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Introduction

In this paper, we consider a Supply Chain Network Design (SCND) problem with fourlayers and multiple commodities. This SCND model considers the locations of facilities at the two intermediate layers: production facilities and distribution centers. It also determines the choice between several technology levels at any facility and transportation modes on every arc of the network.

Technology levels and transportation modes highly influence the level of CO 2 emissions. The use of "green" technology may reduce the amount of CO 2 emissions through supply chains. Green technology might be achieved by deploying technology principles such as renewable energy, renewable raw materials, life-cycle assessment, biotechnology approach, 10 and so forth [START_REF] Doble | Chapter 10 -conclusions and future trends[END_REF]. For example, within the biomass supply chain, fast pyrolysis followed by hydroprocessing as the biomass conversion technology is more effective in reducing GHG emissions over gasification followed by Fischer-Tropsch synthesis [START_REF] Gao | Modeling framework and computational algorithm for hedging against uncertainty in sustainable supply chain design using functional-unit-based life cycle optimization[END_REF].

Supply chain network design has mostly incorporated four policies to integrate environmental issues: carbon cap, carbon offset, cap-and-trade and carbon tax. All four policies succeed to achieve substantial emission reductions with a slight increase in total cost; mostly by configuring the supply chain to use lower-emitting resources [START_REF] Waltho | Green supply chain network design: A review focused on policy adoption and emission quantification[END_REF]. However, such compromise solutions can be easily missed using traditional single objective methods [START_REF] Harris | A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling[END_REF].

Therefore, we consider a mixed integer linear program (MILP) with two objectives. The first objective function is the minimization of logistics costs expressed as the sum of facility fixed costs, production costs, and transportation costs. The second objective is the minimization of CO 2 emissions arising from production and logistics operations.

Although supply chain network design is intrinsically a multi-objective problem, the number of multi-objective SCND related publications has grown up quite lately. They represent only 9% of the papers cited in the review by [START_REF] Melo | Facility location and supply chain management -a review[END_REF] about facility location and supply chain management. In their survey on multiple criteria facility location problems, Zanjirani Farahani et al. (2010), studied 730 source titles. Since then, the field has known a tremendous growth, mainly due to the huge literature in sustainable supply chain [START_REF] Eskandarpour | Sustainable supply chain network design: an optimization-oriented review[END_REF]. Customer service and risk related objectives are also more and more studied.

The literature on multi-objective optimization often distinguishes between single-solution methods and methods providing decision makers with a set of mutually non-dominated solutions.

Single-solution methods convert multi-objective formulations into single objective formulations. In this category, models with weighted sum of objectives can be solved by any classical solution methods, e.g. Tabu Search [START_REF] Cardona-Valdés | Metaheuristic procedure for a bi-objective supply chain design problem with uncertainty[END_REF][START_REF] Caballero | Solving a multiobjective location routing problem with a metaheuristic based on tabu search. application to a real case in Andalusia[END_REF], and Variable Neighborhood Search [START_REF] Eskandarpour | A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem[END_REF][START_REF] Eskandarpour | Variable neighborhood search for the bi-objective post-sales network design problem: A fitness landscape analysis approach[END_REF].

Single-solution methods can be used to find a set of mutually non-dominated solutions, at the price of being run multiple times with different parameters. This can become a computational burden for large instances. Therefore, developing heuristic methods is inevitable to find trade-off solutions (Zanjirani Farahani et al., 2010). Population based methods offer a choice between several trade-off solutions within a single run, providing decision makers with sufficient options necessary to balance all objectives [START_REF] Guillén-Gosálbez | A novel milp-based objective reduction method for multi-objective optimization: Application to environmental problems[END_REF][START_REF] Harris | A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling[END_REF]. Table 1 shows examples of recent population based method references.

Meta-heuristic Reference papers In [START_REF] Tricoire | Multi-directional local search[END_REF], MDLS has been applied to several multi-objective problems such as the multi-objective multi-dimensional knapsack problem, the bi-objective set packing problem and the bi-objective orienteering problem. It has been later applied to intermodal train loading planning [START_REF] Heggen | A multi-objective approach for intermodal train load planning[END_REF] and several variants of the travelling salesman problem [START_REF] Defryn | Multi-objective optimisation models for the travelling salesman problem with horizontal cooperation[END_REF] and vehicle routing problems [START_REF] Kovacs | The multi-objective generalized consistent vehicle routing problem[END_REF][START_REF] Molenbruch | Multi-directional local search for a bi-objective dial-a-ride problem in patient transportation[END_REF][START_REF] Lehuédé | A lexicographic minimax approach to the vehicle routing problem with route balancing[END_REF]. A variant of the original MDLS, called Improved Multi-Directional Local Search (IMDLS) was proposed by [START_REF] Lian | An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem[END_REF]. IMDLS limits the size of the non-dominated set. This size limitation allows the algorithm to perform parallel local searches from each non-dominated solution without any memory issue. An enhanced version of the IMDLS algorithm is proposed in [START_REF] Eskandarpour | Enhanced multidirectional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges[END_REF].

