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Upon drying, colloidal suspensions undergo a phase transformation from a “liquid” to a “gel” state. With
further solvent evaporation, tensile stresses develop in the gel, which ultimately leads to fractures. These
generally manifest themselves in regular cracking patterns which reflect the physical conditions of the drying
process. Here we show experimentally and theoretically how, in the case of a drying droplet of magnetic
colloid �ferrofluid�, an externally applied magnetic field modifies the stress in the gel and therefore the crack
patterns. We find that the analysis of the shape of the cracks allows one to estimate the value of the gel Young’s
modulus just before the crack nucleation.

DOI: 10.1103/PhysRevE.77.021402 PACS number�s�: 83.80.Hj, 62.20.M�, 47.54.�r

I. INTRODUCTION

The crack patterns formed during the drying of pastes
have been the subject of many investigations. The applica-
tion of such studies is very wide—for instance, in the drying
of paint in industry �1,2� or in the arts �3�. Many coating and
material elaboration processes are also based on the drying
of colloidal suspensions, where cracking needs to be avoided
�4�. Understanding the crack patterns of muddy sediments
has also a geological interest �5�.

The fundamental interest in the study of the drying pro-
cess of colloidal suspensions is the link between the micro-
scopic interactions between the colloidal particles during sol-
vent evaporation and the macroscopic morphology and
geometry of the resulting crack pattern. Under well-
controlled experimental conditions, a regular crack pattern
can be formed during the drying process, the cracks being
regularly spaced and perpendicular to the gelation front
�6–9�.

In this article, we study the drying of a colloidal suspen-
sion made of magnetic particles �ferrofluid�. The presence of
an external magnetic field in the plane of the substrate in-
duces an additional anisotropic interaction between the par-
ticles. The macroscopic effect is spectacular: the cracks
propagating in the gel phase turn and align in the same di-
rection as the magnetic field, as shown in Fig. 1.

The article is organized as follows. We first recall the
mechanism of crack patterns in nonmagnetic colloidal sus-
pension and introduce the vocabulary and the notations �Sec.
II�. We then present the experimental setup �Sec. III�. The
experimental procedure and results are shown in Sec. IV. In
Sec. V, we introduce a model that takes into account the
magnetic-dipole interaction within the drying ferrofluid drop

submitted to an external magnetic field. Those interactions
induce a magnetic stress, which acts on the crack during the
crack propagation. The shape of the crack is then fixed by the
interplay between the elastic and magnetic stresses. We com-
pute the exact shape of the crack as a function of the external
field and show that this model reproduces well the experi-
mental data �Sec. VI�. We finally discuss �Sec. VII� and con-
clude �Sec. VIII� this study.
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FIG. 1. Region of a ferrofluid drop in the final stage of the
drying process. The direction of propagation of the gelation front
was along the x axis. The drop started to dry in the absence of
external magnetic field �left part�. A homogeneous magnetic field of
amplitude H=16 kA m−1 was then applied in the direction of the y
axis when the gelation was at the position x=xH. From the left to
the right of the figure, the cracks turn in order to align in the same
direction as the magnetic field.
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II. CRACK PATTERNS WITHOUT A MAGNETIC FIELD

Controlling the crack path is very important in various
fields of science and technology. Such a control has been
proven to be possible if the colloid is confined between two
glass plates by changing the cooling rate during quenching
�10,11�. More recently, experiments involving vibrating
pastes were performed to mechanically control the crack pat-
terns that appear during the drying process of a drop depos-
ited onto a glass plate �12�.

The crack mechanism in drying colloidal suspensions has
been understood as follows �4,13�. Let us consider a liquid
drop of a colloidal aqueous suspension on a substrate �see
Fig. 2�. During the water evaporation, the distance between
particles decreases, until the particles enter in contact. At this
point, the system consists in a porous structure saturated with
the solvent �Fig. 2�b��, which we call alternatively the gel
phase or paste. After this gel phase is formed, the water goes
on evaporating between the particles �Fig. 2�c��. The par-
ticles interact under the effect of capillary bridges. Therefore,
the gel shrinks due to high capillary pressure, which is of the
order of 2�w,a /a�107 Pa, where �w,a is the water-air sur-
face tension and a is the average particle radius. But the gel
shrinkage is limited by the adhesion on the substrate. As a
result of this growing misfit, mechanical tensile stresses
build up within the gel. The tensile stress increases with the
increase of the solvent evaporation. When the stress reaches
a critical value, cracks nucleate from defects in the system
and invade the gel �6�.

