the determinant of the matrix of the map

V (t) = det(F). (13) 
A non-monotonic decrease of this volume is taken as a signature on a non-Markovian back-flow from the bath to the system. This determinant may be expressed as a function of the sum of the canonical time-dependent decay rates g k (t) by V (t) = V (0) exp -N t 0 Γ(s)ds where

Γ(t) = N 2 -1 k=1 g k (t). ( 14 
)
These canonical decay rates are the eigenvalues of the decoherence matrix R which appears when the time non local master equation is recast into a canonical Lindblad form with time dependent rate coefficients 85

ρ(t) = - i [H S cor , ρ(t)] + N 2 -1 j,k=1 R jk (t) G j ρ(t)G k - 1 2 {G k G j , ρ(t)} (15) 
where H S cor contains terms related to the G 0 operator. A strategy to compute this decoherence matrix is detailled in the Appendix of Ref. 86 . The particular case where the coherent coupling vanishes (W = 0) is the pure dephasing one abundantly studied in the literature for a qubit system [START_REF] Lorenzo | [END_REF]113,114 . It should lead to decoherence of any superposition of the electronic states with constant population. For pure dephasing, a simple expression is obtained for the spectral density from the decoherence function ν(t) = exp(-2Λ(t)) of a two-state case with a decay rate:

Λ(t) = ∞ 0 dωJ(ω) coth(βω/2)(1 -(cos(ωt))/2 (16)
The volume is then given by V (t) = |ν(t)| 2 .

IV. RESULTS

All simulations are carried out at room temperature. The electronic system is expected to be non-Markovian, at least for the first three cases involving narrow band width spectral densities J a,b,c . This results from the comparison of bath correlation times displayed in Fig. 2b, with the Rabi period (around 30 fs). To quantify this effect we analyze a non-Markovianity signature based on the volume of accessible states in the Bloch sphere and provide an interpretation in the present context of electronic transitions. We show the competitive role of vibrational damping and electronic coupling. The generation of out-equilibrium motion in the bath and its damping are analyzed referring either to the first moment X n (t) of the damped collective coordinate B or to the average position of the undamped effective mode. We extract the first moment X n (t) from the auxiliary operators and we compare its time evolution with the average position of the effective mode Q 1-wb (t) by neglecting the residual bath (without bath). Both evolutions should be comparable for an ultra-sharp spectral density.

Hereafter we will separately analyze the dynamics induced by the narrow-band resonant spectral density (J a ) and the way it is affected by changes in shape characterizing different density distributions we are considering (J b , J c , J d ).

A. Narrow, resonant spectral density.

This situation illustrates the vibrationally assisted electronic energy transfer since the narrow peak J a is in resonance with the diabatic energy gap and thus nearly in resonance with the vibronic eigenenergy gap taking into account the electronic coupling and renormalization energy. The effective mode EM extracted from the spectral density has the frequency Ω 1 = 1163 cm -1 . The electronic system is assumed to be prepared in the first excited state |1 by a Franck-Condon type ultra-fast launching. The initial bath is then out of equilibrium (see system operator S (Eq.( 5)). We consider a system-bath coupling leading to a renormalization energy of one third of the energy gap; i.e., λ/∆ε = 0.3. We first discuss the non-Markovian character of the decay. The determinant of the dynamical map [START_REF] Lorenzo | [END_REF]85 or volume of accessible states V (t) in the Bloch sphere is displayed in Fig. 3a for different electronic couplings W . The pure dephasing case with W = 0 is the most non-Markovian one since V (t) exhibits strong bumps perfectly in phase with the damping of the collective coordinate in the initial state (see Fig. 3b). The bumps are usually interpreted as an information back-flow from the surrounding to the system. In the present context, this corresponds to a return of the collective mode towards its initial condition. Note that V (t) depends on the initial bath and not on the initial state of the electronic subsystem (for instance, state |1 or any superposition of two or three electronic states). When the electronic coupling W increases, the bumps in the volume decrease since a second channel due to electronic transitions opens and inhibits more and more the return towards the initial conditions of the bath. This can be seen even more clearly when looking at the properties of the environment (vide infra). The non-Markovian character is even more obvious when considering the sum of canonical decay rates Γ(t) given in the inset, for two couplings. In particular, one sees that the dynamics is still non-Markovian for the strong coupling W = 400 cm -1 since Γ(t) remains negative in some time domains even if the volume seems to decay monotonously.

