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Abstract

Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and
understanding of the large scale Earth observation data available. Most of the recently proposed change detection
methods bring deep learning to this context, but change detection labelled datasets which are openly available are still
very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale
very high resolution semantic change detection dataset, which enables the usage of deep supervised learning methods
for semantic change detection with very high resolution images. The dataset contains coregistered RGB image pairs,
pixel-wise change information and land cover information. We then propose several supervised learning methods
using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network
architecture that performs change detection and land cover mapping simultaneously, while using the predicted land
cover information to help to predict changes. We also describe a sequential training scheme that allows this network to
be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results.

1. Introduction

One of the main purposes of remote sensing is the ob-
servation of the evolution of the land. Satellite and aerial
imaging enables us to keep track of the changes that oc-
cur around the globe, both in densely populated areas as
well as in remote areas that are hard to reach. That is why
change detection is a problem so closely studied in the
context of remote sensing (Coppin et al., 2004). Change
detection is the name given to the task of identifying areas
of the Earth’s surface that have experienced changes by
jointly analysing two or more coregistered images (Bruz-
zone and Bovolo, 2013). Changes can be of several differ-
ent types depending on the desired application, e.g. those
caused by natural disasters, urban expansion, and defor-
estation. In this paper we treat change detection as a dense
classification problem, aiming to predict a label for each

This work was originally submitted under the title ”High Resolution
Semantic Change Detection”, and had its title changed during the review
process.

pixel in an input image pair, i.e. achieving semantic seg-
mentation.

The search for ever more accurate change detection
comes from the value of surveying large amounts of land
and analysing its evolution over a period of time. De-
tecting changes manually is a slow and laborious pro-
cess (Singh, 1989) and the problem of automatic change
detection using image pairs or sequences has been stud-
ied for many decades. The history of change detection
algorithms and overviews of the most important methods
are described in the reviews Singh (1989) and Hussain
et al. (2013). Throughout the years, change detection ben-
efited a lot from computer vision and image processing
advances. In recent years, computer vision made tremen-
dous progress thanks to machine learning techniques, and
these were used for solving a wide range of problems re-
lated to image understanding (LeCun et al., 2015).

The rise of these techniques is explained by three main
factors. First, the hardware required for the large amounts
of calculations that are often required for machine learn-
ing techniques is becoming cheaper and more powerful.
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Second, new methods are being proposed to exploit the
data in innovative ways. Finally, the amount of available
data is increasing, which is essential for many machine
learning techniques.

In this paper we propose a versatile supervised learning
method to perform pixel-level change detection from im-
age pairs based on state-of-the-art computer vision ideas.
The proposed method is able to perform both binary
and semantic change detection using very high resolution
(VHR) images. Binary change detection attempts to iden-
tify which pixels correspond to areas where changes have
occurred, whereas semantic change detection attempts to
further identify the type of change that has occurred at
each location. The proposed method is able to perform
change detection using VHR images from sources such
as WorldView-3, Plèiades and IGN’s BD ORTHO. As was
described by Hussain et al. (2013) and Bruzzone and Bo-
volo (2013), VHR change detection involves several extra
challenges.

A new VHR semantic change detection dataset of un-
precedented size is also presented in this paper. This
dataset will be released publicly to serve as a benchmark
and as a research tool for researchers working on change
detection. The methods used to create this dataset, as well
as the limitations of the available data, will be described
later on. Until now, the most advanced ideas brought to
computer vision by deep learning techniques could not be
applied to change detection due to the lack of large anno-
tated datasets. This dataset will enable the application of
more sophisticated machine learning techniques that were
heretofore too complex for the amount of change detec-
tion data available.

2. Related work

The work presented in this paper is based on several
different ideas coming from two main research areas:
change detection and machine learning. This section con-
tains a discussion about the works hat have more heav-
ily influenced this work, providing details about unsu-
pervised methods, supervised learning, and fully convo-
lutional networks for semantic segmentation.

Change detection algorithms usually comprise two
main steps (Singh, 1989; Hussain et al., 2013). First, a
difference metric is proposed so that a quantitative mea-
surement of the difference between corresponding pixels

can be calculated. The image generated from this step
is usually called a difference image. Second, a thresh-
olding method or decision function is proposed to sepa-
rate the pixels into ”change” and ”no change” based on
the difference image. These two steps are usually in-
dependent. Post-processing and pre-processing methods
are sometimes used to improve results. Many algorithms
use out-of-the-box registration algorithms and focus on
the other main steps for change detection (Hussain et al.,
2013). Most papers on change detection propose either a
novel image differencing method (Bovolo and Bruzzone,
2005; El Amin et al., 2016, 2017; Zhan et al., 2017) or a
novel decision function (Bruzzone and Prieto, 2000; Ce-
lik, 2009). A well established family of change detection
methods is change vector analysis (CVA), considering the
multispectral difference vector in polar or hyperspherical
coordinates and attempting to characterise the changes
based on the associated vectors at each pixel (Lambin
and Strahlers, 1994; Bovolo and Bruzzone, 2007; Hussain
et al., 2013). Most methods that propose image differ-
encing techniques followed by thresholding assume that
a threshold is chosen based on the difference image. The
authors of Hussain et al. (2013) and Rosin and Ioannidis
(2003) noted that the performance of such algorithms is
scene dependent.