To the best of our knowledge, MDLS has never been used for solving facility location and more generally SCND problems. The main contributions of this paper are therefore: (i) to propose a bi-objective extension of the model proposed in [START_REF] Eskandarpour | A large neighborhood search heuristic for supply chain network design[END_REF], with environmental assessment and technology levels (Section 2) (ii) to solve this problem with an MDLS approach limiting the number of trade-off solutions as proposed by [START_REF] Lian | An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem[END_REF] (Section 3) (iii) to compare the results of the MDLS algorithm with an ε-constraint method (Section 4) and (iv) to propose managerial insights based on the analysis of solutions to our model (Section 5).

Problem definition and modeling

Problem settings

We consider a bi-objective SCND model based on a logistics network with four layers: As products move through the supply chain, their carbon footprint increases. Raw material sourcing, manufacturing, handling, transportation, and storage contribute to the emissions a product directly or indirectly is responsible for [START_REF] Waltho | Green supply chain network design: A review focused on policy adoption and emission quantification[END_REF]. In particular, when it comes to investigate the source of CO 2 emissions within supply chains, warehousing operations and logistics centers have received little attention [START_REF] Freis | Low-carbon warehousing: Examining impacts of building and intra-logistics design options on energy demand and the co2 emissions of logistics centers[END_REF]. Warehouses have significant amount of energy consumption due to lighting, heating, cooling and air conditioning as well as material handling equipment [START_REF] Ries | Environmental impact of warehousing: a scenario analysis for the united states[END_REF]. Environmental assessment becomes particularly crucial in automated warehouses [START_REF] Tappia | Incorporating the environmental dimension in the assessment of automated warehouses[END_REF]."

To this end, the environmental impact is assessed by the quantity of CO 2 emissions in the whole network, arising from two main sources: (i) product processing, for which the amount of emissions depends on the technology installed and is assumed proportional to the amount of products processed by the facility (ii) product transportation, for which the emissions are based on the distance travelled and the type of transportation mode used. Although far from being exhaustive, this assessment is considered relevant since transport and industrial facilities account for 22% and 20% of global CO 2 emissions, respectively (OECD/IEA, 2012).

Moreover, it can be easily measured and integrated into mathematical models, which can explain its large use in academic papers [START_REF] Wang | A multi-objective optimization for green supply chain network design[END_REF].

We assume that a restricted list of suitable transportation modes has been a priori iden-tified for each pair of nodes, with respect to criteria such as availability and safety, shipping costs, CO 2 emissions, shipment capacities, speed and frequency. Hence, for each arc, one or several transportation modes are available, such as road, rail, inland navigation or air transport. At the strategic level, the cost and emissions of most transportation modes are assumed linear with respect to the quantity carried. Some transportation modes incur a fixed charge.

With respect to the above-mentioned description, the SCND model proposed in this paper aims at determining the number, location, and technology level at plants and DCs, the suitable transportation modes, and the product flows between facilities. The goal is to minimize two conflicting objectives: the total cost and the environmental impact expressed by amount of CO 2 emissions. In the following, we present the mathematical formulation of this problem, as extended from [START_REF] Eskandarpour | A large neighborhood search heuristic for supply chain network design[END_REF] including CO 2 emissions and technology levels.

Data, sets, parameters and variables

The sets, parameters and decision variables used in the mathematical model are given in Tables 2, 3 and 4 respectively. The SCND problem is defined on a directed graph ψ = (V, A)

where V = I ∪J ∪K ∪L and the set A of arcs defines all possible links between two successive layers.

Mathematical formulation

The economic objective (1) encompasses all fixed and variable costs in the network. The first term is the sum of all opening fixed costs. The second and third terms correspond to processing costs. The fourth term represents the fixed costs of using each transportation mode between each pair of nodes. The last term refers to the variable transportation cost between each pair of nodes.

Set

Description

I suppliers J candidate plants K candidate DCs L customers J o ⊂ J open (selected) plants K o ⊂ K open (selected) DCs P products M transportation modes T technologies Table 2: Data sets . Parameter Description d p l demand of customer l ∈ L for product p ∈ P c t j fixed cost of opening a facility j ∈ J ∪ K using technology t ∈ T a p i unit processing cost of product p ∈ P at supplier i ∈ I e pt i unit processing cost of product p ∈ P at i ∈ J ∪ K with technology t ∈ T cap i capacity of facility i ∈ I ∪ J ∪ K g m ij fixed cost of using transportation mode m ∈ M along arc (i, j) ∈ A v mp ij variable transportation cost of a unit of product p ∈ P on arc (i, j) ∈ A by mode m ∈ M V m ij minimum threshold volume for using transportation mode m ∈ M along arc (i, j) ∈ A V m ij capacity of transportation mode m ∈ M along arc (i, j) ∈ A b p i
unitary CO 2 emissions at supplier i ∈ I for each product p ∈ P q pt i CO 2 emissions caused by the manufacturing or warehousing of one unit product p ∈ P at j ∈ J ∪ K with technology t ∈ T r mp ij CO 2 emissions caused by the transportation of one unit of product p ∈ P along arc (i, j) ∈ A by mode m ∈ M 

a p i x mp ij + i∈J∪K t∈T p∈P e pt i h pt i + (i,j)∈A m∈M g m ij u m ij + (i,j)∈A m∈M p∈P v mp ij x mp ij . (1) 
The environmental objective (2) consists of three terms representing the CO 2 emissions due to purchasing and supplying of products from suppliers to plants, the CO 2 emissions at plants and DC, and the CO 2 emissions arising from transportation modes, respectively.

min z 2 = i∈I j∈J m∈M p∈P b p i x mp ij + i∈J∪K t∈T p∈P q pt i h pt i + (i,j)∈A m∈M p∈P r mp ij x mp ij . (2) 
Constraints (3) are the flow conservation constraints through the network.