The corresponding evolution of the first moment X 1 (t) of the bath collective mode in the initial diabatic state extracted from HEOM is shown in Fig. 3b for the same increasing electronic coupling W . In the purely dephasing case, relaxation dynamics towards the new equilibrium position of the excited state (a negative value at the left of the reference equilibrium position of the bath), perfectly follow the correlation function (Fig. 2b) and the os- The initial electronic state is |1 and the initial bath is out of equilibrium from the reference position (see Eq.( 5)). Inset: sum of the canonical rates Γ(t) (Eq.( 14)) as a function of time. Panel (b): Time evolution of the first moment X1(t) of the collective coordinate B in the initial diabatic electronic state for the same couplings.

cillations of V (t). When W increases, the damped vibrational oscillation interferes with the electronic transition. The decrease of the norm of the vibrational component in state |1 leads to the cancellation of the first moment. Fig. 4 displays the population evolution in the three site electronic states for two couplings, W = 100 cm -1 (W/∆ε = 0.1) in panel (a) and W = 200 cm -1 (W/∆ε = 0.2) in panel (b), respectively. We compare exact HEOM results (full lines) with the dynamics involving only the principal effective mode EM, without residual bath (dots) or without any bath at all (pure electronic system, thin lines). The first observation is that the weak Rabi oscillations without any bath never lead to an irreversible transfer. Bath, i.e., nuclear motion is thus necessary for transfer to occur. Dynamics with only the EM should correspond to an ultra sharp peaked spectral density at the effective frequency Ω 1 . The coupling D 0 corresponding to a displacement ±D 0 /Ω 2 1 from the reference position leads here to effective potential energy curves which cross on the left side of the parabolas, which is known as the 'inverted regime' in Marcus theory of electron transfer. As Ω 1 is high, the thermal equilibrium in the ground electronic state at room temperature corresponds to the Gaussian wave packet of the ground vibrational state and one may compare the coherent non-adiabatic dynamics of the undamped effective mode model with the exact one accounting for the full damping. Even though the spectral density J a has a narrow width of about 100 cm -1 , its effect is still noticeable. The population evolution is qualitatively the same during the first 80 fs for the case displayed in panel (a) (W = 100 cm -1 ) and 50 fs for case (b) (W = 200 cm -1 ) but the interaction with all the modes strongly enhances the transfer after this short timescale.

Noticeably, the transfer towards state |3 is irreversible in case (a) but still exhibits a transitory, coherent backflow to state |2 in case (b). By examining the superposition of the vibronic eigenstates involved in the initial wave packet in the EM model (which is simple enough to be exactly diagonalisable), one can explain the patterns observed in the population evolution. The superposition mainly concerns four eigenstates (namely states 4,5,7 and 8, in order of energy). These vibronic states have components on mainly three vibrational states of the site that is electronically excited a 1 |v 1 + a 2 |v 2 + a 3 |v 3 . The two states (4 and 5) with the highest weights lead to the configuration (v 1 = 0, v 2 = 1, v 3 = 2). Their energy gap is characterized by a timescale of 307 fs in case (a) and 216 fs in case (b). This fits the slow oscillations in the populations in the EM model. The third and fourth main vibronic state (7 and 8) have components on vibrational channels (v 1 = 1, v 2 = 2, v 3 = 3). The gap between eigenstates 4 and 7 gives a timescale of 28.8 fs and 29.3 fs respectively which explains the fast oscillations in the populations. Moreover, the coefficient a 3 of the vibrational state of site 3 is much smaller in case (a) than in case (b), in agreement with the very weak population transfer in site 3 in case (a) in the EM model.