Hussain et al. (2013) categorise change detection al-
gorithms into two main groups: pixel based and object
based change detection. The former are attempts to iden-
tify whether or not a change has occurred at each pixel
in the image pair, while the latter methods attempt to first
group pixels that belong to the same object and use infor-
mation such as the object’s colour, shape and neighbour-
hood to help determine if that object has been changed be-
tween the acquisitions. Change detection algorithms can
also be split into supervised and unsupervised groups.

As noted by Hussain et al. (2013) and Bruzzone and
Bovolo (2013), change detection on low resolution im-
ages and on VHR images face different challenges. In low
resolution images, pixels frequently contain information
about several objects contained within its area. In such
cases, a pixel in an image pair may contain both changed
and unchanged surfaces simultaneously. VHR images are
more susceptible to problems such as parallax, high re-
flectance variability for objects of the same class, and co-
registration problems (Bruzzone and Bovolo, 2013). It
follows that algorithms that perform change detection on
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(a) Image 1. (b) LCM 1. (c) Image 2. (d) LCM 2. (e) Change map.

(f) Image 1. (g) LCM 1. (h) Image 2. (i) LCM 2. (j) Change map.

Figure 1: Examples of image pairs, land cover maps (LCM) and associated pixel-wise change maps from the HRSCD dataset. In the depicted
LCMs, blue represents the ”artificial surfaces” class, and orange represents the ”agricultural areas” class.

very high resolution images must be aware of not only
a given pixel’s values, but also of information about its
neighbourhood.

Machine learning algorithms, and notably convolu-
tional neural networks (CNNs) in recent years, also have
had great impact. For examples, in remote sensing, CNNs
were used for road detection (Mnih and Hinton, 2010),
and in computer vision, CNNs were used on the re-
lated task of comparing image pairs (Chopra et al., 2005;
Zagoruyko and Komodakis, 2015). We now examine in
details unsupervised and supervised machine learning ap-
proaches, the latter category being then subdivided in
standard techniques, CNNs and Fully-Convolutional Neu-
ral Networks.

Unsupervised methods have been used for change
detection in many different ways (Hussain et al., 2013;
Vakalopoulou et al., 2015; Liu et al., 2019). In the
context of change detection, annotated datasets are ex-
tremely scarce and often kept private. Thus, unsuper-
vised methods are extremely useful, since, unlike super-
vised methods, they do not need labelled data for train-
ing. Many of these methods automatically analyse the
data in difference images and detect patterns that corre-
spond to changes (Bazi et al., 2005; Bruzzone and Pri-
eto, 2000). Other methods use unsupervised learning ap-
proaches such as iterative training (Liu et al., 2016), au-
toencoders (Zhao et al., 2014), and principal component
analysis with k-means clustering (Celik, 2009) to separate

changed pixels from unchanged ones.
Supervised change detection algorithms require la-

belled training data from which the task of change detec-
tion can be learned. Several methods have been proposed
for performing change detection using supervised learn-
ing algorithms such as support vector machines (Huang
et al., 2008; Volpi et al., 2009, 2013; Le Saux and Randri-
anarivo, 2013), random forests (Sesnie et al., 2008), and
neural networks (Gopal and Woodcock, 1996; Dai and
Khorram, 1999; Zhao et al., 2014). CNN architectures
have also been proposed to perform supervised change
detection (Zhan et al., 2017; Chen et al., 2018b).

Convolutional neural networks (CNNs) for change de-
tection have been proposed by different authors in the re-
cent years. The majority of these methods avoid the prob-
lem of the lack of data by using transfer learning tech-
niques, i.e. using networks that have been pre-trained
for a different purpose on a large dataset (El Amin et al.,
2016, 2017). While transfer learning is a valid solution,
it is also limiting. Firstly, end-to-end training tends to
achieve the best results for a given problem when possi-
ble. Transfer learning also assumes that all images are
of the same type. As most large scale datasets contain
RGB images, this means that extra bands contained in
multispectral images must be ignored. It has however
been shown that using all available multispectral bands
for change detection leads to better results (Daudt et al.,
2018b).
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Several works have used CNNs to generate the differ-
ence image that was described earlier, followed by tradi-
tional thresholding methods on those images. El Amin
et al. (2016, 2017) proposed using the activation of pre-
trained CNNs to generate descriptors for each pixel, and
using the Euclidean distance between these descriptors to
build the difference image. Zhan et al. (2017) trained a
network to produce a 16-dimensional descriptor for each
pixel. Descriptors were similar for pixels with no change
and dissimilar for pixels that experienced change. Liu
et al. (2016) used deep belief networks to generate pixel
descriptors from heterogeneous image pairs, then the Eu-
clidean distance is used to build a difference image. Zhao
et al. (2014) proposed a deep belief network that takes into
account the context of a pixel to build its descriptor. Mou
et al. (2019) proposed using patch based recurrent CNNs
to detect changes in image pairs. CNNs for change detec-
tion have also been studied outside the context of remote
sensing, such as surface inspection (Stent et al., 2015).

Fully convolutional neural networks (FCNNs) are a
type of CNNs that are especially suited for dense pre-
diction of labels and semantic segmentation (Long et al.,
2015). Unlike traditional CNNs, which output a single
prediction for each input image, FCNNs are able to pre-
dict labels for each pixel independently and efficiently.
Ronneberger et al. (2015) proposed a simple and elegant
addition to FCNNs that aims to improve the accuracy of
the final prediction results. The proposed idea is to con-
nect directly layers in earlier stages of the network to lay-
ers at later stages to recover accurate spatial information
of region boundaries. FCNNs currently achieve state-of-
the-art results in semantic segmentation problems, includ-
ing those in remote sensing (Volpi and Tuia, 2017; Mag-
giori et al., 2017; Chen et al., 2018a).