135 i∈V m∈M

x mp ij = k∈V m∈M x mp jk ∀j ∈ J ∪ K, p ∈ P. (3) 
Constraints ( 4) and ( 5) calculate the amount of product entering in each facility.

t∈T

h tp j = i∈I m∈M x mp ij ∀j ∈ J, p ∈ P (4) t∈T h tp k = j∈J m∈M x mp jk ∀k ∈ K, p ∈ P. (5) 
Constraints ( 6) ensure the satisfaction of customers demands.

k∈K m∈M

x mp kl ≥ d p l ∀l ∈ L, p ∈ P. (6) 
Constraints ( 7) and ( 8) force the model to satisfy capacity constraint at suppliers, plants and DCs respectively. In addition, constraints (8) state that the products can be shipped only to open facilities.

j∈J m∈M p∈P

x mp ij ≤ cap i ∀i ∈ I (7) p∈P h tp i ≤ cap i y t i ∀j ∈ J ∪ K, t ∈ T (8)
Constraints ( 9) ensure that at most one technology level is selected for each facility.

140 t∈T y t j ≤ 1 ∀j ∈ J ∪ K. (9) 
Constraints ( 10) ensure that at most one transportation mode is selected between two connected nodes. Constraints ( 11) -( 12) guarantee that the volume limitation of each given mode is satisfied. 

m∈M u m ij ≤ 1 ∀(i, j) ∈ A (10) p∈P x mp ij ≤ V m ij u m ij ∀(i, j) ∈ A, m ∈ M (11) p∈P x mp ij ≥ V m ij u m ij ∀(i, j) ∈ A, m ∈ M. ( 12 
K min ≤ k∈K t∈T y t k ≤ K max . (14) 
Constraints ( 15) -( 18) state binary and non-negativity restrictions on decision variables.

y t j ∈ {0, 1} ∀j ∈ J ∪ K, t ∈ T (15) u m ij = {0, 1} ∀(i, j) ∈ A, m ∈ M (16) x mp ij ≥ 0 ∀(i, j) ∈ A, p ∈ P, m ∈ M (17) h pt i ≥ 0 ∀i ∈ J ∪ K, p ∈ P, t ∈ T. ( 18 
)

Multi Directional Local Search (MDLS)

In this section, we introduce the MDLS metaheuristic for solving the bi-objective SCND model ( 1)-( 18). Section 3.1 presents the main scheme of our implementation of the MDLS algorithm. The local search algorithm used within the MDLS framework is presented in Section 3.2. Subsequent sections detail the key steps of this algorithm. Finally, following the ideas of [START_REF] Lian | An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem[END_REF], Section 3.5 introduces a refinement of MDLS that restricts the number of solutions in the non-dominated set and intensifies the search around the least crowded areas.

The Multi-Directional Local Search algorithm for bi-objective SCND

The Algorithm 1 describes our implementation of the MDLS framework.

Algorithm 1 The MDLS algorithm for bi-objective SCND 1: Initialization of the non-dominated set: P ← P 0 2: while the termination criterion is not satisfied do 3:

P ← P 4:
for every solution p ∈ P do 5:

for Objective o = 1 → 2 do 6:

p o = singleObjectiveLocalSearch(p)

7:

P ← P ∪ {p o } 8:
end for 9:

end for 10:

P ← set of non-dominated solutions in P 11: end while 12: Post-optimization: P * ← Optimize product flows(P) 13: return P *

The algorithm is initialized with an initial non-dominated set (see section 3.3). At every iteration, all solutions of the current non-dominated set are modified by running independent local searches (see section 3.2) with respect to each objective (cost and CO 2 emissions). In original MDLS developed by [START_REF] Tricoire | Multi-directional local search[END_REF], the local search is applied only to one randomly selected solution. Applying the LNS on all solutions p ∈ P in both directions yields a new set P of solutions. Since P may contain dominated solutions, the non-dominated set P at next iteration is built by removing all dominated solutions in P (line 10). In line 12, a post-optimization step slightly improves the value of all continuous variables (see section 3.4).

Single-objective local search

The local search method used in Line 6 of Algorithm 1 is the Large Neighborhood Search (LNS) metaheuristic [START_REF] Pisinger | Large neighborhood search[END_REF]. The principle of the LNS is to iteratively destroy and repair the current solution in order to progressively improve it. A destroy method destructs part of the current solution while a repair method rebuilds the destroyed solution so that a new feasible solution is found [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF]. Problem specific destroy and repair operators (methods) have to be designed in order to efficiently solve the optimization problem considered. In this paper, we reuse the Large Neighborhood Search algorithm extensively described in [START_REF] Eskandarpour | A large neighborhood search heuristic for supply chain network design[END_REF]. In practice, any other single-objective local search method can be used instead. This LNS algorithm sets facility location decisions associated with plants and DCs. Transportation modes and product flow decisions are determined by a greedy heuristic consisting of assigning product flows to the nearest facility, via the cheapest transportation mode. The LNS algorithm embeds 6 destroy operators, 9 repair operators, and 2 combined (destroy + repair) operators. The determination of technology levels uses a biased roulette wheel giving much higher probability to the technologies with lower fixed costs (resp. CO 2 emissions). This approach helps diversify the search.