The stress tensor within the gel is usually anisotropic, and
the cracks propagate in the direction that relaxes the highest
stress—i.e., perpendicularly to the direction of maximal
stress. In the geometry of a sessile droplet, the drying starts
at the edge of the droplet and propagates toward the center
�see Fig. 3 and Ref. �8��. Directional cracks are then formed
at the edge of the drop �near the three-phase line� and propa-
gate radially as the gel phase extends from the periphery to
the center of the drop. A pattern of regularly spaced cracks
builds up all around the drop edge. Figure 3 shows that,
when the droplet is observed in the plane of the substrate,
two propagation fronts can clearly be defined. We introduce
the following notations. The x axis is the direction of propa-
gation of the drying process. The x axis is then radially ori-
ented from the edge to the center of the drop. The gelation
front is the line separating the liquid phase and the gel phase.
Note that, in the experiments, the liquid and solid phases are

clearly distinguished by the presence of impurities �dust�: the
impurities constantly move in the liquid phase whereas they
are blocked in the gel phase. In the gel phase, the tips of the
cracks are aligned on a line parallel to the gelation front. We
call this line the cracking front. xg is the position of the
gelation front on the x axis, and xc is the position of the
cracking front.

III. EXPERIMENTAL SETUP

The drying drops studied in this article are made of a
ferrofluid, which is a stable colloidal suspension of magnetic
particles in a solvent. In our case it is a dispersion of
maghemite ��-Fe2O3� particles in water �volume fraction
�FF=2.1%, average particle diameter �2a�=10 nm, particle
diameter lying between 2a=3 nm and 2a=15 nm�. The fer-
rofluid is stabilized electrostatically by a negative surface
charge of the particles �citrate ions adsorbed on the surface
of the particles�. The solution is electrically neutralized by
sodium counter-ions �14�. The suspension is stable in the
absence of solvent evaporation.

Each particle carries a permanent magnetic moment,
conferring macroscopic magnetic properties to the solution

(a) (b) (c)

water

FIG. 2. Sketch of the drying process of a colloidal suspension.
Because of the solvent evaporation, the stable colloid �a� transits to
a gel phase when the particles come into contact �b�. The water
evaporation then causes liquid bridges between the particles, which
are at the origin of growing tensile stress into the gel phase �see
text�.
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FIG. 3. �a� Sketch of a sessile drop in side view, drying on a
substrate �a glass plate�: a gelled foot builds up near the drop edge
while the central part is still fluid and shrinks. �b� Photograph of the
top view of a section of a drying drop. A pattern of cracks builds up
all around the drop edge: xc and xg denote the positions of the
cracking and gelation front, respectively. The black bar represents
10 �m. �c� Sketch of the growth of a crack in the stretched gel
phase corresponding to the left part of image �b�. �yy ��yy is the
maximum stress; therefore, the fracture opens in the direction per-
pendicular to the y axis.
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�Fig. 4�. In the presence of an external magnetic field, ther-
mal agitation competes with the magnetic energy, which
tends to align the magnetic moments of the particles in the
same direction as the external field �15–17�. The resulting
macroscopic magnetic behavior of the solution is of para-

magnetic type: the magnetization M� �H� � of the ferrofluid has

the same direction as the applied field H� ; the amplitude
M�H� increases linearly with the external field for low field
strength and saturates for high applied magnetic field
strength since all the magnetic dipoles are aligned. Figure
4�b� shows the magnetization curve of the ferrofluid solution
used in the experiments �before the drying�.

A small amount of the solution �around 20 �l� is depos-
ited on a horizontal glass plate, forming a hemispherical
droplet which is bounded by a three-phase contact line on the
glass plate �18�. During the water evaporation, the liquid
suspension transits to a gel phase, which propagates as a
so-called gelation front from the periphery of the drop to its
center. The drop diameter is of the order of 5 mm; its height
is of the order of 3 mm in the liquid phase and of 100 �m in
the gel phase.

The sessile droplet is placed between Helmholtz coils,
which create a homogeneous magnetic field in the plane of
the glass plate. The amplitude of the magnetic field can be
varied between 0 and 25 kA m−1. The morphology of the
drying drop and the crack pattern are imaged from the top
using a microscope and a camera.

IV. EXPERIMENTAL RESULTS

The propagation of the cracks during the drying process
of a ferrofluid drop, with or without a magnetic field, is
shown in Fig. 5. The geometry is the same as in Fig. 3: the
drop, initially hemispherical, dries from the circular edge
toward the center. The images are top views of a portion of
the drop. They show the gelation front and the cracking front
on a distance of approximately 0.3% of their total length: at
this scale, the gelation and cracking fronts appear linear. In
this region, the gelation front propagates perpendicularly to
the applied magnetic field. The ferrofluid drop is deposited
on the substrate at t=0.