Fully convolutional networks trained from scratch to
perform change detection were proposed for the first time
by Daudt et al. (2018a). Both Siamese and early fusion
architectures were compared, expanding on the ideas pro-
posed earlier by Chopra et al. (2005) and Zagoruyko and
Komodakis (2015). A similar approach was simultane-
ously proposed by Chen et al. (2018b) outside the context
of remote sensing. To the best of our knowledge, the only
other time a fully convolutional Siamese network has been
proposed was by Bertinetto et al. (2016) with the purpose
of tracking objects in image sequences.

3. Dataset

Research on the problem of change detection is hin-
dered by a lack of open datasets. Such datasets are essen-
tial for a methodical evaluation of different algorithms.
Benedek and Szirányi (2009) created a binary change
dataset with 13 aerial image pairs split into three regions
called the Air Change dataset. A dataset, called ONERA
Satellite Change Detection (OSCD) dataset, composed of
24 multispectral image pairs taken by the Sentinel-2 satel-
lites is presented in (Daudt et al., 2018b). Both of these
datasets allow for simple machine learning techniques to
be applied to the problem of change detection, but with
these small amounts of images overfitting becomes one
of the main concerns even with relatively simple models.
The Aerial Imagery Change Detection (AICD) dataset
contains synthetic aerial images with artificial changes
generated with a rendering engine (Bourdis et al., 2011).
These datasets do not contain semantic information about
the land cover of the images, and contain either low reso-
lution (OSCD, Air Change) or simulated (AICD) images.

For this reason, we have created the first large scale
dataset for semantic change detection, which we present
in this section. The High Resolution Semantic Change
Detection (HRSCD) dataset will be released to the sci-
entific community to be used as a benchmark for seman-
tic change detection algorithms and to open the doors to
the usage of state-of-the-art deep learning algorithms in
this context. The dataset contains not only information
about where changes have taken place, but also seman-
tic information about the imaged terrain in all images of
the dataset. Examples of image pairs, land cover maps
(LCM) and change maps taken from the dataset are de-
picted in Fig. 1.

3.1. Images

The dataset contains a total of 291 RGB image pairs
of 10000x10000 pixels. These are mosaics of aerial im-
ages taken by the French National Institute of Geograph-
ical and Forest Information (IGN). The image pairs con-
tain an earlier image acquired in 2005 or 2006, and a sec-
ond image acquired in 2012. They come from a database
named BD ORTHO which contains orthorectified aerial
images of several regions of France from different years
at a resolution of 50 cm per pixel. The 291 selected im-
age pairs are all the images in this database that satisfy the
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conditions for the labels, which will be described below.
The images cover a range of urban and countryside areas
around the French cities of Rennes and Caen.

The dataset contains more than 3000 times more anno-
tated pixel pairs than either OSCD or Air Change datasets.
Also, unlike these datasets, the labels contain informa-
tion about the types of change that have occurred. Fi-
nally, labels about the land cover of the images in the
dataset are also available. This is much more data than
was previously available in the context of change detec-
tion and it opens the doors for many new ideas to be
tested. The amount of labelled pixels and surface area
for land cover classification is also about 8 times larger in
the proposed HRSCD dataset than in the DeepGlobe Land
Cover Classification dataset (Demir et al., 2018), both of
the datasets containing images of the same spatial resolu-
tion (50 cm/px).

The BD ORTHO images provided by IGN are available
for free for research purposes, but not all images can be
redistributed by the users. That is the case for the im-
ages taken in 2005 and 2006. Nevertheless, we will make
available all the data for which we have the rights of re-
distribution and the rasters that we have generated for se-
mantic change detection and land cover mapping. The
dataset will also contain instructions for downloading the
remaining images that are necessary for using the dataset
directly from IGN’s website.

3.2. Labels
The labels in the dataset come from the European En-

vironment Agency’s (EEA) Copernicus Land Monitoring
Service - Urban Atlas project. It provides ”reliable, inter-
comparable, high-resolution land use maps” for func-
tional urban areas in Europe with more than 50000 in-
habitants. These maps were generated for the years of
2006 and 2012, and a third map is available containing
the changes that took place in that period. Only the im-
ages in the regions mapped in the Urban Atlas project and
with a maximum temporal distance of one year were kept
in the dataset.

The available land cover maps are divided in several
semantic classes, which are in turn organised in different
hierarchical levels. By grouping the labels at different hi-
erarchical levels it is possible to generate maps that are
more coarsely or finely divided. For example, grouping
the labels with the coarsest hierarchical level yields five

Table 1: Urban Atlas land cover mapping classes at hierarchical level L1
Code Class
0 No information
1 Artificial surfaces
2 Agricultural areas
3 Forests
4 Wetlands
5 Water

classes (plus the ”no information” class) shown in Table
1. This hierarchical level will henceforth be referred to as
L1.

These maps are openly available in vector form online.
We have used these vector maps and the georeferenced
BD ORTHO images to generate rasters of the vector maps
that are aligned with the rasters of the images. These
rasters allow us to have ground truth information about
each pixel in the dataset.