Finally, the transitory exchange between sites 2 and 3 in the HEOM dynamics is perhaps the most interesting: the oscillatory timescale can be rationalized considering the energy gap of eigenstates 7 and 8, leading to a timescale of 173 fs, but the large amplitudes of these states -with population only on sites 3 and 2 -cannot be related to the expansion of the initial condition of an excitation on site 1. We must therefore conclude that the coherence between these eigenstates has been generated by the rapid relaxation of the population on site 1. In our previous work on coherence generation in energy transfer 76 , we demonstrated that non-secular terms in the reduced density matrix allow for coherence to appear when relaxation occurs from a high-lying level to a manifold of nearly degenerate electronic levels. In the present case, we have found that this also occurs in the rapid transition from a pure electronic state to a pair of vibronically delocalized states. Again, this potentially allows for a purely dissipative induction of coherent electronic motion without coherent laser driving, and may be of relevance for experimental results on coherent excitation transfer in photosynthetic reaction centers.

We now compare the information on the vibration of the collective mode extracted from HEOM with the wave packet dynamics in the EM model without residual bath. X n (t) includes the effect of the full bath and damping whereas the effective mode Q 1 is undamped in our work. The average position Q 1-wb (t) in each excited electronic state of the undamped effective mode is given in Fig. 5a while Fig. 5b gives the first moment of the collective bath mode X n (t) in each site electronic excited state n extracted from HEOM. These quantities have not the same dimension so that the absolute amplitude cannot be compared, only their temporal evolution is relevant. This emphasizes the damping of the collective motion when all the modes are accounted for. The longest damping timescale in the initial state is predicted by the correlation function and decreases with the electronic coupling. At short times, when the collective coordinate is underdamped and moving ballistically, the electronic dynamics in both cases are fairly similar and approach each other as the correlation time of the spectral density gets longer ( i.e. the spectral density is closer to a delta function).

The out of equilibrium excitation of the vibrational motion of the collective coordinate in each site follows the electronic transition and exhibits a regularly oscillating pattern typical of the behavior of a coherent wave packet. In the final site, the oscillations subsist as long as correlation is present, before the slow damping towards the final equilibrium position (positive value corresponding to the equilibrium in state |3 ). In this example of vibrationally assisted electronic relaxation, the process remains coherent both for the system and for the vibrational bath during the correlation time and remains non-Markovian throughout (see Fig. 3).

B. Role of different spectral densities.

This section illustrates the influence of the spectral density shapes on the decay characteristics. We analyze the populations, the electronic coherence and the collective mode signatures for the different spectral densities as displayed in Fig. 2a, with an initial state |1 , a bath at the equilibrium reference position, a renormalization energy λ = 300 cm -1 (λ/∆ε = 0.3) and an electronic coupling W = 200 cm -1 (W/∆ε = 0.2). Fig. 6 compares the electronic population evolution. The first observation is that the smooth background of case J b which could be considered as a weak perturbation, still modifies the profile by removing the transitory exchange between the populations of states |2 and |3 . For all cases except J a , the three populations follow a smooth sequential site-to-site hopping, particularly for J c . One also observes a weak decrease of the initial decay rate as a slow-down of the final transfer towards the final site by about a factor of two (roughly from 300 fs for J a to 600 fs for J c ). The vibrationally assisted process for J a is thus more efficient.

More insight about the electronic coherence and the generation of coherent motion out of the equilibrium vibrational bath is provided by Figs. 7 and8, respectively. Fig. 7 displays the imaginary part of electronic coherence ρ jk (t) among the site excited states. Only the imaginary part is relevant since these states are not eigenstates such that the real part of the cross terms does not vanish, but simply comes from the components in the eigen-basis. One may observe that coherence is always larger for the peaked spectral density J a (full lines). The transitory exchange between states |2 and |3 around 200fs is related to an increase of the coherence ρ 23 (t). Another remark is that a smooth sequential scheme for the population does not necessarily mean incoherent evolution. For instance, populations evolution for J b and J d have similar profiles (see long dashes for J b and dots for J d in Fig. 6) but the case J b is still coherent while case J d leads to very weak coherence that decays smoothly. The ballistic behavior at stake in case J d is confirmed by the evolution of the average moment of the collective bath mode X n (t) given in Fig. 8. No oscillatory coherent motion is generated particularly in the final state where one observes a completely damped evolution towards the equilibrium.