Between time t=0 and t= t0, no magnetic field is applied.
A gelation front propagates from the edge to the center of the
drop in the x direction, followed by a crack front propagating
in the same direction. As in the case of the drying process of
a nonmagnetic colloidal suspension, the cracks are regularly
spaced and aligned in the direction perpendicular to the ge-
lation front.

At t= t0, the external homogeneous magnetic field H� is
applied in the y direction. The cracks go on propagating in
the x direction until t= t1, when the cracking front reaches
the position that was the position of the gelation front at
the time the magnetic field was switched on �Fig. 5�b��:
xc�t1�=xg�t0�=xH.
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FIG. 4. �Color online� �a� Sketch of an ionic ferrofluid. The
average particle diameter is �2a�=10 nm. In the absence of an ap-
plied magnetic field, the magnetic moments of the particles are
randomly oriented because of the Brownian motion, whereas they
are aligned under the effect of an applied magnetic field. �b� Mag-
netization curve of the ferrofluid used in the experiments. The inset
shows the linear range of the magnetization curve, in which the
initial magnetic susceptibility of the ferrofluid is measured. The
magnetic susceptibility is �=0.23, and the saturation magnetization
is Ms=6.7 kA m−1
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FIG. 5. Propagation of the gel phase and the cracks in a drying
ferrofluid drop. �a� At t= t0, a magnetic field H=25 kA m−1 is ap-
plied in the y direction �no magnetic field is applied for t� t0�. �b�
At t= t1, the cracking front xc reaches the position where the gela-
tion front xg was when the magnetic field was switched on: xc�t1�
=xg�t0�=xH. �c� At t� t1, the crack trajectories are bent increasingly
toward the direction of the applied field. Let us notice that in the top
of the image, the cracks turn clockwise, whereas they are more
likely to turn counterclockwise in the bottom of the image. This
effect is due to the circular geometry of the gelation front, which
orientates the crack radially in the absence of a magnetic field: only
in the middle of the figure is the initial crack direction strictly
perpendicular to the field.
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For t� t1, the cracks turn to align in the direction of the
applied magnetic field. We notice that the line x=xH remains
white on the images for t� t0. This effect is probably due to
a variation of the thickness of the gel phase when the mag-
netic field is suddenly changed.

Figure 6 represents the time evolution of the position of
the gelation front xg and the cracking front xc, corresponding
to Fig. 5. The gelation front propagates at a constant velocity
independently of the presence of an external magnetic field.
The effect of the magnetic field has a pronounced influence
on the dynamics of the cracking front: it propagates at the
same constant velocity as the gelation front for t� t1 and
slows down at t� t1.

The experiment corresponding to Figs. 6 has been repro-
ducibly performed several times using the same ferrofluid
and the same experimental conditions.

The magnetic field has only an effect on the crack orien-
tation if the cracks propagate in a gel that has been gelified
with being exposed to a magnetic field. This fact is nicely
illustrated by the experiment presented in Fig. 7, which
shows the final stage of a ferrofluid drop which dried under
the effect of a magnetic field applied during a short period
only �corresponding to x1�xg�x2�: the cracks turn toward
the direction of the field in the region x1�x�x2 and propa-
gate radially for x�x1 and for x�x2, where the gel has been
formed with no applied magnetic field. The gel phase there-
fore keeps a memory of the presence or absence of an exter-
nal magnetic field during the gel formation. This memory
effect can be accounted for by the presence of additional
magnetic stresses within the gel phase formed under the ef-

fect of H� . The cracks are sensitive to these additional aniso-
tropic stresses, which tend to align the cracks in the same
direction as the external field and compete with the elastic
stresses. On the contrary, when the gel is formed without a
magnetic field �x�x1 and x�x2 in Fig. 7 or x�xH in Fig. 5�,
the magnetic dipoles are randomly oriented in the gel phase.
Therefore, no magnetic stress exists in the gel phase, which
behaves as a nonmagnetic colloidal gel, even if a magnetic
field is applied to the gel.

V. THEORETICAL MODEL

In this section, we first recall the main theoretical descrip-
tion of crack formation induced by the drying process in
nonmagnetic colloids, based on Ref. �4�. We then introduce
the effect of additional magnetic stresses acting on the crack
in the case of a drying ferrofluid droplet. We then compute
the crack shape and compare the model to the experimental
data.