It is important to note that there are slight differences in
the semantic classes present in Urban Atlas 2006 and in
Urban Atlas 2012. These differences do not affect the L1
hierarchical grouping and therefore had no consequence
in the work presented later in this paper. It may neverthe-
less affect future works done with the data. We leave it up
to the users how to best interpret and deal with these dif-
ferences. More information will be provided in the dataset
files.

3.3. Dataset analysis

Despite its unprecedented size and qualities, we ac-
knowledge in this section the dataset’s limitations and
challenges. Nevertheless, we will show later in this pa-
per that despite these limitations, the dataset allows for
the boundaries of the state-of-the-art in semantic change
detection through machine learning to be pushed.

One issue is the accuracy of the labels contained in the
Urban Atlas vector maps with respect to the BD ORTHO
images. We do not have access to the images used to build
the Urban Atlas vector maps, nor to the exact dates of
their acquisitions, nor to the dates of acquisition of the
images in BD ORTHO. Hence, there are some discrepan-
cies between the information in the vector maps and in
the images. Furthermore, EEA only guarantees a mini-
mum label accuracy of 80-85% depending on the consid-
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(a) Image 1. (b) Image 2. (c) Inaccurate border.

(d) Image 1. (e) Image 2. (f) False negative.

(g) Image 1. (h) Image 2. (i) False positive.

Figure 2: Examples of: ((a)-(c)) overly large change markings, ((d)-(f))
failure to mark changes, ((g)-(i)) false positive.

ered class. Most of the available data is accurate, but it is
important to consider that the labels in the dataset are not
flawless. Examples of false negatives and false positives
can be see in Fig. 2 (d)-(f) and Fig. 2 (g)-(i), respectively.
It is also worth noting that the labels have been created
using previously known vector maps, mostly by labelling
correctly each of the known regions. This means a sin-
gle label was given to each region, and this led to inac-
curate borders in some cases. This can be clearly seen in
Fig. 2 (a)-(c).

One of the main challenges involved in using this
dataset for supervised learning is the extreme label im-
balance. As can be seen in Table 2, 99.232% of all pixels
are labelled as no change, and the largest class is from
agricultural areas to artificial surfaces (i.e. class 2 to class
1), which accounts for 0.653% of all pixels. These two
classes together account for 99.885% of all pixels, which
means all other change types combined account for only
0.115% of all pixels. Furthermore, many of the possible
types of change have no examples at all in any of the im-
ages of the dataset. It is of paramount importance when

Table 2: Change class imbalance at hierarchical level L1. Row num-
ber represents class in 2006, column number represents class in 2012.
Classes were defined in Table 1.

1 2 3 4 5
1 0% 0.011% 0% 0.001% 0.001%
2 0.653% 0% 0.001% 0% 0.077%
3 0.014% 0.002% 0% 0% 0%
4 0% 0% 0% 0% 0%
5 0.001% 0.004% 0% 0.004% 0%

No change 99.232%

using this dataset to take into account this imbalance. This
also means that using the overall accuracy as a perfor-
mance metric with this dataset is not a good choice, as it
virtually only reflects how many pixels of the no change
class have been classified correctly. Other metrics, such
as Cohen’s kappa coefficient or the Sørensen-Dice coeffi-
cient, must be used instead. This class imbalance is char-
acteristic of real world large scale data, where changes are
much less frequent than unchanged surfaces. Therefore,
this dataset provides a realistic evaluation tool for change
detection methods, unlike carefully selected image pairs
with large changed regions.

The problem of supervised learning using noisy labels
has already been studied and evidence suggests that su-
pervised learning with noisy labels is possible as long as
a dataset of a large enough size is used (Rolnick et al.,
2017). Other works attempt to explicitly deal with the
noisy labels present in the dataset and prioritise the cor-
rect labels during training (Maggiolo et al., 2018).

Finally, we acknowledge how challenging it is to use
hierarchical levels finer than L1 due to: 1) a massive in-
crease in the number of possible changes, and 2) the dif-
ference between similar classes becomes more abstract
and context based. For example, the difference between
the ”Discontinuous Medium Density Urban Fabric” and
the ”Discontinuous Low Density Urban Fabric” classes
defined in Urban Atlas depends not only in correctly iden-
tifying the surface at a given pixel (e.g. building or grass),
but also by understanding the surroundings of the pixel
and calculating the ratio between these two classes at a
given neighbourhood that is not clearly defined.
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4. Methodology

4.1. Binary change detection
We have already showed in a previous work the effi-

cacy of using three different architectures of fully con-
volutional neural networks for change detection (Daudt
et al., 2018a). Chen et al. (2018b) simultaneously pro-
posed a fully convolutional architecture for change de-
tection that is very similar to one of the three initially
proposed architectures. In both of these works, FCNN
architectures performed better than previous methods for
change detection.

Building on this previous work, we have modified the
FC-EF architecture proposed in Daudt et al. (2018a) to
use residual blocks, as proposed by He et al. (2016). The
resulting network is later referred to as FC-EF-Res, and
is depicted in Fig. 3. These residual blocks were used in
an encoder-decoder architecture with skip connections to
improve the spatial accuracy of the results (Ronneberger
et al., 2015). These residual blocks were chosen to fa-
cilitate the training of the network, which is especially
important for its deeper variations that will be discussed
later.
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Figure 3: FC-EF-Res architecture, used for tests with smaller datasets to
avoid overfitting. Using residual blocks improves network performance
and facilitates training.