Initial non-dominated set

The initial non-dominated set P 0 must contain mutually non-dominated solutions that preferably represents good diversity of solutions with respect with both objectives. This diversity will help MDLS explore various areas of the solution space. Let nj = j∈J t∈T y t j and nk = k∈K t∈T y t k represent the number of production facilities and DCs in a solution, respectively. For each possible value of the pair (nj, nk) we seek two solutions: one minimizing costs and the other one minimizing CO 2 emissions. To do so, we used a simplified version of the LNS algorithm described in Section . The following simplifications have been considered: (i) only two destroy operators and one repair operator are used, (ii) when considering cost (resp. CO 2 emissions) objective, the technology level with the lower fixed cost (resp. lower emission) is set at all selected facilities, (iii) this simplified version is run for only 100 iterations. P 0 is built from the merger of by merging solutions obtained with all possible values of the pair (nj, nk) and removing dominated solutions.

Post-optimization of product flows

The local search algorithm sets transportation modes and product flows with by a greedy heuristic. The goal of this post-optimization is to slightly improve the value of the corresponding variables, by using a linear programming solver instead of the greedy heuristic. This post-optimization might reduce the number of non-dominated solutions since neighboring solutions can merge. This is illustrated in Figure 1. Figure 1 

Improved Multi Directional Local Search (IMDLS)

A new idea introduced by Lian et al. ( 2016) is to limit the size of the non-dominated set to a predefined number, hereby denoted by P max . In order to select the P max active solutions, they measure crowding distance of each solution of the non-dominated set. The crowding distance of a solution measures the density of solutions around it ; higher values of crowding distance correspond to isolated solutions. In a bi-objective context, the crowding distance of a particular solution is simply obtained by calculating the average distances between this solution and its two neighboring solutions along each of the objectives in the non-dominated set ( i.e. the solutions that are just better than and just worse than it for both of the objectives) [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. This calculation takes place at every iteration of the main loop in Algorithm 1. Then, solutions are sorted in non-increasing order of their crowding distances and the first P max solutions only are conserved. Note that the crowding distance of the two extremal solutions in the non-dominated set are artificially set to +∞, so that they are kept in any case.

We implemented the IMLDS algorithm and added an intensification step. In IMDLS, local search is applied on each solution of the non-dominated set. Exactly one local search is performed from each non-dominated solution. [START_REF] Caballero | Solving a multiobjective location routing problem with a metaheuristic based on tabu search. application to a real case in Andalusia[END_REF] formulated the intuitive idea that there is always a possibility that another non-dominated solution is still to be discovered around a non-dominated solution. The intensification process is based on the assumption that these "still to be discovered non-dominated solutions" are more likely to be found near the least crowded areas of the set P. Hence, a small subset of τ < P max solutions with highest crowding distances is selected. From these points, we perform several local searches (instead of one) and consider all solutions generated. This is illustrated by Example 1. Note that this intensification step makes sense only if the local search contains some stochastic components, so that distinct solutions are returned by successive calls. 

Computational experiments

We evaluate our MDLS implementation through a comparison with the results obtained with the classical ε-constraint method (denoted thereafter by EC) and with the IMDLS framework proposed by [START_REF] Lian | An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem[END_REF]. All algorithms were coded in C++ and run on a computer with four Intel 3.0 GHz CPUs and 8 GB of RAM.

The numerical experiments rely on a set of generated instances that are detailed in Section 4.1. Then, Section 4.2 briefly recalls the principle of the ε-constraint method and lists the performance measures used to assess the quality of the MDLS. The parameter settings are given in Section 4.3. In Section 4.4, the contribution of the main components of the proposed MDLS is evaluated and its results are compared with those of the IMDLS. Lastly, Section 4.5 compares the non-dominated sets obtained with the MDLS and those provided by the EC.

Test instances

Our experiments are based on the 15 instances extensively described in Eskandarpour 5 displays the instances' main features.

In addition, the number |P | of products has been set to 5 and 2 available technology levels are considered at each facility.

CO 2 emissions originate from operations that take place at facilities and during transportation. Subsections 4.1.1 and 4.1.2 detail both cases.

Cost and emissions related to facilities

Technology levels installed in facilities influences the amount of CO 2 emissions as well as fixed costs and processing costs. We considered two potential technologies levels l 1 (lowest) and l 2 (highest) at each facility. For technology level l 1 , the processing CO 2 emissions at suppliers and facilities are modeled with a conversion factor ϕ randomly generated in the interval [2.5, 4.5] (unit: kg CO 2 equiv./ton of product) for each type of product. As indicated by Table 6, we assume that the highest technology results in higher fixed cost but lower processing cost and CO 2 emissions. We assumed three transportation modes in the network. Each mode includes fixed cost and variable costs as well as CO 2 emissions. Without loss of generality, mode 1 could be an internal fleet of trucks. Fixed cost of mode 1 was assumed to be 10000. Mode 2 could represent an outsourced fleet of trucks (3PL) for the delivery of goods to customers. Variable cost of mode 2 was defined as 20% more expensive than that of mode 1. On the other hand, 3PL companies have the ability to pool shipments from several companies, so that they generally operate with higher truck fill rate and less empty truck repositionning, which improves their environmental efficiency. Mode 3 could correspond to inland navigation or rail transportation, for which fixed cost is assumed to be null and variable cost 80% of that of mode 1.