The geometry considered here is a drop lying on a solid
substrate, the upper surface being a free surface. In the plane
of the substrate, the gelation front and the cracking front are
assumed to be straight lines parallel to the y axis and propa-
gating linearly in the x direction. This geometry represents
the experimental situation where a surface of the order of
100 �m	100 �m is considered, which corresponds to
approximately 0.01% of the total surface of the drop. The
thickness h of the gel phase is assumed to be homogeneous,
which is well confirmed experimentally.

A. Crack pattern in the absence of a magnetic field

Within the gel phase, the equilibrium profile of the solvent
volume fraction behind the gelation front can be computed
taking into account the solvent evaporation at the free sur-
face of the drop and the diffusion of solvent within the gel
�see Fig. 8 for the notation�. During solvent evaporation, the
variation of solvent volume leads to a shrinkage of the gel
phase. Because of the adhesion of the gel on the substrate, a
tensile stress builds up in the gel.
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FIG. 6. Time evolution of the gelation front xg and the cracking
front xc, corresponding to the experiment shown in Fig. 4. At t= t0,
the magnetic field is applied in the y direction and the position of
the gelation front is xg=xH. At t= t1, the cracking front reaches the
position xc=xH. We notice that the distance d=xg−xc is constant for
xc�xH.
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y
H

FIG. 7. Image of a region of a fully dried ferrofluid drop. The x
axis represents the direction of propagation of the gelation front
during the drying. An external magnetic field H=25 kA m−1 was
applied in the y direction for the position of the gelation front x1

�xg�x2. The crack trajectories are bent toward the y direction only
within the region that gelified while being exposed to the magnetic
field.
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Figure 8 shows the components of the two-dimensional

stress tensor �
⇒

in the �x ,y� plane, obtained by averaging the

three-dimensional stress tensor 

⇒

�x ,y ,z� of the gel phase
along the gel thickness �see Appendix A for detailed calcu-
lations�. The sketch in Fig. 8 shows the principal components
�xx and �yy as a function of x in the gel phase �x�xg�,
showing that the elastic stress increases when x decreases.
The problem is assumed to be invariant in the y direction.

According to Griffith’s theory �19�, the limit stress �c
beyond which the material ruptures is a function of the stress
intensity factor KIC and is expressed as �c=KIC /��b, where
b is a minimal characteristic size of the crack �of the order of
the particle radius a� and KIC depends on the physicochem-
istry of the gel phase. Thus, a crack forms when

�nn = n� · ��
⇒

n�� = �c, �1�

where �nn is the stress in the direction n� , normal to the crack.
Equation �1� can be expressed as a function of the principal
components of the stress tensor: �nn=�xx sin2 �+�yy cos2 �,
where � is the angle between n� and the y axis.

Since in our geometry �yy ��xx �Fig. 8�, �yy reaches �c at
a shorter distance from the gelation front than �xx. Cracks
form and propagate in the x direction in order to relax �yy.
The length over which �yy increases and reaches �c fixes the
distance, d=xg−xc, between the gelation front and the crack-
ing front �Fig. 6�. d can be computed using Eqs. �1� and �B7�
taking into account Appendix B:

�yy = �c ⇒
Ecg

1 − 2
�1 − e−d/�� = �c, �2�

where E is the Young’s modulus of the gel phase when
cracks form,  is the Poisson ratio, cg denotes the volume
fraction of solvent at the gelation front, and �=hv /JE is a
characteristic diffusion length defined from the thickness of

the gel layer, h, the speed of the gelation front, v, and the
evaporation rate JE of the solvent in the air which mainly
depends on the ambient relative humidity �see Appendix A�.

B. Cracks oriented by the magnetic field
in a magnetic gel

If no magnetic field is applied during the gel formation,
the magnetic particles are randomly oriented and the colloid
behaves like a nonmagnetic colloid. In contrast, if a magnetic
field is applied, the magnetic dipoles align during the gelifi-
cation. Once gelified, the magnetic particles are closely
packed: their translational or rotational movement is
obstructed—even after the magnetic field is removed. There-
fore, the regions that have been gelified under the effect of a
magnetic field have a permanent nonzero magnetization M�.

Neglecting superparamagnetic effects �rotation of the
magnetic moment of a particle with no particle rotation� and
thermal agitation in the gel phase, the permanent magnetiza-
tion of the gel is given by

M� = M�H�
VFF

Vgel
=

�H

�FF
�1 − c̄� , �3�

where M�H� is the ferrofluid magnetization corresponding to
the value of H applied during the gelation �Fig. 4�b��: for
H�25 kA m−1, M =�H, where � is the ferrofluid magnetic
susceptibility. VFF is the ferrofluid volume before drying,
Vgel is the volume of the gel, �FF is the initial volume frac-
tion of particles in the ferrofluid, and c̄ is the water volume
fraction of the gel phase averaged along the layer thickness
�1− c̄ is therefore the particle volume fraction in the gel�. We
assume that M�H� is homogeneous in the ferrofluid. How-
ever, since c̄ depends on x, M� depends on x. In the referen-
tial of the gelation front x�=x−vt, c̄�x�� is static; therefore,
M��x�� does not depend on time. M��x�� is the permanent
magnetization of the gel phase even in the absence of an
external applied field.