When testing on the OSCD dataset (Section 5.1), the
size of the network has been kept approximately the same
as in Daudt et al. (2018a) to avoid overfitting. When us-
ing the proposed HRSCD dataset (Section 5.2), the larger
amount of annotated pixels allows us to use deeper and

more complex models. In that case, the number of encod-
ing levels and residual blocks per level has been increased,
but the idea behind the network is the same as of FC-EF-
Res.

4.2. Semantic change detection

As was mentioned earlier, the efficiency of the pro-
posed architecture for binary change detection and the
availability of the HRSCD dataset enable us to tackle the
problem of semantic change detection. This problem con-
sists of two separate but not independent parts. The first
task is analogue to binary change detection, i.e. we at-
tempt to determine whether a change has occurred at each
pixel in a co-registered multi-temporal image pair. The
second task is to differentiate between types of changes.
In our case, this consists of predicting the class of the pixel
in each of the two given images. The problem of semantic
change detection lies in the intersection between change
detection and land cover mapping.

Below we will describe four different intuitive strate-
gies to perform semantic change detection using deep
neural networks. Starting from the plain comparison of
land cover maps, we then develop more involved strate-
gies. These strategies vary in complexity and perfor-
mance, as will be discussed in Section 5.

4.2.1. Strategy 1: Direct comparison of LCMs
The problem of automatic land cover mapping is a well

studied problem. In particular, methods involving CNNs
have recently been proposed, yielding good performances
(Audebert et al., 2016). When the land cover information
is available, as it is the case in the HRSCD dataset, the
most intuitive method that can be proposed for semantic
change detection would be to train a land cover mapping
network and to compare the results for pixels in the image
pair (see Fig. 4(a)).

The advantage of this method is its simplicity. In many
cases we could assume changes occurred where the pre-
dicted class label differs between the two images, and the
type of change is given by the predicted labels at each
of the two acquisition moments. The weakness of this
method is that it heavily depends on the accuracy of the
predicted land cover maps. While modern FCNNs are
able to map areas to a good degree of accuracy, there are
still many wrongly predicted labels, especially around the
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(a) Strategy 1: semantic CD from land cover maps.

ΦEnc ΦDec

(b) Strategy 2: direct semantic CD.
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ΦDec,LCM

(c) Strategy 3: separate CD and LCM.

ΦEnc,LCM

ΦEnc,LCM ΦDec,LCM

ΦEnc,CD ΦDec,CD

ΦDec,LCM

(d) Strategy 4: integrated CD and LCM.

Figure 4: Schematics for all four proposed strategies for semantic change detection. Φ represents the network branch’s learnable parameters, ”Enc”
means encoder, ”Dec” means decoder, ”LCM” means land cover mapping, and ”CD” means change detection.

boundaries between regions of different classes. Further-
more, when comparing the results for two acquisitions the
prediction errors would accumulate. This means the ac-
curacy of this change detection algorithm would be lower
than the land cover mapping network, and would likely
predict changes in the borders between classes simply due
to the inaccuracy of the network.

4.2.2. Strategy 2: Direct semantic CD
A second intuitive approach is to treat each possible

type of change as a different and independent label, con-
sidering semantic change detection as a simple semantic
segmentation along the lines of what has been done to bi-
nary change detection in the past (Daudt et al., 2018a).

The weakness of this method is that the number of
change classes grows proportionately to the square of the
number of land cover classes that is considered. This,
combined with the class imbalance problem that was dis-
cussed earlier, proves to be a major challenge when train-
ing the network.

4.2.3. Strategy 3: Separate LCM and CD
Since it has been proven before that FCNNs are able

to perform both binary change detection and land cover
mapping, a third possible approach is to train two sepa-
rate networks that together perform semantic change de-
tection (see Fig. 4(c)). The first network performs binary
change detection on the image pair, while the second net-
work performs land cover mapping of each of the input
images. The two networks are trained separately since
they are independent.

In this strategy, the two input images produce three out-
puts: two land cover maps and a change map. At each
pixel, the presence of change is predicted by the change
map, and the type of change is defined by the classes pre-
dicted by the land cover maps at that location. This way
the number of predicted classes is reduced relative to the
previous strategy (i.e. the number of classes is no longer
proportional to the square of land cover classes) without
loss of flexibility. This helps with the class imbalance
problem. It also avoids the problem of predicting changes
at every pixel where the land cover maps differ, since the
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change detection problem is treated separately from land
cover mapping.

We argue that such network may be able to identify
changes of types it has not seen during training, as long
as it has seen the land cover classes during training. For
example, the network could in theory correctly classify
a change from agricultural area to wetland even if such
changes are not in the training set, as long as it has enough
examples of those classes to correctly classify them in the
land cover mapping branches. The combination of two
separate networks allows us to split the problem into two,
and optimise each part to maximise performance.

4.2.4. Strategy 4: Integrated LCM and CD
The last of the proposed approaches is an evolution of

the previous strategy of using two FCNNs for the tasks
of binary change detection and land cover mapping. We
propose to integrate the two FCNNs into a single multi-
task network (see Fig. 4(d) and Fig. 5) so that land cover
information can be used for change detection. The com-
bined network takes as input the two co-registered images
and outputs three maps: the binary change map and the
two land cover maps.