In the context of supply chain network design, we consider quantities carried over long time periods (e.g. one year), by a fleet of vehicles. The loads carried vary from one trip to another, as well as the drivers and the traffic conditions. Thus, strategic models use averaged values of speed, load and traffic conditions for each trip. Under this assumption, transportation costs and emissions are considered roughly proportional to the distance traveled. We use conversion factors for half and full truckload, provided by the French Environment and Energy Management Agency (ADEME). According to Tables 32 and35 by ADEME (2010), we consider conversion factors of 0.065 and 0.055 kg per km.ton for full and half truckload respectively, as well as 0.006 kg per km.ton mode 3. Finally, overall emissions on each arc are calculated by multiplying the arc length by the conversion factor and the amount of products shipped.1 . 4.2. The ε-constraint method and performance measures 4.2.1. Results with the ε-constraint method (EC)

The main principle of EC is to convert a bi-objective model with two objectives z 1 and z 2 to a model with single objective z 1 and the constraint z 2 ≤ ε. Each value of the parameter ε gives rise to a distinct MILP, which can be solved by any MILP solver or solution method.

We used IBM Ilog Cplex 12.6 concert technology (standard tuning) with a time limit of 3 hours for each value of ε.

In our experiments, the value of ε varies between the minimum and maximal levels of the environmental objective found with the single objective model. This interval is decomposed into evenly spaced intermediate values of epsilon (see [START_REF] Demir | The bi-objective Pollution-Routing Problem[END_REF]; [START_REF] Devika | Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques[END_REF]; [START_REF] Du | A bi-objective reverse logistics network analysis for post-sale service[END_REF]. In total, 10 values of epsilon were generated.

After solving the problem for each value of ε, the dominated solutions are filtered. For small instances, we obtained optimal solutions for each of the 10 MILPs associated with a particular value of ε. For larger instances, we obtain an approximation of these optimal solutions.

Table 7 displays the results obtained for all instances. Column 2 shows the size of the non-dominated set for each test instance. Column 3 presents the total run time (in seconds), i.e the sum of run times for the 10 MILPs solved. Column 4 shows the number of MILPs which could not be solved to optimality after 3h. The average optimality gap between the best solution found and the lower bound is reported in column 5. Table 7 shows the practical limits of the MILP solver. Small instances can be solved to optimality, at the price of high computational time. Solving realistic size instances requires using heuristic or meta-heuristic algorithms.

Performance measures

In this section, we compare the quality of the solutions obtained with MDLS with those obtained by EC. We used three classic performance measures: the hypervolume, the unary indicator and the ratio of Pareto optimal solutions.

Each measure partially reflects the performance of non-dominated set. Since all measures have some drawbacks, using several measures at the same time can help fairly comparing several fronts [START_REF] Tricoire | Multi-directional local search[END_REF].

• The hypervolume measure H [START_REF] Zitzler | Performance assessment 605 of multiobjective optimizers: an analysis and review[END_REF] represents the surface covered by a set of non-dominated solutions with respect to a reference point (here the Nadir Point).

Thus, larger hypervolume measure indicates better quality of the non-dominated set.

• The unary indicator [START_REF] Zitzler | Performance assessment 605 of multiobjective optimizers: an analysis and review[END_REF] is defined as the smallest multiplicative coefficient to apply to an approximate set so as to completely dominate the reference set. It smallest value is 1 and smaller values are better.

• The ratio of Pareto optimal solutions (R) [START_REF] Altiparmak | A genetic algorithm approach for multi-objective optimization of supply chain networks[END_REF]: given solutions sets S 1 and S 2 obtained by two methods, this ratio shows the percentage of solutions from set S 1 not dominated by any member of set S 1 ∪ S 2 . The higher this ratio is, the better the solution set.

Parameter Settings

The parameters of MDLS have been determined based on preliminary computational experiments, with the goal of keeping good trade-off between the solution quality and computational time. The MDLS algorithm is stopped after 15000 iterations. The value of parameter τ has been set to 2 and local searched are applied 5 times on each of the τ solutions. The maximum size of the non-dominated set has been set to P max = 10.

Evaluating components of Algorithm 1

Table 8 shows the contribution of three important components of Algorithm 1: initialization (line 1), the main MDLS loop (lines 2-1) and post-optimization (line 12).

340 The One main difference between MDLS proposed in this study and in [START_REF] Lian | An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem[END_REF] 350 with the original one in Tricoire ( 2012) is to provide a non-dominated set with a small set of solutions. Providing a reasonable number of representative solutions to decision makers might be more desirable [START_REF] Govindan | Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic[END_REF]. We also show that this speeds up the convergence to the Pareto set. We run MDLS with either P max = 10 or P max = +∞, with a time limit of 10 hours. The results presented in Table 9 show the superiority of the MDLS with P max = 10 355 (denoted MDLS ( 10)) over the one with unlimited non-dominated set (denoted MDLS (∞)). Columns 2 and 3 show the size of the non-dominated set obtained with both variants.

Columns 4 and represent the ratio of Pareto optimal solutions corresponding to MDLS (10) and MDLS(∞). Limiting the set of solutions acts as an intensification of the algorithm.