In the following, we consider that the gel has been formed

under the effect of the external magnetic field H� and that H
has been set to zero after the gel formation and before the
crack propagation. We then describe the crack propagation in
a magnetic gel of permanent magnetization M� with no ex-
ternal magnetic field.

In the so-formed magnetic gel phase, the particles interact
via anisotropic magnetic-dipole interactions, which are at-
tractive if the particles are aligned along chains and repulsive
if the particles are side by side. When a crack propagates, the
crack opens a region filled with air, which splits the space
into two regions made of the magnetic gel. Those two re-
gions interact because of the magnetic-dipole interaction.
The magnetic force exerted by one region on the second one
can be computed. We note with index 1 or 2 the parameters
that are defined in the first or second region separated by the
crack �see Fig. 9�.

Let H� 1 be the internal magnetic field induced by the mag-

netic moments present in the semispace 1 of volume V1. H� 1
can be written as the gradient of a potential function �15�:

solventconcentration

σc

cracking front

σxx

x x

σyy

gelation frontcracks

liquidgel
air

y

z

substrate x

g

Cg

xg

FIG. 8. �Color online� Three-dimensional sketch of a drying
colloidal suspension. The gel phase of the drop is assumed to have
a constant thickness h. Here, the liquid phase is also represented flat
for simplicity, but this is not necessary for the presented model.
x=xg corresponds to the position of the gelation front, which propa-
gates in the direction x�xg. At z=0, the drop lies on the substrate
and the free surface between the drop and the air is at height z=h.
Below the sketch, the variation of the two-dimensional �2D� solvent
volume fraction c̄ and the principal components of the 2D elastic
stress tensor are plotted versus x.
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H� 1 = �� �1, �4�

with

�1�r�� =
�0

4�
	

V1

�M� � · �� �
d3��


r� − ��

= −

�0

4�
	

S1

�M� � · n��
d2��


r� − ��

,

where r� and �� denote the dipole positions in three-
dimensional space, S1 is the surface enclosing the volume of
V1 region 1, and n� is a unit vector normal to the external
boundary of the volume V1. In the cracked region, n� is then
normal to the crack, directed from region 1 to region 2.
Therefore, the magnetic force exerted by region 1 on region
2 results from the interaction between the magnetic dipoles

in the volume V2 and the magnetic field H� 1 calculated above:

F� 12 = 	
V2

�M� � · �� �H� 1d3r� ,

F� 12 = −
�0

4�
�M� � · n��2	

S2

d2r�	
S1

d2�→
�r� − ���

r� − ��
3 , �5�

where S2 is the surface enclosing the volume V2. The inte-
gration can then be performed, assuming that regions 1 and 2
are two semi-infinite regions in the x and y directions. After
some calculation, we obtain

F� 12 = −
�0

�
�M� cos ��2L�h arctan� h

w


− w ln�1 + � h

w
2��n� ,

where w is the width and L is the length of the crack. In the
limit of a thin crack �w�h�, we find

F� 12 = −
�0

2
�M� cos ��2Lhn� , �6�

where � is the angle between n� and M� �. Therefore, the effect
of the force is to close the crack when ��� /2—i.e., when
the crack is not parallel to the magnetization.

Equation �6� is independent of the crack width w and
varies linearly with the crack length L. Therefore, it can be
used to define a magnetic stress �m which will affect the
crack propagation:

F� 12 = − Lh�mn� , �7�

where

�m = −
�0

2
M�2 cos2 � . �8�

Under the effect of the external magnetic field, the condition
for the crack formation �Eq. �1�� becomes �nn+�m=�c,
which can be written in the following way:

�nn = �c − �m = �c +
�0

2
M�2 cos2 � . �9�

Equation �9� shows that the effect of the magnetic-dipole
interactions is to increase the critical stress above which the
crack propagates. However, this effect is anisotropic. To il-
lustrate this effect, let us consider those two extreme cases.
For �=0, the cracks will form perpendicularly to the magne-
tization if, according to Eq. �9�,

�yy�� = 0� = �c +
�0

2
M�2. �10�

For �= �
2 , the cracks will align in the direction of the mag-

netization if

�x�x��� =
�

2
 = �c. �11�

The total critical stress �c+�m is then increased by the exis-
tence of a permanent magnetization in the case �=0, whereas
it is not affected by M� in the case �= �

2 . Therefore �see Fig.
8�, if M� is strong enough, the distance from the gelation
front at which �x�x�=�c is smaller than the distance at which
�yy =�c+�m, the cracks turn in the direction that relaxes
�x�x�—i.e., in the direction of the magnetic field applied dur-
ing the gel formation. However, this argument shows that
there is a critical value of M� above which the crack can
change orientation.