In the proposed architecture, information from the land
cover mapping branches of the network is passed to the
change detection branch of the network in the form of
difference skip connections, which was shown to be the
most effective form of skip connections for Siamese FC-
NNs (Daudt et al., 2018a). The weights of the two land
cover mapping branches are shared since they perform an
identical task, allowing us to significantly reduce the num-
ber of learned parameters.

This multipurpose network gives rise to a new issue
during the training phase. Given that the network outputs
three different image predictions, it is necessary to bal-
ance the loss functions from these results. Since two of
the outputs have exactly the same nature (the land cover
maps), it follows from the symmetry of these branches
that they can be combined into a single loss function by
simple addition. The question remains on how to balance
the binary change detection loss function and the land
cover mapping loss function to maximise performance.

We have proposed and tested two different strategies for
training the network. The first and more naive approach
to this problem is to minimise a loss function that is a
weighted combination of the two loss functions. This loss

function would have the form

Lλ(ΦEnc,CD,ΦDec,CD,ΦEnc,LCM,ΦDec,LCM)
=L(ΦEnc,CD,ΦDec,CD) + λL(ΦEnc,LCM,ΦDec,LCM)

(1)

where Φ represents the various network branch parame-
ters, and L is a pixel-wise loss function. In this work, the
pixel-wise cross entropy function was used as loss func-
tion as is traditional in semantic segmentation problems.
The problem then becomes the search for the value of λ
that leads to the best balance between the two loss terms.
This can be found through a grid search, but the test of
each value of λ is done by training the whole network
until convergence, which is a slow and costly procedure.
This will later be referred to as Strategy 4.1.

To reduce the aforementioned training burden, we pro-
pose a second approach to train the network that avoids
the need of setting the hyperparameter λ. We train the
network in two stages. First, we consider only the land
cover mapping loss

L1(ΦEnc,CD,ΦDec,CD,ΦEnc,LCM,ΦDec,LCM)
=L(ΦEnc,LCM,ΦDec,LCM)

(2)

and train only the land cover mapping branches of the net-
work, i.e. we do not train ΦEnc,CD or ΦDec,CD at this stage.
Since the change detection branch has no influence on the
land cover mapping branches, we can train these branches
to achieve the maximum possible land cover mapping per-
formance with the given architecture and data. Next, we
use a second loss function based only on the change de-
tection branch:

L2(ΦEnc,CD,ΦDec,CD,ΦEnc,LCM,ΦDec,LCM)
=L(ΦEnc,CD,ΦDec,CD)

(3)

while keeping the weights for the land cover mapping
ΦEnc,LCM and ΦEnc,LCM fixed. This way, the change de-
tection branch learns to use the predicted land cover in-
formation to help to detect changes without affecting land
cover mapping performance. This will later be referred to
as Strategy 4.2.

5. Results

5.1. Multispectral change detection
We first evaluate the performance of the proposed FC-

EF-Res network. As explained in Section 4.1, this net-
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Table 3: Summary of proposed change detection strategies.
Str. Description Training
1 Diff. of LCMs LCM supervision
2 Direct semantic CD Multiclass CD supervision
3 Separate CD and LCM Separate LCM and CD

4.1 Integrated CD and LCM Triple loss function
4.2 Integrated CD and LCM Sequential training
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Figure 5: Detailed schematics for the integrated change detection and land cover mapping network (Strategy 4). The encoder-decoder architecture
is the same that was used for all 4 strategies.

Table 4: Definitions of metrics used for evaluating results quantitatively.
Legend: TP - true positive, TN - true negative, FP - false positive, FN -
false negative, po - observed agreement between ground truth and pre-
dictions, pe - expected agreement between ground truth and predictions
given class distributions.

Tot. acc. (T P + T N)/(T P + T N + FP + FN)
Precision T P/(T P + FP)

Recall T P/(T P + FN)
Dice 2 · T P/(2 · T P + FP + FN)

Kappa (po − pe)/(1 − pe)

work is an evolution of the convolutional architecture FC-
EF proposed in Daudt et al. (2018a), to which residual
blocks have been added in place of traditional convolu-
tional layers.

The FC-EF-Res architecture was compared to the
previously proposed FCNN architectures on the OSCD
dataset for binary change detection, which contains lower-
resolution Sentinel-2 image pairs with 13 multispectral
bands. As expected, the residual extension of the FC-EF
architecture outperformed all previously proposed archi-

tectures. The difference was noted on both the RGB and
the multispectral cases. On the RGB case, the improve-
ment was of such magnitude that the change detection
performance on RGB images almost matched the perfor-
mance on multispectral images. The results can be seen
in Table 5. This corroborates the claims made by He et al.
(2016) that using residual blocks improves the training
performance of CNNs. For this reason, all networks that
are tested with the HRSCD dataset use residual modules.