Unlike the IMDLS, our approach aggressively explores the solution space around the least 360 crowded areas. Table 10 compares the result of one single run of our MDLS implementation and IMDLS in terms of number of non-dominated solutions, ratio and CPU time. The overall results do not show significant difference between both approaches. However, as the instances size grow, the performance of MDLS tends to improve. For instance, the average ratio R of MDLS and IMDLS for instances T11 to T15 are 0.74 and 0.62 respectively. 365

Computational results

To compare the non-dominated set found by MDLS and EC, we ran both methods 5 times with 10 different values of ε and a time limit of 3 hours for each value of ε. The solutions provided by EC are Pareto optimal when the corresponding MILPs are solved to optimality.

Hence, some solutions obtained with the MDLS may dominate those obtained by EC.

Table 11 reports the three performance measures described above. Columns 2 and 3

show the average ratio (R) for each method. Columns 4 and 5 show the value of unary indicators. Column 6 shows the gap between the hypervolume value of MDLS and EC. To measure the ratio R and the unary indicator, the non-dominated sets are compared with a common reference set, which consists of the set of all non-dominated solutions provided by 375 these methods. By definition, a solution from the MDLS set is dominated in a one to one comparison with an optimal point provided by EC. Thus, the ratio R associated with EC is much higher (0.84 against 0.54). Nonetheless, as the size of instances increases, the ratio associated with MDLS tends to increase while the ratio associated with EC decreases.

380

MDLS has a slightly better average unary than the EC (1.61 versus 1.65). Especially for large datasets, MDLS has more ability to find several solutions that minimize the second objective, so that the tail of the EC front is dominated by MDLS. This is illustrated by 

Managerial insights and conclusion

Our experiments also showed that the supply chain topology can vary from one nondominated solution to another one. As an example, Figure 4 Greening the supply chain consists of two independent decisions: improving technology and modifying the supply chain. This example may suggest that decision makers first upgrade a subset of key facilities, and then replace facilities with lower technologies by new facilities with higher technology. With this idea in mind, it can be worth identifying a subset of robust locations, i.e. locations that will remain selected whatever the environmental policy of the company and strategic decisions. We investigated the individual situation of each facility within the 10 non-dominated solutions presented in Figure 4. Figure 6 displays the total number of occurrences of each facility within the 10 non-dominated solutions. Two plants and two DCs are selected in all 10 solutions. In other words, they can be considered as very robust facilities in term of both objectives. On the contrary, five DCs and one plant are never selected. These indications suggest that the analysis of the non-dominated set can be used as an a posteriori tool to refine the set of candidate locations and, thus, to focus on the core of the decision making problem.

Conclusion

In this paper, we considered a bi-objective Supply Chain Network Design (SCND) problem and proposed an MILP model minimizing both economic and environmental performance criteria. Our goal was to solve this problem by exhibiting a set of efficient solutions constituting a non-dominated set. We therefore designed a solution procedure based on the MDLS framework proposed by [START_REF] Tricoire | Multi-directional local search[END_REF]. Each iteration of the MDLS uses the LNS as a local search method for both objectives. We exploited the idea of crowding distance to better intensify the search as well as limiting the number of solutions in the non-dominated set.

Using three indicators, we compared the quality of solutions obtained with our MDLS Our experiments show that the MDLS outperforms the ε-constraint method, and this outperformance becomes more obvious as the size of instances grows.

Sustainable SCND problems are complex in nature because they address the three dimensions of sustainable development. Our work could lead to many extensions and further researches for a more comprehensive handling of economic, environmental as well as quantifiable social criteria by extending the procedures to multiple dimensions. For example, one may investigate the impact of the incentives offered by governments to promote the use of cleaner technologies. Another promising research direction is to analyse the complex nature of emissions considering aspects such as nonlinear tax rates, multivariate emission functions and uncertainty [START_REF] Waltho | Green supply chain network design: A review focused on policy adoption and emission quantification[END_REF]. The integration of social criteria such as the impact on employment or social life-cycle analysis would also lead to a challenging optimisation problem.

Genetic

  [START_REF] Altiparmak | A genetic algorithm approach for multi-objective optimization of supply chain networks[END_REF];[START_REF] Dehghanian | Designing sustainable recovery network of end-of-life products using genetic algorithm[END_REF];[START_REF] Liao | An evolutionary approach for multi-objective optimization of the integrated location-inventory distribution network problem in vendor-managed inventory[END_REF]; Demirel et al. (2014); Harris et al. (2014); Robles et al. (2016); Tiwari et al. (2016); Kumar et al. (2017); Shi et al. (2017); Zhang et al. (2017); Alavidoost et al. (2018); Ebrahimi (2018) Memetic Jamshidi et al. (2012); Pishvaee et al. (2010) Particle swarm Canales-Bustos et al. (2017); Kadambala et al. (2017); Moncayo-Martínez and Mastrocinque (2016); Zhang et al. (2016); Shankar et al. (2013b,a); Ganguly et al. (2011) Scatter search Olivares-Benitez et al. (2013) NSGA II Alizadeh Afrouzy et al. (2018); Arabzad et al. (2015) Hybrid Devika et al. (2014); Govindan et al. (2015)

  facility j ∈ J ∪ K with technology level t is open and transportation mode m ∈ M is selected for arc (i, j) ∈ A and 0 otherwise x mp ij continuous flow of product p ∈ P on arc (i, j) ∈ A using transportation mode m ∈ M h pt i continuous amount of product p ∈ P processed with technology level t ∈ T at facility i ∈ J ∪ K.