Equation �9� gives the value of the angle � of maximum
total stress. In order to compute the shape of the crack tra-
jectory, we have to solve the following set of differential
equations:

dx�

dl
= cos �,

dy

dl
= sin � , �12�

where l denotes the arclength along the crack. The computed
crack shape can then be compared to the experimental data,
as presented in the following section.

y

n

M

θw

FF

FF

air

z x

F12

2

1

magnetic gel

magnetic gel

FIG. 9. �Color online� Notation for the calculation of the mag-
netic stress. The crack �width w� splits the �x ,y� plane between two
regions. M� is the permanent magnetization of the magnetic gel. n
is the normal to the crack interface of the semispace 1, � is the
angle between M� and n, and F12 is the magnetic force exerted by
region 1 onto region 2.
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VI. COMPARISON BETWEEN THE THEORETICAL
MODEL AND THE EXPERIMENTAL DATA

Figure 10 shows the comparison between the experimen-
tal data and the model described above. The data represent
the shape of a crack in the �x ,y� plane, or equivalently the
trajectory of a crack, in a region that has been gelified under

the effect of H� . The crack propagated in time in the x direc-
tion. The crack shape is plotted in the referential of the labo-
ratory, the origin x=0 corresponding to the position of the
gelation front when the crack is aligned in the direction of
the field ��xx�x=0�=�yy�x=0�=0�.

In Fig. 10, the experimental data represent eight different
cracks. The cracks, slightly translated in the y and x direc-
tions, or symmetrized with respect to the y axis �but not
dilated in any direction�, collapse on the same master curve:
the crack shape is reproducible and can therefore be com-
pared to the theoretical model.

Let us notice that only the primary cracks have been
considered—i.e., the cracks that propagate in a gel free of
cracks. The secondary cracks explore a gel where a crack has
already propagated; therefore, the stress field is modified by
the presence of the primary crack. The model presented here
does not consider the secondary cracks. Figure 10 corre-
sponds to the same experimental conditions as in Fig. 1
�same amplitude of the magnetic field�, where many primary
cracks are visible. In Fig. 5�c�, most of the cracks are sec-
ondary cracks since they end up meeting a primary crack
with a 90° angle. The interactions between cracks seem
stronger in the case of Fig. 5, which also corresponds to a
larger amplitude of the magnetic field than in Fig. 1. Since

the model only considers the shape of the primary case, we
have chosen a situation close to the case of Fig. 1.

The solid line in Fig. 10 corresponds to the model pre-
sented in Sec. V. Equations �2�, �9�, �12�, and �B7� lead to the
following expression used for the fit:

sin2 � =

1 −
1 − exp�x/��

1 − exp�− d/��
+

�0M�2

2�c

1 −
exp�x/�� − exp��x�

�1 − exp�− d/����1 − ����2�
+

�0M�2

2�c

.

�13�

The parameters of Eq. �13� are set as follows: the distance
d between the gelation front and the cracking front when
H=0 is measured for H=16 kA m−1: d=140 �m.

The gel thickness is assumed to be homogeneous and
is inferred from the data: h=100 �m. For this thickness and
under an ambient relative humidity of 50%, the evaporation
rate can be calculated numerically �18�: JE=2	10−6 m s−1.
The velocity of the gelation front is constant �see Fig. 6�. For
H=16 kA m−1, we measure: v=10 �m s−1. Therefore,
�=hv /JE=500 �m. Those values of h and � are coherent
with the theory presented above. Indeed, let dH be the dis-
tance between the gelation front and the cracking front when
H�0, after the crack has turned in the direction of the mag-
netic field. Equations �11� and �B7� give the following con-
dition for dH:

Ecg

1 − 2
� exp�− dH/�� − exp�− �dH�

1 − ����2 + �1 − exp�− dH/��� = �c.

Therefore, according to Eq. �2�,

exp�− dH�� − exp�− �dH�
1 − ����2 = exp�− dH/�� − exp�− d/�� .