5.2. Very high resolution semantic change detection

To test the methods proposed in Section 4.2 we split
the HRSCD images into two groups: 146 image pairs for
training and 145 image pairs for testing. By splitting the
train and test sets this way we can ensure that no pixel in
the test set has been seen during training. Class weights
were set inversely proportional to the number of training
examples to counterbalance the dataset’s class imbalance.
The results for each of the proposed strategies can be seen
in Table 6, and illustrative image results can be seen in
Fig. 6.
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Table 5: Change detection results of several methods on the OSCD dataset, for the RGB and multispectral (MS) cases. Results are in percent.
Data Network Prec. Recall Tot. acc. Dice

R
G

B

FC-EF 44.72 53.92 94.23 48.89
FC-Siam-conc 42.89 47.77 94.07 45.20
FC-Siam-diff 49.81 47.94 94.86 48.86
FC-EF-Res 52.27 68.24 95.34 59.20

M
S

FC-EF 64.42 50.97 96.05 56.91
FC-Siam-conc 42.39 65.15 93.68 51.36
FC-Siam-diff 57.84 57.99 95.68 57.92
FC-EF-Res 54.93 66.48 95.64 60.15

As is the case for most deep neural networks, the train-
ing times for the proposed methods are significantly larger
than the testing times. Once the network has been trained,
its fast inference speed allows it to process large amounts
of data efficiently. The proposed methods took 3-5 hours
of training time using a GeForce GTX 1080 Ti GPU with
11GB of memory. Inference times of the proposed meth-
ods were under 0.04 s for 512x512 image pairs using the
same hardware.

In Strategy 1, which naively attempts to predict change
maps from land cover maps, we can see that the network
succeeds in accurately classifying the imaged terrains, but
this is not enough to predict accurate change maps. The
change detection kappa coefficient for this strategy is very
low, which means this method is marginally better than
chance for change detection.

The results for Strategy 2 are a fair improvement over
those of Strategy 1. The change detection Dice coefficient
and the land cover mapping results for this method are not
reported due to its nature, since Dice coefficients can only
be calculated for binary classification problems, and this
strategy bypasses the land cover mapping steps. Despite
achieving a higher kappa coefficient, the network learned
to always predict the same type of change where changes
occurred. This means that despite using appropriately
tuned class weights, the learning process did not succeed
in overcoming the extreme class imbalance present in the
dataset. In other words, the network learned to detect
changes but no semantic information was present in the
results.

For Strategy 3, the land cover mapping network that
was used was the same as that of Strategy 1, which
achieved good performance. A binary change detection

network was trained to be used for masking the land cover
maps. The performance of this network was better than
that of Strategy 1 but worse than that of Strategy 2. The
results show that this is due to an overestimation of the
change class. This shows once again how challenging
dealing with the extreme class imbalance is.

The results of Strategy 4 are the best ones overall. The
simultaneous training strategy (Str. 4.1) achieves excel-
lent performance in both land cover mapping and change
detection, proving the viability of this strategy. The re-
ported results were obtained with λ = 0.05, which is
a value that prioritises the training of the change detec-
tion branch of the network. We then see that the same
network trained with sequential training (Str. 4.2) ob-
tained even better results in both change detection and
land cover mapping without needing to search for an ad-
equate parameter λ. This, according to our results, is the
best semantic change detection method. By comparing
the results for Strategies 3 and 4 we can see the improve-
ments that result directly from integrating the change de-
tection and land cover mapping branches of the networks.
In other words, Strategy 4.2 allows us to maximise the
change detection performance without reducing the land
cover mapping accuracy.

The best performing land cover mapping method was
the single purpose network that was trained and used for
Strategies 1 and 3. The fact that it achieves a better kappa
coefficient than Strategy 4.2 is merely due to the random-
ness of the initialisation and training of the network, as the
land cover mapping branches of Strategy 4.2 are identical
to those used in Strategies 1 and 3. This also explains why
their results are so similar. By comparing these results to
those of Strategy 4.1 it emphasises once again the fact that
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(a) Image 1 (b) Image 2 (c) CD - GT (d) Str. 1 (e) Str. 2 (f) Str. 3 (g) Str. 4.1 (h) Str. 4.2

(i) LCM 1 - GT (j) Str. 1/3 (k) Str. 4.1 (l) Str. 4.2 (m) LCM 2 - GT (n) Str. 1/3 (o) Str. 4.1 (p) Str. 4.2

Figure 6: Illustrative images of the obtained results: (a)-(b) multitemporal image pair; (c) ground truth change detection map; (d)-(h) predicted
change maps; (i)-(l) ground truth and predicted land cover maps for image 1; (m)-(p) ground truth and predicted land cover maps for image 2.

attempting to train the network shown in Fig. 5 all at once
damages performance in both change detection and land
cover mapping.

In Fig. 6 we can see the results of the proposed net-
works on a pair of images from the dataset. Note the
amount of false detections by Strategy 1 due to the lack of
accuracy of prediction of the land cover maps on region
boundaries. The second row shows the predicted classes
at each pixel for each image. The semantic information
about the changes comes from comparing these two pre-
dictions. For example, comparing the images in Fig. 6
(k) and (o) we can say that the changes predicted in (g)
were from the ”Agricultural areas” class to the ”Artificial
surfaces” class.

In our tests we observed that the trained networks
had the tendency to overestimate the size of the detected
changes. It is likely that this happens simply due to the
nature of the data that was used for training. The labels in
the HRSCD dataset, which come from Urban Atlas, mark
as a change the whole terrain where a change of class hap-
pened. This means that not only the pixels associated with
a given change are marked as change, but the neighbour-
ing pixels that are in the same parcel are also marked as
change. This leads to the networks learning to overesti-
mate the boundary of the detected changes in an attempt
to also correctly classify the pixels surrounding the de-
tected change. This once again reflects the challenges of
the HRSCD dataset.