  (a) displays a nondominated set resulting from the previous steps of the MDLS algorithm. Figure 1(b) shows three non-dominated neighbors obtained by the post-optimization step. Figure 1(c) presents the set of final non-dominated solutions.

Figure 1 :

 1 Figure 1: Post-optimization. (a) non-dominated set before post-optimization (b) Neighbors obtained by post-optimization. (c) Final non-dominated set.

Example 1 .

 1 Consider 5 solutions denoted A, B, C D and E respectively, and assume P max = 10 and τ = 2. Assume also that B and D have the largest crowding distances (Figure 2(a)).

Figure 2 :

 2 Figure 2: One MDLS iteration. (a) Starting set of solutions. (b) Neighbors obtained by MDLS around each solution. (c) Final non-dominated set.

Figure 2

 2 Figure 2(b) shows 14 neighboring solutions obtained by applying one local search related to each objective starting from A, C and E, and two local searches related to each objective starting from B and D. Figure 2(c) presents the set of 12 mutually non-dominated solutions among these 14 solutions. Since P max = 10, the solutions displayed in red are removed from the current set.

  et al. (2017). The size of these instances is determined by the number of facilities in the logistics network and the upper limits J max and K max . Similarly to Cordeau et al. (2006), we set the number of potential suppliers and plants to |I| = |J| = 0.1 × |L|. The number of potential DCs was set to |K| = 0.2 × |L|. The values J max and K max were set to 0.5 × |J| and 0.5 × |K|, respectively. Table

  MDLS was run 5 times on each instance. Columns 2, 4 and 7 report the average number of solutions (# sol) in the non-dominated set. Columns 3, 6 and 9 indicate the running time (in seconds). As stated earlier, the number of non-dominated solutions is slightly decreased by the post-optimization step, since calculating optimal product flows enables merging some neighboring non-dominated solutions. Regarding computing times, 345 the initialization and the post-optimization require less than 2% of the total time. Columns 5 and 8 report the ratio of Pareto optimal solutions associated with the MDLS iterations and the post-optimization steps. The average values of 0.93 and 0.99) indicate that each component of the algorithm significantly improves the results of the preceding one.

Figure 3 Figure 3 :

 33 Figure3representing instance T14. Eventually, the hypervolume indicator shows that MDLS is outperformed by EC for small and medium sized instances, but its performance increases when the instance size increases.

Figure 4

 4 Figure 4: non-dominated set for instance T4

Figure 5 :

 5 Figure 5: Supply chain topologies in solutions A to C

Figure 6 :

 6 Figure 6: Number of occurences of each facility location in all non-dominated solutions

Table 1 :

 1 

Examples of multi-objective population based methods for SCND

The bi-objective SCND problem is solved with the multi-directional local search (MDLS) algorithm originally proposed by

[START_REF] Tricoire | Multi-directional local search[END_REF]

. MDLS is a multi-objective optimization framework which generalizes the concept of local search to multiple objectives. Its key idea is to use different local searches, each of them working on a single objective. It considers a set of non-dominated solutions, called non-dominated set, which is updated through the solution process. More precisely, a local search is performed in order to improve non-dominated solutions with respect to each objective function separately. An iteration consists in (i) selecting a solution, (ii) performing local search on this solution for each objective/direction, thus producing a new solution in each direction and (iii) accepting or rejecting the newly produced solutions.

  Decision makers choose where to locate plants and DCs as well as which technology to install at selected locations. Thus, for each location, we consider a list of candidate technolo-

	gies. The generic term technology may refer to distinct generations or variants of the same
	type of machine or to competing technological choices. Each technology has its own capacity,
	production cost and CO 2 emissions. If a technology is less effective than another technology
	both from the economic and environmental point of view, it will never be selected. Thus,
	we consider only technologies that do not dominate each other, i.e greener technologies are
	considered to require a larger initial fixed cost. This is why the integration of technological
	choices is perfectly adapted to a bi-objective model.

suppliers, production plants, distribution centers (DCs) and customers. The location of suppliers and customers are known, whereas those of plants and DCs have to be determined from a list of candidate locations. Customer demand is assumed deterministic.

Table 3 :

 3 Parameters

Table 4 :

 4 Decision variables

	.

Table 5 :

 5 Test instances |I| |J| |K| |L| J max K max

	Instance						
	T1	6	6	12	60	3	6
	T2	7	7	14	70	4	7
	T3	8	8	16	80	4	8
	T4	9	9	18	90	5	9
	T5	10 10	20 100	5	10
	T6	12 12	24 120	6	12
	T7	14 14	28 140	7	14
	T8	16 16	32 160	8	16
	T9	18 18	36 180	9	18
	T10	20 20	40 200	10	20
	T11	22 22	44 220	11	22
	T12	24 24	48 240	12	24
	T13	26 26	52 260	13	26
	T14	28 28	56 280	14	28
	T15	30 30	60 300	15	30

Table 6 :

 6 Features of technology levels

		Technology level	l 1	l 2
		Fixed cost	= +20%
		Processing cost	= -10%
		Processing emission = -20%
	270	4.1.2. Cost and emissions related to transportation