For H=16 kA m−1, we measure dH=170 �m. We find that
this value satisfies very well the above equation. This justi-
fies a posteriori the choice h=100 �m.

The Poisson ratio is set to =0.3, which is the usual value
of the Poisson ratio of a colloidal gel �4�.

The crack shape is then calculated and plotted with one
fitting parameter. The best fit, plotted in Fig. 10, gives

M�2

�c
= 2.43 	 106 A2 m−2 Pa−1. �14�

This result allows us to obtain an order of magnitude of
the gel Young’s modulus just before the crack propagation.
The magnetization of the gel at the tip if the crack is given
by Eqs. �3� and �A2�: M�= �H

�FF
�1−cge−dH/���77 kA m−1,

where the volume fraction of solvent in the ferrofluid at the
gelation front is set to cg�0.9. Therefore, according to
Eq. �2�, the Young’s modulus can be estimated. We obtain
E�4	103 Pa.

VII. DISCUSSION

The value of the gel Young’s modulus E obtained above is
two orders of magnitude lower than the results of the mea-

H

x (µm)
-200 0-400

0

100

200
y
(µ
m
)

Experiment
Theory

FIG. 10. �Color online� Trajectory of the curved crack under the
effect of the external magnetic field, applied in the y direction, of
amplitude H=16 kA m−1. The x axis is the direction of propagation
of the gelation front during the drying in the referential of the labo-
ratory. The dots represent the experimental data. They correspond to
the shape of eight primary cracks, translated in the x and y direc-
tions or symmetrized with respect to the y axis. The solid line is a fit
of the data using the model presented in Sec. V. x=0 corresponds to
the position of the gelation when the crack is aligned in the direc-
tion of the magnetic field.
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surements performed by Zarzycki for a wet silica gel �20�.
This effect could be due to several factors. First, the method
presented here gives an estimation of the gel Young’s modu-
lus just before the crack propagation, whereas direct mea-
surements of Ref. �20� are performed in a drier gel �Ludox
SM with average particle diameter �15 nm�, in which the
solvent evaporation leads to an increase of the gel elastic
modulus. It is then reasonable to expect a lower value in our
case that is in a region of the gel which is consolidating. In
addition, the magnetization of the gel seems to be underval-
ued here: its value could be higher in the crack tip, which has
not been considered here.

Another effect could be due to the magnetic-dipole inter-
action, which could lead the formation of chains of magnetic
particles in the direction of the applied field during the dry-
ing. This would therefore fragilize the gel in the perpendicu-
lar direction and then lower the value of the elastic Young’s
modulus. In order to test this hypothesis, it would be inter-
esting to perform direct measurements of the Young’s modu-
lus of the magnetic gel and to compare the case of a gel
formed under the effect of a magnetic field and the case of a
gel formed with no applied field.

However, the model presented above is very simplified. In
particular, the main approximations are the hypothesis of a
homogeneous thickness and the assumption of an isotropic
material. This model captures the fact that the crack rotation
is due to the magnetic-dipole interaction and gives an esti-
mate of the order of magnitude of the gel Young’s modulus
before the crack propagation. In order to use this method to
actually measure the gel Young’s modulus, a more precise
model is required, which would take into account the effects
of a heterogeneous thickness and of anisotropy.

VIII. CONCLUSION

In this article, we have shown that the morphology of
cracks in a drying ferrofluid droplet can be controlled by an
external magnetic field applied during the gel formation.
This effect is due to the building up of internal magnetic
stresses in the gel, which remain in the gel even when the
magnetic field is removed. These stresses compete with the
elastic stresses and tend to align the crack in the direction of
the internal gel magnetization. The analysis of the shape of
the crack allows one then to obtain an estimate of the gel
Young’s modulus.

However, experiments performed using different ferroflu-
ids have shown that the drying pattern can be very different
from one ferrofluid to another one. This does not seem to
be due to the nature of the magnetic particles �we obtained
patterns similar to the ones shown in this article using a
ferro-fluid made of cobalt ferrite particles�, but rather to
the nature of the ions and counter-ions used to stabilize the
colloid. Indeed, the phase diagram of magnetic liquid colloi-
dal suspensions is extremely rich �14� and the crack pattern
obtained during the drying of a ferrofluid drop might
strongly depend on the path followed in the phase diagram.
A complete physicochemical study of this effect is still to be
done.
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APPENDIX A: WATER VOLUME FRACTION IN THE
DRYING GEL WITHOUT A MAGNETIC FIELD