The performance of two state-of-the-art CD methods
are also shown in Table 6. The first method, proposed

by El Amin et al. (2016), is based on transfer learning
and uses features from a pretrained VGG-19 model (Si-
monyan and Zisserman, 2015) to create pixel descriptors,
whose Euclidean distance is used to build a difference im-
age. The original method uses Otsu thresholding to per-
form CD, but we have found that such approach leads
to overestimating changes. We therefore tuned a fixed
threshold (T = 2300) using a few example images and
used that value to test the algorithm on all test data, which
significantly increased its performance by reducing false
positives. Also included are the results by the method pro-
posed by Celik (2009), which performs principal compo-
nent analysis (PCA) and k-means clustering on the pixels
to detect changes in an unsupervised manner. Both algo-
rithms perform worse than the proposed method on the
HRSCD dataset.

To evaluate the size of the dataset, we have also tested
Strategy 4.2 using reduced amounts of data for training
the network. The kappa coefficient, in percent, obtained
by using the whole training dataset is 25.49. This value is
reduced to 23.34 by using half the training data, and is fur-
ther reduced to 22.18 by using a quarter of the data. This
shows that, as expected, using more data for training the
network leads to better results. Nonetheless, it also shows
that the dataset is large enough to allow for even more
complex and data hungry methods to be trained using the
HRSCD dataset in the future.

Finally, it is important to note that the label imperfec-
tions in the HRSCD dataset occur not only in the train-
ing images, but also in the test images. This means that

12



Table 6: Change detection (CD) and land cover mapping (LCM) results of all four of the proposed strategies on the HRSCD dataset. Comparison
with the methods proposed by El Amin et al. (2016) (Otsu [CNNF-O] and fixed [CNNF-F] thresholding) and by Celik (2009) ([PCA+KM]) are
included. Results are in percent.

CD LCM
Kappa Dice Tot. acc. Kappa Tot. acc.

Str. 1 3.99 5.56 86.07 71.92 87.22
Str. 2 21.54 - 98.30 - -
Str. 3 12.48 13.79 94.72 71.92 87.22

Str. 4.1 19.13 20.23 96.87 67.25 85.74
Str. 4.2 25.49 26.33 98.19 71.81 89.01
CNNF-O 0.74 2.43 64.54 - -
CNNF-F 3.28 4.84 88.66 - -

PCA+KM 0.67 2.31 83.95 - -

Table 7: Change detection results on Eppalock lake test images. Results
are in percent.

ReCNN-LSTM EF

B
in

ar
y

C
D Tot. acc. 98.67 99.35

Kappa 97.28 98.67
No change 98.83 99.47

Change 98.46 99.19

Se
m

an
tic

C
D

Tot. acc. 98.70 98.48
Kappa 97.52 97.10

No change 98.49 97.73
City exp. 84.72 100

Soil change 100 86.07
Water change 99.25 99.93

the performance of the proposed methods may be even
higher than the numbers suggest, since some of the dis-
agreements between prediction and ground truth data are
actually due to errors in the ground truth data.

5.3. Eppalock lake images

We compare our method in this section to the one pro-
posed by Mou et al. (2019), which used recurrent convolu-
tional neural networks for change detection. In that work,
pixels were randomly split into train and test sets. We be-
lieve that this split leads to overfitting since neighbouring
pixels contain redundant information. This is especially
true when using CNNs, which take as inputs patches cen-
tred on the considered pixels, meaning the network sees
the same information for training and testing. It is likely

that overfitting takes place, since an accuracy of over 98%
is achieved by using only 1000 labelled pixels to train a
network with 67500 parameters (for their long short-term
memory (LSTM) architecture, which performed the best).
The data consists of a single image pair of 631x602 pix-
els only partially annotated, with a total of 8895 annotated
pixels which is much less data than what is required for
deep learning methods. The HRSCD dataset presented in
Section 3 contains over 3 million times more labelled pix-
els than the Eppalock lake image pair. Despite the flaws
of this testing scheme, we have followed it to achieve a
fair comparison between the methods.

Using the CNN architecture labelled EF by Daudt
et al. (2018b), we have achieved excellent numeric results
which discouraged the usage of more complex methods
which would lead to even more extreme overfitting. The
results achieved by the EF network were better for binary
change detection and equivalent for semantic change de-
tection compared to ReCNN-LSTM. The results can be
seen in Table 7.

6. Conclusion

The first major contribution presented in this paper is
the first large scale very high resolution semantic change
detection dataset that will be released to the scientific
community. This dataset contains 291 pairs of aerial im-
ages, together with aligned rasters for change maps and
land cover maps. This dataset allows for the first time for
deep learning methods to be used in this context in a fully
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supervised manner with minimal concern for overfitting.
We have then proposed different methods for using deep
FCNNs for semantic change detection. The best among
the proposed methods is an integrated network that per-
forms land cover mapping and change detection simulta-
neously, using information from the land cover mapping
branches to help with change detection. We also proposed
a sequential training scheme for this network that avoids
the need of tuning a hyperparameter, which circumvents
a costly grid search.

The automatic methods used to generate the HRSCD
dataset resulted in noisy labels for both training and test-
ing, and how to deal with this problem is still an open
question. It would also be interesting to explore ways to
explicitly deal with parallax problems which are present
in VHR images which sometimes lead to false positives
due to the different points of view and the geometry of the
scene.
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