Table 7 :

 7 Results with the ε-constraint method

		Size of non-	Total time	Sub-optimal	Gap
		dominated set	(in seconds)	solutions	(in %)
	T1	10	757	0	0
	T2	10	9268	0	0
	T3	10	12916	0	0
	T4	10	23621	0	0
	T5	10	34713	1	0.07
	T6	9	58866	2	0.35
	T7	10	79168	4	2.49
	T8	10	30h	10	5.82
	T9	9	30h	10	5.06
	T10 10	30h	10	4.09
	T11 10	30h	10	3.01
	T12 9	30h	10	6.54
	T13 10	30h	10	5.59
	T14 10	30h	10	3.26
	T15 9	30h	10	5.75

Table 8 :

 8 Contribution of each phase of the algorithm

		Initialization		Main loop		Post-optimization
	Instance	# sol	CPU (s)	# sol	Ratio CPU (s)	# sol	Ratio CPU (s)
	T1	5.2	1	6.4	1	1127	5	1	1
	T2	6.0	2	5.4	1	1577	4.6	1	2
	T3	6.4	2	5.6	0.83	1926	5.2	1	1
	T4	8.0	2	7.2	1	2815	4.8	1	1
	T5	5.8	3	6.6	0.67	3093	5.8	1	1
	T6	9.4	9	5.4	1	4400	5	1	7
	T7	9.0	18	9.8	1	6596	8.8	0.9	9
	T8	8.8	41	5.6	1	8059	5.4	1	
	T9	7.4	45	9.2	1	9403	9.2	1	
	T10	8.2	79	9.6	0.82	12277	9.2	1	
	T11	9.2	98	7.6	0.80	14872	7.6	1	
	T12	7.2	178	7.8	1	17998	5.4	1	
	T13	10.0	288	7.6	1	21712	7.6	1	201
	T14	9.4	456	9.2	1	26558	9.2	1	302
	T15	9.8	532	8.6	0.83	30871	8	1	418
	Average	8.0	117	7.4	0.93	10885	6.7	0.99	

Table 9 :

 9 Impact of the non-dominated set limitation

		# sol		R	
	Instance MDLS (10) MDLS (∞)	MDLS (10) MDLS (∞)
	T1	5	34	1	0.79
	T2	5	72	1	0.60
	T3	7	48	1	0.73
	T4	4	62	1	0.48
	T5	7	53	1	0.42
	T6	6	57	1	0.09
	T7	10	86	1	0.55
	T8	5	57	1	0.53
	T9	9	51	1	0.20
	T10	10	89	1	0.47
	T11	5	54	1	0.94
	T12	6	58	1	0.52
	T13	7	87	1	0.46
	T14	10	56	1	0.45
	T15	6	88	1	0.47
	average	6.8	63.5	1	0.51

Table 10

 10 

		: Comparison between MDLS and IMDLS	
		# sol		R		CPU (s)
	Instance M DLS IM DLS	M DLS IM DLS	M DLS IM DLS
	T1	5	7	0.61	0.68	1083	1061
	T2	5	5	0.62	0.75	1517	1396
	T3	7	9	0.71	0.67	1871	1759
	T4	4	4	0.61	0.49	2733	2433
	T5	7	5	0.8	0.75	2911	2852
	T6	6	8	0.62	0.78	4063	3982
	T7	10	5	0.63	0.8	6821	6480
	T8	5	5	0.84	0.7	8207	7304
	T9	9	7	0.71	0.74	9274	8440
	T10	10	10	0.72	0.62	12511	11260
	T11	5	5	0.71	0.69	15491	15181
	T12	6	8	0.64	0.48	18082	16997
	T13	7	4	0.77	0.64	22645	20834
	T14	10	6	0.83	0.67	28409	25568
	T15	6	9	0.76	0.63	32776	31792
	Average	6.80	6.47	0.71	0.67	11226	10489

Table 11 :

 11 Comparison between MDLS and EC

	Instance	R MDLS	EC	Unary MDLS	EC	H%
	T1	0.48	1	1.95 1.63	-1.33
	T2	0.64	1	1.84 1.63	-0.81
	T3	0.34	1	1.84	1.7	-0.16
	T4	0.21	1	1.51 1.41	-0.49
	T5	0.38	1	1.91 1.67	-0.14
	Average	0.41	1	1.81 1.61	-0.59
	T6	0.32	1	1.8 1.62	-0.34
	T7	0.34 0.85	1.3 1.66	-0.26
	T8	0.46	0.8	1.58 1.73	-0.64
	T9	0.61 0.79	1.49 1.67	0.21
	T10	0.67 0.73	1.36 1.63	-0.22
	Average	0.48 0.83	1.50 1.66	-0.25
	T11	0.72 0.68	1.68 1.64	0.43
	T12	0.66	0.7	1.43 1.83	0.75
	T13	0.81	0.7	1.37 1.59	0.64
	T14	0.72 0.65	1.47 1.62	0.24
	T15	0.69 0.72	1.63 1.72	0.41
	Average	0.72 0.69	1.51 1.68	0.49
	Overall Average	0.54 0.84	1.61 1.65	-0.11

A file detailing the generation of environmental factors along with test instances are accessible at https://data.mendeley.com/datasets/b2t84kg4wh/draft
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