In the cases J a and J b , favorable for the vibrationally assisted transfer, the coherent vibrational motion persists as long as electronic coherence is observed.

Fig. 9a displays the purity or linear entropy of the system density matrix T r ρ 2 (t) strongly linked to coherence. In each case, the purity decreases during early dynamics revealing an early loss of coherence of the elec- 2a: Ja (blue solid line), J b (red long dashes), Jc (black small dashes) and J d (orange dots). The electronic coupling is 200 cm -1 (W/∆ε=0.2) and the renormalization parameter 300 cm -1 (λ/∆ε=0.3).

tronic system. This is in agreement with the difference observed with the wave packet dynamics in the EM model, without residual bath. For case J a , one notes a first regain of purity linked to the first bump in V (t) after about 30fs (see Fig. 9b). This is related to the first return towards the initial position of the bath mode. As already discussed, the volume V (t) being a logarithmic function of the sum of the canonical decoherence rates masks other bumps or domains where the sum of the rates Γ(t) is negative. They correspond to the periods given in the pure dephasing case (see inset of Fig. 3a). In all cases, the slow return towards maximum value 1 illustrates the evolution towards the asymptotic equilibrium state, for which only a single eigen electronic state is occupied from Boltzmann statistics so that the final mixture corresponds to a single state, therefore a pure electronic state.

Considering the shape of the correlation function (see Fig. 2b) or the smooth evolution of all the observables, dynamics with the spectral density J d is expected to be Markovian. However, it is noteworthy that due to the strong system-bath coupling the dynamics is not perturbative and could not be treated by a second order Redfield master equation. At least level 7 of the HEOM hierarchy has been required to get convergence. Our final set of numerical results present the full probability distribution P n (X, t) of the position of the 'reaction coordinate' (RC) projected onto the nth chromophore site for two contrasting cases. In Fig. 10 we show isovalue contour plots of the P n (X, t) distribution under the action of the sharply peaked spectral density J a . As shown in Fig. 10, this case shows oscillatory and coherent population dynamics, and this is reflected in the appearance of a highly non-Gaussian distribution for the RC on sites 2 and 3 at early times. The transient distribution is the electronic and vibrational motion, which effectively means that population is transferred between sites over a wide range of RC displacements. In contrast, Fig. 11 shows P n (Xnt) for the case of J c , where the relaxation dynamics shows a relatively simple, sequential decay kinetics. In this case, after a fast initial relaxation of the RC to the equilibrium position on site 1, the subsequently transfers of electronic population occur sufficiently slowly for the environment to be effectively in local equilibrium in each electronic state. Under these conditions, we would expect the approximate transfer theories of Förster (excitons) or Marcus (charges) to give a fair description of the kinetics.

V. CONCLUSIONS

The energy funnel system built from three sites has allowed us to illustrate some important characteristics of the vibrationally assisted energy transfer and to clarify some concepts particularly about non-Markovianity of the electronic dynamics. A sharply peaked spectral density is favorable to induce a vibrationally assisted transfer. Some broadening is however necessary, the width characterizing a coupling of the primary effective mode with residual modes, to ensure the irreversible downhill transfer and the trapping in the final site. A smooth sequential site-to-site population transfer does not always involve a purely ballistic behavior since some electronic coherence can persist during the timescale of the correlation function of the bath.