Let us consider the fracture-free area between the crack-
ing front and the gelation front �see sketch in Fig. 8�. In this
region, the stress distribution is related to the diffusive vol-
ume fraction field c of the solvent. Since the solvent evapo-
rates from the gel surface—that is, at z=h—c is both x and z
dependent. Also, the solvent flow in the gel phase is driven
by the capillary pressure gradients arising due to the curva-
ture of the capillary bridges between the particles. This flow

has a volume flux of the solvent J�v�−r2�� pc /�. Since the
capillary pressure is pc=−� /r and at small volume fraction
of the liquid c�r /R, where r is the curvature radius of the
capillary bridge and R is the radius of the colloidal particles,

we have J�v=−Dg�� c, where the diffusion coefficient of the
solvent, which is related to the transport of solvent through
the porous solid gel, is Dg=R2 /� and � is characteristic cap-
illary relaxation time of the bridge ���R /�. Then mass
conservation is expressed as

�c

�t
= − divJ�v.

In the following, we will consider the steady-state solution
c=c�x−vt� in the case of the constant gelation front velocity
after averaging the volume fraction of the solvent along the
vertical z in the region z�h—that is, c̄. In that way,

�− v
� c̄

�x�
= Dg

�2c̄

�x�2 +
JEc̄

h
�

z=h
. �A1�

In analogy to Newton’s law for cooling at the interface of
the film,

�− Dg
�c

�z
�

z=h

= JEc̄ .

JE is determined by the solvent diffusion in the vapor phase
and depends on the external conditions. Hence, the solvent
transfer in the gel satisfies a diffusion equation, which we
denote in a moving coordinate system x� ,y ,z attached to the
gelation front, moving at velocity v.

The term Dg� �c
�z

�
z=h is related to the evaporation rate at the

gel-air interface. The solution of Eq. �A1� in the gel phase
�x��0� at DgJE / �hv2��1 is

c̄�x�� = cgex�/�, �A2�

where �=hv /JE is a characteristic diffusion length and cg
denotes the volume fraction of solvent at the gelation front.
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APPENDIX B: INTERNAL STRESS IN THE DRYING GEL
WITHOUT A MAGNETIC FIELD

Let us compute the elastic stress within the gel in the
referential attached to the gelation front. Assuming that the
material is both isotropic and homogeneous, the classical
theory of elasticity is applicable �21�. The components of the
stress tensor are given by


ij =
E

1 + 
�uij +



1 − 2
�ijull +

E

1 − 2
�ij�cg − c� ,

�B1�

where i , j=x� ,y ,z. The second term on the right-hand side is
the internal stress created by the variations of the solvent
volume fraction, cg−c. In Eq. �B1�, the evolution of the sol-
vent volume fraction is treated by analogy to temperature
variations in a nonisothermal problem. uij =

1
2 ��iuj +� jui� rep-

resents the components of the deformation tensor with re-
spect to the components of the displacement field, ui, within
the gel.

The displacement field is of the form u� = �ux��x� ,z� ,0 ,0�.
Equation �B1� gives the following expressions for the non-
zero components of the stress tensor:


x�x� =
E�1 − �

�1 + ��1 − 2�

�ux�

�x�
+

E

1 − 2
�cg − c� �B2�

and


x�z =
E

2�1 + �

�ux�

�z
. �B3�

The boundary conditions are ux��x� ,y ,z=0�=0 �no slip on
the substrate� and 
x�z�x� ,y ,z=h�=0 �free surface at the
gel-air interface�. They are satisfied using ux��x� ,y ,z�
=F�x��sin��z /2h�, where F�x�� is a function of x�, which we

calculate now. The condition of mechanical equilibrium of
the gel is �21,22�

�
x�x�

�x�
+

�
x�z

�z
= 0. �B4�

We define the components of the stress tensor averaged
along the gel thickness with respect to z:

�ij =
1

h
	

0

h


ijdz , �B5�

with i , j=x� ,y ,z. Using Eqs. �B4� and �B5� and the boundary
condition at the free interface, we obtain

� ��x�x�

�x�
−

1

h

x�z�

z=0
= 0. �B6�

The function F�x�� is then determined using Eqs. �A2�, �B2�,
and �B6� and the boundary condition of vanishing stress on
the gelation front, �x�x��x�=0,y�=0:

F�x�� =
��1 + �cg

2�1 − ��

exp�x�/�� −
1

��
exp��x��

1/�2 − �2 ,

where

�2 = � �

2h
2 �1 − 2�

2�1 − �
.

Therefore, the z-averaged stress distribution in the gel is

�x�x� =
Ecg

1 − 2

exp�x�/�� − exp��x��
1 − ����2 + �yy ,

�yy =
Ecg

1 − 2
�1 − exp�x�/��� . �B7�
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