Owing to the powerful tool of HEOM providing information about the bath dynamics, we have shown how a coherent vibrational motion of the collective bath mode is generated in each site following the electronic transition. Obviously, the initial fast excitation populates a superposition of vibronic states where electrons and nuclei are strongly entangled. The treatment by the HEOM master equation formalism and the analysis of the bath from auxiliary matrices is a way to decipher electronic and vibrational motions. This is an opposite strategy to the projection of electronic dynamics from full dimension wave packet approaches for instance with ML-MCTDH (multi-layer multi configuration time dependent Hartree) methods (for instance in Ref. 60 ).

We have clarified the concept of the volume of accessible states in the Bloch sphere within the context of nonadiabatic transitions. Bumps which are taken as witnesses of non-Markovianity result from the return of the collective bath mode back to the initial conditions. For pure dephasing, without electronic transition, this merely corresponds to the real part of the correlation function C(t) of the bath. In the wave packet view, the volume is closely linked to the auto-correlation of the wave packet. Electro-nuclear dynamics is thus intrinsically non-Markovian as soon as the collective mode is not over-damped. In the latter case, a Markovian behavior may require a non perturbative treatment. Our findings fall within the more general context of organic photophysics, where such relaxation-driven vibronic motions are suggested to be powerful markers of the history of a chain of dissipative electronic processes. from the auxiliary matrices. The distribution P k (X, t) in each electronic state is the corresponding diagonal element. The distribution is expanded in a basis set

P (X, t) = n a n (t)Φ n (X). (B2)
The coefficients a n (t) of the n th function is a sum of the matrices belonging to n th hierarchy level a n (t) = (-1)

n n!C n 0 n th level n! n k ! ρ n (t) n k = n. (B3)
The constant C 0 is the initial value of the correlation function. The basis set functions are

Φ n (X) = 1 √ 2π √ 2 n n! H n X/ 2C 0 e -X 2 2C 0 (B4)
where H n (x) is the Hermite polynomial of order n. The first moment could also be computed in each electronic state by X k = XP k (X)dX/ P k (X)dX.
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 1 Figure 1. Directed transport driven by energy gradients. (a) Left. Mimicking the strategy employed in many PPCs, we consider three electronic levels representing the excited states of three spatially separated chromophores. Local, chromophore-specific interactions, inhomogeneous environments or chemically different chromophores lead to a ladder of excited states separated by energy gaps ∆ . Right. Irreversible relaxation of the excitons from high to low energy is correlated with deterministic, targeted motion of the excitation through space in a biologically preprogrammed way. (b)In the presence of strong coupling to the environmental reaction coordinate, reversible energy exchange may occur that leads to new spatially delocalized eigenstates. The subsequent dissipative interactions of these 'dressed' vibronic wavepackets with the residual environment may be very different from the bare excitons and the relaxation dynamics is qualitatively altered by emerging system-bath correlations.

Figure 2 .

 2 Figure 2. (Color online) Upper panel: Spectral densities (in arbitrary units) as a function of frequency in cm -1 units.Narrow resonant spectral density Ja (solid blue line), narrow peak with weak background J b (red long dashes), narrow peak with large background Jc (black dots) and broad peak J d (orange small dashes). The functions are scaled to give a similar renormalization energy parameter λ. Lower panel: real part of the corresponding normalized bath correlation functions (Eq.6). The imaginary parts have the same order of magnitude and are not shown for the clarity of the figure. The complete decay time for Ja and J b is about 400 fs.

Figure 3 .

 3 Figure 3. (Color online) Panel (a): Time evolution of normalized volume of accessible states in the generalized Blochsphere, for the spectral density Ja and for a sample of electronic couplings W given in cm -1 (color code as indicated in the figure). The initial electronic state is |1 and the initial bath is out of equilibrium from the reference position (see Eq.(5)). Inset: sum of the canonical rates Γ(t) (Eq.(14)) as a function of time. Panel (b): Time evolution of the first moment X1(t) of the collective coordinate B in the initial diabatic electronic state for the same couplings.
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 4 Figure 4. (Color online) Time evolution of populations in the site excited electronic states with spectral density Ja (see Fig.2), initial state |1 and renormalization energy λ = 300 cm -1 (λ/∆ε = 0.3). HEOM (full lines), EM without residual bath (dotted lines) and no bath (thin lines). Different state populations are displayed with line colors and characteristics as indicated in the right part of the figure. Panel (a) for W/∆ε = 0.1. Panel (b) for W/∆ε = 0.2.
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 5 Figure 5. (Color online) Upper panel: Time evolution of the average position Q 1-wb (t) of the effective mode in each electronic state without residual bath for two couplings W =100 cm -1 , W/∆ε= 0.1 (dots) and W =200 cm -1 , W/∆ε= 0.2 (full lines). Lower panel: Time evolution of the first moment Xn(t) of the collective mode extracted from HEOM for the same couplings. Specific line characteristics, fonts and colors, for each state are indicated on the right.

Figure 6 .

 6 Figure 6. (Color online) Site population evolution for the spectral densities displayed in Fig.2a: Ja (blue solid line), J b (red long dashes), Jc (black small dashes) and J d (orange dots). The electronic coupling is 200 cm -1 (W/∆ε=0.2) and the renormalization parameter 300 cm -1 (λ/∆ε=0.3).

Figure 9 .

 9 Figure 9. (Color online) Upper panel: Time evolution of the purity of the system density matrix T r ρ 2 (t) for the spectral densities of Fig.2. Lower panel: Time evolution of the normalized volume of accessible states in the Bloch sphere V (t)/V (0). The electronic coupling is 200 cm -1 (W/∆ε=0.2) and the renormalization parameter 300 cm -1 (λ/∆ε=0.3).

Figure 10 .

 10 Figure 10. Probability distribution P (X, t) (Eq.(B2)) of the reaction coordinate displacement projected onto each chromophore site for the sharply peaked 'resonant' spectral density Ja. The electronic coupling is set to W = 200cm -1 (W/∆ε=0.2) and the renormalization parameter 300 cm -1 (λ/∆ε=0.3).

Figure 11 . 4 J 4 J 3 Jc1 5 . 7 × 4 Jc2 2 . 9 × 3 J d 1 . 95 ×

 11443574293195 Figure 11. Same as in figure 10 but for Jc.

most of the population has been transfered to site 3, the distribution relaxes to a Gaussian distribution centered on the equilibrium displacement for site 3 within the bath correlation time. Clearly, the emergence of this nontrivial distribution is due to the comparable timescales of The parameters of the super-Ohmic Lorentzian functions (Eq.( 8)) used to express the spectral densities in the HEOM simulations are gathered in the following table. Spectral densities J b and J c have been fitted by a sum of two Lorentzian functions denoted J b1 and J b2 or J c1 and J c2 respectively. The p parameters have been adjusted to obtain renormalization energies of about 300 cm -1 .

Appendix B: Bath dynamics from the auxiliary matrices

As derived in Refs. 67,68 , very interesting information about the bath dynamics can be extracted from the HEOM auxiliary operators. All the high order moments X (n) (t) = T r B [B n ρ tot (t)] of the collective coordinate B can be computed by recursive formulas given in Ref. 67 . The moments X (n) are operators in the system subspace (matrices 3 × 3 in the present application). In particular, the first moment or expectation value of the collective coordinate B in each electronic state is the k th diagonal element denoted here X k (t) of the matrix X [START_REF] Valkunas | Photosynthetic excitons[END_REF] (t) = T r B [Bρ tot (t)]. The latter can be obtained from the sum of the first level auxiliary matrices

where the sum runs over all index vectors n = {n 1 , • • • , n ncor } with l n l = 1. This quantity already provides a useful signature of the bath dynamics by revealing the excitation of damped vibrational motions which follow the electronic transitions and the evolution towards the final equilibrium state. A deeper insight is provided by the full probability distribution of the collective coordinate P (X, t) and an efficient procedure is detailed in Ref. 68 . P (X, t) is also a N × N matrix where N is the number of electronic states since it is computed